
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

12-2021 

Empirical evaluation of minority oversampling techniques in the Empirical evaluation of minority oversampling techniques in the 

context of Android malware detection context of Android malware detection 

Lwin Khin SHAR 
Singapore Management University, lkshar@smu.edu.sg 

Nguyen Binh Duong TA 
Singapore Management University, donta@smu.edu.sg 

David LO 
Singapore Management University, davidlo@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons 

Citation Citation 
SHAR, Lwin Khin; TA, Nguyen Binh Duong; and LO, David. Empirical evaluation of minority oversampling 
techniques in the context of Android malware detection. (2021). 2021 28th Asia-Pacific Software 
Engineering Conference (APSEC): Taiwan, December 6-9: Proceedings. 349-359. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6852 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6852&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Empirical Evaluation of Minority Oversampling Techniques in the Context of
Android Malware Detection

Lwin Khin Shar§, Ta Nguyen Binh Duong§, David Lo
School of Computing and Information Systems

Singapore Management University
Email:{lkshar, donta, davidlo}@smu.edu.sg

Abstract—In Android malware classification, the distribution
of training data among classes is often imbalanced. This causes
the learning algorithm to bias towards the dominant classes,
resulting in mis-classification of minority classes. One effective
way to improve the performance of classifiers is the synthetic
generation of minority instances. One pioneer technique in this
area is Synthetic Minority Oversampling Technique (SMOTE)
and since its publication in 2002, several variants of SMOTE
have been proposed and evaluated on various imbalanced
datasets. However, these techniques have not been evaluated
in the context of Android malware detection. Studies have
shown that the performance of SMOTE and its variants can
vary across different application domains. In this paper, we
conduct a large scale empirical evaluation of SMOTE and
its variants on six different datasets that reflect six types of
features commonly used in Android malware detection. The
datasets are extracted from a benchmark of 4,572 benign apps
and 2,399 malicious Android apps, used in our previous study.
Through extensive experiments, we set a new baseline in the
field of Android malware detection, and provide guidance to
practitioners on the application of different SMOTE variants
to Android malware detection.

Keywords-malware detection; oversampling; imbalanced
learning; SMOTE; SMOTE variants; Android malware

I. INTRODUCTION

Android is the most popular consumer operating system
in the world - it runs in more than two billions of devices.
Due to this popularity and its open-source nature, attacks on
Android has been rising significantly. For instance, Syman-
tec [1] reported that in 2018, it detected an average of 10,573
mobile malware per day; found that one in 36 mobile devices
had high risk apps installed; and one in 14.5 apps accesses
high risk user data. Hence, classification of Android malware
in the wild is currently an active area of research.

Many research approaches have built Android malware
detection models based on sequence of API calls [2]–[4], use
of API calls [5]–[8] or frequency of API calls [9], [10]. To
extract these features, in general two types of techniques are
used — static analysis [4], [6], [8], [10]–[12] and dynamic
analysis [2], [13].

Regardless of type of features and feature extraction tech-
niques used, the ratio of training data (benign-to-malware)

§Both authors have equal contributions in this work.

is often imbalanced. For example, datasets used in Android
malware classification approaches [3], [4], [8], [11], [12],
[14], [15] have various imbalanced ratios of 22, 12, 6,
2.1, 1.15, 0.35, 0.24, respectively. This causes the learning
algorithm to bias towards the dominant classes, resulting
in misclassification of minority classes. One effective way
to improve the performance of classifiers is the synthetic
generation of minority instances. Synthetic Minority Over-
sampling Technique (SMOTE) [16] is one of the pioneer
techniques and since its publication in 2002, several variants
of SMOTE have been proposed [17]. However, most of
the malware classification approaches including the above-
mentioned ones have not used oversampling techniques to
address data imbalanced data. Although some studies [17]
have evaluated these oversampling techniques in the context
of defect/bug prediction, they have not been evaluated in
the context of Android malware classification. Studies have
shown that the use of oversampling can improve defect
prediction performance but their performances may vary
across different application domains [18]. This necessitates a
thorough evaluation of SMOTE and its variants to facilitate
SMOTE applications to Android malware classification.

In this paper, we conduct a large scale empirical evalu-
ation of SMOTE and its variants on six different datasets
containing 4,572 benign apps and 2,399 malicious apps. For
training Android malware classifiers, typically three types of
features — sequence of API calls (e.g. [2]–[4]), use of API
calls (e.g. [5]–[8]), and frequency of API calls (e.g. [9], [10])
— are used. And these features can be extracted using static
analysis or dynamic analysis. Hence, the six datasets we use
reflect three types of features extracted using static analysis
and three types of features extracted using dynamic analysis.
Our goal is to set a new baseline in the field of Android
malware classification and give guidance to practitioners on
which techniques to use with certain types of datasets. To
this end, we carry out a thorough evaluation of minority
oversampling techniques.

Contributions. This paper makes the following specific
contributions:

• We evaluate the effectiveness of 70 SMOTE variants
for Android malware detection on a common bench-
mark. We use 4572 benign samples and 2399 malware



samples. Benign samples were randomly collected from
Androzoo repository [19], which are released from year
2017 to 2019. 1208 malware samples are collected from
Androzoo repository [19], which are from year 2017
and 2019, and 1191 malware samples are from Drebin
repository [8]. We extract static features from call graph
of Android package (apk) codes and dynamic features
by executing the app in an Android emulator using
our in-house intent-fuzzer combined with Android’s
Monkey testing framework [20].

• We extract 6 datasets that represent three types of
features (sequence, use, and frequency of API calls) and
two types of feature extraction techniques (static and
dynamic analyses) commonly used in Android malware
detection. We rank the SMOTE variants based on three
evaluation criteria (precision, recall, F-measure) and
determine the best suited variants on different types of
features and feature extraction techniques used. And we
provide meaningful insights into their performances.

• For open science and the benefit of the community, the
script and the datasets used in this study are published
in https://github.com/Jesper20/smote.

II. RELATED WORK

A. Android Malware Classification

Our previous work [21] conducted an empirical evaluation
to compare different types of features and classifiers for An-
droid malware classification. We compared the performance
of using sequence and use of API call features, which are
extracted using static analysis and dynamic analysis. We also
evaluated and compared the performances of conventional
machine learning (ML) classifiers and deep learning (DL)
classifiers. By contrast, this work focuses on the evaluation
of various minority oversampling variants to enhance the
performance of existing machine learning approaches and
available datasets. On top of this, we present classification
results with new data features, i.e., frequency of API calls,
and a combination of all feature types, i.e., sequence, use,
and frequency of API calls.

Features. There are several static analysis-based ap-
proaches that learn on sequence of API calls [3], [4], [22]–
[24], use of API calls [5]–[8], [12], [15], or frequency
of API calls [9], [10], [23], [25]. To extract static fea-
tures from the Android app, call graphs [4], [12], data
dependency graphs [15], [24], and control flow graph [26]
have been used. On the other hand, dynamic analysis-
based approaches, such as [2], [13], [27], learn on API call
features extracted from execution traces. We should note that
method-level analysis may provide datasets with millions of
features, which are impractical in terms of training time and
computing resource. Abstracting such features at levels like
class, package, etc. can be done to speed up the machine
learning training process [4], [11], [12].

The aforementioned approaches show that different types
of features and feature extraction techniques may be used
in Android malware classification. Since our evaluation
consists of these commonly-used features, our work comple-
ments existing malware classification approaches in terms of
dealing with imbalanced data.

B. Dealing with Imbalanced Data

In imbalanced learning, the focus is on improving general
purpose classifiers when the data exhibits significant varia-
tions in terms of sample distributions between classes. Usu-
ally, this happens in areas where it is expensive or impossible
to assemble large and balanced datasets, e.g., medical pre-
dictions, anomaly/malware detection, etc. In these domains,
the number of positive samples, e.g., patients with cancer, is
usually much smaller compared to that of negative samples,
e.g., patients with no cancer. With imbalanced datasets,
classifiers tend to overfit majority classes. To deal with this
issue, undersampling or oversampling can be applied.

In undersampling, samples are removed from the ma-
jority class to address the imbalance. Undersampling can
remove noises and provide a compact dataset which enables
faster training. However, it may discard useful samples
and increase the variance of the classifier [28]. When the
imbalance ratio is large, undersampling will need to remove
more training examples and, thus there may not be enough
training data for the classifier to generalize properly. In this
work, we focus on oversampling methods, which in general
can address the class imbalance issue by generating more
minority class examples, and at the same time retaining
important training data for the majority class. The pioneering
work by Chawla et al. [16] introduced the Synthetic Minority
Oversampling Technique (SMOTE), which generates minor-
ity samples by randomly selecting the points along the line
segments between neighboring minority instances.

Since its introduction, oversampling techniques have been
highly successful in various ML applications. This success
can be explained via two key factors: 1) oversampling is
just a preprocessing step that can be applied before any
ML techniques; and 2) oversampling addresses the root
of data imbalanced problems, which is the lack of data.
In this sense, oversampling is basically a form of data
augmentation. Although there have been more than 100
SMOTE variants reported in the literature [29], not all of
them are suitable for an automated empirical evaluation. In
[17], the authors implemented and evaluated 85 different
SMOTE variants with 104 imbalanced datasets. Most of
these datasets have been collected from the Knowledge
Extraction based on Evolutionary Learning (KEEL) repos-
itory (https://sci2s.ugr.es/keel/datasets.php). In contrast, our
work focuses on evaluating and comparing different SMOTE
variants in the unexplored domain of Android malware
classification. It has been demonstrated that the performance

https://github.com/Jesper20/smote


of SMOTE variants can vary significantly across datasets and
application domains [17], [29].

There are a few approaches that make use of SMOTE
techniques to tackle the imbalanced dataset problem in
Android malware classification. For instance, in [30], Raff
et. al considered one of the more popular SMOTE variants,
namely Borderline-SMOTE, which improves SMOTE by
limiting the oversampled points to data points close the
border of the classes. In [31], the authors studied a dataset
consisting of 5774 Android apps, among which 1582 are
malware. They made use of the original SMOTE variant to
produce a class balanced dataset and to improve the perfor-
mance of their classifiers. [32] described the application of
SMOTE, SVM based classifiers, and evolutionary algorithms
for hyperparameter tuning in the detection of Android ran-
somware. The authors utilized a dataset consisting of 10,153
Android apps, in which 500 of them are ransomware. In [33],
Dehkordy et al. balanced their dataset with undersampling,
SMOTE, and a combination of both methods. They then ap-
plied KNN, SVM, and Iterative Dichotomiser 3 to create the
classification model, and demonstrated that KNN+SMOTE
outperformed other algorithms.

To the best of our knowledge, none of the existing works
has conducted a thorough comparative study of majority of
the available SMOTE variants in the domain of Android
malware classification. In this paper, we aim to set a new
baseline and provide practical guidance on the selection
and application of different SMOTE variants in the area of
Android malware classification.

III. DATASETS

Motivated by our observation that there are typically three
types of features (sequence of API calls, use of API calls,
frequency of API calls) and two types of techniques (static
analysis and dynamic analysis) used in Android malware
classification, we use six different datasets in this study.
Table I shows the characteristics of the datasets. dsf refers
to the dataset containing sequence of API calls features
extracted using dynamic analysis; ssf refers to the dataset
containing sequence of API calls features extracted using
static analysis; duf refers to the dataset containing use of API
calls features extracted using dynamic analysis; suf refers
to the dataset containing use of API calls features extracted
using static analysis; dfqf refers to the dataset containing
frequency of API calls features extracted using dynamic
analysis; and sfqf refers to the dataset containing frequency
of API calls features extracted using static analysis.

The first four of our datasets in Table I are the same
ones used in our previous work [21]. The other two datasets
are the new ones extracted using the same methodology
described in [21]. For self-containment, we briefly describe
the methodology below.

Static analysis and dynamic analysis are performed on
a set of 6,971 benign and malware Android application

Table I: Characteristics of datasets

Dataset Type Analysis #benign #malware #features
dsf Sequence Dynamic 4572 2399 20000
ssf Sequence Static 4572 2399 85000
duf Use Dynamic 4572 2399 19357
suf Use Static 4572 2399 134558
dfqf Frequency Dynamic 4572 2399 19357
sfqf Frequency Static 4572 2399 134558

packages (apks). Benign apks are obtained from Androzoo
repository [19], which are released from year 2017 and
2019. Regarding malware, we obtained 1,187 malware apks
from Drebin repository [8] and 1,212 malware apks from
Androzoo repository, which are released from year 2017 and
2019. The datasets are extracted from those apks as follows:

Static analysis. FlowDroid [34] is used to extract call
graphs from apks. Call graphs represent the calling rela-
tionships between APIs.

Dynamic analysis. An intent fuzzer developed in [35] is
used to generate test inputs for exploring the paths in call
graphs. For more comprehensive code coverage and trig-
gering possible abnormal app behaviors, Google’s Android
Monkey tool [20] is also used to randomly generate user
interactions and UI input events such as tap, input text, etc.

The three types of features are then extracted from call
graphs and execution traces. This results in three datasets
reflecting sequence, use, and frequency of API calls, respec-
tively, based on static analysis and three datasets reflecting
sequence, use, and frequency of API calls, respectively,
based on dynamic analysis. Feature extraction process is
similar for both call graphs and execution traces.

Extracting sequence of API calls. Given a call graph,
we traverse the graph in a depth first search manner and
extract API calls as we traverse (hence, sequence). If there
is a loop, the method is traversed only once. Similarly,
we extract methods from execution traces. However, since
execution traces are already sequences, depth first search is
not necessary. Sample sequence of API calls extracted from
a malware app com.GoldDream.T ingT ing06ii is shown
in Figure 1. And a sample dataset containing the sequence
features is shown in Figure 2.

Extracting use of API calls. We initially build a database
that stores unique classes. Given call graphs or execution
traces, class signatures are extracted. Each unique class in
our database corresponds to a feature1. The value of a feature
is 1 if the corresponding class is found in the given call
graph or execution trace; otherwise, it is 0. Figure 3 shows
a sample dataset containing the use features.

1Note: the API calls that we extract here are abstracted at class level.
This is because extracting features at method level will result in millions
of features that will cost significantly huge training time. Our previous
work [21] and other studies [4], [11] have observed that abstracted API
calls features characterize Android malware even better and achieved better
results.



Extracting frequency of API calls. In this study, we extract
two new datasets with regards of frequency of API calls.
Extracting these two datasets is similar to extracting the
use of API calls datasets, except that, for each unique class
signature, we record the number of class signature found in
the given call graph or execution trace. Figure 4 shows a
sample dataset containing the freq features.

android.content.Intent
android.telephony.PhoneStateListener
java.lang.StringBuilder
android.net.NetworkInfo
android.view.ContextThemeWrapper
android.widget.TextView
java.net.URI
java.nio.channels.SocketChannel

Figure 1: Sequence of API calls from a sample malware

seq0 seq1 . . . seqn label
benign1 1590 1591 . . . 13 0
benign2 4379 4377 . . . 0 0
mal1 3 480 . . . 0 1
mal2 11907 307 . . . 0 1

Figure 2: Sample dataset containing the sequence features.
Sequence length n is fixed at 20,000 for dynamic features
and 85,000 for static features, which are the median lengths
observed in our datasets.

PhoneState Network Telephony label
Listener Info Manager

benign1 1 0 0 0
benign2 0 0 1 0
mal1 1 1 0 1
mal2 0 1 1 1

Figure 3: Sample dataset containing the use features

PhoneState Network Telephony label
Listener Info Manager

benign1 0 2 0 0
benign2 0 0 2 0
mal1 11 7 0 1
mal2 0 0 23 1

Figure 4: Sample dataset containing the frequency features

All our datasets are of the same size containing 2,399 mal-
ware samples and 4,572 benign samples. Their imbalanced
ratio IR can be computed as IR = 4, 572/2, 399 = 1.9

IV. DATA PREPROCESSING & CLASSIFIERS

Oversampling. Before learning the classifiers on a given
dataset, we run SMOTE and its variants to balance the
dataset. SMOTE has more than 100 variants in the liter-
ature [29] but not all techniques have been well devel-
oped and implemented. In this study, we use the Python
implementation of 85 oversampling methods by Kovács et
al. [17]. Initially, we ran all the 85 oversampling methods
implemented in [17] on two of our smallest datasets (dsf
and duf ). However, we encountered issues with 15 methods.
Most of the issues are related to value errors (e.g. SSO,
E SMOTE, ISOMAP Hybrid). It is likely that when new
samples are generated, certain feature values may go outside
the maximum possible integer value or may become null.
Some methods take a very long time to complete (e.g.
SMOTE PSOBAT took 60 CPU hours for dsf ). Hence,
we had to omit those oversampling methods and used the
remaining 70 methods for further experiments. Due to space
constraints, we do not list those 70 oversampling methods
here; instead they are listed in our GitHub page [36].

Data scaling. After oversampling, a standard data pre-
processing method called standard scaler [37] is used to
scale and transform each feature independently, so that its
data distribution has a mean of zero and standard deviation
of one. Data scaling mitigates the problem of different scales
across features and makes the learning more efficient (the
algorithm converges faster).

Classifiers are trained and tested on each dataset. In
this study, we focus on conventional ML classifiers instead
of deep learning classifiers; as the main goal is to see
how different SMOTE variants can affect the classification
performance. We plan to investigate the effect of SMOTE
variants on deep learning classifiers in our future work. As
there are many SMOTE variants, and some of them are
very computationally expensive, e.g., they can take days to
execute, we select two representative classifiers studied in
[21], namely Naive Bayes and Random Forest. The first one
has been shown to be very fast; while the second one was the
top overall performer in the above mentioned study. We used
Scikit-Learn Python library [38] to run the above classifiers
with the library’s default settings.

Random Forest, RF is an ensemble of classifiers using
many decision tree models [39]. A different subset of
training data is selected with a replacement to train each
tree. The remaining training data serves to estimate the
error and variable importance. RF has been proved to be
highly accurate classifier for malware detection [40]. In our
experiments, we used 10 classifiers to form an ensemble.

Naive Bayes, NB classifier applies Bayes’ theorem with
the “naive” assumption of conditional independence between
every pair of features given the value of the class vari-
able [41]. This assumption allows NB to learn the model
extremely fast.



V. EVALUATION

This section presents the experimental comparison results
of 70 different SMOTE variants for Android malware clas-
sification. Specifically, we investigate the following research
questions:

• RQ1: Which SMOTE variant is best suited for training
with sequence of API calls features?

• RQ2: Which SMOTE variant is best suited for training
with use of API calls features?

• RQ3: Which SMOTE variant is best suited for training
with frequency of API calls features?

• RQ4: Which SMOTE variant is best suited for training
with all three types of features?

• RQ5: How effective are the best SMOTE variants
as compared against the classifiers trained without
SMOTE?

A. Experiment Design

Datasets. We use the six datasets, discussed in Section III.
The datasets include 4,572 benign apps and 2,399 malware.
Our dataset is much larger than the ones used in recent
studies [17], [18] that evaluate SMOTE variants in the
context of defect prediction and comparable to the ones used
in some recent Android malware classification studies such
as [11], [24].

Performance measures. To evaluate the performance of
SMOTE variants, we use Recall (probability of detection,
Pd), Precision (Pr), and F-measure (F); which are standard
measures typically used for evaluating malware detection
accuracy [4], [10]. They are defined as follows:

• Recall Pd = tp/(tp+ fn)
• Precision Pr = tp/(tp+ fp)
• F-measure F = 2× (Pr × Pd)/(Pr + Pd).

where tp is the true positives (detected malware), fn is the
false negatives (missed malware), and fp is the false positives
(benign reported as malware). Recall measures the ability
of the model to find all the relevant cases (true positives
– malware) within a dataset. Precision measures the ability
of the model to identify only the relevant cases. F-measure
is the harmonic mean of precision and recall. It reports a
balance between precision and recall.

In addition, we also collect the training time (T ), time
taken for oversampling, data scaling, and fitting the training
samples, for each SMOTE variant.

Cross validation. We use stratified five-fold cross valida-
tion, a standard statistical analysis method [42], to evaluate
the performances. Our cross validation process is as follows:

1) the given dataset (e.g. dsf ) is randomly divided into five
buckets and the buckets are randomly ordered.

2) each bucket is treated as a test set. For each test set,
classifier is trained on the other four buckets (training
set) and tested on the test set as follows:

a) the training set is sampled using one of the oversam-
pling methods

b) standard scaler is applied to the training set
c) a classifier (Naive Bayes or Random Forest) is learnt

on the resulting training set
d) standard scaler is applied to the test set
e) the learnt classifier is applied to the scaled test set

and the performance measures are computed.
3) the above two steps are repeated five times. The mean

and standard deviation of the performance measures of
all five trials are computed to make an evaluation.

This process is done for all the 70 oversampling methods
and for each classifier (Naive Bayes and Random Forest).
For RQ5, we also run the experiments without an over-
sampling method (i.e., omitting the step 2a above). The
following section reports the results for these variants.

For implementations of the above experiment design, we
use Scikit-Learn [38] and Python libraries from [17]. The
experiments were performed on a Linux machine with 40
cores Intel CPU E5-2640 2.40GHz and 330GB RAM. It
took us about one week to extract the two new datasets
from the 6,971 apks. It took us about 2 months to complete
the experiments.

B. Results

RQ1: Best variants for sequence of API calls. We compare
the performance of various SMOTE variants for dynamic
and static datasets characterizing the sequence of API calls
(the dsf and ssf datasets, respectively). In each table below,
due to space constraints we only show the performance
of selected variants, namely the top 5 and bottom 5 of
all variants tested for a particular dataset. Tables II and
III show the top and bottom 5 SMOTE variants for the
classifiers using dynamic API sequence features. We observe
that there are a great discrepancy between the top and the
worst performing variants. In particular, for the NB classifier,
NRAS significantly outperforms V SYNTH in terms of
F-measure. In addition, the standard deviations of the F-
measures for the top performing variants are quite low,
e.g., around 0.01. As expected, the RF classifier generally
performs better than NB, except when unsuitable SMOTE
variants are applied - for instance, the ADG variant results
in the worst F-measure even when compared to NB with
V SYNTH. This highlights the importance of careful evalu-
ations and selections of appropriate oversampling techniques
for a specific problem domain.

Surprisingly, we also note that some selected variants
which perform very well for one classifier can be negatively
affecting another. For example, NRAS and ADG are the
top-2 performers for NB, but the opposite happens when
we apply them before training RF, as shown in Table III. To
understand this better, we project the original data (dynamic-
sequence features) and the oversampled data with NRAS
onto a 2D plane using Principle Component Analysis [43]



Benign
Malware

(a) Original data

Benign
Malware

(b) NRAS

Benign
Malware

(c) SMOTE ENN

Figure 5: Visualization of the original and datasets sampled with NRAS and SMOTE ENN via Principle Component Analysis.
The dataset shown here contains dynamic features characterizing the sequence of API calls (dsf dataset).

Table II: NB classifier with dynamic-sequence features

Variant Pd Pr F F (sd)
NRAS 0.973 0.398 0.565 0.015
ADG 0.973 0.395 0.561 0.015
Gazzah 0.982 0.391 0.559 0.013
SVM balance 0.985 0.387 0.556 0.011
SMOTE ENN 0.986 0.384 0.553 0.011
SOMO 0.988 0.382 0.551 0.01

SL graph SMOTE 0.993 0.368 0.537 0.007
VIS RST 0.994 0.366 0.535 0.005
MDO 0.997 0.365 0.535 0.006
ISMOTE 0.892 0.386 0.526 0.032
V SYNTH 0.459 0.268 0.282 0.224

Table III: RF classifier with dynamic-sequence features

Variant Pd Pr F F (sd)
SMOTE ENN 0.778 0.57 0.657 0.036
Stefanowski 0.682 0.626 0.651 0.033
VIS RST 0.926 0.496 0.645 0.022
SPY 0.677 0.613 0.641 0.067
Supervised SMOTE 0.622 0.645 0.632 0.034

CURE SMOTE 0.507 0.674 0.576 0.059
CCR 0.499 0.677 0.572 0.063
IPADE ID 0.983 0.4 0.568 0.013
NRAS 0.462 0.683 0.546 0.073
ADG 0.102 0.313 0.132 0.109

in Figure 5. NRAS, which is a sampling technique focusing
on noise reduction and selective sampling of the minority
class, does actually remove some data points from the
malware class, as shown in Figure 5(b), before adding new
synthetic ones. This mechanism appears to help NB, which
is a simple classifier, performing better, but not for RF.
On the other hand, SMOTE ENN performs well for both
NB and RF classifiers. This SMOTE variant uses Wilson’s
Edited Nearest Neighbor Rule (ENN) [44] to remove any
training example whose class label differs from the class
of at least two of its three nearest neighbors. The removed
examples can be from both benign and malware classes. It is
observed from Figure 5(c) that SMOTE ENN does remove
some noise while adding more data for the minority class,

Table IV: NB classifier with static-sequence features

Variant Pd Pr F F (sd)
Gazzah 0.942 0.477 0.633 0.013
NRAS 0.972 0.463 0.627 0.015
CCR 0.977 0.455 0.620 0.018
CURE SMOTE 0.979 0.453 0.619 0.013
SOMO 0.977 0.453 0.619 0.013

IPADE ID 0.989 0.414 0.583 0.014
ADG 0.814 0.454 0.583 0.017
MDO 0.994 0.400 0.570 0.005
VIS RST 0.994 0.398 0.569 0.008
V SYNTH 0.006 0.090 0.011 0.008

Table V: RF classifier with static-sequence features

Variant Pd Pr F F (sd)
AHC 0.937 0.896 0.916 0.008
cluster SMOTE 0.935 0.898 0.916 0.008
distance SMOTE 0.930 0.901 0.916 0.006
ASMOBD 0.937 0.894 0.915 0.009
SN SMOTE 0.933 0.896 0.914 0.007

SVM balance 0.953 0.807 0.874 0.008
ISMOTE 0.944 0.793 0.862 0.018
VIS RST 0.967 0.768 0.856 0.017
IPADE ID 0.991 0.421 0.590 0.018
ADG 0.069 0.238 0.102 0.116

as compared to the original data.
As oversampling data before training classifiers may incur

significant cost in terms of time, Fig 6a shows the F-
measures and training costs for all the SMOTE variants
tested with both the NB and RF classifiers, using the
dynamic-sequence dataset (dsf ). The notable cases are high-
lighted in the legend of this figure. In particular, we observe
that using the best variant for each classifier, i.e., NRAS
or SMOTE ENN, incurs low training costs. This reaffirms
the practicality of using appropriate oversampling methods
in classifier training with imbalanced datasets. At the same
time, we note that some particular SMOTE variants could
be too computationally expensive to be used in Android
malware classification, e.g., SMOTE PSO which employs
Particle Swarm Optimization (PSO) to do oversampling.



0.1 0.2 0.3 0.4 0.5 0.6
F-measure

0

2

4

6

8

10

Tr
ai

ni
ng

 c
os

t (
h)

NRAS(NB)
SMOTE_PSO(NB)
V_SYNTH(NB)
SMOTE_ENN(RF)
SMOTE_PSO(RF)
ADG(RF)

(a) dsf

0.0 0.2 0.4 0.6 0.8
F-measure

0.0

2.5

5.0

7.5

10.0

12.5

Tr
ai

ni
ng

 c
os

t (
h)

Gazzah(NB)
SVM_balance(NB)
V_SYNTH(NB)
AHC(RF)
SVM_balance(RF)
ADG(RF)

(b) ssf

0.0 0.2 0.4 0.6 0.8
F-measure

0

1

2

3

4

Tr
ai

ni
ng

 c
os

t (
h)

NRAS(NB)
SMOTE_PSO(NB)
ADG(NB)
ANS(RF)
SMOTE_PSO(RF)
ADG(RF)

(c) duf

0.3 0.4 0.5 0.6 0.7 0.8 0.9
F-measure

0

2

4

6

8

Tr
ai

ni
ng

 c
os

t (
h)

NRAS(NB)
TRIM_SMOTE(NB)
SMOTE_D(NB)
DE_oversampling(RF)
TRIM_SMOTE(RF)
ADG(RF)

(d) suf

0.2 0.4 0.6 0.8
F-measure

0

1

2

3

4
Tr

ai
ni

ng
 c

os
t (

h)
SMOTE_ENN(NB)
SVM_balance(NB)
Gaussian_SMOTE(NB)
MSMOTE(RF)
SVM_balance(RF)
ADG(RF)

(e) dfqf

0.2 0.4 0.6 0.8
F-measure

0

2

4

6

8

10

12

Tr
ai

ni
ng

 c
os

t (
h)

SMOTE_ENN(NB)
SVM_balance(NB)
SMOTE_D(NB)
SMOTE(RF)
SVM_balance(RF)
ADG(RF)

(f) sfqf

Figure 6: F-measures versus training cost for all SMOTE variants applied to each of the datasets used. We show the legends
for selected variants only (best/worst F-measures, and highest cost). Blue/red data points are for RF and NB, respectively.

Tables IV and V show the obtained results on recall,
precision, F-measure for the top-5 and bottom-5 SMOTE
variants when using the static features characterizing se-
quence of API calls (the ssf dataset). Similarly, Figure
6b shows the training cost versus the F-measure for all
SMOTE variants tested for this dataset. We observe some
familiar names here, such as NRAS as a good performer,
while V SYNTH and ADG as performing poorly for this
dataset. The combination of either AHC (agglomerative
hierarchical clustering) oversampling, cluster SMOTE, or
distance SMOTE; and RF classifier provides very good F-
measure (0.916) with low standard deviations and training
time without any fine tuning.

When we compare the results shown in Figures 6a and
6b, it is noted that the static-sequence features provide
a markedly improved F-measure compared to that of the
dynamic-sequence features. This improvement applies
to both NB and RF classifiers, and at the same time, it
significantly widens the performance gap between NB and
RF. We might partly attribute such improvement to the
fact that the ssf dataset has about 4 times more features
compared to the dsf dataset as shown in Table I; this also
explains the increase in training cost for the former. We also
observe that when using API sequence based features, the
performance and training cost for the majority of SMOTE
variants are quite similar; this is shown by the two distinct

clusters for NB and RF, respectively in Figures 6a and 6b.

Summary-RQ1: For sequence of API calls, NRAS and
Gazzah are the best for NB; while SMOTE ENN and AHC
are the best for RF. Notably, SMOTE ENN performs quite
well for both NB and RF. It is not possible to identify a
single variant that performs well in both static and dynamic
datasets for RF, while we can observe that variants based
on noise reduction techniques, e.g., NRAS, SMOTE ENN,
etc., are generally good for NB.

RQ2: Best variants for use of API calls. Figures 6c and 6d,
as well as Tables VI-IX summarize experiment results when
using all SMOTE variants to train our two classifiers with
the use of API features (duf and suf datasets). Similar to
the previous section, we observe that popular variants such
as NRAS and SMOTE ENN are among the top performers
in terms of F-measure for the NB classifier, while ADG and
V SYNTH do not lead to good classification performance.
For the RF classifier, it appears that there is no SMOTE
variant that consistently performs well - we see a different
top variant for each dataset used. However, we can identify
ADG as the variant that consistently results in poor clas-
sification performance for the RF classifier across different
datasets.

When compared to the previous experiment which
uses API sequence features, we observe that the SMOTE



variants tested with API use features produce a more
varying level of classification performance, as shown in
Figures 6c and 6d. This emphasizes the importance of
choosing the appropriate oversampling method when one
has to do malware classification with just the data on API
use. In addition, for this type of data, RF is still the better
classifier overall, but the performance gap between RF and
NB is not as pronounced as seen in the previous experiment.

Summary-RQ2: For use of API calls, NRAS is the best
for NB; while ANS, DE oversampling, and the origi-
nal SMOTE variant are the best for RF. Notably, noise
reduction-based approaches like NRAS and SMOTE ENN
generally perform quite well for NB in both static and
dynamic datasets. It is not possible to identify a single
variant that performs well in both datasets for RF.

Table VI: NB classifier with dynamic-use features

Variant Pd Pr F F (sd)
NRAS 0.845 0.635 0.720 0.099
ISMOTE 0.879 0.612 0.718 0.089
SMOTE ENN 0.855 0.619 0.713 0.103
Safe Level SMOTE 0.932 0.576 0.711 0.026
SMOTE TomekLinks 0.857 0.614 0.711 0.105

MDO 0.849 0.484 0.615 0.115
CCR 0.778 0.509 0.599 0.243
Gaussian SMOTE 0.220 0.407 0.283 0.150
SMOTE D 0.202 0.380 0.261 0.156
ADG 0.011 0.072 0.019 0.039

Table VII: RF classifier with dynamic-use features

Variant Pd Pr F F (sd)
ANS 0.856 0.837 0.845 0.044
AND SMOTE 0.877 0.815 0.841 0.032
Safe Level SMOTE 0.890 0.792 0.835 0.028
SMOTE TomekLinks 0.832 0.809 0.813 0.061
SMOTE RSB 0.846 0.794 0.813 0.070

SMOTE D 0.760 0.828 0.785 0.088
VIS RST 0.975 0.616 0.753 0.036
NEATER 0.689 0.837 0.750 0.102
IPADE ID 0.997 0.445 0.614 0.035
ADG 0.000 0.040 0.001 0.002

RQ3: Best variants for frequency of API calls. Figures
6e and 6f summarize the experiment results when using
all SMOTE variants to train our two classifiers with the
frequency of API call features (the dfqf and sfqf datasets).
We do not include the tables of top-5 and bottom-5 variants
here due to space constraints. We observe similar results
to the previous experiments. In particular, noise reduction-
based variants such as NRAS and SMOTE ENN generally
perform well for the NB classifier, while the RF classifier
works better with one particular variant for a different
dataset. Notably, the original SMOTE [16] method produces
the highest F-measure for RF when using static-frequency
features. Similar to what have been observed in other
datasets, the ADG variant performed poorly here as well.

Table VIII: NB classifier with static-use features

Variant Pd Pr F F (sd)
NRAS 0.956 0.724 0.824 0.011
SMOTE ENN 0.945 0.699 0.804 0.013
OUPS 0.970 0.661 0.786 0.008
SOMO 0.970 0.660 0.786 0.010
MSYN 0.970 0.658 0.784 0.007

VIS RST 0.985 0.576 0.727 0.010
V SYNTH 0.985 0.461 0.628 0.015
CCR 0.514 0.690 0.564 0.142
Gaussian SMOTE 0.365 0.712 0.483 0.039
SMOTE D 0.356 0.696 0.471 0.029

Table IX: RF classifier with static-use features

Variant Pd Pr F F (sd)
DE oversampling 0.955 0.854 0.902 0.013
SMOTE 0.951 0.857 0.901 0.013
NDO sampling 0.948 0.859 0.901 0.013
SMOTE Cosine 0.950 0.857 0.901 0.012
SMOTE OUT 0.946 0.860 0.901 0.013

NEATER 0.756 0.904 0.821 0.033
NRAS 0.745 0.911 0.817 0.055
SMOTE ENN 0.682 0.900 0.773 0.049
IPADE ID 0.994 0.435 0.604 0.033
ADG 0.600 0.229 0.318 0.258

Regarding training cost, it is observed that
computationally expensive variants such as SVM balance do
not necessarily produce the best classification performance.
We also note that the training cost is much higher in the
sfqf dataset as compared to the dfqf dataset. This is because
the static dataset has many more features (about 135k as
compared to 19k). Despite having more features, the static
dataset here does not produce much better classification
performance. Furthermore, all SMOTE variants tested result
in more varying F-measure values when using frequency
based datasets, as compared to the API sequence datasets.
This is illustrated in Figures 6e and 6f.

Summary-RQ3: For frequency of API calls,
SMOTE ENN is the best for NB; while MSMOTE
and the original SMOTE are the best for RF. It is not
possible to identify a single variant that performs well in
both static and dynamic datasets for RF, while we can
observe that variants based on noise reduction techniques,
e.g., NRAS, SMOTE ENN, etc., are good for NB.

RQ4: Using a combined dataset. In this experiment, we
combine all feature types, namely API use, API sequence
and API frequency; as well as two types of program
analyses, namely static and dynamic analysis, into one
single dataset. Due to the sheer number of features and
therefore training time, for this dataset, we choose to run
only selected SMOTE variants that perform well in terms of
F-measure in our previous experiments. They are: NRAS,
SMOTE ENN, Gazzah, AHC, ANS, DE oversampling,



MSMOTE, and last but not least, the original SMOTE. We
only summarize the notable results from this experiment
here, due to space constraints. We note that combining
all feature types and analyses does increase the training
time substantially, but it does not improve the classification
performance correspondingly. For instance, RF(AHC)
provides the best F-measure of 0.911 (standard deviation
of 0.022) when using this combine dataset, compared to a
previously obtained best value of 0.916 (standard deviation
of 0.008) when using the ssf dataset. Although in this case
AHC and NRAS are still the best SMOTE variants for RF
and NB respectively, we believe that it is more useful for
practitioners of Android malware classification to identify
the right types of features and program analyses before
applying SMOTE variants to resample any imbalanced
datasets.

Summary-RQ4: The classification performance does not
improve when using all feature types and program analyses
in a combined dataset for the best SMOTE variants.

RQ5: Comparing to non-SMOTE classifiers. Table X sum-
marizes the results when comparing non-SMOTE classifiers
against the best SMOTE variants selected from our previous
experiments. We observe that for each classifier, the SMOTE
variant helps improve the F-measure. The improvement is
statistically significant as confirmed by the Wilcoxon signed
rank test (the two-tailed p-value is calculated as 0.00222).

Table X: Comparing classifiers with and without the best
SMOTE variants. The best F-measures for NB and RF are
highlighted with the corresponding training costs.

Classifier Data Pd Pr F F(std) Cost(h)
NB (NRAS) dsf 0.973 0.398 0.565 0.015 0.102
RF (SMOTE

ENN) dsf 0.778 0.57 0.657 0.036 0.4

NB dsf 0.991 0.376 0.546 0.016 0.03
RF dsf 0.55 0.691 0.605 0.171 0.257
NB (Gazzah) ssf 0.942 0.477 0.633 0.013 0.006
RF (AHC) ssf 0.937 0.896 0.916 0.008 0.042
NB ssf 0.989 0.441 0.61 0.026 0.01
RF ssf 0.92 0.905 0.913 0.01 0.16
NB (NRAS) duf 0.845 0.635 0.72 0.099 0.018
RF (ANS) duf 0.856 0.837 0.845 0.044 0.3
NB duf 0.857 0.613 0.71 0.209 0.002
RF duf 0.807 0.83 0.817 0.084 0.004
NB (NRAS) suf 0.956 0.724 0.824 0.011 0.354
RF (DE

oversampling) suf 0.955 0.854 0.902 0.013 0.414

NB suf 0.968 0.675 0.795 0.005 0.012
RF suf 0.924 0.879 0.901 0.028 0.012
NB (SMOTE

ENN) dfqf 0.867 0.652 0.74 0.068 0.212

RF (MSMOTE) dfqf 0.859 0.901 0.879 0.032 0.048
NB dfqf 0.847 0.621 0.712 0.102 0.008
RF dfqf 0.776 0.899 0.827 0.084 0.004
NB (SMOTE

ENN) sfqf 0.937 0.703 0.8 0.041 0.648

RF (SMOTE) sfqf 0.934 0.864 0.895 0.034 0.084
NB sfqf 0.957 0.665 0.783 0.072 0.018
RF sfqf 0.923 0.861 0.888 0.069 0.014

Table X also shows the comparison of training times
and F-measures obtained for NB and RF, with and without
applying the selected SMOTE variants. Most of the SMOTE
variants increase the cost in terms of training time for
the classifiers. This is expected as resampling the original
datasets requires additional computation to generate more
samples. In some cases, e.g., NRAS, SMOTE ENN, etc.,
the computation time could be much more due to the
required calculations for removing noisy samples in the
original dataset, before adding new synthetic samples.
Notably, some variants such as AHC, Gazzah, etc. actually
reduce the training time significantly due to their very
fast sampling time, and at the same time, improve the
classification performance with the ssf dataset, as indicated
in Table X. It is interesting to see that the best performing
classifier, RF with AHC, does have the shortest training
time together with the best F-measure overall.

Summary-RQ5: The best SMOTE variants tested in this
study statistically significantly improve the performance of
Android malware classifiers.

C. Threats to Validity

Like any empirical study, biases may affect the general-
izability of our results.

Evaluation bias. In terms of training and testing, certain
ordering and splitting of samples may affect the results. To
reduce this bias, we use five-fold cross validation, which
randomizes the order of the groups and the sampling process.
Five-fold cross validation was also used in several malware
and defect prediction studies [3], [18], [45]. Furthermore,
we also used stratified sampling which keeps the imbalanced
ratio of the total dataset size.

In terms of performance metrics, defect prediction studies
such as [17], [18] used Area Under Curve (AUC) to evaluate
the SMOTE variants. But we used F-measure to rank the
SMOTE variants because it is widely used in Android
malware classification approaches, e.g., [3], [4], [10], [12].
F-measure reports a balance between recall and precision
whereas AUC focuses on true positive rate versus false
positive rate. In our experiments, we computed AUC scores
as well but did not report here due to space constraints.
Interested readers may refer to our website [36].

Sampling bias. Our datasets may not be representative
of Android malware and benign samples in the wild. To
reduce this bias, a) we analyzed real world Android apks
(both benign and malware); b) we randomly collected the
samples released in years 2017 to 2019; and c) we used
a large sample size (larger than the ones used in related
work [17], [18], [46], [47]).

The imbalanced ratio of our datasets (1.9) may not re-
flect the ratio of datasets used in training actual malware
predictors. This is challenging because different malware
classification approaches have used different imbalanced



ratios. For example, [3], [8], [11], [12], [15] used different
imbalanced ratios of 22, 6, 0.35, 1.15, 2.1, respectively,
whereas some other studies have used balanced datasets [24],
[48]. As future work, we aim to evaluate the performance
of SMOTE variants when trained with varying dataset sizes.

VI. CONCLUSION

This work addresses the problem of finding best suited
oversampling methods for Android malware detection. Over-
sampling techniques are used for addressing data imbalanced
problem and it is known that their performances vary across
different application domains. In the evaluation, we used
six different datasets that reflect two kinds of analyses
and three types of features, which are commonly used in
Android malware detection. The datasets were extracted
from a common benchmark of 4,572 benign apps and
2,399 malware apps. Among other findings, we observed
that oversampling could improve the F-measure of mal-
ware classifier by 3.16% on average. The improvement is
most significant when training with sequence-type features.
We also identified 8 oversampling methods that produce
consistently good results across different datasets. Lastly
we observed that sophisticated oversampling methods such
as SVM balance come at the cost of significantly longer
training time (in the magnitude of hours); yet they do
not necessarily perform better than simpler methods. In
future work, we will investigate the performance of SMOTE
variants when applied to other types of classifiers such as
those based on deep learning techniques. We also plan to
use a larger dataset and experiment with varying imbalanced
ratios.

REFERENCES

[1] Symantec, “Internet Security Threat Report,”
https://www.symantec.com/content/dam/symantec/docs/
reports/istr-24-2019-en.pdf, 2019.

[2] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and
T. Yagi, “Malware detection with deep neural network using
process behavior,” in Annual Computer Software and Appli-
cations Conference, vol. 2. IEEE, 2016, pp. 577–582.

[3] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Mal-
dozer: Automatic framework for android malware detection
using deep learning,” Digital Investigation, vol. 24, pp. S48–
S59, 2018.

[4] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro,
G. Ross, and G. Stringhini, “Mamadroid: Detecting android
malware by building markov chains of behavioral models (ex-
tended version),” ACM Transactions on Privacy and Security,
vol. 22, no. 2, p. 14, 2019.

[5] A. Sharma and S. K. Dash, “Mining api calls and permissions
for android malware detection,” in International Conference
on Cryptology and Network Security. Springer, 2014.

[6] P. P. Chan and W.-K. Song, “Static detection of android
malware by using permissions and api calls,” in International
Conference on Machine Learning and Cybernetics, vol. 1.
IEEE, 2014, pp. 82–87.

[7] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android
malware detection using ensemble learning,” IET Information
Security, vol. 9, no. 6, pp. 313–320, 2015.

[8] D. Arp, M. Spreitzenbarth, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of
android malware in your pocket.” 2014.

[9] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-
level features for robust malware detection in android,” in
International conference on security and privacy in commu-
nication systems. Springer, 2013, pp. 86–103.

[10] J. Garcia, M. Hammad, and S. Malek, “Lightweight,
obfuscation-resilient detection and family identification of an-
droid malware,” ACM Transactions on Software Engineering
and Methodology, vol. 26, no. 3, p. 11, 2018.

[11] W. Yang, M. Prasad, and T. Xie, “Enmobile: Entity-based
characterization and analysis of mobile malware,” in Inter-
national Conference on Software Engineering. IEEE, 2018,
pp. 384–394.

[12] M. Ikram, P. Beaume, and M. A. Kaafar, “Dadidroid: An
obfuscation resilient tool for detecting android malware
via weighted directed call graph modelling,” arXiv preprint
arXiv:1905.09136, 2019.

[13] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra,
“Madam: a multi-level anomaly detector for android mal-
ware,” in International Conference on Mathematical Methods,
Models, and Architectures for Computer Network Security.
Springer, 2012, pp. 240–253.

[14] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting
android malicious apps and categorizing benign apps with en-
semble of classifiers,” Future Generation Computer Systems,
vol. 78, pp. 987–994, 2018.

[15] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware
android malware classification using weighted contextual api
dependency graphs,” in ACM SIGSAC conference on com-
puter and communications security, 2014, pp. 1105–1116.

[16] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling tech-
nique,” Journal of artificial intelligence research, vol. 16, pp.
321–357, 2002.

[17] G. Kovács, “An empirical comparison and evaluation of
minority oversampling techniques on a large number of
imbalanced datasets,” Applied Soft Computing, vol. 83, pp.
105–662, 2019.

[18] A. Agrawal and T. Menzies, “Is” better data” better than”
better data miners”?” in International Conference on Software
Engineering. IEEE, 2018, pp. 1050–1061.

[19] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “An-
drozoo: Collecting millions of android apps for the research
community,” in International Conference on Mining Software
Repositories. ACM, 2016, pp. 468–471.

https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf


[20] Android, “UI/Application Exerciser Monkey,”
https://developer.android.com/studio/test/monkey, 2019.

[21] L. K. Shar, B. F. Demissie, M. Ceccato, and W. Minn, “Ex-
perimental comparison of features and classifiers for android
malware detection,” in International Conference on Mobile
Software Engineering and Systems. ACM, 2020, pp. 50–60.

[22] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima,
P. Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé
et al., “Deep android malware detection,” in Proceedings of
the Seventh ACM on Conference on Data and Application
Security and Privacy. ACM, 2017, pp. 301–308.

[23] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
streaminglized machine learning-based system for detecting
android malware,” in Asia Conference on Computer and
Communications Security, 2016, pp. 377–388.

[24] F. Shen, J. Del Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek,
“Android malware detection using complex-flows,” IEEE
Transactions on Mobile Computing, vol. 18, no. 6, pp. 1231–
1245, 2018.

[25] M. Fan, J. Liu, X. Luo, K. Chen, T. Chen, Z. Tian, X. Zhang,
Q. Zheng, and T. Liu, “Frequent subgraph based familial clas-
sification of android malware,” in International Symposium on
Software Reliability Engineering. IEEE, 2016, pp. 24–35.

[26] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant, “Semantics-aware malware detection,” in IEEE
Symposium on Security and Privacy. IEEE, 2005, pp. 32–46.

[27] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Eval-
uation of machine learning classifiers for mobile malware
detection,” Soft Computing, vol. 20, no. 1, pp. 343–357, 2016.

[28] A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi,
“Calibrating probability with undersampling for unbalanced
classification,” in 2015 IEEE Symposium Series on Compu-
tational Intelligence. IEEE, 2015, pp. 159–166.

[29] A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla,
“Smote for learning from imbalanced data: progress and
challenges, marking the 15-year anniversary,” Journal of
artificial intelligence research, vol. 61, pp. 863–905, 2018.

[30] E. Raff and C. Nicholas, “Malware classification and class
imbalance via stochastic hashed lzjd,” in ACM Workshop on
Artificial Intelligence and Security, 2017, pp. 111–120.

[31] A. Tirkey, R. K. Mohapatra, and L. Kumar, “Anatomiz-
ing android malwares,” in Asia-Pacific Software Engineering
Conference. IEEE, 2019, pp. 450–457.

[32] I. Almomani, R. Qaddoura, M. Habib, S. Alsoghyer,
A. Al Khayer, I. Aljarah, and H. Faris, “Android ransomware
detection based on a hybrid evolutionary approach in the
context of highly imbalanced data,” IEEE Access, 2021.

[33] D. T. Dehkordy and A. Rasoolzadegan, “A new machine
learning-based method for android malware detection on
imbalanced dataset,” Multimedia Tools and Applications, pp.
1–22, 2021.

[34] S. Arzt et al., “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for Android apps,”
in ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 2014, pp. 259–269.

[35] B. F. Demissie, M. Ceccato, and L. K. Shar, “Security analysis
of permission re-delegation vulnerabilities in android apps,”
Empirical Software Engineering, pp. 5084–5136, 2020.

[36] L. K. Shar, “Evaluating oversampling techniques,” https:
//github.com/Jesper20/smote, 2021.

[37] J. Han, M. Kamber, and J. Pei, “Data mining concepts and
techniques third edition,” The Morgan Kaufmann Series in
Data Management Systems, vol. 5, no. 4, pp. 83–124, 2011.

[38] F. Pedregosa et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[39] I. Barandiaran, “The random subspace method for construct-
ing decision forests,” IEEE Trans. Pattern Anal. Mach. Intell,
vol. 20, no. 8, pp. 1–22, 1998.

[40] M. Eskandari and S. Hashemi, “A graph mining approach for
detecting unknown malwares,” Journal of Visual Languages
& Computing, vol. 23, no. 3, pp. 154–162, 2012.

[41] H. Zhang, “The optimality of naive bayes,” AA, vol. 1, no. 2,
p. 3, 2004.

[42] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:
Practical machine learning tools and techniques. Morgan
Kaufmann, 2016.

[43] H. Abdi and L. J. Williams, “Principal component analy-
sis,” Wiley interdisciplinary reviews: computational statistics,
vol. 2, no. 4, pp. 433–459, 2010.

[44] D. L. Wilson, “Asymptotic properties of nearest neighbor
rules using edited data,” IEEE Transactions on Systems, Man,
and Cybernetics, no. 3, pp. 408–421, 1972.

[45] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and
T. Yagi, “Malware detection with deep neural network using
process behavior,” in Annual Computer Software and Appli-
cations Conference, vol. 2. IEEE, 2016, pp. 577–582.

[46] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive
synthetic sampling approach for imbalanced learning,” in
International joint conference on neural networks. IEEE,
2008, pp. 1322–1328.

[47] W. Siriseriwan and K. Sinapiromsaran, “Adaptive neighbor
synthetic minority oversampling technique under 1nn outcast
handling,” Songklanakarin J. Sci. Technol, vol. 39, no. 5, pp.
565–576, 2017.

[48] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep
learning in android malware detection,” in ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4. ACM,
2014, pp. 371–372.

https://developer.android.com/studio/test/monkey
https://github.com/Jesper20/smote
https://github.com/Jesper20/smote

	Empirical evaluation of minority oversampling techniques in the context of Android malware detection
	Citation

	tmp.1644232814.pdf.Cjz9N

