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Abstract 

In this paper, we answer a novel question on how the value of goods carried can affect the freight cost. We focus on the 
issue based on a more specialized freight market involving transport of seaborne iron ore from mining ports to Qingdao in 
China during the period 2014 to 2019. We construct simultaneous systems of demand–supply equations on both the iron ore 
market and the freight market. In the models, we explain how endogeneity of iron ore as a regressor can arise due to the 
nexus between the two markets, and that the freight demand is largely a derived demand from iron ore demand by PRC firms 
importing the iron ore. Employing instrumental variable two-stage least squares regression, it is shown that iron ore price 
negatively affects, ceteris paribus, the freight rate of bulk carriers ferrying the iron ore. Industrial growth, bunker fuel oil, 
Baltic Dry Index, and transport distance have positive effects on the freight rates. 

Keywords: Freight rate, Iron ore price, Endogeneity, Panel regression 

 

 

1 Introduction  

The Review of Maritime Transport (2015, p.53) reported, “Despite the fact that there is no obvious reason for the 

connection between the freight rate and value of a product,1 a wide range of works describe the relationship between a 
product’s unit value and the freight charged”. The wide range of works refer to studies on the shipping transport costs of 

traded goods in container vessels in the context of international trade (Wilmsmeier et al., 2006, Martínez-Zarzoso and 
Suarez-Burguet, 2005, Wilmsmeier and Martínez-Zarzoso, 2010, etc.). More specifically, Wilmsmeier and Sánchez (2009) 
analysedtransport cost determinants for containerized food imports to South America and showed that a 10 per cent rise in 
the value of the commodity increased transport costs by around 7.6 percent. Wilmsmeier and Martínez-Zarzoso (2010, 
Tables 3,4) performed linear regression of freight costs on cargo product values, amongst other independent variables, and 
showed a positive relationship. However, this range of studies mostly used ad valorem freight rates that implicitly reflected 
cargo values, so the impact of cargo value could be driven by the nature of the data that were used. The extension of this 
result to specialized commodity cargo transport is not obvious. Other studies on dry bulk shipping freight rates did not 
consider unit value of cargo as an explanatory variable (Alizadeh and Talley, 2011, Linda, 2014). 

The issue about the relationship between dry bulk freight rate and value of the transported product is therefore an 
interesting problem, and this study contributes to a better understanding of this relationship by studying the dry bulk freight 
market and the seaborne iron ore market. 

Iron ore is a major international commodity that has to be shipped from one port in the exporting country to another 
in an importing country. Serapio (2016) discussed how steel making and its requirement of iron ore as the key component

 

 
1 Many shipping firms, logistics firms, and freight brokers indicated on their public web pages that freight rates are determined based 
on factors such as nature and quantity of the shipped goods, locations of the origin and destination and the distance, seasonal and 
holiday factors, type and size of the vessel used, market competitiveness, exchange rate, port tariffs and port conditions, fuel prices, 
and trade regulation policies between the importing and exporting countries, without mention of the unit value of the cargo being 
carried. 
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Fig. 1. Graph of average freight rates at loading ports of Dampier, Hedland, Saldanha, and Tubarao. The freight rates are measured in USD per metric ton. The
iron ore price is in USD per metric ton. 2014–2019.

predominant in infrastructure and industrialization growths. Ng (2017) reported that in 2016 and 2017, China (PRC) imported
enormous amounts of iron ore from mines in Australia and Brazil to meet escalating demands in the PRC steel production industry
that had benefitted from rising profit margins. By 2019, Chinese iron ore imports accounted for about 70% of world total imports.
Hence seaborne iron ore demand has been driven in large part by China’s industrial production.

The seaborne iron ore market and the shipping freight market that transports the ore from the exporting country to PRC are two
separate but inter-connected markets. The relationship, if any, between the market price of iron ore and the freight rate, requires
demand and supply modelling as well as empirical analyses. Fig. 1 shows monthly time series plots of the iron ore average spot
freight rates on 4 shipping routes originating at Dampier, Port Hedland, Saldanha, and Tubarao. Their destination is Qingdao port
in PRC. The monthly time series plot of iron ore market price is also included.

In Fig. 1, there appears to be a high positive correlation between the average freight rates and the iron ore price. However, their
co-movements could be due to other macro-factors driving both these price variables. This point is best illustrated by an important
study by the U.S. Bureau of Labor Statistics (Reed, 2014) on American inflation experience where a high positive correlation is
shown between rising U.S. apparel cost index and U.S. medical care cost index as both were driven by inflation-induced demands.
However, there are sub-periods in Fig. 1 with reversals in co-movement such as during 2014 to 2015, and 2018 to 2019.

A positive pairwise (zero-order) correlation coefficient between freight rate and iron ore price, however, does not necessarily
imply a positive partial correlation coefficient when the effects of other explanatory variables on the prices are removed or controlled.
The sign of this partial correlation corresponds to that of the regression coefficient of one price on another. Going from positive
correlation between two prices to a linear regression of one on another, however, requires careful modelling of the structural demand
and supply in both markets. Least squares regression may face pervasive endogeneity bias when price is included as an explanatory
variable.

Unlike extant research that provides an outright specification of unit cargo value as a determinant of transport cost, we model
the effect of iron ore price on freight cost using demand–supply structural models and then estimate our results using two-stage
least squares panel regression, thus obtaining consistent estimates. We show and explain the endogeneity of commodity cargo cost
in freight pricing. We point to careful treatment of price effect when two market systems are working alongside as in these iron ore
and bulk carrier markets. The study is important in establishing this unit value impact on freight cost modelling in the transportation
of one of the most important metals for China’s industrial development.

In the next section, we construct a theoretical relationship between freight rate and iron ore price. We also provide real examples
to motivate the structural equations employed in the modelling. In Section 3, we perform estimation and testing on the equilibrium
iron ore market model. In Section 4, we discuss the inherent endogeneity characteristics with iron ore price and employ two-
stage least squares regression method to obtain unbiased estimates and test the freight price versus iron ore price model. Section 5
concludes with general implications on connected commodity and freight pricing markets.

2. Simultaneous iron ore and freight markets

We construct two simultaneous equilibrium models for iron ore price and for freight rates2 based on fixed routes. For the period
of our empirical study, the inter-quartile range of iron ore prices from 2014 till mid-2019 is about $59 to $80 per metric ton, while

2 Iron ore price is stated in USD per dry metric ton while freight rate for carrying the seaborne iron ore is typically stated in USD per wet metric ton. Dry
metric ton refers to a metric ton where the contents are dry ore. Wet metric ton refers to a metric ton where the contents are ore with about 8% of slurry and
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that of freight rates for shipment of iron ore from Tubarao in Brazil to Qingdao in PRC, typically in Capesize dry bulk carriers,3 is
about $11 to $18 per metric ton. The average of freight cost at Tubarao to iron ore value per metric ton carried per ship is about
20%. Thus freight cost is a significant portion of overall cost to the iron ore importer in China.

A Capesize dry bulk carrier with a typical 170,000 metric-ton load capacity ferrying iron ore from Tubarao to Qingdao would
amount to a freight cost of about $2.5 million on a freight rate of $15 per metric ton. There are two main freight quotation methods
for iron ore transport. One is by charter rate on a per trip-day basis. The other is for spot rate quote on a per ton basis. PRC iron
ore importers are major long-term players in the market and would typically buy the iron ore directly from an overseas mining
company on fob basis,4 and then self-arrange to insure and ship the ore by paying spot rates5 to dry bulk shipping companies for
the freight. During 2014 to 2019, most of the Australian, Brazilian, and South African iron ore are shipped to the Qingdao port in
China.

Let the global demand for seaborne iron ore at each month 𝑡 be represented as follows.

𝐷𝑅
𝑡 = 𝑎0 + 𝑎1𝑃

𝑅
𝑡 + 𝑎2𝑋𝑡 + 𝑎3𝑉 𝐼𝑋𝑡 + 𝜖𝐷𝑡 (1)

where 𝜖𝐷𝑡 is the demand residual error. 𝑃𝑅
𝑡 is the iron ore price in USD per dry metric ton at month 𝑡. This is a benchmark price

quoted in the market and not the specific purchase price of a specific importer of the iron ore. It is also noted that PRC has the
biggest share of this global demand.

Market demand for iron ore should be decreasing in price, hence 𝑎1 < 0 in Eq. (1). 𝑃𝑅
𝑡 is clearly an endogenous variable and

has non-zero correlation with noise 𝜖𝐷𝑡. China’s industrial production or overall economic activity growth rate represented by 𝑋𝑡
at month 𝑡 should have a positive impact on iron ore demand, and is assumed to be independent of 𝜖𝐷𝑡. We postulate that the
coefficients 𝑎2 > 0. This growth rate is measured as the natural logarithm of the relative PRC industrial production index from
month to month.

VIX is the ticker symbol for the Chicago Board Options Exchange (CBOE) Volatility Index. It is a popular measure of the stock
market’s expectation of the S&P 500 index future volatility. VIX is traded on the CBOE and it is known as the ‘‘fear gauge’’ or
the ‘‘fear index’’. Warren et al. (2014) showed that VIX has strong linkages with economic and financial fundamentals. Bekaert
and Hoerova (2014) showed VIX predicts economic activity and has high predictive power for financial instability. Canorea (2018)
found that base metals price movements have a significant negative correlation with VIX movements. Increasing uncertainty with
higher VIX depresses demand and thus price, ceteris paribus. Similar negative impacts of VIX were found in gold, silver, and oil
commodities. See Daniel and Lipton (2013). Thus it is postulated that 𝑎3 < 0 in Eq. (1). Bahloul et al. (2018) also showed that
uncertainty measures such as VIX can predict returns on as many as 20 of 21 commodity futures returns. Gozgor et al. (2016)
showed that high VIX suppressed agricultural commodity returns. However, since PRC market is not similar to U.S. and European
markets in many ways, we assume the effect of VIX on 𝐷𝑅

𝑡 occurs only for non-PRC demand. VIX is also assumed to be independent
of 𝜖𝐷𝑡.

The market demand residual error 𝜖𝐷𝑡 contains an unobserved item equivalent to PRC stockpiling demand, 𝜔𝑡. When stockpiling
𝜔𝑡 (> 0) increases, this will drive up the equilibrium iron ore price 𝑃𝑅

𝑡 if supply curve is unchanged. When the stockpile is reduced,
releasing inventory iron ore for use in PRC, then net demand in the seaborne iron ore market will reduce, leading to fall in 𝑃𝑅

𝑡 if
supply curve is unchanged. The stockpiling activities are real, as reported time and again in the news. For example, UMetal Weekly
(2011) reported that China had grown huge stockpiles of iron ore by late 2011. The release of that stockpile in the following several
years has been a factor in the falling iron ore price from 2014 to 2016, besides slowing industrial steel manufacturing in that period.
Hoyle (2016) in WSJ reported the strong positive effect of China’s iron ore stockpiling in later 2016 on the iron ore market price.

The supply of iron ore at month 𝑡 via the aggregated supply of ore from various international locations 𝑗 as well as sources not
linked to the exporting ports is represented by Eq. (2) below. The demand and supply include quantities utilized by other countries.

𝑆𝑅
𝑡 = 𝑏0 + 𝑏1𝑃

𝑅
𝑡 + 𝜖𝑆𝑡 (2)

where 𝜖𝑆𝑡 is assumed to be a supply residual error and independent of 𝑋𝑡 and 𝑉 𝐼𝑋𝑡. We postulate that the coefficient 𝑏1 > 0.
Supply shocks in 𝜖𝑆𝑡 can happen in two ways. Positive shocks or 𝜖𝑆𝑡 > 0 can occur when there is discovery of new iron ore

sources or when seaborne transport routes increased. Negative shocks or 𝜖𝑆𝑡 < 0 can happen when there is short-term disruption
to supply due to weather or accidents. For example, there was a severe supply cut in iron ore exports from the Australian ports of
Hedland and Dampier during the year end of 2014 due to Cyclone Christine (Australian Government Bureau of Meteorology, 2014).

On January 25, 2019, the mining dam at Brumadinho broke and major Brazilian iron ore mining company Vale had to cut
production. This contributed to a supply shortage and drove market iron ore price from $76.16 in January 2019 to $88.22 in
February 2019. Due to the linked simultaneous markets, it also caused a fall in demand of iron ore freight transport at Tubarao in

moisture. We ignore this small difference in the theoretical modelling when we refer to iron ore demand in the iron ore market as being similar to demand for
the ship loads carrying the iron ore.

3 Dry bulk carriers form about 20% of total seaborne transportation, and are a significant supply chain and logistical component for industrial development.
They transport iron ore, coking coal for steel production, as well as other commodities such as minerals, grains, and fuel.

4 The other more expensive method is to buy cif, including insurance and freight cost charged by the ore supplier who also arranges for freight transport.
5 Since the big production of shipping capacity post 2008, spot freight cost volatility and uncertainty have continued to be critical issues for the shipping

industry. The Baltic Exchange Dry Index dropped to a low 796 points in July 2014. Clarksons Research (2015) indicated a number of shipping companies had
filed for bankruptcy.
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February 2019. At Tubarao, the average freight rate in January 2019 was $16.52 with transport of 170,000 metric tons. In February
2019, the average freight rate dropped to $13.1 with transport of 865,000 metric tons.

In equilibrium, 𝐷𝑅
𝑡 = 𝑆𝑅

𝑡 . Equating Eqs. (1) and (2), the market-clearing iron ore price is:

𝑃𝑅
𝑡 = 𝜃0 + 𝜃1𝑋𝑡 + 𝜃2𝑉 𝐼𝑋𝑡 + 𝜖𝑡 (3)

where 𝜃0 = (𝑏0 − 𝑎0)∕(𝑎1 − 𝑏1), 𝜃1 = −𝑎2∕(𝑎1 − 𝑏1) > 0, 𝜃2 = −𝑎3∕(𝑎1 − 𝑏1) < 0, and 𝜖𝑡 = (𝜖𝑆𝑡 − 𝜖𝐷𝑡)∕(𝑎1 − 𝑏1).
Our freight demand and supply model follows generally from classic studies such as Stopford (2009), Alen et al. (2015),

Wilmsmeier and Martínez-Zarzoso (2010), and so on. Other past research showed that freight cost is affected by ship operating costs
such as crew cost, bunker fuel price, registration charges, port tariffs and connectivity (Márquez-Ramos et al., 2005; Wilmsmeier
et al., 2006), types of cargo and unit value (Martínez-Zarzoso and Suarez-Burguet, 2005; Wilmsmeier and Martínez-Zarzoso, 2010),
weight, bulk, value and perishability of the product (Palander, 1935) and competition, and insurance cost when freight cost includes
freight insurance. Martínez-Zarzoso and Wilmsmeier (2008) showed the relative importance of geographical distance on maritime
transport costs, indicating that the more central trade routes fetched lower average transport costs. We employ the key factors in
the determination of demand and supply of freight cost.

We consider locations with iron ore mining and port facilities where the produced iron ore are shipped to Qingdao in PRC. The
exports of iron ore from these ports form the major portion of seaborne iron ore import by PRC. The freight rates for transporting
the iron ore to Qingdao in PRC are determined mainly by PRC demand of Capesize carriers to transport the purchased ore as well
as the supply of the bulk carriers from shipping companies.

Let 𝑗 = 1, 2, 3,… , 𝑁 be sea routes starting from port 𝑗 to Qingdao. Let 𝑃 𝑆
𝑗𝑡 be the freight spot rate on route 𝑗 at month 𝑡 in

$/metric ton. The spot rate, which includes fuel charges to be borne by the shipping firm, is for the agreed shipment from loading
port to the disembarkation port of Qingdao. The demand equation for freight at 𝑗 at month 𝑡 to carry iron ore is represented as
follows.

𝐷𝑆
𝑗𝑡 = 𝑐0 + 𝑐1𝑃

𝑆
𝑗𝑡 + 𝑐2𝑋𝑡 + 𝑐3𝑃

𝑅
𝑡 + 𝜀𝐷𝑗𝑡 (4)

where demand at time 𝑡 at port 𝑗 decreases with increasing freight rate at port 𝑗, 𝑃 𝑆
𝑗𝑡 , but increases with China industrial production

growth rate 𝑋𝑡. Thus 𝑐1 < 0 and 𝑐2 > 0. 𝑋𝑡 is a macro driver of demand for iron ore as well as demand for shipping.
One critical point to note is that demand for the freight transport of iron ore to PRC is largely derived demand by the PRC iron

ore importers as most of the imported iron ore are seaborne. Hence factors that affect the demand of iron ore by PRC firms are
mostly also factors that affect the demand of freight transport. Since iron ore price and PRC industrial production growth affects
demand of iron ore by PRC firms as part of global demand in Eq. (1), they are also factors that affect freight demand in Eq. (4).
The inclusion of iron ore price in the specification of Eq. (4) is a theoretical proposition that the PRC iron ore importers’ demand
for ore and demand for the shipping to carry the ore are in tandem with effect from the iron ore price. Hence iron ore price affects
freight demand negatively, and it is postulated that 𝑐3 < 0. 𝜀𝐷𝑗𝑡 is the residual demand noise that is independent of 𝑋𝑡.

When there is stockpile decrease (increase), 𝜔𝑡 < (>) 0, the derived demand of freight by PRC firms will decrease (increase) at
every 𝑗. More specifically, 𝜖𝐷𝑡 has positive correlation with 𝜀𝐷𝑗𝑡, ∀𝑗. Thus, apart from the ore price effect, there is an important
nexus between the iron ore market and the shipping freight market at the 4 exporting ports.

The supply equation for freight at 𝑗 at month 𝑡 is as follows.

𝑆𝑆
𝑗𝑡 = 𝑑0 + 𝑑1𝑃

𝑆
𝑗𝑡 + 𝑑2𝐷𝑗 + 𝑑3𝐵𝑡 + 𝑑4𝐵𝐷𝐼𝑡 + 𝜀𝑆𝑗𝑡 (5)

where 𝐷𝑗 is the distance of the exporting port to Qingdao in terms of nautical miles, 𝐵𝑡 is the bunker fuel price in $/ton, and 𝐵𝐷𝐼𝑡
is the Baltic Dry Index. 𝐵𝐷𝐼 is reported daily by the Baltic Exchange in London. It provides a benchmark for freight rates of vessels
ferrying dry bulk commodities such as coal, iron ore, grains, and others. The index tracks rates on about 20 different shipping routes
across the globe.

As the iron ore shipment freight rate increases, the supply of shipping capacity would increase, so 𝑑1 > 0. In Eq. (5), for each
𝑗, 𝑑0 and 𝐷𝑗 are constants, but the effect of distance 𝐷𝑗 would appear differentially across ports when we use pooling regression.
The more remote the cargo load point is from the destination, the higher is the risk borne by the shipping firm in the delivery as
weather, ocean conditions, and the longer voyage would escalate the costs and risks. Ceteris paribus we would see more supply of
shipping from ports nearer to Qingdao. Thus 𝑑2 < 0.

Higher bunker fuel price (high sulphur) implies it is more costly to operate the ship and will reduce supply of the shipping
capacity, hence 𝑑3 < 0. Dušan and Janić (2017) produced results for general cargo ships showing that distance and fuel cost increase
the average shipping rates. Both the distance and the fuel price are transformed by taking natural logarithms. Higher 𝐵𝐷𝐼𝑡 in month 𝑡
implies higher opportunity cost for use of the finite dry bulk shipping capacity, so ceteris paribus, the supply of shipping for transport
of iron ore would be reduced. Thus 𝑑4 < 0. 𝜀𝑆𝑗𝑡 is the residual supply noise that is independent of 𝐷𝑗 , 𝐵𝑡, and 𝐵𝐷𝐼𝑡.

Since the specialized shipping freight market and the iron ore importers are well connected, residual ore demand increase
(decrease) would possibly increase (decrease) freight supply capacity as shippers reallocate shipping schedules to meet potential
demand changes. Hence 𝜖𝐷𝑡 possibly has positive correlation with 𝜀𝑆𝑗𝑡, ∀𝑗.

Equating Eqs. (4) and (5) under economic market clearing equilibrium, we have

𝑃 𝑆
𝑗𝑡 = 𝛾0 + 𝛾1𝑋𝑡 + 𝛾2𝐷𝑗 + 𝛾3𝐵𝑡 + 𝛾4𝑃

𝑅
𝑡 + 𝛾5𝐵𝐷𝐼𝑡 + 𝜂𝑗𝑡 (6)

where 𝛾0 = (𝑑0 − 𝑐0)∕(𝑐1 − 𝑑1), 𝛾1 = −𝑐2∕(𝑐1 − 𝑑1) > 0, 𝛾2 = 𝑑2∕(𝑐1 − 𝑑1) > 0, 𝛾3 = 𝑑3∕(𝑐1 − 𝑑1) > 0, 𝛾4 = −𝑐3∕(𝑐1 − 𝑑1) < 0,
𝛾5 = 𝑑4∕(𝑐1 − 𝑑1) > 0, and 𝜂𝑗𝑡 = (𝜀𝑆𝑗𝑡 − 𝜀𝐷𝑗𝑡)∕(𝑐1 − 𝑑1).
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Table 1
Descriptive statistics of variables used in the study: iron-ore price in USD per metric ton, PRC
industrial production growth rate in %, VIX index, BDI index, natural log of distance in nautical
miles, natural log of high Sulphur 380 bunker fuel $ price, freight rate in USD per metric ton.
The sample period is from January 2014 to May 2019. Sample size is 65. The mean, standard
deviation, 25th percentile (25%), median, and 75th percentile (75%) of the various time series
are reported.

Variables Mean Std Dev 25% Median 75%

Iron ore price $ 71.70 17.49 59.09 68.39 80.41
Growth rate % 0.538 0.144 0.495 0.501 0.599
VIX index 15.10 3.81 12.37 14.00 16.95
BDI index 977.5 332.7 703.0 943.0 1204.0
ln (Distance) 8.83 0.53 8.33 8.75 9.26
ln (Fuel Price) 5.94 0.30 5.80 5.95 6.16
Average freight rate $ 9.47 4.70 5.89 8.09 12.14

Eq. (6) provides the theoretical relationship between freight rate 𝑃 𝑆
𝑗𝑡 at port 𝑗 and iron ore price 𝑃𝑅

𝑡 . The residual error 𝜂𝑗𝑡 is
assumed to be independent of 𝑋𝑡, 𝐷𝑗 , 𝐵𝑡, 𝐵𝐷𝐼𝑡 for each 𝑗, but heteroskedasticity could occur for different 𝑗. As our study is on
the specific iron ore commodity, and the export port to import port routes were fixed, we exclude variables such as registration
charges, port tariffs, product perishability characteristics, measures of competition amongst products, and insurance cost used in
some other studies on general commodities. The smaller costs of operations data are difficult to obtain but are contained in the
residual variables of 𝜂𝑗𝑡 within our model. These costs are reasonably assumed not to be correlated with China’s industrial growth,
world bunker fuel cost, BDI, and VIX. Their mean effects would be reflected in constants relating to ports or proxied by the distance
effects across the ports.

3. Estimation and testing

In this section we evaluate the time series properties of the various variables we employ in our study. Then we estimate and test
the iron ore pricing relationship in Eq. (3).

Monthly iron ore prices and other macrovariables such as PRC industrial production index, VIX, and BDI are collected from
Thomson Reuters Datastream. Freight prices indicating cargo as iron ore were obtained from Clarksons database. Due to limitations
in data availability, our sample period is from January 2014 to May 2019. For each month, various global iron ore export ports
such as Dampier and Port Hedland from Australia, Port Saldanha Bay from Africa, Tubarao from Brazil, Ponta da Madeira, Subic
Bay, and several others provide bulk carriers to transport iron ore to Qingdao in China. The busy ports sometimes have up to over
twenty different ships a month. During the sample period there were eleven major routes shipping iron ore to Qingdao. However, for
freight data available on a continuous basis for each month in the sample period, there were only the ports of Dampier and Hedland
in northern Australia, Saldanha Bay in South Africa, and Tubarao in Brazil. Hence our empirical study uses data from these 4 ports.
For each month, the average freight rate at each port is computed for carriers transporting iron ore to Qingdao.

Monthly bunker fuel prices are collected from S&P Global Platts. Monthly price data for freight rate at any port 𝑗 is obtained
by averaging such rates for different ships departing from the same port in that month. Sea distance from port 𝑗 to Qingdao is
computed as natural logarithm of nautical miles obtained from ports.com. Descriptive statistics of the data variables used in the
study are shown in Table 1. Fig. 2 shows the time series plots of the various variables.

From Table 1, it can be seen that freight rate, followed by BDI, is the most volatile in terms of the ratio of standard deviation to
mean. Iron ore price, PRC industrial production growth rate, and the VIX index are also relatively volatile. For freight rates, the rates
are different with respect to voyage distances, increasing with the distance from loading port to disembarkation port at Qingdao.
See Fig. 1 shown earlier. The loading port Tubarao in Brazil is the farthest from Qingdao and the average freight rate there was
much higher. This is followed by Saldanha Bay in South Africa, Dampier and Port Hedland in Australia. It is also observed that the
average freight rate at Tubarao showed a sharp fall in January through May 2019.

To perform multiple linear regression on Eq. (3), we first check the time series properties of the random variables to see if they
are stationary. If they are unit root processes, then the regression may lead to spurious results unless the random variables in the
linear regression are co-integrated. The unit root test results on the null of unit root or I(1) process are reported in Table 2. The
Augmented Dickey–Fuller test statistics are utilized for the test inferences.

From Table 2, it is seen that growth rates and VIX index are stationary or I(0) processes. Iron ore prices are borderline with a
𝑝-value of 0.189 in rejecting unit root. We tried differencing but found that it removed too much information such that the regression
results suffered from too much noise. Moreover, according to our model, it is more meaningful to model iron ore price level. We
analyse further the iron ore time series by computing its sample autocorrelation and partial autocorrelation functions. These are
shown in Fig. 3.

Fig. 3 shows that the iron ore price series is possibly an autoregressive process. The PACF sample function indicates it could
be AR(1). Hence there is reasonable statistical evidence to treat the dependent iron ore price in Eq. (3) as a stationary variable
for regression. We run a linear regression based on Eq. (3) using Newey and West (1987) Heteroskedasticity and Autocorrelation
Consistent covariance estimator (HAC) for obtaining the inferences. This regression provides for a test of the iron ore pricing model.



Journal of Commodity Markets xxx (xxxx) xxx

6

K.G. Lim

Fig. 2. Time series graph of iron ore price, Growth Rate% (×100), VIX index level (displayed as level ×5), and BDI index level (displayed as level divided by
20). Monthly values are shown in sample period Jan 2014 to May 2019.

Fig. 3. Autocorrelation Sample Function (left) and Partial Autocorrelation Sample Function (right) of Iron Ore price over monthly sample period January 2014
to May 2019. The plots show ACF and PACF over 25 lags. Standard deviations at 95% significance level are also shown in the grey zones. The standard deviation
for ACF is computed using Bartlett’s formula. See Bartlett, M. S. (1955, p.289). An introduction to stochastic processes. Cambridge: Cambridge University Press.

Table 2
Unit root tests of iron ore price, Growth rate, and VIX index time series over monthly data from
January 2014 to May 2019. Sample size is 65. Augmented Dickey–Fuller (ADF) test statistics,
the p-values, and distribution percentile values are reported based on the null of unit root or
I(1) process. The number of lags is chosen to minimize the corresponding information criterion.
Computation uses the ‘adfuller’ module in statsmodels.tsa.stattools written for Python.

Iron ore prices $ Growth rates VIX index

ADF-statistics −2.249 −9.288*** −5.011***
p-value 0.189 0.000 0.000
1% −3.541 −3.537 −3.537
5% −2.909 −2.908 −2.908
10% −2.592 −2.591 −2.591

Note:
***Indicates 1-tail 1% significance level.

The results are reported in Table 3. To provide a confirmation on the stationary system of Eq. (3), we also run an ADF unit root
test on the estimated residuals of the regression. The estimated residuals should asymptotically display I(0) process.

Table 3 shows that �̂�1 > 0 and �̂�2 < 0 are significantly different from zero and have the correct signs according to the model in
Eq. (3). If the growth rate is 1%, then ceteris paribus the iron ore will increase by about 37.8%. When 𝑉 𝐼𝑋𝑡 increased, the global
seaborne iron ore market price decreased, supporting the evidence of the fear phenomena that is well-known in financial markets
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Table 3
Linear regression of iron ore price 𝑃𝑅

𝑡 on PRC industrial growth 𝑋𝑡 and 𝑉 𝐼𝑋𝑡 based on Eq. (3):
𝑃𝑅
𝑡 = 𝜃0+𝜃1𝑋𝑡+𝜃2𝑉 𝐼𝑋𝑡+𝜖𝑡. 𝑃𝑅

𝑡 , 𝑋𝑡, and 𝑉 𝐼𝑋𝑡 are respectively the iron ore price in USD per dry
metric ton, the PRC natural log of industrial production growth, and the traded CBOE VIX index.
Sample period January 2014 to May 2019. Sample size of 65. The 𝑡-statistics are computed using
(Newey and West, 1987) HAC covariance estimator.

Parameter Estimated Standard t-stats p-value
coefficient error

𝜃0 62.804*** 11.110 5.653 0.000
𝜃1 37.849** 16.889 2.241 0.029
𝜃2 −0.760* 0.449 −1.694 0.095

F2,62-statistic 3.540** p-value 0.035

Adj. 𝑅2 0.103

ADF-statistics −2.960** p-value 0.039
of residual error

Note:
*Indicate 10% significance levels respectively.
**Indicate 5% level respectively.
***Indicate 1% significance level respectively.

Table 4
Unit root tests of average freight rates of Dampier, Hedland, Saldanha, Tubarao, natural log of fuel price, and
the BDI index time series over monthly data from January 2014 to May 2019. Sample size is 65. Augmented
Dickey–Fuller (ADF) test statistics, the p-values, and distribution percentile values are reported based on the null
of unit root or I(1) process. The number of lags is chosen to minimize the corresponding information criterion.
Computation uses the ‘adfuller’ module in statsmodels.tsa.stattools written for Python.

Dampier Hedland Saldanha Tubarao Fuel price BDI index

ADF-statistics −2.197 −2.343 −2.541 −2.147 −1.873 −2.617*
p-value 0.207 0.158 0.106 0.226 0.345 0.089
1% −3.537 −3.539 −3.537 −3.541 −3.539 −3.537
5% −2.908 −2.909 −2.908 −2.909 −2.909 −2.908
10% −2.591 −2.592 −2.591 −2.592 −2.592 −2.591

Note:
*Indicates 1-tail 10% significance level.

as well as base metals commodity markets. ADF statistic on estimated residuals 𝜖𝑡 shows unit root is rejected at a 5% significance
level, so the regression is properly specified and the regression results are not spurious.

To perform multiple linear regression on Eq. (6), we check the time series properties of the random variables, apart from those
in Eq. (3), if they are stationary. The unit root test results of monthly average freight rates at Dampier, Hedland, Saldanha, and
Tubarao, as well as of natural logarithm of fuel price and BDI index on the null of unit root are reported in Table 4. The Augmented
Dickey–Fuller test statistics are utilized for the test inferences.

From the statistical results in Table 4, we cannot reject unit roots for all the average monthly freight rates at the various loading
ports. We also cannot reject unit root for the natural log of fuel price. However, unit root can be rejected at 10% significance
level for 𝐵𝐷𝐼𝑡. Thus for each port in Eq. (6) there is the dependent variable and at least one independent variable that appear to
follow unit root processes. To ensure that a linear regression would be meaningful and not produce spurious results, we test if the
variables 𝑃 𝑆

𝑗𝑡 , 𝑋𝑡, 𝐵𝑡, 𝑃𝑅
𝑡 , and 𝐵𝐷𝐼𝑡 in Eq. (6) are co-integrated. Cointegration means that a linear combination of the regressant

and regressors is stationary. We employ the Johansen (1988, 1991) trace statistic and maximum eigenvalue statistic to test the null
of no cointegration. The results are reported in Table 5.

Table 5 shows that the null hypothesis of zero or no cointegration is rejected at 1% significance level for all ports based on the
maximum eigenvalue statistic. The null hypothesis of at most one cointegrating relationship is not rejected. A single cointegrating
relationship is reasonable for the ports as the average freight rate may be cointegrated with the natural log of fuel price. The
results from the trace statistic test are basically consistent. The non-spurious linear regression of Eq. (6) for each port implies that
a panel regression involving all 4 port equations should also be cointegrated. Without adding unnecessary space, we report that
in 4 regressions, one for each port, the estimated coefficients for natural log fuel price and BDI are significantly positive, and the
estimated coefficients for natural log growth and ore price are not significantly different from zero. All magnitudes are consistently
similar across the regressions. Statistically, there appears to be reasonable homogeneity across the different port regressions. This
averts a panel regression concern by Pedroni (2004).

We perform a multivariate (different 𝑗) multiple regression (more than one explanatory variable) on Eq. (6) by stacking
observations

(

𝑃 𝑆
11, 𝑃

𝑆
12, 𝑃

𝑆
13,… , 𝑃 𝑆

1𝑇 , 𝑃
𝑆
21, 𝑃

𝑆
22, 𝑃

𝑆
23, … , 𝑃 𝑆

2𝑇 ……, 𝑃 𝑆
𝑁1, 𝑃

𝑆
𝑁2, 𝑃

𝑆
𝑁3, … , 𝑃 𝑆

𝑁𝑇
) 𝑇 as the dependent vector, where 𝑁 is

the number of panels. Similarly, the errors are stacked up such that its covariance matrix has clusters of different variances across
𝑗. Basically this is panel regression with clustered standard errors.

To employ a balanced panel we use the data based on exporting ports Dampier and Hedland in Australia, Saldanha Bay in Africa,
and Tubarao in Brazil. These 4 major ports in shipping iron ore to Qingdao account for 74% of the total number of 5088 trips in
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Table 5
Cointegration trace and maximum eigenvalue tests involving average freight rate, Industrial
growth, Fuel price, Iron ore price, and BDI. Monthly variables are from sample period January
2014 to May 2019. The results are obtained with no deterministic trend and 1 lag. Computation
uses the ‘coint_johansen’ module in statsmodels.tsa.vector_ar.vecm written for Python.

Null Trace 1% critical Maximum 1% critical
Hypothesis statistic value eigenvalue value

Dampier
Zero cointegration 67.58** 67.64 42.09*** 35.74
At most 1 Cointegration 25.50 46.57 12.38 29.06
At most 2 Cointegrations 13.11 29.51 7.10 22.25
At most 3 Cointegrations 6.01 16.36 6.01 15.09
At most 4 Cointegrations 0.005 6.94 0.005 6.94

Port Hedland
Zero cointegration 76.21*** 67.64 43.36*** 35.74
At most 1 Cointegration 32.86 46.57 18.29 29.06
At most 2 Cointegrations 14.57 29.51 8.30 22.25
At most 3 Cointegrations 6.27 16.36 6.20 15.09
At most 4 Cointegrations 0.068 6.94 0.068 6.94

Saldanha Bay
Zero cointegration 82.66*** 67.64 49.30*** 35.74
At most 1 Cointegration 33.36 46.57 18.89 29.06
At most 2 Cointegrations 14.48 29.51 7.97 22.25
At most 3 Cointegrations 6.51 16.36 6.49 15.09
At most 4 Cointegrations 0.020 6.94 0.020 6.94

Tubarao
Zero cointegration 61.36** 67.64 38.22*** 35.74
At most 1 Cointegration 23.14 46.57 13.16 29.06
At most 2 Cointegrations 9.98 29.51 7.33 22.25
At most 3 Cointegrations 2.65 16.36 2.46 15.09
At most 4 Cointegrations 0.190 6.94 0.190 6.94

Note:
**Indicate 1-tail 5% significance level.
***Indicate 1-tail 1% significance level.

over 50 ports on more than 10 major routes in our sample. In the panel regression, we also introduce the natural logarithm of
the distance in nautical miles from loading port to Qingdao. This deterministic variable across the ports is important as it contains
useful information as reflected in Fig. 1. This variable also proxies largely for the fixed effect in the panel. As we observed earlier
in Fig. 1, there is also a structural break in the average freight rate at Tubarao. As reported by BBC, the collapse of a mining dam at
Brumadinho on 25 Jan 2019 drastically curtailed the production of iron ore by Vale in Brazil and led to lower demand for freight
transport at Tubarao during January to May 2019. Therefore we add a structural break dummy variable 𝑆𝑡 in the panel for Tubarao.
This structural break dummy variable takes the value 1 for Tubarao panel in the months of Jan to May 2019, and zero otherwise
for all other equations. We employ Eq. (7) in place of Eq. (6) for the panel regression:

𝑃 𝑆
𝑗𝑡 = 𝛾0 + 𝛾1𝑋𝑡 + 𝛾2𝐷𝑗 + 𝛾3𝐵𝑡 + 𝛾4𝑃

𝑅
𝑡 + 𝛾5𝐵𝐷𝐼𝑡 + 𝛾6𝑆𝑡 + 𝜂𝑗𝑡. (7)

We also report the Durbin–Wu–Hausmann test of null of iron ore price exogeneity. The iron ore price variable used in the regressor
is 𝑃𝑅

𝑡 . As we introduce covariance clusters, it is not appropriate to use the Hausman test statistic for fixed versus random effects.
This is because the random effect model uses a specific covariance matrix (see Davidson and MacKinnon (1993, p.324)) that is
inconsistent with our heteroskedastic covariance matrix. The linear panel regression results are shown in Table 6.

The results in Table 6 show that increases in China’s industrial production and economic activities during January 2014 to May
2019 are related to increases in freight prices. However, this impact on freight rates is not significant, unlike that on iron ore prices.
Distance of loading port from disembarkation or destination port Qingdao has positive correlation with freight rate. The effect is
significant. Increases in bunker fuel oil increases freight rates significantly, a result that is intuitive and established in the existing
literature. Increase in BDI also increases freight rate significantly as expected.

The January–May 2019 negative structural effect on Tubarao freight rates is highly significant. However, iron ore price has
negligible impact on freight rate, which is a surprising result. The Durbin–Wu–Hauman test of the exogeneity of regressor iron ore
price is rejected at 10% significance level. Therefore, the small estimated coefficient of �̂�5 of iron ore price is biased and inconsistent
as a result of its regressor endogeneity.

In the next section, we show how endogeneity in iron ore prices can occur, and perform a two-stage least squares estimation
using the projected iron ore price as an instrumental variable.

4. Endogeneity of iron ore price

In Eqs. (3) and (6), we see how equilibrium iron ore price and freight price of ships transporting the iron ore are determined.
In Section 2, we elaborated on the critical observation that demand for iron ore freight transport to PRC is largely derived demand
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Table 6
Panel regression of freight prices on explanatory variables based on Eq. (7): 𝑃 𝑆

𝑗𝑡 = 𝛾0 + 𝛾1𝑋𝑡 +
𝛾2𝐷𝑗 + 𝛾3𝐵𝑡 + 𝛾4𝑃𝑅

𝑡 + 𝛾5𝐵𝐷𝐼𝑡 + 𝛾6𝑆𝑡 + 𝜂𝑗𝑡. 𝑃 𝑆
𝑗𝑡 , 𝑋𝑡, 𝐷𝑗 , 𝐵𝑡, 𝑃𝑅

𝑡 , 𝐵𝐷𝐼𝑡, and 𝑆𝑡 are respectively the
freight spot rate on route 𝑗 in USD per metric ton, the PRC natural log of industrial production
growth, distance of exporting port 𝑗 to Qingdao in natural log of the number of nautical miles,
log of bunker fuel price in $/ton, iron ore price in USD per dry metric ton, the Baltic dry index,
and structural break dummy variable that takes value 1 for Tubarao for months Jan to May 2019
and otherwise zero. Sample period January 2014 to May 2019. Sample size 260. There are 4 port
locations in the sample. The 𝑡-statistics are computed based on clustered panel effects. The test
if the iron ore regressor variable is exogenous is also reported using the Durbin–Wu–Hausman
test statistic.

Parameter Estimated Standard t-stats p-value
coefficient error

𝛾0 −83.47*** 16.002 −5.216 0.000
𝛾1 1.290 0.992 1.300 0.195
𝛾2 6.509*** 0.631 10.31 0.000
𝛾3 5.148*** 1.907 2.699 0.007
𝛾4 0.006 0.009 0.599 0.550
𝛾5 0.004*** 0.001 7.401 0.000
𝛾6 −3.617*** 0.878 −4.119 0.000

F6,253-statistic 196.11*** p-value 0.000

𝑅2 0.823

Durbin–Wu–Hausman test F1,253 3.315 * p-value 0.070
𝐻0 ∶ Iron ore price exogenous

Note:
*Indicate 1-tail 10% significance level.
***Indicate 1-tail 1% significance level.

based on iron ore demand by PRC importers. Thus the factors of iron ore price and PRC industrial production growth affects both
the demand for iron ore in Eq. (1) and also the demand for freight in Eq. (4). The iron ore demand residual error 𝜖𝐷𝑡 comprising
stockpiling is also positively correlated with the freight demand residual error 𝜀𝐷𝑗𝑡 and possibly also with 𝜀𝑆𝑗𝑡 due to the nexus
between the seaborne iron ore market and the dry bulk iron ore freight markets.

From Eq. (3), it is obvious that iron ore market price 𝑃𝑅
𝑡 is correlated with both 𝜖𝐷𝑡 and 𝜖𝑆𝑡. This arises out of the simultaneous

equations model of iron ore demand–supply pricing in Eqs. (1) and (2). Given the said nexus, though we do not observe the residual
errors in the iron ore and the freight markets, we are able to infer that iron ore market price 𝑃𝑅

𝑡 is also correlated with 𝜂𝑗𝑡.
This implies that iron ore price as regressor in Eq. (6) is correlated with and is thus mutually dependent on the residual error

𝜂𝑗𝑡 since 𝜂𝑗𝑡 is a function of both 𝜀𝐷𝑗𝑡 and 𝜀𝑆𝑗𝑡. Hence the derived demand leads to endogeneity in iron ore prices in the regression
of freight rate in Eqs. (6) and (7). The endogeneity led to biased and inconsistent panel regression estimates in Table 6.

To resolve this endogeneity problem in the regression, we employ two-stage least squares (2SLS) method by first projecting iron
ore prices using Eq. (3) regression to obtain the time series of the estimated iron ore prices.

𝑃𝑅
𝑡 = �̂�0 + �̂�1𝑋𝑡 + �̂�2𝑉 𝐼𝑋𝑡

where the notation ̂ denotes OLS estimate. Then we re-run the panel regression using the following instead.

𝑃 𝑆
𝑗𝑡 = 𝛾0 + 𝛾1𝑋𝑡 + 𝛾2𝐷𝑗 + 𝛾3𝐵𝑡 + 𝛾4𝑃

𝑅
𝑡 + 𝛾5𝐵𝐷𝐼𝑡 + 𝛾6𝑆𝑡 + 𝜈𝑗𝑡 (8)

where the residual error 𝜈𝑗𝑡 is now independent of all the regressors. Regressor 𝑃𝑅
𝑡 now acts like an instrumental variable that is

both independent of the residual error and highly correlated with the original 𝑃𝑅
𝑡 . The results of the panel regression in Eq. (8) are

reported in Table 7.
The results in Table 7 show that all estimated coefficients are significantly different from zero at the 1% level, except for that

of industrial production growth at 5% significance level. All estimated coefficients have the correct signs as postulated by the
economic models discussed in Section 2. China’s industrial growth during January 2014 to May 2019 increases demand for steel.
Higher demand for steel leads to higher demand for iron ore, including seaborne ore, and hence higher demand for dry bulk shipping
of such ore from the overseas ports. This leads to higher freight rates; 𝛾1 > 0.

Higher bunker fuel price and higher BDI reduce the supply of freight at any particular port, and hence lead to higher freight
rates at these ports; 𝛾3, 𝛾5 > 0. Longer distance of transport from export port to destination port Qingdao implies higher transport
risks and thus decreases freight supply ceteris paribus. This leads to higher freight rate for a longer distance of transport; 𝛾2 > 0.
The January-May 2019 negative structural effect on Tubarao freight rates is highly significant; 𝛾6 < 0.

Unlike the results in Table 6 that contains endogeneity bias, the estimated coefficient of the fitted iron ore price in Table 7 is
significantly negative at 1% significance level. This negative impact is postulated in the economic models in Section 2. See Eq. (6)
where the coefficient 𝛾4 is negative according to the modelling. The economic reasoning that arises out of the two market clearing
systems is as follows. An iron ore price increase negatively affects demand of freight in Eq. (4) as freight demand is derived from
iron ore demand in PRC. The negative demand shift given unchanged freight supply curve implies that equilibrium freight price
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Table 7
Panel regression of freight prices on explanatory variables based on Eq. (8): 𝑃 𝑆

𝑗𝑡 = 𝛾0 + 𝛾1𝑋𝑡 +
𝛾2𝐷𝑗 + 𝛾3𝐵𝑡 + 𝛾4𝑃𝑅

𝑡 + 𝛾5𝐵𝐷𝐼𝑡 + 𝛾6𝑆𝑡 + 𝜈𝑗𝑡. 𝑃 𝑆
𝑗𝑡 , 𝑋𝑡, 𝐷𝑗 , 𝐵𝑡, 𝑃𝑅

𝑡 , 𝐵𝐷𝐼𝑡, and 𝑆𝑡 are respectively the
freight spot rate on route 𝑗 in USD per metric ton, the PRC natural log of industrial production
growth, distance of exporting port 𝑗 to Qingdao in natural log of the number of nautical miles,
log of bunker fuel price in $/ton, fitted iron ore price in USD per dry metric ton, the Baltic
Dry Index, and structural break dummy variable that takes value 1 for Tubarao for months Jan
to May 2019 and otherwise zero. Sample period January 2014 to May 2019. Sample size 260.
There are 4 port locations in the sample. The 𝑡-statistics are computed based on clustered panel
effects.

Parameter Estimated Standard t-stats p-value
coefficient error

𝛾0 −82.07*** 13.393 −6.128 0.000
𝛾1 3.629** 1.571 2.310 0.022
𝛾2 6.508*** 0.634 10.27 0.000
𝛾3 5.462*** 1.610 3.393 0.001
𝛾4 −0.058*** 0.022 −2.689 0.008
𝛾5 0.004*** 0.001 7.074 0.000
𝛾6 −3.586*** 0.948 −3.783 0.000

F6,253-statistic 197.52*** p-value 0.000

𝑅2 0.824

Note:
**Indicate 1-tail 5% significance level.
***Indicate 1-tail 1% significance level

Table 8
Tests on estimated residuals based on Eq. (8). Sample period January 2014 to May 2019. Sample
size for estimated residuals of each port’s average freight rate regression is 65. The 4 ports are
Dampier, Hedland, Saldanha Bay, and Tubarao. The ADF-statistic reports the test of the null of
unit root of the estimated residual. The sample correlation of the estimated residuals with the
iron ore price regression residual in Eq. (3) are also tested on the null of zero correlation using
1

√

𝑇
as standard deviation where 𝑇 is the sample size.

Test Estimate p-value

ADF-statistics of �̂�1𝑡 −2.803* 0.058
ADF-statistics of �̂�2𝑡 −2.867* 0.049
ADF-statistics of �̂�3𝑡 −3.819*** 0.003
ADF-statistics of �̂�4𝑡 −3.692*** 0.004

Sample correlation (𝜖𝑡 , �̂�1𝑡) −0.534*** 0.000
Sample correlation (𝜖𝑡 , �̂�2𝑡) −0.491*** 0.000
Sample correlation (𝜖𝑡 , �̂�3𝑡) 0.355*** 0.001
Sample correlation (𝜖𝑡 , �̂�4𝑡) 0.329*** 0.002

Note:
*Indicate 1-tail 10% significance level.
***Indicate 1-tail 1% significance level.

will be reduced as in Eq. (6). The estimated coefficient of iron ore price 𝛾4, −0.058, indicates that each expected $ increase in iron
ore price per metric ton is associated with a decrease in average freight rate of 5.8 cents per metric ton.

To ensure that the panel regression system in Eq. (8) is co-integrated and the regression results in Table 7 are not spurious,
the estimated residuals �̂�𝑗𝑡 are tested for unit root for each 𝑗. This is termed the residual-based test discussed in Hayashi (2000,
p.644). Appropriately cointegrated panel regression would yield fitted residuals that asymptotically exhibit stationarity. To check
the correlation of 𝜖𝑡 and 𝜂𝑗𝑡 which led to the endogeneity problem, we test the null of zero correlation on the sample correlations
of the estimated residuals 𝜖𝑡 from Eq. (3) and the �̂�𝑗𝑡’s from Eq. (8). The results are reported in Table 8.

The results in Table 8 show that ADF-test statistics reject the presence of unit roots in the estimated �̂�𝑗𝑡’s, and hence establish the
appropriateness of the panel regression as each panel is cointegrated. The sample correlations of 𝜖𝑡 and �̂�𝑗𝑡 show that zero correlation
is rejected. This result provides evidence of the endogeneity of unit iron ore prices in the linear regression that arises out of the two
systems of simultaneous iron ore and freight prices.

To check for the robustness of the empirical results, we consider adding lagged independent variables in Eq. (8). But the sample
autocorrelations of 𝐵𝑡 and 𝐵𝐷𝐼𝑡 in Eq. (8) are very high at 0.9737 and 0.8017 respectively. Adding them leads to multi-collinearity
issue with the relatively limited sample size. Therefore we perform regression on Eq. (8) with an added explanatory variable of
lagged 𝑋𝑡−1. The results are reported in Table 9.

Comparing with the results in Table 7, it is shown that the coefficient estimates remain stable and are robust to the introduction
of the lagged key explanatory variable of industrial growth that largely drives the iron ore and shipping demands. The estimated
coefficient of the industrial growth 𝑋𝑡 is 3.259, positively significant at 1% level. However, the estimated coefficient of the lagged
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Table 9
Panel regression of freight prices on explanatory variables based on Eq. (8) plus explanatory
variable of lagged 𝑋𝑡−1: 𝑃 𝑆

𝑗𝑡 = 𝛾0 + 𝛾1𝑋𝑡 + 𝛾2𝐷𝑗 + 𝛾3𝐵𝑡 + 𝛾4𝑃𝑅
𝑡 + 𝛾5𝐵𝐷𝐼𝑡 + 𝛾6𝑆𝑡 + 𝛾7𝑋𝑡−1 + 𝜈𝑗𝑡. 𝑃 𝑆

𝑗𝑡 ,
𝑋𝑡, 𝐷𝑗 , 𝐵𝑡, 𝑃𝑅

𝑡 , 𝐵𝐷𝐼𝑡, 𝑆𝑡, and 𝑋𝑡−1 are respectively the freight spot rate on route 𝑗 in USD per
metric ton, the PRC natural log of industrial production growth, distance of exporting port 𝑗
to Qingdao in natural log of the number of nautical miles, log of bunker fuel price in $/ton,
fitted iron ore price in USD per dry metric ton, the Baltic Dry Index, structural break dummy
variable that takes value 1 for Tubarao for months Jan to May 2019 and otherwise zero, and
lagged PRC natural log of industrial production growth. Sample period January 2014 to May
2019. Sample size 260. There are 4 port locations in the sample. The 𝑡-statistics are computed
based on clustered panel effects.

Parameter Estimated Standard t-stats p-value
coefficient error

𝛾0 −81.82*** 13.769 −5.942 0.000
𝛾1 3.259*** 1.232 2.646 0.009
𝛾2 6.451*** 0.638 10.10 0.000
𝛾3 5.501*** 1.659 3.315 0.001
𝛾4 −0.051*** 0.016 −3.115 0.002
𝛾5 0.004*** 0.001 7.003 0.000
𝛾6 −3.529*** 0.957 −3.689 0.000
𝛾7 −0.501 0.620 −0.808 0.420

F7,248-statistic 163.53*** p-value 0.000

𝑅2 0.822

Note:
***Indicates 1-tail 1% significance.

industrial growth 𝑋𝑡−1 is −0.501 and is not significantly different from zero. The estimated coefficient of the fitted iron ore price in
Table 9 is −0.051 and is significantly negative at 1% significance level. 𝑅2 decreased by a bit when compared with that in Table 7.

5. Conclusions

In this paper, we analyse how the value of goods carried can affect the freight cost. This is an unanswered question as indicated
by the Review of Maritime Transport (2015, p.53). Regression results in the context of general and container cargoes typically show
a positive relationship, though that could be due to the use of ad valorem transport cost data. We focus on the issue based on a
more specialized freight market involving transport of seaborne iron ore from mining ports to Qingdao in China during the period
2014 to 2019. To enable the investigation, we construct simultaneous systems of demand–supply equations on both the iron ore
market and the freight market.

Using these simultaneous equilibrium models of iron ore market pricing and the dry bulk freight rate pricing, we show how iron
ore price can negatively affect the freight rate of bulk carriers ferrying the iron ore. We then collected data and tested the iron ore
pricing model and also the freight price versus iron ore price model. In the models, we explain how endogeneity of iron ore as a
regressor can arise due to the nexus between the two markets, and that the freight demand is largely a derived demand from iron
ore demand by PRC firms importing the iron ore. We explain that when using linear regression, this endogeneity could produce a
biased and inconsistent estimate of the coefficient of iron ore price.

We show how an instrumental variable can be constructed to provide an unbiased and consistent estimate of the impact of the
iron ore price on freight rate. We thus point to the importance of careful treatment of the commodity price effect in simultaneous
market systems. This two-stage least squares method yields the result that as iron ore price or unit cargo price increases, ceteris
paribus, freight rate decreases. Our empirical estimation and testing produce coefficient estimates that are significant and have the
right signs as depicted by the models. In particular, industrial growth, bunker fuel oil, BDI, and transport distance have positive
effects on the freight rates while iron ore price has a negative effect on the freight rate.

Our economic model and econometric analyses provide an important understanding of the freight market serving perhaps the
most important metal in the industrial development of China. There are implications on other similar commodities that have global
demand and require international shipping transport. As can be seen, when there is a nexus between the two markets, such as having
a derived demand on the freight transport, then the freight price and the commodity price will not be independent. Derived demand
will generally lead to negative correlation between the two prices. How large is this negative effect will depend on the context and
the nature of the two markets.

There are, however, some limitations in our analyses. Firstly, there is a trade-off between model parsimony and a non-intricate
linear model of supply and demand. Secondly, we have limited monthly data on the variables. Data on a more frequent basis would
give a larger sample size that can help in reducing any sampling errors. Interesting variables such as stockpiling statistics and
time-stamped shipment orders, that are not available, could certainly throw more light on the research question.
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