
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

10-2021 

Token shift transformer for video classification Token shift transformer for video classification 

ZHANG Hao 

Yanbin. HAO 

Chong-wah NGO 
Singapore Management University, cwngo@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
ZHANG Hao; HAO, Yanbin.; and NGO, Chong-wah. Token shift transformer for video classification. (2021). 
Proceedings of the 29th ACM International Conference on Multimedia, October 20-24. 917-925. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6807 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6807&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Token Shift Transformer for Video Classification
Hao Zhang

City University of Hong Kong
Hong Kong SAR, China
zhanghaoinf@gmail.com

Yanbin Hao∗
University of Science and Technology

of China
Hefei, China

haoyanbin@hotmail.com

Chong-Wah Ngo
Singapore Management University

Singapore
cwngo@smu.edu.sg

ABSTRACT
Transformer achieves remarkable successes in understanding 1 and
2-dimensional signals (e.g., NLP and Image Content Understand-
ing). As a potential alternative to convolutional neural networks, it
shares merits of strong interpretability, high discriminative power
on hyper-scale data, and flexibility in processing varying length
inputs. However, its encoders naturally contain computational
intensive operations such as pair-wise self-attention, incurring
heavy computational burden when being applied on the complex
3-dimensional video signals.

This paper presentsToken ShiftModule (i.e., TokShift), a novel,
zero-parameter, zero-FLOPs operator, for modeling temporal rela-
tions within each transformer encoder. Specifically, the TokShift
barely temporally shifts partial [Class] token features back-and-
forth across adjacent frames. Then, we densely plug the module into
each encoder of a plain 2D vision transformer for learning 3D video
representation. It is worth noticing that our TokShift transformer
is a pure convolutional-free video transformer pilot with compu-
tational efficiency for video understanding. Experiments on stan-
dard benchmarks verify its robustness, effectiveness, and efficiency.
Particularly, with input clips of 8/12 frames, the TokShift trans-
former achieves SOTA precision: 79.83%/80.40% on the Kinetics-400,
66.56% on EGTEA-Gaze+, and 96.80% on UCF-101 datasets, com-
parable or better than existing SOTA convolutional counterparts.
Our code is open-sourced in: https://github.com/VideoNetworks/
TokShift-Transformer .

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding.
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(a) Video Tensor (b) Temporal Shift

(c) Patch Shift (d) Token Shift
Figure 1: Types of Shift for video transformer. A video em-
bedding contains two types of “words”: 𝑁 [Patch] + 1 [Class]
Token. Hence, the Shift can be applied on: (a) Neither, (b)
Both, (c) Patch, and (d) [Class]Token along the temporal axis.
“�” indicates padding zeros.
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1 INTRODUCTION
“If a picture is worth a thousand words, is a video worth a million?”
[40]. This quote basically predicts that image and video can be
potentially interpreted as linguistical sentences, except that videos
contain richer information than images. The recent progress of
extending linguistical-style, convolutional-free transformers [9] on
visual content understanding successfully verifies the quote’s prior
half, whereas the latter half for video remains an open hypothesis.
This paper studies the efficient and effective way of applying simi-
lar transformers for video understanding and answer the quote’s
prophecy for videos.

As a potential alternative for convolutional neural networks, the
transformer achieves remarkable progress in both NLP [1, 2, 8, 17,
31] and vision tasks [3, 9, 28, 32, 35]. Particularly, language and vi-
sion transformers show several merits over their CNN counterparts,
such as good interpretability (e.g., attention to highlight core parts),
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unsaturated discriminatory power scalable with hyper-scale data
(e.g., million-scale language corpus[8, 31] or billion-scale images[9]),
and flexibility in processing varying length inputs [1, 17].

However, unlike signal understanding on 1 and 2-dimensional
data (i.e., NLP & static vision), the application of transformers
on 3-dimensional video signals is challenging. Specifically, each
encoder of a transformer naturally contains heavy computations
such as pair-wise self-attention; meanwhile, a video has a longer
sequential representation (𝑧𝑧𝑧𝑣 ∈ R𝑇×(𝑁+1)×𝐷 ) than an image (𝑧𝑧𝑧𝑖 ∈
R(𝑁+1)×𝐷 ) due to an extra temporal axis. Consequently, directly
applying general transformers on flattened spatio-temporal video
sequences will introduce an exponential explosion of computations
(e.g., 𝑇 2 · (𝑁+1)2

2 pair-wise distance calculations1) in the training
and inference phases.

To tackle this, we propose Token Shift Module (i.e., TokShift),
a novel zero-parameter, zero-FLOPs operator, for modeling tempo-
ral relations within each video encoder. Specifically, the TokShift
module barely temporally shifts partial [Class] token features back-
and-forth (Figure (1d)) across frames. Then, we densely plug the
TokShift module into each encoder of a plain 2D vision transformer
for learning 3D video representation.

Our TokShift is partially inspired by the success of spatial [6, 37,
41] and temporal [10, 20] shift operators for efficiency optimization
on CNNs, but bears its own uniqueness. Specifically, on CNNs, spa-
tial/temporal shift is uniformly applied across all spatial receptive
fields on a feature-map. Follow this imitation, a copycat of the Tem-
poral Shift Module for transformers is shown in Figure (1b), where
the shift is imposed on all patches and [Class] token features. How-
ever, we experimentally verify that, rather than temporally shifting
features of all reception fields, just shift [Class] token feature is
sufficient. As in Figure (1b-1d), our TokShift introduces minimum
modifications on original feature 𝑧𝑧𝑧𝑣 , and gets the most improve-
ment among all shift variants. More importantly, equipped with
the TokShift, a video transformer only needs to handle 𝑇 · (𝑁+1)2

2
pair-wise calculations. Finally, we verify that the shift operator is
generalizable on transformers as it does on CNNs.

We try to intuitively explain the efficacy of the TokShift by
drawing an analogy between textual description and visual feature
vector of each frame. Specifically, the text describing a frame usually
follow a similar linguistical form: “verb” + “noun” (e.g., “walking
the dog” in Figure (4)), where “verb” is dynamically correlated with
neighboring frames and “noun” are static. Correspondingly, the
TokShift exchanges partial visual features of a frame (in the form
of a token vector) temporally back-and-forth for motion capturing
while keeping the rest for static semantics modeling.

We conduct extensive experiments of the TokShift-xfmr on stan-
dard benchmarks, such as Kinetics-400 [4], EGTEA-Gaze+ [19] and
UCF-101 [26] datasets. Experiments demonstrate that with the Tok-
Shift, video transformers could perform comparable or better than
the best 3D-CNNs, reaching SOTA performance. Our contributions
are summarized below.

• Transformer for video classification. Our TokShift-xfmr
is an efficient pure convolutional-free transformer pilot ap-
plied for video classification. We repeat the successes of

1𝑇 , 𝑁 , 1, 𝐷 denote time-stamps, spatial-patches, [Class] token and feature-dim

transformers on 3D videos as on 1/2D texts/images, promot-
ing applications of transformers on different domains.

• Efficient TokShift for transformer encoder. We specif-
ically design a novel zero-parameter, zero-FLOPs TokShift
operator for the encoder. By merely manipulating global
frame representation (i.e., [Class] token vector) via shift op-
erations, we can reduce computations of pair-wise attention
in dealing with sequential flattening video representations
within transformers.

• State-of-the-art performances.We test the TokShift-xfmr
on several standard benchmarks. Experiments show that the
TokShift-xfmr achieves SOTA top-1 accuracy 79.83%/80.40%
(8/12f) on Kinetics-400, 66.56% (8f) on EGTEA-Gaze+, and
96.80% (8f) on UCF-101 datasets, comparable or better than
the best 3D-CNNs available (TSM, SlowFast-R101-NL, X3D-
XXL).

2 RELATEDWORKS
The TokShift-xfmr is closely relevant to research areas, including
3D-CNNs for video classification, shift strategies for convolutional
optimization, and 1/2D transformers for NLP/vision understanding;
we separately elaborate the related literature for each area as below.

3D-CNNs for video classifications. Convolutional neural net-
works stepped into a prosperous age in the past few years [5, 16,
18, 24, 25, 27, 36, 38, 42–45]. Consequently, the 3D-CNN [4, 11, 12,
14, 15, 21–23, 30, 39] has become a de-facto standard for video
content understanding. Specifically, C3D [30] firstly inflates the
convolutional kernel from 2D to 3D, to facilitate temporal model-
ing. For motion capturing, the two-stream network [23] fuses two
CNNs trained on optical-flow with RGB modalities. Furthermore,
I3D [4] deepens 3D-CNNs by inflating 3D kernels on inception-net,
accompaniedwith a large-scale Kinetics dataset. To reduce computa-
tional overhead, Pseudo-3D [21] decomposes a 3D Spatio-temporal
convolution into Spatial-2D + Temporal-1D form. This decomposi-
tion greatly balances computations, parameters, and performances,
hence gain its popularity in later 3D-CNNs. S3D-G [39] scales chan-
nel elements with attention yielded by global feature. Non-local
networks [33] introduces self-attention on top of CNNs; further-
more, CBA-QSA CNN [15] extends self-attention with compact
bilinear mapping for fine-grained action classification. SlowFast
[12] and X3D [11] are currently best two 3D-CNNs. The former
designs dual-paths CNNs, where each path receives input clip of
slow/fast sampling rate; the latter presents an efficient strategy to
search for optimal hyperparameters (e.g., spatial/temporal resolu-
tions, channels, depth, etc.) on a template network (i.e., X2D).

Spatial/temporal shift for efficient CNNs. Mobile comput-
ing demands more efficiency than cloud computing. Thereby, the
Shift [6, 10, 20, 37, 41], a zero-parameter, zero-FLOPs operator for
local feature aggregation, is proposed to reduce the complexities
of CNNs. Specifically, Shift + 1D/2D convolution can lossily ap-
proximate a 2D/3D convolution. For example, in [37], Wu replaces
spatial convolution of 3×3 kernel with Shift + 1×1 kernel for vision
understanding. To further improve efficiency, ShiftAddNet [41] in-
troduces Shift + Add, eliminating all multiplications. For videos, Lin
[20] constructs TSM with Temporal Shift + spatial convolutions;
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Figure 2: Token Shift Transformer: the input video is divided into multiple patch clips, according to the rigid spatial grids.
Patch clips are linear-projected, added with positional embeddings (𝐸𝐸𝐸𝑝𝑜𝑠 ), and then concatenated with a [Class] token tensor
(𝑐𝑐𝑐0) to form video embedding (𝑧𝑧𝑧0). The 𝑧𝑧𝑧0 is fed into 𝐿 layers of identical TokShift encoders for learning video representation.
RubiksNet [10] further removes spatial convolutions and introduces
a learnable spatio-temporal shift operator.

Language & vision transformer. Firstly proposed in [31], the
transformer relies on residual attention & feedforward (FFN) in
feature learning and outperforms CNNs to become the de-facto stan-
dard in NLP tasks [2, 8]. To tackle inputs of different/long length,
Reformer [17] and Longformer [1] introduce optimizations on atten-
tion calculations. Recently, researchers repeat this success in vision
tasks, including image classification [9, 28], object detection [3],
and segmentations [35]. Specifically, Dosovitskiy [9] proposes the
first pure convolutional-free vision transformer (i.e., ViT) for image
classification. To tackle the generalization problem caused by insuf-
ficient data, they equip the pre-training phase with a hyper-scale
internal dataset (JFT-300M). In [28], DeiT bypasses the necessity of
pre-training transformer on hyper-scale data through distillation.
They introduce the token distillation for transformers to teach “stu-
dent” transformer from various “teachers” (i.e., convnet or deeper
transformer). For object detection and segmentation, as the trans-
former contains positional encodings under the encoder/decoder
mechanism, it can be naturally extended to regress coordinates
[3] and masks [35]. Overall, transformers are strong alternatives
to CNNs and share merits like good interpretability, unsaturated
discriminative power and flexibility on input length.

3 METHOD
An overview of the Token Shift transformer (i.e., TokShift-xfmr)
is presented in Figure (2). Our TokShift-xfmr follows a general
pipeline of transformers, except for working on video inputs and
containing extra temporal processing modules (i.e., the TokShift).

To fitwith transformer, a video𝑣𝑣𝑣 ∈ R𝑇×𝐻×𝑊 ×3 is firstly reshaped
into sequential tensor 𝑣𝑣𝑣 ∈ R𝑇×𝑁×𝑑 , where 𝑇 , 𝐻/𝑊 , 𝑃 separately
represent clip-length, spatial-resolutions and patch-size, and 𝑁 =
𝐻×𝑊
𝑃2 , 𝑑 = 𝑃2 × 3 denote the number of patches and the number of

RGB pixels in a patch respectively. Then, each 𝑖-th patch 𝑥𝑥𝑥𝑖0 in 𝑣𝑣𝑣
is linearly projected into embedding space by 𝐸𝐸𝐸 and further added
with the corresponding spatial positional embeddings 𝐸𝐸𝐸𝑝𝑜𝑠 . Similar
as BERT [8] and ViT [9], an extra [Class] token tensor 𝑐𝑐𝑐0 ∈ R𝑇×𝐷

is concatenated with patches’ embedding to represent per-frame
global contents. Finally, the video 𝑣𝑣𝑣 is embeded as 𝑧𝑧𝑧0 (Equation (1)
and Figure (1a)).

𝑧𝑧𝑧0 =
[
𝑐𝑐𝑐0;𝑥𝑥𝑥10𝐸𝐸𝐸;𝑥𝑥𝑥

2
0𝐸𝐸𝐸; ...;𝑥𝑥𝑥

𝑖
0𝐸𝐸𝐸; ...;𝑥𝑥𝑥

𝑁
0 𝐸𝐸𝐸

]
+ 𝐸𝐸𝐸𝑝𝑜𝑠 (1)

𝑥𝑥𝑥𝑖0 ∈ R𝑇×𝑑 , 𝑖 = 1, 2, ..., 𝑁

𝐸𝐸𝐸 ∈ R𝑑×𝐷 , 𝐸𝐸𝐸𝑝𝑜𝑠 ∈ R(𝑁+1)×𝐷

𝑧𝑧𝑧0 ∈ R𝑇×(𝑁+1)×𝐷

The TokShift-xfmr (Figure (2)) contains 𝐿 replicated, identical
encoders. An encoder consists of the TokShift module, Layer-Norm
(LN), Multi-Head Self-attention (MSA), and Feed-Forward Network
(FFN). The workflow for connecting them is shown by Figure (2) or
Equations (2-4 & 8-10). We will describe each module separately as
below.

The TokShift module (Equation (2) & (8)) serves to in-placed
manipulate global token 𝑐𝑐𝑐/𝑐𝑐𝑐𝑙−1 along temporal axis, introducing
temporal interactions before feeding video embedding𝑧𝑧𝑧/𝑧𝑧𝑧𝑙−1 through
MSA/FFN. Hereby, the token 𝑐𝑐𝑐/𝑐𝑐𝑐𝑙−1 is the special [Class] word of
𝑧𝑧𝑧/𝑧𝑧𝑧𝑙−1. We will present details of the TokShift and its variants in
section 3.1.

𝑐𝑐𝑐𝑙−1 = TokShift (𝑐𝑐𝑐𝑙−1) (2)
𝑧𝑧𝑧𝑙−1 = LN (𝑧𝑧𝑧𝑙−1) (3)
𝑧𝑧𝑧𝑙−1 = MSA (𝑧𝑧𝑧𝑙−1) + 𝑧𝑧𝑧𝑙−1, (4)

𝑧𝑧𝑧/𝑧𝑧𝑧𝑙−1 ∈ R𝑇×(𝑁+1)×𝐷

𝑐𝑐𝑐/𝑐𝑐𝑐𝑙−1 = R𝑇×𝐷

TheMSA (same for LN & FFN) acts in the same way as in 2D ViT
[9]. Specifically, its functions independently process each frame.
Pick𝑧𝑧𝑧 (𝑡 )

𝑙−1 ∈ R(𝑁+1)×𝐷 at time-stamp 𝑡 of𝑧𝑧𝑧𝑙−1 for example, functions
of MSA are performed within each frame (Equations (5)-(7)).
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(a) ViT (video) (b) TokShift (c) TokShift-A (d) TokShift-B (e) TokShift-C

Figure 3: Integrations of TokShift module into ViT Encoder: the TokShift can be plugged in multiple positions of a vision
encoder: “prior residual” (TokShift), “prior layer-norm” (TokShift-A), “prior MSA/FFN” (TokShift-B), and “post MSA/FFN
(TokShift-C)”. Notably, a fronter position will affect the subsequent modules inside residual blocks more.

MSA
(
𝑧𝑧𝑧
(𝑡 )
𝑙−1

)
= Concat

[
head(𝑡 )1 , head(𝑡 )2 , ..., head(𝑡 )

𝑀

]
(5)

head(𝑡 )
𝑖

= Softmax

(
𝑄𝑄𝑄 (𝑡 )𝐾𝐾𝐾 (𝑡 )

√
𝐷

)
𝑉𝑉𝑉 (𝑡 ) (6)

𝑄𝑄𝑄 (𝑡 ) ,𝐾𝐾𝐾 (𝑡 ) ,𝑉𝑉𝑉 (𝑡 ) = 𝑧𝑧𝑧 (𝑡 )
𝑙−1 ×𝑊𝑊𝑊 𝑞,𝑊𝑊𝑊 𝑘 ,𝑊𝑊𝑊 𝑣 (7)

𝑊𝑊𝑊 𝑞,𝑊𝑊𝑊 𝑘 ,𝑊𝑊𝑊 𝑣 ∈ R𝐷×𝐷

The FFN contains two linear projections and a GELU activation,
serving to project each frame’s feature independently.

𝑐𝑐𝑐𝑙−1 = TokShift (𝑐𝑐𝑐𝑙−1) (8)
𝑧𝑧𝑧𝑙−1 = LN (𝑧𝑧𝑧𝑙−1) (9)
𝑧𝑧𝑧𝑙 = FFN (𝑧𝑧𝑧𝑙−1) + 𝑧𝑧𝑧𝑙−1, 𝑙 = 1, 2, ..., 𝐿 (10)

Finally, a classification layer works on outputs (i.e., 𝑐𝑐𝑐𝐿) of the
last encoder. Specifically, the video label is obtained by averaging
frame-level predictions (Equation (11)), where FC represents fully-
connected layer of shape “𝐷 × Categories”.

𝑦𝑦𝑦 =
1
𝑇

𝑇∑
𝑖=1

FC (𝑐𝑐𝑐𝐿) , 𝑐𝑐𝑐𝐿 ∈ R𝑇×𝐷 (11)

3.1 Shift Variants and the TokShift
We propose and compare several shift variants, including the Tok-
Shift module, customized for the video transformer paradigm.

Token Shift merely manipulates [Class] token tensors within
each encoder (Figure (1d)). Our motivation follows a principle that
the current frame’s partial contents are exchanged with prior/post
time-stamps for dynamic motion while the rest are kept for static
semantics. Coincidentally, the extra global [Class] token tensor,
aggregated from local features via weighted-sum (i.e., attention), is
appropriate for implementing the principle.

Given a token tensor𝑐𝑐𝑐𝑙 ∈ R𝑇×𝐷 representing the global sequence
of a clip, the TokShift works as follows:𝑐𝑐𝑐𝑙 is firstly split into 3 groups
along channel dimension (Equation (12)).

𝑐𝑐𝑐𝑙 = [𝑠𝑠𝑠𝑎, 𝑠𝑠𝑠𝑏 , 𝑠𝑠𝑠𝑐 ] (12)

𝑠𝑠𝑠𝑎, 𝑠𝑠𝑠𝑏 , 𝑠𝑠𝑠𝑐 ∈ R𝑇×𝑎,R𝑇×𝑏 ,R𝑇×𝑐

𝑎 + 𝑏 + 𝑐 = 𝐷

Then, channels of splits 𝑠𝑠𝑠𝑎/𝑠𝑠𝑠𝑐 are temporally shifted with prior/post
time-stamps. For the split 𝑠𝑠𝑠𝑏 , its content remains unchanged (Equa-
tions (13)-(15)). The percentages of shifted channels are determined
by 𝑎

𝐷
& 𝑐

𝐷
.

𝑠𝑠𝑠𝑎 (𝑡) = 𝑠𝑠𝑠𝑎 (𝑡 − 1) (13)
𝑠𝑠𝑠𝑏 (𝑡) = 𝑠𝑠𝑠𝑏 (𝑡) (14)
𝑠𝑠𝑠𝑐 (𝑡) = 𝑠𝑠𝑠𝑐 (𝑡 + 1) (15)
𝑡 = 1, 2, ...,𝑇

Non Shiftmodule can be obtained by relpacing “TokShift()” with
“Identity()” function in Equation (2) & (8). This modification removes
all temporal interactions and processes each frame independently.
We name this simple 2D vision transformer for videos as ViT (video)
for simplicity (i.e., Figure (1a) & (3a)).

Temporal Shift extension for the encoder is obtained by imitat-
ing spatial/temporal shifts [20, 37, 41] in CNN. Recall that a CNN
feature-map of image/video is a tensor collecting features from all
the receptive fields (spatial or spatio-temporal locations). A shift
operator then exchanges partial channels from neighboring recep-
tive fields for each location on the feature-map. Similarly, in Figure
(1b), temporal shift for encoder exchanges partial channels from
prior/post time-stamps for all “𝑁 patches” and “1 [Class] token”.

Patch Shift is a variant of the temporal shift. Since the [Class]
token is a global representation, we exempt it from shift operation
and only process patch embeddings (Figure (1c)).
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We compare the four shift variants on a standard benchmark and
observe that the TokShift performs the best among them, showing
the potential of capitalizing [Class] tokens for temporal modeling in
video transformers.We claim that TokShift introduces theminimum
modifications on 𝑧𝑧𝑧𝑙 but grants the maximum benefits.

3.2 Integration into ViT Encoder
There are multiple candidate positions in an encoder to implant the
TokShift module. The position is essential since it determines the
degree of motions involved in representation learning. Specifically,
from TokShift to TokShift-𝐴/𝐵/𝐶 (Figure (3b)-(3e)), the influence
of motions decreases as fewer modules work upon shifted features.

A general encoder contains two residual blocks: one for self-
attention, another for feature embedding (Figure (3a)). In each block,
the TokShift can be placed at “prior residual”, “prior layer-norm”,
“prior MSA/FFN” and “post MSA/FFN”. We experimentally verify
that placing TokShift at a front position (i.e., “prior residual”) brings
the best effect. This finding is different from TSM on CNN, where
the optimal position is “post residual".

4 EXPERIMENTS
We conduct extensive experiments on three standard benchmarks
for video classification and adopt Top-1/5 accuracy (%) as evalua-
tion metrics. We also report the model parameters and GFLOPs to
quantify computations.

4.1 Datasets
Weadopt one large-scale (Kinetics-400) and two small-scale (EGTEA-
Gaze+&UCF-101) datasets as evaluation benchmarks. Below presents
their brief descriptions.

Kinetics-400 [4] serves as a standard large-scale benchmark for
video classification. Its clips are truncated into 10 seconds duration
with humans’ annotations. The training/validation set separately
contains ∼ 246k/20k clips covering 400 video categories.

EGTEA Gaze+ [19] is a First-Person-View video dataset cov-
ering 106 fine-grained daily action categories. We select split-1
to evaluate our model, and this split contains 8,299/2,022 train-
ing/validating clips, with an average clip length of 3.1 seconds.

UCF-101 [26] contains 101 action categories, such as “human-
human/object” interactions, sports and etc. We also select split-1
for performance reporting. This split contains 9,537/3,783 train-
ing/validating clips with average duration of 5.8 seconds.

4.2 Implementations
We implement a paradigm of shift-transformers, including the ViT
(video), TemporalShift/PatchShift/TokShift-xfmr, on top of 2D ViT
[9] with PyTorch. We also support backbones of various types or
depths.

All experiments share the same settings unless particularly spec-
ified. For ablations with higher resolutions, more frames, or heavier
backbones, we follow the “linear scaling rule” [13] to adjust lr ac-
cording to batch-size.

Training. Each clip, randomly cropped into 224×224 (256/384
for high resolutions), contains 8/16 frames with a temporal step
of 32. We apply training augmentations before cropping to reduce
overfitting, including random resize (with the short side in [244,

330] and maintain aspect ratio), random brightness, saturation,
gamma, hue, and horizontal-flip. We train the model for 18 epochs
with batch-size 21 per GPU. Base lr is set to 0.1, is decayed by 0.1
at epoch [10, 15] during training. The Base-16 ViT [9] (contains 12
encoders) is adopted as the backbone and the shifted proportion is
set to 𝑎

𝐷
, 𝑐
𝐷

= 1
4 . All experiments are run on 2/8× V100 GPUs.

Inference adopts the same testing strategies as [12]. Specifically,
we uniformly sample 10 clips from a testing video. Each clip are
resized to short-side=224 (256/384), then cropped into three 224×224
sub-clips (from “left”, “center”, “right” parts). A video prediction is
obtained by averaging scores of 30 sub-clips.

4.3 Ablation Study
Our ablation studies the impacts of the shift-types, integrations,
hyperparameters of video transformers on the Kinetics-400 dataset.

Non Shift vs TokShift. We compare the Non Shift and TokShift
under various sampling steps. Specifically, we fix clip size (𝑇 ) to 8
frames, but change sampling steps (𝑆) to cover variable temporal
duration.

Xfmr

Acc1 𝑇 × 𝑆
8 × 8 8 × 16 8 × 32 8 × 64

ViT (video)[9] 76.17 76.32 76.02 75.73
TokShift 76.90 (0.73↑) 76.81 (0.49↑) 77.28 (1.26↑) 76.60 (0.87↑)

Table 1: NonShift vsTokShift under diffrent sampling strate-
gies (“T/S” refers to frames/sampling-step; Accuracy-1).

As in Tab. 1, the TokShift-xfmr outperforms ViT (video) under all
settings. We observe that the performance of TokShift varies with
different temporal steps. A smaller step makes TokShift not effective
in learning temporal evolution. On the other hand, a large step of 64
frames results in a highly discontinuous frame sequence, affecting
learning effectiveness. A temporal step of 32 frames appears to be
a suitable choice.

Integration. We study the impacts of implanting the TokShift
at different positions of an encoder. As mentioned in section 3.2, a
fronter position will affect the later modules inside residual blocks
more.

Model Words Shiftted 𝐺𝐹𝐿𝑂𝑃𝑠 ×𝑉𝑖𝑒𝑤𝑠 Acc1 Acc5
(%) (%)

ViT (video) [9] None 134.7 × 30 76.02 92.52
TokShift-𝐴 Token 134.7 × 30 76.85 93.10
TokShift-𝐵 Token 134.7 × 30 77.21 92.81
TokShift-𝐶 Token 134.7 × 30 77.00 92.92
TokShift Token 134.7 × 30 77.28 92.91

Table 2: Comparisons of the TokShift residing in different
positions (GFLOPs, Accuracy-1/5).

Table 2 lists comparisons of the TokShift residing in different
positions. We observe that: (1). All models share the same GFLOPs,
which is consistent with our zero-FLOPs claims on the TokShift;
(2) Regardless of positions, the TokShift stably improves over the
ViT (video) baseline; (3). Placing the TokShift at “prior residual”, a
front position that affects all later modules, presents the best top-1
accuracy.

Words Shifted. We assess contributions of the token-specific
shift by comparing all shift variants in section 3.1.
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Shift Type Words Shiftted 𝐺𝐹𝐿𝑂𝑃𝑠 ×𝑉𝑖𝑒𝑤𝑠 Acc1 Acc5
(%) (%)

ViT (video) [9] None 134.7 × 30 76.02 92.52
TemporalShift Token + Patches 134.7 × 30 72.88 91.24
PachShift Patches 134.7 × 30 73.08 91.17
TokShift Token 134.7 × 30 77.28 92.91

Table 3: Comparisons of shifting different visual “Words”
(GFLOPs, Accuracy-1/5).

In Table 3, the TokShift exhibits the best top-1 accuracy. Addition-
ally, consideration of patches in shift (TemporalShift & PatchShift)
reduces overall performance. The reason lies in that patches of the
same spatial grid across times incurs visual misalignment when
rigidly dividing a moving object. We verify this hypothesis by mea-
suring the mean cosine similarity between the patch and its tempo-
ral neighbor features on kinetics-400 val set with Temporal/Patch
Shift transformer and observe distances scores of 0.577/0.570. As
for [Class] token part, since it reflects global frame-level contents
without alignment concerns, the distance between neighboring tem-
poral tokens is 0.95. Consequently, for the TokShift or CNN-Shift,
the drawback is bypassed by global alignment or sliding window.

Proportion of shifted channels. This hyperparameter con-
trols the ratio of dynamic/static information in a video feature. We
evaluate 𝑎

𝐷
, 𝑐
𝐷

in range [1/4, 1/8, 1/16] and present results in Table
4. We experimentally find that 1/4 is an optimal value, indicating
that half channels are shifted (1/4 back + 1/4 forth) while the rest
half remain unchanged.

Model Channels Shifted Acc1 Acc5
( 𝑎
𝐷

+ 𝑐
𝐷
) (%) (%)

TokShift 1/4 + 1/4 77.28 92.91
TokShift 1/8 + 1/8 77.18 92.95
TokShift 1/16 + 1/16 76.93 92.82

Table 4: Comparisons of the TokShift regarding to propor-
tions of shifted channels (Accuracy-1/5).

Word count is an essential factor in transformer learning since
more words indicate more details. As for videos, the number of
visual words is positively correlated with two factors: spatial reso-
lutions and temporal frames. We study the impacts of word count
on the TokShift-xfmr. Table 5 lists the detailed performances un-
der different word counts. Here, MR/HR represents middle/high
resolutions.

Model Res Words/Frame #Frames # Words Acc1
𝐻 ×𝑊 𝑁 + 1 𝑇 𝑇 · (𝑁 + 1) (%)

TokShift 224 × 224 142 + 1 6 1,182 76.72
TokShift 224 × 224 142 + 1 8 1,576 77.28
TokShift 224 × 224 142 + 1 10 19,70 77.56
TokShift 224 × 224 142 + 1 16 3,152 78.18
TokShift (MR) 256 × 256 162 + 1 8 2,056 77.68
TokShift (HR) 384 × 384 242 + 1 8 4,616 78.14

Table 5: Comparisons of the TokShift according to visual
word counts (Accuracy-1).

We observe that: (1). Increasing word counts by either introduc-
ing more frames or spatial grids will lead to improvement (e.g.,
76.72→78.18 or 77.68→78.14); (2). Increasing temporal resolution
is more economic than spatial resolution. The former performs

Model Backbone Res # Words Acc1
(𝐻 ×𝑊 ) 𝑇 · (𝑁 + 1) (%)

TokShift (HR) Base-16 384 × 384 8 · (242 + 1) 78.14
TokShift-Large (HR) Large-16 384 × 384 8 · (242 + 1) 79.83
TokShift-Large (HR) Large-16 384 × 384 12 · (242 + 1) 80.40
TokShift (MR) Base-16 256 × 256 8 · (162 + 1) 77.68
TokShift-Hybrid (MR) R50+Base-16 256 × 256 8 · (162 + 1) 77.55
TokShift-Hybrid (MR) R50+Base-16 256 × 256 16 · (162 + 1) 78.34

Table 6: Comparisons of the TokShift on different trans-
former backbones (Accuracy-1).
comparable (78.18 vs 78.14) with fewer words than the latter (3,152
vs 4,616).

On various backbones. We test the TokShift on transformers
of various depths and types. Specifically, we further evaluate the
TokShift-xfmr on Large-16 (24 encoders) and Hybrid-16 (12 en-
coders) ViTs. Compared to the Base-16, the Large-16 doubles the
number of encoders. Hybrid-16 shares the same number of encoders
but replaces the linear projection layer (𝐸𝐸𝐸 in Equation (1)) with three
residual blocks of ResNet50. Notably, for the TokShift-Large (HR),
we set 𝑇 = 12 due to the memory limit.

Table 6 lists their comparisonswith base backbones. The TokShift-
xfmr performs better with deeper layers (Base-16 vs Large-16).
Whereas hybrid model achieves comparable performance as convo-
lution free transformers, indicating that transformer is independent
of convolutions. Additionally, performances further increase when
using more frames (79.83→80.40; 77.55→78.34)

4.4 Comparison with the State-of-the-Art
We compare our TokShift-xfmrs with current SOTAs on Kinetics-
400 datasets in Table 7. Since there is no prior work that purely
utilizes transformer, we mainly select 3D-CNNs, such as I3D, Non-
Local, TSM, SlowFast, X3D as SOTAs.

Compared to 3D-CNNs, transformers exhibit prominent perfor-
mances. Particularly, the spatial-only transformer, i.e., ViT (video),
achieves comparable or better performance (76.02) than strong 3D-
CNNs, such as I3D (71.1), S3D-G (74.7) and TSM (76.3). Moreover,
a comparison of our most slimed TokShift-xfmr (77.28) with TSM
(76.3) indicates that shift gains extra benefits on transformers than
CNNs. Thirdly, the TokShift-xfmr (MR) achieves comparable per-
formance (77.68) with Non-Local R101 networks (77.7) under the
same spatial resolutions (255) but using fewer frames (8 vs 128).
This is reasonable since both contain the attentions. Finally, we
compare TokShift-xfmr with the current best 3D-CNNs: SlowFast
and X3D. The two 3D-CNNs are particularly optimized by a dual-
paths or efficient network parameters searching mechanism. Since
both SlowFast & X3D introduce large structural changes over cor-
responding 2D nets, their authors prefer to train on videos with
sufficient epochs (256), rather than initialize from ImageNet pre-
trained weights. We show that our TokShift-Large-xfmr (80.40)
performs better than SlowFast (79.80) and is comparable with X3D-
XXL (80.4), where models are under their best settings. Notably,
we only use 12 frames, whereas SlowFast/X3D-XXL uses 32/16+
frames.

In all, a pure transformer can perform comparable or better than
3D-CNNs for video classification. We additionally verify that tem-
poral modeling can be imposed just on global [Class] tokens rather
than whole video embeddings. Besides, the common computational
limitation of the transformer (appeared in NLP/vision task) also
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Model Backbone Pretrain Inference Res # Frames/Clip GFLOPs×Views Params Accuracy-1 Accuracy-5
(𝐻 ×𝑊 ) 𝑇 (%) (%)

I3D [4] from [11] InceptionV1 ImageNet 224 × 224 250 108× NA 12M 71.1 90.3
Two-Stream I3D [4] from [11] InceptionV1 ImageNet 224 × 224 500 216× NA 25M 75.7 92.0
S3D-G [39] InceptionV1 ImageNet 224 × 224 250 71.3×NA 11.5M 74.7 93.4
Two-Stream S3D-G [39] InceptionV1 ImageNet 224 × 224 500 142.6×NA 11.5M 77.2 93.0
Non-Local R50 [33] from [11] ResNet50 ImageNet 256 × 256 128 282 × 30 35.3M 76.5 92.6
Non-Local R101[33] from [11] ResNet101 ImageNet 256 × 256 128 359 × 30 54.3M 77.7 93.3
TSM [20] ResNet50 ImageNet 256 × 256 8 33 × 10 24.3M 74.1 91.2
TSM [20] ResNet50 ImageNet 256 × 256 16 65 × 10 24.3M 74.7 -
TSM [20] ResNext101 ImageNet 256 × 256 8 NA×10 - 76.3 -
SlowFast 4 × 16 [12] ResNet50 None 256 × 256 32 36.1 × 30 34.4M 75.6 92.1
SlowFast 8 × 8 [12] ResNet50 None 256 × 256 32 65.7 × 30 - 77.0 92.6
SlowFast 8 × 8 [12] ResNet101 None 256 × 256 32 106 × 30 53.7M 77.9 93.2
SlowFast 8 × 8 [12] ResNet101+NL None 256 × 256 32 116 × 30 59.9M 78.7 93.5
SlowFast 16 × 8 [12] ResNet101+NL None 256 × 256 32 234 × 30 59.9M 79.8 93.9
X3D-M [11] X2D [11] None 256 × 256 16 6.2 × 30 3.8M 76.0 92.3
X3D-L [11] X2D [11] None 356 × 356 16 24.8 × 30 6.1M 77.5 92.9
X3D-XL[11] X2D [11] None 356 × 356 16 48.4 × 30 11M 79.1 93.9
X3D-XXL [11] X2D [11] None NA NA 194.1 × 30 20.3M 80.4 94.6
ViT (Video)[9] Base-16 ImageNet-21k 224 × 224 8 134.7 × 30 85.9M 76.02 92.52
TokShift Base-16 ImageNet-21k 224 × 224 8 134.7 × 30 85.9M 77.28 92.91
TokShift (MR) Base-16 ImageNet-21k 256 × 256 8 175.8 × 30 85.9M 77.68 93.55
TokShift (HR) Base-16 ImageNet-21k 384 × 384 8 394.7 × 30 85.9M 78.14 93.91
TokShift Base-16 ImageNet-21k 224 × 224 16 269.5 × 30 85.9M 78.18 93.78
TokShift-Large (HR) Large-16 ImageNet-21k 384 × 384 8 1397.6 × 30 303.4M 79.83 94.39
TokShift-Large (HR) Large-16 ImageNet-21k 384 × 384 12 2096.4 × 30 303.4M 80.40 94.45

Table 7: Comparison to state-of-the-arts on Kinetics-400 Val.

exists for videos. Though the TokShift introduces zero parameters
& FLOPs, the 2D transformer alone consumes more computations
than 3D-CNNs. The reasons lie in: (1). Pair-wise distance calcula-
tion in attention is computationally expensive; (2). 3D-CNNs have
been computationally optimized (TSM, P3D, etc.). Nevertheless,
computation optimization for the transformer is already very hot
for NLP [1, 7] and image understanding [29]. As expected, com-
putation optimization for long-length videos also requires future
exploration.

4.5 Attention Visualization
An advantage of transformer over CNN is interpretability. Specif-
ically, the self-attention emphasizes vital visual clues with high
attentions. Hence, we can visualize the attention map to infer what
the transformer values.

We adopt a public script2 to visualize the attention map from the
last encoder. Maps from multiple heads are averaged to a heat map.
We sample six clips, including daily and sports activities, from the
Kinetics-400 and show their maps in Figure (4). We keep half (4 of
8) frames for space-saving. Notably, most action categories follow a
form of “verb” + “noun” (e.g., “flying kites”), meeting our intuitive
explantations. Our TokShift-xfmr learns to value core parts such
as “kites” in “flying kites”, “boy + dog” in “walking a dog” and etc.
Moreover, for “flying kites”, the transformer even highlights all
kites in the sky, indicating its potentials in counting applications.

4.6 Fine-tune on small-scale datasets
We study the impacts of pre-trained weights on small-scale datasets.
Specifically, we fine-tune models on EGTEA Gaze+ and UCF-101
datasets with pre-weights from “None”, “ImageNet-21k” and “Kinetics-
400”. The sampling step is reduced to 8, as both small datasets have
a shorter duration (3/5s) than Kinetics-400 (10s). Training schemes
2https://github.com/jeonsworld/ViT-pytorch/blob/main/visualize_attention_map.
ipynb

Model Modaility Pretrain Res # Frames EGAZ+
(𝐻 ×𝑊 ) 𝑇 Acc1 (%)

TSM [20] RGB Kinetics-400 224 × 224 8 63.45
SAP [34] RGB Kinetics-400 256 × 256 64 64.10
ViT (Video) [9] RGB ImageNet-21k 224 × 224 8 62.59
TokShift RGB None 224 × 224 8 28.90
TokShift RGB ImageNet-21k 224 × 224 8 62.85
TokShift* RGB ImageNet-21k 224 × 224 8 59.24
TokShift RGB Kinetics-400 224 × 224 8 63.69
TokShift* RGB Kinetics-400 224 × 224 8 64.82
TokShift OptFlow Kinetics-400 224 × 224 8 48.81
TokShift*-En OptFlow+RGB Kinetics-400 224 × 224 8 65.08
TokShift* (HR) RGB Kinetics-400 384 × 384 8 65.77
TokShift-Large* (HR) RGB Kinetics-400 384 × 384 8 66.56

Table 8: Impacts of various pretrained weights on EGTEA-
GAZE++ Split-1 dataset (“*” means freeze layer-norm).

are also optimized (EGTEA: 18 epochs, decay at [10,15]) and UCF:
25 epochs, decay at [10, 20]).

Table (8) & (9) list their performances. Firstly, pre-training with
Kinetics-400 outperforms the rest (i.e., 64.82 vs 62.85 vs 28.90 on
EGTEA Gaze+; 95.35 vs 91.65 vs 91.60 on UCF-101). We project fea-
tures of 60 categories from EGTEA Gaze+ with large improvements
by t-SNE and find that the larger an upstream dataset is, the more
scattered a downstream features are (Figure (5)). Also, we study
the impacts of freezing norm. Freezing “layer-norms” is beneficial
for fine-tuning from Kinetics-400 weights, whereas harmful for
ImageNet-21k weights. Because the Kinetics-400 shares the same
modality (Video) with EGTEA Gaze+, while ImageNet-21k is dif-
ferent (Image). We verify the efficacy of two-stream TokShift-xfmr
by adding the optical-flow (64.82→65.08). Finally, we compare the
TokShift with strong 3D-CNNs (I3D, P3D & TSM), and verify its
efficacy on small-scale datasets.

5 CONCLUSION
We propose a zero-parameter, zero-FLOPs TokShift operator for
constructing a pure convolutional-free video transformer. Specif-
ically, our TokShift-xfmr alleviates intensive pair-wise distance
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(a) “Flying kite” (b) “Walking the dog”

(c) “Arranging flowers” (d) “Skiing”

(e) “Playing ice hockey” (f) “Juggling soccer ball”

Figure 4: Visualization of attention on sample clips from the Kinetics-400 dataset. The odd row presents original frames, and
the even presents corresponding attention maps.

Model Pretrain Res # Frames UCF101
(𝐻 ×𝑊 ) 𝑇 Acc1 (%)

I3D [4] Kinetics-400 224 × 224 250 84.50
P3D [21] Kinetics-400 224 × 224 16 84.20
Two-Stream I3D [4] Kinetics-400 224 × 224 500 93.40
TSM [20] Kinetics-400 256 × 256 8 95.90
ViT (Video) [9] ImageNet-21k 256 × 256 8 91.46
TokShift None 256 × 256 8 91.60
TokShift ImageNet-21k 256 × 256 8 91.65
TokShift* Kinetics-400 256 × 256 8 95.35
TokShift* (HR) Kinetics-400 384 × 384 8 96.14
TokShift-Large* (HR) Kinetics-400 384 × 384 8 96.80

Table 9: Impacts of various pretrained weights on UCF-101
Split dataset (“*” means freeze layer-norm).

calculations of the Spatio-temporal attention, maintains the same
complexity as a common 2D ViT, while achieving better or compa-
rable performance (80.40%) as 3D-CNN SOTAs. More importantly,
TokShift firstly conducts temporal modeling on the global token
of video transformers. Since global [Class] token is aggregated by
weighted-sum all spatial patches’ embeddings and reflects global vi-
sual content. Hence, modeling temporal interactions across frames
can be done through the tokens. Besides, we still face an inherent

EGTEA Gaze+

(a) None

EGTEA Gaze+

(b) ImageNet-
21k

EGTEA Gaze+

(c) Kinetics-400

Figure 5: Visualizing feature distributionswith different pre-
trained weights via t-SNE.

computational burden of attention, within the 2D ViT, especially in
processing long-length video. We leave computational optimization
of video transformer as future works. Finally, with the help of our
TokShift-xfmr, we can partially answer the prophecy of the quote
on video: “A 10 seconds video is worthy of 3,152 visual words”.
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