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Self-organizing neural networks for learning air
combat maneuvers

Teck-Hou Teng∗, Ah-Hwee Tan∗, Yuan-Sin Tan† and Adrian Yeo‡
∗School of Computer Engineering, Nanyang Technological University

†DSO National Laboratories
‡CAE Singapore (S.E.A.) Pte. Ltd.

Abstract—This paper reports on an agent-oriented approach
for the modeling of adaptive doctrine-equipped computer gener-
ated force (CGF) using a commercial-grade simulation platform
known as CAE STRIVE R©CGF. A self-organizing neural network
is used for the adaptive CGF to learn and generalize knowledge
in an online manner during the simulation. The challenge of
defining the state space and action space and the lack of domain
knowledge to initialize the adaptive CGF are addressed using
the doctrine used to drive the non-adaptive CGF. The doctrine
contains a set of specialized knowledge for conducting 1-v-1
dogfights. The hierarchical structure and symbol representation
of the propositional rules are incompatible to the self-organizing
neural network. Therefore, it has to be flattened and then
translated to vector pattern before it can inserted into the self-
organizing neural network. The state space and action space
are automatically extracted using the flattened doctrine as well.
Experiments are conducted using several initial conditions in
round robin fashions. The experimental results show that the self-
organizing neural network is able to make good use of the domain
knowledge with complex knowledge structure to discover the
knowledge to out-maneuver the doctrine-driven CGF consistently
in an efficient manner.

I. INTRODUCTION

Artificial Intelligence has become a critical component of
computer-generated forces (CGFs) typically used for providing
training value to the users of the simulators [1]. However,
most CGFs that are used in most training simulators depend
on non-changing collection of knowledge to provide a variety
of behaviors during its interaction with the users. Over time,
such CGFs become predictable and become less challenging to
the users. In addition, encoding expert knowledge is often very
tedious and may even be challenging [2], [3]. Machine learning
is recognized as the answer to the limitations of existing rule-
based systems [4].

There are different machine learning paradigms for different
types of problem [5]. For this work, the air combat problem
domain is chosen to investigate real-time learning of air
combat maneuvers using self-organizing neural network. Other
earlier approaches includes the use of genetic algorithm [6]
and artificial neural network [7]. Advancements in UAS [8]
and UCAV [9] technologies continue to generate interest in
similar domains of application [10].

A scenario of 1-v-1 air combat maneuver is mod-
eled using a commercial simulation platform known as
STRIVE R©CGF [11]. A Blue CGF and a Red CGF are tasked
to out-maneuver each other in a dogfight with the aim of

eliminating each other using AIM-9 missiles. In addition,
both CGFs are equally capable of launching flares to evade
incoming missile. The same air combat maneuver doctrines is
available to both CGFs as a basic set of knowledge. But, only
the Blue CGF is able to improve on its air combat maneuvering
strategies during the dogfights.

This ability to improve air combat maneuvering strategies
is achieved using a self-organizing neural network known
as FALCON [12]. It is an ART-based neural network [13]
that learns incrementally through real-time interactions with
the environment. Domain knowledge in the form of a air
combat maneuver doctrine is used to automatically extract
the state space and action space. And it is also inserted into
FALCON to allow it to perform just as well as a doctrine-
driven CGF. In addition, it is able to continually discover and
refine its air combat maneuvering strategies. Experiments are
conducted using several 1-v-1 dogfights scenarios to illustrate
this online and incremental learning ability of FALCON.
Experimental results shows that it is able to discover new air
combat maneuvering strategies that allow it to consistently
out-maneuver its adversary.

The rest of the paper is organized as follows. A review of
the related works is provided in Section II. Essential details
on the FALCON architecture are provided in Section III. This
is followed by Section IV where the use of the hierarchical
doctrine by the self-organizing neural network is presented.
The 1-v-1 air combat maneuver scenario is described in Sec-
tion V. The experiments and the results to illustrate the use of
self-organizing neural network to learn air combat maneuvers
are presented in Section VI. The concluding remarks and a
brief outlook of future works are provided in Section VII.

II. RELATED WORKS

The use of computer generated forces as sparring partners
is gaining popularity [14]. Particularly, research on combat
games has been ongoing right from the early days [15]. The
application of a branch of game theory known as differential
game was initially attempted [16]. The use of AI in Air
Combat [17] was gradually gaining momentum as artificial
neural network has also been applied to air combat domain [7].

TacAir-Soar makes use of the Soar architecture [18] for
the modeling of complex knowledge in the air combat mis-
sions [19]. However, it is still incapable of expanding its
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knowledge as available through this work. Subsequent exten-
sion of Soar with reinforcement learning was not demonstrated
on the same problem domain [20]. Other agent-oriented ap-
proaches based on aerial operations include the modeling of
fighter combat, airborne early warning and control, stand-off
weapon strike missions for F-111 aircraft and the develop-
ment of tactics and operations for an upgraded AP-3C Orion
Maritime Patro Aircraft [10]. Challenges such as the lack of
cognitive credibility, the capture of expert knowledge and other
human factors are not easily modeled using the agent-oriented
approach [21].

TD−FALCON is a class of self-organizing neural networks
designed for reinforcement learning in real time [22]. It makes
use of a direct code access procedure together with temporal
difference learning for handling delayed evaluative feedback.
Also considered to be a hybrid model combining the symbolic
and connectionist approaches [23], it has a knowledge struc-
ture compatible with the generalized modus ponens format
that allow for the insertion of domain knowledge [24]. Judges
in a recent AI competitions had positive reviews on the
performance of FALCON [25].

III. THE REINFORCEMENT LEARNING MODEL

In this work, the adaptive CGF is driven by a self-organizing
neural network known as FALCON. It is based on the adaptive
resonance theory (ART), allowing it to incrementally learn
and generalize on the vector patterns. Using reinforcement
learning, knowledge is discovered during real-time interactions
with the environment.

A. FALCON Model and Processes

The FALCON network [12] employs a 3-channel architec-
ture (Fig. 1), comprising a category field F c

2 and three input
fields, namely a sensory field F c1

1 for representing current
states, an action field F c2

1 for representing actions, and a
reward field F c3

1 for representing reinforcement values. A brief
summary of the FALCON generic network dynamics, based
on fuzzy ART operations [26], is described below.

Fig. 1. The FALCON Architecture.

Input vectors: Let S = (s1, s2, . . . , sn) denote the state
vector, where si ∈ [0, 1] indicates the sensory input i.
Let A = (a1, a2, . . . , am) denote the action vector, where
ai ∈ [0, 1] indicates a possible action i. Let R = (r, r̄)
denote the reward vector, where r ∈ [0, 1] is the reward signal
value and r̄ (the complement of r) is given by r̄ = 1 − r.
Complement coding is used to normalize the magnitude of
the input vectors to prevent the code proliferation problem.
Activity vectors: Let xck denote the F ck

1 activity vector for
k = 1, . . . , 3. Let yc denote the F c

2 activity vector. Upon input
presentation, xc1 = S, xc2 = A, and xc3 = R.

Weight vectors: Let wck
j denote the weight vector associated

with the jth node in F c
2 for learning the input patterns

in F ck
1 for k = 1, . . . , 3. Initially, F c

2 contains only one
uncommitted node and its weight vectors contain all 1’s. When
an uncommitted node is selected to learn an association, it
becomes committed.
Parameters: The FALCON’s dynamics is determined by
choice parameters αck > 0 for k = 1, . . . , 3; learning
rate parameters βck ∈ [0, 1] for k = 1, . . . , 3; contribution
parameters γck ∈ [0, 1] for k = 1, . . . , 3 where

∑3
k=1 γ

ck = 1;
and vigilance parameters ρck ∈ [0, 1] for k = 1, . . . , 3.
Code activation: A bottom-up propagation process first takes
place in which the activities (known as choice function values)
of the cognitive nodes in the F c

2 field are computed. Specifi-
cally, given the activity vectors xc1, xc2 and xc3 (in the input
fields F c1

1 , F c2
1 and F c3

1 respectively), for each F c
2 node j, the

choice function T c
j is computed as follows:

T c
j =

3∑

k=1

γck
|xck ∧wck

j |
αck + |wck

j |
where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡ ∑

i pi for
vectors p and q. In essence, the choice function Tj computes
the similarity of the activity vectors with their respective
weight vectors of the F c

2 node j with respect to the norm
of the weight vectors.
Code competition: A code competition process follows under
which the F c

2 node with the highest choice function value is
identified. The winner is indexed at J where

T c
J = max{T c

j : for all F c
2 node j}

When a category choice is made at node J , ycJ = 1; and
ycj = 0 for all j �= J . This indicates a winner-take-all strategy.
Template matching: Before node J can be used for learning,
a template matching process checks that the weight templates
of node J are sufficiently close to their respective activity
patterns. Specifically, resonance occurs if for each channel
k, the match function mck

J of the chosen node J meets its
vigilance criterion:

mck
J =

|xck ∧wck
J |

|xck| ≥ ρck

The match function computes the similarity of the activity
and weight vectors with respect to the norm of the activ-
ity vectors. Together, the choice and match functions work
cooperatively to achieve stable coding and maximize code
compression.
When resonance occurs, learning ensues. If any of the vigi-
lance constraints is violated, mismatch reset occurs in which
the value of the choice function T c

J is set to 0 for the duration
of the input presentation. The search process then selects
another F c

2 node J under the revised vigilance criterion until
a resonance is achieved. This search and test process is guar-
anteed to end as FALCON will either find a committed node
that satisfies the vigilance criterion or activate an uncommitted
node which would definitely satisfy the vigilance criterion due
to its initial weight values of 1s.
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Template learning: Once a node J is selected, for each
channel k, the weight vector wck

J is modified by the following
learning rule:

w
ck(new)
J = (1− βck)w

ck(old)
J + βck(xck ∧w

ck(old)
J )

For an uncommitted node J , the learning rates βck are
typically set to 1. For committed nodes, βck can remain as
1 for fast learning or below 1 for slow learning in a noisy
environment. When an uncommitted node is selecting for
learning, it becomes committed and a new uncommitted node
is added to the F c

2 category field.

B. Incorporating Temporal Difference Method

TD-FALCON [22] incorporates Temporal Difference (TD)
methods to estimate and learn value functions of state-action
pairs Q(s, a) that indicates the goodness for taking a certain
action a in a given state s. This is learned as the feedback
signal and is used in the selection of the action choices.

As shown in Fig. 2, given the current state s, TD-FALCON
first decides between exploration and exploitation by following
an action selection policy. For exploration, a random action is
picked. For exploitation, TD-FALCON searches for optimal
action through a direct code access procedure [27]. Upon
receiving a feedback from the environment after performing
the action, a TD formula is used to compute a new estimate
of the Q-value for performing the chosen action in the current
state. The new Q-value is then used as the teaching signal to
TD-FALCON to learn the association of the current state and
the chosen action to the estimated Q-value.

1: Initialize FALCON
2: Sense the environment and formulate a state representation s
3: Use Action Selection Policy to decide between Exploration and

Exploitation
4: if Exploration then
5: Use Exploration Strategy to select an action choice from action

space
6: else if Exploitation then
7: Use Direct Code Access to select an action choice from

existing knowledge
8: end if
9: Use action choice a on state s for state s′

10: Evaluate effect of action choice a to derive a reward r from the
environment

11: Estimate the Q-value function Q(s, a) following a temporal
difference formula given by ΔQ(s, a) = αTDerr

12: Present state S, action A and reward R vectors for Adaptation
13: Update the current state s = s′

14: Repeat from Step 2 until s is a terminal state

Fig. 2. The TD-FALCON Algorithm

Iterative Value Estimation: A value function based on a tem-
poral difference method known as Bounded Q-Learning [28] is
used to iteratively estimate the value of applying action choice
a to situation s. The estimated Q-value Q(s, a) is learned
by TD-FALCON during reinforcement learning. The temporal
difference of the value function is iteratively estimated using

ΔQ(s, a) = αTDerr(1−Q(s, a))

where α ∈ [0, 1] is the learning parameter, the term (1 −
Qj(s, a)) allows the adjustment of Q-values to be self-scaling

in such a way that it will not be increased beyond 1.0 and
TDerr is the temporal error term which is derived using

TDerr = r + γmax
a′

Q(s′, a′)−Q(s, a)

where γ ∈ [0, 1] is the discount parameter and the
maxa′ Q(s′, a′) is the maximum estimated value of the next
state s′ and r is either the intermediate or terminal reward.

C. Adaptive ε-Greedy Action Selection Policy

Using this policy, exploration is performed with a proba-
bility of ε where ε ∈ [0, 1] [29]. An interval success rate φ
which is derived using φ = ws

wn
where ws is the number of

successful trials within wn training iterations is used to revise
ε as 1− φ after every wn training iterations.

Subsequently, ε is linearly decayed over the next wn training
iterations using an ε-decay rate δ which is derived using
ε

wn
. Such an approach gradually increases exploitation of the

learned knowledge within wn training iterations. This allows
it to continually evaluate the effectiveness of the learned
knowledge for the situations. The value of ε is revised using
interval success rate φ at every wn training iterations during
reinforcement learning.

IV. USE OF HIERARCHICAL DOCTRINE

The doctrine is a set of specialized knowledge on the
execution of air combat maneuvers. It is originating from
veteran fighter pilots with combat experience in dogfights. It
governs the decision on the choice of responses during air
combat. The same doctrine is used to drive the pure rule-based
CGF in an existing commercial-grade simulation platform.

Fig. 3. An illustration of the hierarchical structure of Air Combat Maneuver
Doctrine

As illustrated in Fig. 3, it is organized in a hierarchical
structure. There is at least one rule bases in the doctrine. And
each rule base may have multiple rule sets that are organized
hierarchically. Each node in the hierarchical doctrine is a rule
set comprised of multiple propositional rules. The hierarchical
structure is based on the dependency between the consequent
and antecedent of the rule sets. The consequent of a higher
level rule set leads to one of the rule sets at the adjacent lower
level. The doctrine is available to both CGFs as the domain
knowledge for executing 1-v-1 air combat maneuver.

Due to the differences in the knowledge representation
scheme and the rule resolution mechanism in TD-FALCON,
the hierarchical doctrine will have to be flatten to a single
level rule structure and the resultant propositional rules are
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then translated to vector patterns for insertion into the self-
organizing neural network. The flattening of the hierarchical
doctrine also allows for the automatic extraction of the state
space and action space.

A. Flattening the Hierarchical Doctrine

The hierarchical doctrine is flattened to a single layer
structure. The resultant propositional rules are semantically
equivalent to the propositional rules in the original doctrine.
The general approach involves the linking up of all the
antecedents that lead up to the final consequent, i.e., the choice
of air combat maneuver. The procedure for the flattening of
the hierarchical doctrine is outlined in Fig. 4.

1: Form chains of rule sets according to the hierarchical rule
structure

2: for each rule set within each rule set chain do
3: Split rules with OR-operator
4: Link up rules according to their dependency
5: Apply De Morgan’s Law on the flatten rules
6: Repeat Step 1 - Step 3 for rules with OR-operator
7: end for
8: return Flattened Doctrine

Fig. 4. Flattening of Hierarchical Doctrine

The antecedent of the resultant propositional rule is com-
posed of the antecedents of the propositional rules that belong
to the same rule set chain. The flattened doctrine will only have
propositional rules that directly recommend a particular air
combat maneuver. The flattening of the hierarchical doctrine
will lead to more propositional rules due to the splitting of
propositional rules with the OR-operator. The splitting of such
propositional rules is necessary because TD-FALCON repre-
sents disjunctive relationship among the propositional symbols
as separate propositional rules with the same consequent. In
effect, it only accepts propositional rules with conjunctive
relationship among the propositional symbols in the antecedent
and the consequent.

B. Automatic Extraction of the State Space and Action Space

Defining a reinforcement learning problem for a real world
problem domain such as air combat maneuvers requires spe-
cialized knowledge. The state space and action space have
to be defined as a collection of propositional symbols at the
antecedent and consequent respectively. The availability of
a well-crafted hierarchical doctrine makes the collection of
propositional symbols possible. The hierarchical doctrine is
flattened to make this task more convenient.

Fig. 5. Extraction of State Space using an existing doctrine

State Space: This is a collection of the propositional symbols
from the antecedent of the propositional rules. The propo-
sitional symbols are comprised of attributes with different
relational operators (=,<,≤,>,≥, �=) and different choices of
values. With reference to Fig. 5, a complete definition of a
propositional symbol is comprised of the name of the attribute,
a valid relational operator and a valid value.

The data types and the operational significance of the
attribute determines its number of propositional symbols.
As illustrated in Fig. 5, the propositional symbols of each
attribute in the state space are likely to be distributed over
the antecedent of several propositional rules. The flattening
of the hierarchical doctrine consolidates all the propositional
symbols with conjunctive relationship in a single antecedent.
The propositional symbols are then conveniently collected
from the antecedent of these resultant propositional rules to
form the state space.

The automatic extraction of state space from the doctrine
eliminates the complexity of defining the state space manually
when doctrine on the problem domain is available. This will
ensure the faithful transfer of expert knowledge on the problem
domain to the learning model. Additional propositional sym-
bols can still be included to minimize the effect of perceptual
aliasing [30].
Action Space: The action space is a collection of propo-
sitional symbols for one or more attributes on the responses
to the environment. As illustrated in Fig. 5, the action space
of reinforcement learning may similarly be automatically
extracted using the consequent of propositional rules from the
hierarchical doctrine. These may either be the propositional
rules at the leaf nodes of the hierarchical doctrine or the
resultant propositional rules of the flattening process. In this
sense, the flattening of hierarchical doctrine does not has the
same benefit to the definition of action space as it does to the
definition of the state space.

C. Insertion of Flattened Doctrine

As the knowledge structure of TD-FALCON is compati-
ble with the structure of generalized modus ponens, domain
knowledge in the form of propositional rules can be readily
inserted into TD-FALCON [24] before learning. Given a rule
of the form

IF antecedents THEN consequents FOR reward

the antecedents are translated into a state vector S and the
consequents are translated into an action vector A. The reward
vector R = (r, 1 − r), where r is a real value indicating an
estimated Q-value of the rule.

The translated state vector S, action vector A and reward
vector R are then inserted into TD-FALCON using the code
activation, code competition, template matching and template
learning processes described in Section III-A.

The rule insertion algorithm is summarized in Fig. 6. During
rule insertion, the vigilance parameters ρck for k = 1, . . . , 3
are each set to 1.0 to ensure that only identical set of
state, action and reward vectors are grouped into the same
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1: Initialize TD-FALCON
2: Initialize ρck ← 1.0
3: for each propositional rule do
4: Translate each component of the propositional rule into the

vector format
5: antecedents is translated as state vector S
6: consequent is translated as action vector A
7: reward is translated as reward vector R
8: Present S, A and R to TD-FALCON for learning
9: end for

Fig. 6. The Rule Insertion Algorithm

recognition node. Thus, each inserted rule leads to a committed
cognitive node encoding the (S,A,R) tuple as its weight
templates. Hence, as many cognitive nodes as the number of
inserted rules can be expected. The inserted rules can then be
subsequently refined through the temporal difference method
during reinforcement learning.

V. 1-V-1 AIR COMBAT MANEUVER SCENARIO

This is based on a classical 1-v-1 pursuit-evasion problem in
three-dimensional airspace [31]. There are two CGFs - a Red
CGF and a Blue CGF - in the simulated three-dimensional
environment (see Fig. 7). Both CGFs are tasked to out-
maneuver each other so as to enter into a favorable position
to eliminate each other using AIM-9 missiles.

Fig. 7. Illustration of an initial conditions of the Blue CGF (own CGF) and
the Red CGF (opponent).

In this case, only the Blue CGF adapts its air combat maneu-
vers using TD-FALCON. The Red CGF is a doctrine-driven
CGF that behaves in a predictable manner. The reinforcement
learning problem here is for the Blue CGF to discover the
knowledge of using different air combat maneuvers in different
situations for the highest possible probability of eliminating
the Red CGF in 1-v-1 dogfights.

A. The State Space

The state space of the air combat maneuver problem domain
is automatically extracted from the air combat maneuver
(ACM) doctrine using the technique outlined in Section IV-B.
A total of 15 simple and composite attributes are extracted
from the ACM doctrine. A composite attribute is made up of
two or more simple attribute such as the composite attribute
(mVtt-mVt) is made up of mVtt and mVt simple attribute.

Fig. 8. The Extracted State Space

Given that these attributes are specific to an area of appli-
cation, it is beyond the scope of this work to elaborate on its
significance. With reference to Fig. 8, it may be sufficient to
be aware that the extracted state space is comprised of relative

parameters such as range and angular position, own entity
ACM parameters such as current maneuver, maneuver lock
status and own entity parameters such altitude and air speed.
These are specified in the form of propositional symbols such
as those seen in Table I

TABLE I
SAMPLES OF THE PROPOSITIONAL SYMBOLS IN THE STATE SPACE

No. Type Sample
1 Boolean wOk = TRUE
2 Float (>) Abs(mTA) > 135o

3 Float (<) mV tt−mV t < 50
4 Float (≤) mEnergyRatio ≤ 0.85
5 Float (≥) Altitude ≥ 4500
6 String ( �=) mManeuver �= Weave

B. The Action Space

The Blue CGF and Red CGF respond to each other using
the same set of air combat maneuvers. Both CGFs flies the
same of fighter jet so that none of them has the advantage
in terms of the execution of the air combat maneuver. In this
case, better CGF is the one able to use air combat maneuvers
to out-maneuver the other CGF to get into a good position to
fire the AIM-9 missile at the opponent.

A total of 13 defensive and offensive air combat maneuvers
are available to both CGFs during the simulation. There is one
neutral maneuver, three offensive maneuvers and nine defen-
sive maneuvers. The execution of the air combat maneuvers
is pre-defined. None of the CGF is able to micro-manage the
execution of the air combat maneuvers. The firing of missile
and launching of flare are doctrine-driven behaviors. There
is no adaptation to evolve the strategies for both behaviors.
Therefore, the actions of these two behaviors are not part of
the action space of the adaptive component of the CGF.

C. Evaluative Feedback

The evaluative feedback is designed to steer reinforcement
learning to achieve the desired effect of the learning task.
There are the intermediate reward for the intermediate states
and the terminal reward for the terminal states and both of
them are derived differently.
Intermediate Reward: The intermediate reward ri commu-
nicates the effect of the chosen response at the intermediate
states. Specific reward attributes such as the CGF’s proximity
to the weapon engagement zone (WEZ) of its opponent
(dWEZ), the energy ratio of own CGF to its opponent (eRatio)
and the threat level to own CGF with respect to its opponent
(tLevel). The normalized derivation of each reward attributes
are based on established geometrical formula or heuristics. The
intermediate ri is subsequently derived using the weighted sum
approach below.

ri = ωwezdWEZ + ωratioeRatio + ωthreattLevel

where ωwez , ωratio and ωthreat are the weights of the re-
spective reward attributes and the intermediate reward ri ∈
[0.0, 1.0]. It is used to estimate the value of choosing an air
combat maneuver at the intermediate states using the Bounded
Q-Learning method.
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Terminal Reward: The terminal reward rt communicates the
observed effect at the terminal states to the learning model.
The terminal reward function is dependent on the number of
observable outcomes at the terminal state. In this case, there
are three observable outcomes and the terminal rewards that
are used for each of the terminal outcomes are Table II

TABLE II
TERMINAL REWARD FOR AIR COMBAT MANEUVER

No. Outcome Terminal Reward
1 Eliminated Red CGF (HasKill) 1.0
2 Time-out of Training iteration

(Equal-Match)
0.5

3 Killed by Red CGF (IsKill) 0.0

The allocated value is aimed at giving a sense of desirability
to each of these terminal outcomes. Therefore, from Table II,
the elimination of the opposing CGF (HasKill) is the best
outcome while the elimination of own CGF (IsKill) is the
worst outcome at the terminal state. A neutral outcome which
is considered to be better than the worst outcome is assigned
a value between the best and the worst outcome. It is used to
estimate the value of choosing an air combat maneuver at the
terminal states using the Bounded Q-Learning method.

VI. EXPERIMENTAL RESULTS

Experiments are conducted to investigate the autonomous
learning of air combat maneuvers in 1-v-1 dogfights during
iterative real-time interactions. For the experiments, the hier-
archical doctrine is inserted into TD-FALCON as the domain
knowledge. The other non-adaptive CGF is also driven by
the same hierarchical doctrine. Four different initial positions
as illustrated in Fig. 9 are used in a round robin fashion in
the experiments. This is to demonstrate that TD-FALCON is
able to generalize learning to more than one initial conditions
within the same session of reinforcement learning.

Fig. 9. Illustrations of the four Initial Conditions used for the experiments

The experimental results are collected from a session of re-
inforcement learning using the four different initial conditions.
Table III contains the parameters used for TD-FALCON in
these experiments. Every data point in the plots is an average
of ten consecutive samples. This gives a total of 12 data
points from a reinforcement learning process with 120 training
iterations.

A. The Simulation Platform

The simulation is conducted using a suite of commercial-
grade simulation software and an own implementation of
an inference engine containing the TD-FALCON and the
peripheral functions. The simulation is conducted using the
server-client configuration. The server is comprised of the suite

TABLE III
PARAMETERS OF TD-FALCON AND ACTION SELECTION POLICY

DA−FACLON Parameters
Choice Parameters (αc1, αc2, αc3) 0.1,0.1,0.1
Learning Rates (βc1, βc2, βc3) 1.0,1.0,1.0
Contribution Parameters (γc1, γc2, γc3) 0.33,0.33,0.33
Perform Vigilance (ρc1p , ρc2p , ρc3p ) 0.95,0.0,0.45
Learn Vigilance (ρc1l , ρc2l , ρc3l ) 0.0,1.0,0.45
Temporal Difference Learning Parameters
Learning Rate α 0.5
Discount Factor γ 0.1
Initial Q-Value 0.5
ε-Greedy Policy Parameters
Initial ε Value 0.9
ε Decay Rate 0.0005
Window Size wn 10

Fig. 10. The Client-Server configuration

of commercial-grade simulation software and the client is our
own implementation of the inference engine.

With reference to Fig. 10, the server and client are running
on separate terminals. They are physically linked using cross-
linked LAN cable and exchanges information via a proprietary
software interface known as ICON R©. The server presents raw
sensory information to the client where it is processed and
forwarded to TD-FALCON for action selection and learning.

Fig. 11. Real-time updates of the status of the simulation process

The entire simulation routine is controlled using an own
implementation of a graphical user interface (GUI) for the
inference engine. With reference to Fig. 11, this is also where
real-time feedback on the status of the simulation process and
also from own CGF are provided The actual execution of the
air combat maneuvers by both CGFs can also be observed
using the STRIVE R©CGF studio manager at the server side.

B. Performance Measures

The performance measures for the air combat maneuver is
closely tied to the terminal states. Specifically, the performance
measures in Table IV records the number of occurrences of
each types of the terminal state during the simulation.

A favorable convergence of learning process is characterized
by high percentage of HasKill which implies low percent-
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TABLE IV
PERFORMANCE MEASURES FOR AIR COMBAT MANEUVER

No. Terminal State Descriptions
1 HasKill Number of times Blue CGF eliminates

Red CGF
2 IsKill Number of times Blue CGF is elimi-

nated by Red CGF
3 EqualMatch Number of times Blue and Red CGF

survive the entire training iteration

age of IsKill and EqualMatch. However, in situations where
elimination of the opponent are difficult to come by, high
percentage of EqualMatch will be the next best outcome. For
the experiments, the 1-v-1 air combat time-out in two minutes.

C. Learning of air combat maneuvers

Plots of the performance measures, the code population and
intermediate and terminal rewards are presented in this section.
These are the primary performance indicators of the trajectory
of the learning process by TD-FALCON in this air combat
maneuver problem domain.
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Fig. 12. Top Plot: Plots of the percentage of HasKill, IsKill and EqualMatch.
Bottom Plot: Plots of Exploration/Exploitation Rates

With reference to Fig. 12, for the first ten iterations,
own CGF has a high rate of IsKill, a small percentage of
EqualMatch and was completely incapable of eliminating its
opponent. This is correlated to the high rate of explorations at
the bottom plot of the same figure. This means that own CGF
is in the midst of finding out the maneuvers that are ineffective
to the encountered situations. As learning progresses, the
upward correlation between the HasKill and the exploitation
rates seems to indicate own CGF is able to exploit the learned
knowledge effective to it. This upward correlation between
these two parameters confirms that learning of own CGF has
converged on the knowledge to the four initial conditions in
Fig. 9.

Reinforcement learning of TD-FALCON is guided using the
feedback signals derived using the reward function. Plots of
the intermediate and terminal rewards in Fig. 13 shows that
improving evaluation of its intermediate and terminal states.
This is primarily correlated to the upward trend of HasKill

at the bottom plot. This means using the maneuvers that are
effective to the situations lead to own CGF receiving higher
reward signals. In turn, this reinforces the selected knowledge
to promote its use for subsequent maneuvers.
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Fig. 13. Top plot: Plots of the Terminal and Intermediate Rewards. Bottom
Plot: Plots of Performance Measures.

From Fig. 14, the rate of growth of the node population is
correlated to the rate of exploration. High rate of exploration
leads to high rate of growth of the node population and vice
versa. This shows that TD-FALCON is learning about the
effect of different maneuvers for the situations when it is
exploring at a high rate. The rate of growth of the node
population slows as exploration rates decline. This means there
is more updating of the cognitive nodes than the learning of
new cognitive nodes.
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Fig. 14. Top plot: Plot of the node population. Bottom Plot: Plots of
Exploration/Exploitation Rates.

Using the adaptive ε-greedy action selection policy, the
decline in exploration rate is directly attributed to the increase
in the interval success rate φ. The increase in φ is due
to the learning of more effective knowledge. Therefore, the
availability of effective knowledge increases exploitation rates
and thus the rate of growth of node population slows to the
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point where TD-FALCON is able to fully depend on its learned
knowledge at the end of the learning process.

VII. CONCLUSION

A self-organizing neural network known as TD-FALCON
used to evolve 1-v-1 air combat maneuvering strategies in
an air combat maneuvering problem has been presented.
The learning objective is for the identification of air combat
maneuvers that allow the Blue CGF (own CGF) to consistently
eliminate the Red CGF in 1-v-1 dogfights. We have flattened
a hierarchical doctrine to create an equivalent doctrine with
a flat structure. This is used to automatically extract the state
space and action space. The resultant propositional rules are
also translated and inserted into TD-FALCON as the domain
knowledge to bootstrap reinforcement learning.

The various aspects of the response characteristics of TD-
FALCON are illustrated using plots of the performance mea-
sures such as HasKill, IsKill and EqualMatch, the reward
signals and the node population. Experimental results have
shown TD-FALCON to be capable of converging to favorable
outcomes for four initial conditions that are used in a round
robin fashion. Specifically, the performance plots are able to
show own CGFs learning towards positive outcomes. The
reward plots illustrated the correlation between the rewards
and the learning outcomes. The node population plot shows
stabilizing of the node population as learning converges.

TD-FALCON was already compared with the other existing
approaches using other platforms [22], [25]. Comparison with
the alternative approaches is not included here because there
is no alternative implementation of adaptive CGF in this
commercial-grade simulation platform. Going forward, there
are plans to use TD-FALCON integrated into a modular and
distributed cognitive architecture (CA) [32] to work with a
dynamic reasoner [33] for modeling of CGFs in team-oriented
air combat missions [34].
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