
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2010 

Self-organizing neural networks for behavior modeling in games Self-organizing neural networks for behavior modeling in games 

Shu FENG 

Ah-hwee TAN 
Singapore Management University, ahtan@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
FENG, Shu and TAN, Ah-hwee. Self-organizing neural networks for behavior modeling in games. (2010). 
Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN 2010), Barcelona, 
Spain, July 18-23. 3649-3656. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6800 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6800&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6800&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Self-Organizing Neural Networks for Behavior Modeling in Games

Shu Feng Student Member and Ah-Hwee Tan Senior Member, IEEE

Abstract— This paper proposes self-organizing neural net-
works for modeling behavior of non-player characters (NPC)
in first person shooting games. Specifically, two classes of
self-organizing neural models, namely Self-Generating Neural
Networks (SGNN) and Fusion Architecture for Learning and
COgnition (FALCON) are used to learn non-player characters’
behavior rules according to recorded patterns. Behavior learn-
ing abilities of these two models are investigated by learning
specific sample Bots in the Unreal Tournament game in a
supervised manner. Our empirical experiments demonstrate
that both SGNN and FALCON are able to recognize important
behavior patterns and learn the necessary knowledge to operate
in the Unreal environment. Comparing with SGNN, FALCON is
more effective in behavior learning, in terms of lower complexity
and higher fighting competency.

I. INTRODUCTION

Modeling of Non-player characters (NPC) is crucial for the
success of commercial games as it improves the playability
of games and the satisfaction level of the players. Especially,
in first person shooting games (FPS), autonomous NPC
modeled by machine learning techniques make games more
challenging and enjoyable [21]. Learning from behavior
patterns is a new and promising approach to the modeling
of NPC behavior as the knowledge acquired by learning
directly builds the embedded knowledge of their behavior
mechanism.

Learning defines the ability of obtaining knowledge au-
tomatically. There are many forms of learning, including
unsupervised learning, supervised learning and reinforcement
learning. Among the various learning paradigms, supervised
learning is probably the most effective, due to its use of
explicit teaching signals. In this paper, we adopt a supervised
learning approach to building the behavior mechanism of
non-player characters, by mimicking the behavior patterns
of other players.

Self-organizing neural networks are a special class of
neural networks that learn without explicit teaching signals.
Recent development in self-organizing neural networks has
extended them for supervised learning tasks. Compared with
gradient descent based neural networks, they offer fast and
real-time learning as well as self-scaling architectures that
grow in response to signals received from their environment.

This paper studies two specific classes of self-organizing
neural networks namely, Self-Generating Neural Networks
(SGNN) [25], [9] and Fusion Architecture for Learning and
COgnition (FALCON) [17], [26]. SGNN learns behavior
rules through a hierarchical tree architecture. Compared
with traditional neural networks, SGNN does not require a

The authors are with the School of Computer Engineering, Nanyang
Technological University, Singapore 639798, Singapore email:
feng0027@ntu.edu.sg; asahtan@ntu.edu.sg

designer to determine the structure of the network according
to the particular application in hand. However, the computa-
tional time of SGNN increases dramatically due to the con-
tinual creation of neural nodes. To overcome this problem,
we propose a pruning method to optimize the SGNN network
while maintaining the learning performance. TD-FALCON
is a three-channel fusion Adaptive Resonance Theory (ART)
network [19] that incorporates temporal difference methods
[15], [23] into Adaptive Resonance Theory (ART) models
[3], [2] for reinforcement learning. By inheriting the ART
code stabilizing and dynamic network expansion mechanism,
TD-FALCON is capable of learning cognitive nodes encod-
ing multi-dimensional mappings across multi-modal input
patterns, involving states, actions, and rewards, in an online
and incremental manner. It has displayed superior learning
capabilities, compared with gradient descent based reinforce-
ment learning systems in various benchmark experiments
[20], [26].

This paper investigates how these two classes of self-
organizing models can be used to build autonomous players
by learning the behaviour patterns of sample Bots in a first
person shooting game, known as Unreal Tournament 2004
(UT2004). We conduct benchmark experiments to compare
the duo in various aspects, including generalization capa-
bility, learning efficiency, and computational cost, under the
same set of learning conditions. Our benchmark experiments
show that, comparing with SGNN, FALCON learns faster
and produces a higher level of generalization capability with
a much smaller set of nodes. Online testing of NPC in
the Death Match scenario also confirms that FALCON Bot
produces a similar level of fighting competency to the Hunter
Bot, which is not matched by Bots based on SGNN.

The rest of this paper is organized as follows. Section II
reviews the related work in building NPC through machine
learning techniques. Section III introduces the SGNN archi-
tecture with the network generating and pruning methods.
Section IV introduces the FALCON architecture with the
learning and action selection algorithms. Section V describes
the Unreal Tournament 2004 domain and the behavior learn-
ing task. Section VI reports the experimental results. The
final section concludes and discusses future work.

II. RELATED WORK

Learning from observing, or imitation, has been a promising
method for acquiring complex behaviors in various tasks,
including recognizing human action sequences [10], training
learning robots [12] and creating humanoid virtual characters
[14]. Behavior patterns learned through this method provide
the seeds or initial knowledge for autonomous agents. So

WCCI 2010 IEEE World Congress on Computational Intelligence 
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 3649



far, many machine learning methods have been applied, in-
cluding Bayesian method, fuzzy and neural network, Hidden
Markov Model, and data mining methods. Gorman et al.
[6] use the Bayesian method to imitate the behaviors and
movement of NPC in a first person shooting game. However,
the knowledge is associated with the specific environment
learned. Therefore, the obtained behavior patterns have a
weak transferability. Noda et al. [13] apply Markov Model
to model the behaviour of soccer robots and teach the
robots by Q-learning algorithm, but robots do not learn
complex behaviors of other soccer characters. Lee et al. [11]
apply data mining methods to sequential databases to find
association rules of behavior patterns. That means it can find
interrelationship between sequential attributes and actions.
However, this method is not suitable to learn behavior rules
involving states with multiple attributes.

There have also been extensive works on applying self-
organizing neural networks to behavior learning. Barrios et
al. [1] employ self-organization map (SOM) incorporating
fuzzy theory to recognize the pattern groups in behaviors.
However, this method requires the number of pattern classes
and the architectures to be determined beforehand. Gaussier
et al. [5] propose a neural architecture for a robot in order
to learn how to imitate a sequence of movements performed
by another robot. A self-organizing neural network is used
to mimic a particular sequence of movement performed
by another robot. However, this method focuses only on
sequential behaviors such as movement. The learning does
not consider external states. Therefore, the resultant robot
lacks in adaptation ability and does not handle the changes in
the environment. Wanitchaikit et al. [22] use self-organizing
neural network to imitate the behavior from a teacher’s
demonstration. Then the learned network could help the robot
to decide its action when it approaches the target. However,
in this method, only the position of targets is considered as
the feedback information. Therefore, it is not suitable for a
complex environment.

The self-organizing models described above make use of
a fixed architecture. In other words, the structure and the
number of nodes in the network have to be determined
before training. In addition, SOM performs iterative weight
tuning, which is not suitable for real time adaptation. In
this paper, we study two extensions of self-organizing neural
networks, namely FALCON and SGNN, which have the
unique advantages of self-growing architectures and fast
incremental learning ability in common. By employing super-
vised learning to learn behavior patterns of existing players in
the games, we aim to create NPC automatically, which have
similar behaviour and fighting competency as their teachers.

III. SELF-GENERATING NEURAL NETWORK

Self-generating neural network (SGNN) is firstly developed
by Wen et al. [24], [25] based on self-organizing maps
(SOM) and implemented as a self-generating neural tree
(SGNT) architecture. Later, Inoue et al. [9], [8] improve the
accuracy of SGNN by applying multiple systems and ensem-
ble method. Self-generating neural network is appealing, as it

does not require a designer to specify the structure of network
and the class parameters. In addition, it has efficient learning
ability and reasonably good adaptive ability. Because of these
good attributes, SGNN is a suitable candidate for learning
behaviour rules.

A. Architecture

SGNN is self-generating in the sense that there is no need to
determine the network structure and the parameters before-
hand. In other words, the network structure, including the
number of neurons, their interconnections and the weights
on the connections, are automatically constructed from a
given set of training instances. The generated self-organizing
network tree (SGNT) is a tree structure for hierarchical
classification. Learning of SGNT is thus defined as a problem
of constructing a tree structure from a given set of instances
which consist of multiple attributes. As shown in Figure 1,
each SGNT is rooted by a root neuron. Each neuron linked
directly to the root neuron represents the center of a class.
Each leaf node corresponds to an instance in the training
data.

To explain the self-generation process, we first define the
relevant notations [24] as follows:
Definition 1: Each input example ei is a vector of real
attributes: ei =< ei1, ..., eim >, where eik represents the
kth attribute of ei.
Definition 2: The jth neuron nj is expressed as an or-
dered pair (wj , cj), where wj is the weight vector wj =
(wj1, wj2, ..., wjm), and cj is the number of the child neu-
rons of nj .
Definition 3: Given an input ei, the neuron nk in a neuron set
{nj} is called a winner for ei, if ∀j, d(nk, ei) ≤ d(nj , ei),
where d(nj , ei) is the Euclidean distance between neuron nj

and ei. The winner can be the root neuron, a node neuron,
or a leaf neuron.

The building process of SGNT is, in the nutshell, a
hierarchical clustering algorithm. Initially, the neural network
is empty. The generating algorithm is governed by a set of
rules described as follows:

Fig. 1. The structure of Self-generating neural tree.

Node creation rule 1: Given an input example ei, if
d(nwinner, ei) > ξ, where ξ is a predefined threshold, a new
node n is generated by copying the weights (attributes) from

3650



the current example. Then the new neuron is connected to
the winner as its child.
Node creation rule 2: If the winner node nwinner is also a
leaf node, another new node n is generated by copying the
weights (attributes) from nwinner. A neuron can be called a
leaf node only if it has no child.
Weight updating rule: The weight vector of neuron nj is
updated by the attribute vector of ei according to (1):

wjk = wjk +
1

cj + 1
(eik − wjk), (1)

where wjk is the weight of nj after learning the first k
examples covered by nj .

B. Pruning

An obvious weakness of self-generating neural network is
the continual increase of the number of nodes as the number
of samples increases. When the number of samples is very
large, the training speed will slow down dramatically when
the number of nodes is extremely large. In prior work,
researchers also consider this problem [9], [8] and propose
pruning algorithm for a multi-classifier system comprising of
multiple SGNN. However, the multi-classifier system (MCS)
is aimed at improving classification accuracy at the cost of
more learning time and it is difficult to apply MCS in real
time. Here we introduce a novel pruning method for single
SGNN systems, which is aimed at improving learning and
classification efficiency.

During the generating period of SGNN, let No denote
the total number of input training samples and S denote
the current number of nodes. In this pruning method, we
introduce a threshold ST , which is defined as:

ST = η ∗No (η > 0). (2)

As the number of input samples increases during the
training period, the pruning procedure kicks in when the
number of nodes exceeds this threshold (S > ST ), which
can be set according to a function of the learning speed.
When pruning occurs, it checks the connections among the
root neuron, the node neurons, and the leaf neurons for
redundancies. If there is a hidden node h positioned between
the leaf node and its corresponding node neuron, h will be
deleted. The leaf node is then connected to the node neuron
directly as its child. The weights of node neuron c are then
updated according to (3):

wci =
Nc · wcj − whj

Nc − 1
, (3)

where Nc is the number of examples covered by c. The
number of examples covered by c is decreased to N

′
c =

Nc − 1 accordingly.

IV. FALCON

FALCON network learns cognitive codes across multi-
channel mappings simultaneously across multi-model input
patterns involving sensory input, actions, and rewards. By

using competitive coding as the underlying adaptation prin-
ciple, the network dynamic encompasses a myriad of learn-
ing paradigms, including unsupervised learning, supervised
learning, as well as reinforcement learning.

Although various models of ART have been widely applied
to pattern analysis and recognition tasks, there have been
very few attempts to used ART-based networks for building
autonomous systems. In this paper, we apply FALCON to
learn specific behavior patterns from sample Bots in UT2004
game environment.

A. Architecture

FALCON employs a three-channel architecture (Figure 2)
comprising a category field F c

2 and three input fields, namely
a sensory field F c1

1 for representing current states, a motor
field F c2

1 for representing actions, and a feedback field F c3
1

for representing the reward values. The dynamics of FAL-
CON based on fuzzy ART operations [4] [16], is described
below.

Fig. 2. The FALCON architecture.

Input vectors: Let S = (s1, s2, ..., sn) denote the state
vector, where si indicates the sensory input i. Let A =
(a1, a2, ..., am) denote the action vector, where ai indicates
a possible action i. Let R = (r, r̄) denote the reward vector,
where r ∈ [0, 1] and r̄ = 1− r.
Activity vectors: Let xck denote the F ck

1 activity vector for
k = 1, ..., 3. Let yc denote the F c

2 activity vector.
Weight vectors: Let wck

j denote the weight vector associated
with the jth node in F c

2 for learning the input representation
in F ck

1 for k = 1, ..., 3. Initially, F c
2 contains only one un-

committed node, and its weight vectors contain all 1’s. When
an uncommitted node is selected to learn an association, it
becomes committed.
Parameters: The FALCON’s dynamics is determined by
choice parameters αck > 0 for k = 1, ..., 3; learning
rate parameters βck ∈ [0, 1] for k = 1, ..., 3; contribution
parameters γck ∈ [0, 1] for k = 1, ..., 3 where

∑K
k=1 γck =

1; and vigilance parameters ρck ∈ [0, 1] for k = 1, ..., 3.

B. Supervised Learning

In supervised learning mode, FALCON learns an action
policy which maps directly from states to desired actions.
Given the state vector S and an action vector A, the activity
vectors are set as xc1 = S, xc2 = A, and R = (1, 0).
FALCON then performs code activation to select a category

3651



node J in the F c
2 field to learn the association between S

and A. The detailed algorithm is presented as follows.
Code activation: A bottom-up propagation process first
takes place in which the activities of the category nodes in
the F c

2 field are computed. Specifically, given the activity
vectors xc1, xc2, and xc3 (in the input fields F c1

1 , F c2
1 , and

F c3
1 , respectively), for each F c

2 node j, the choice function
Tj is computed as follows:

T c
j =

K∑
k=1

γck
|xck ∧wck

j |
αck + |wck

j | , (4)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi) and the norm | · | is defined by |p| ≡ ∑

i pi for
vectors p and q. In essence, the choice function Tj computes
the similarity of the activity vectors with their respective
weight vectors of the F c

2 node j with respect to the norm of
individual weight vectors.
Code competition: A code competition process follows
under which the F c

2 node with the highest choice function
value is identified. The winner is indexed at J where

T c
J = max{T c

j : for all F c
2 node j}. (5)

When a category choice is made at node J , yc
J = 1;

and yc
j = 0 for all j ̸= J . This indicates a winner-take-all

strategy.
Template matching: Before node J can be used for learning,
a template matching process checks that the weight templates
of node J are sufficiently close to their respective activity
patterns. Specifically, resonance occurs if for each channel
k, the match function mck

J of the chosen node J meets its
vigilance criterion

mck
J =

|xck ∧wck
J |

|xck| ≥ ρck. (6)

When resonance occurs, learning ensues, as defined below.
If any of the vigilance constraints is violated, mismatch reset
occurs in which the value of the choice function T c

J is set
to 0 for the duration of the input presentation. With a match
tracking process, at the beginning of each input presentation,
the vigilance parameter ρc1 equals a baseline vigilance ρ̄c1.
If a mismatch reset occurs, ρc1 is increased until it is slightly
larger than the match function mc1

J . The search process
then selects another F c

2 node J under the revised vigilance
criterion until a resonance is achieved. This search and test
process is guaranteed to end as FALCON will either find
a committed node that satisfies the vigilance criterion or
activate an uncommitted node which would definitely satisfy
the criterion due to its initial weight values of all 1s.
Template learning: Once a node J is selected, for each
channel k, the weight vector wck

J is modified by the follow-
ing learning rule:

wck(new)
J = (1− βck)wck(old)

J + βck(xck ∧wck(old)
J ). (7)

The learning rule adjusts the weight values towards the
fuzzy AND of their original values and the respective weight

values. The rationale is to learn by encoding the common
attribute values of the input vectors and the weight vectors.
For an uncommitted node J , the learning rates βck are
typically set to 1. For committed nodes, βck can remain as
1 for fast learning or below 1 for slow learning in a noisy
environment.
Code creation: Our implementation of FALCON maintains
ONE uncommitted node the F c

2 field at any one time. When
an uncommitted node is selecting for learning, it becomes
committed and a new uncommitted node is added to the
F c

2 field. FALCON thus expands its network architecture
dynamically in response to the input patterns.

C. Action Selection

Given a state vector S, FALCON selects a category node J
in the F c

2 field which determines the action. For action se-
lection, the activity vectors xc1, xc2, and xc3 are initialized
by xc1 = S, xc2 = (1, ..., 1), and xc3 = (1, 0). Through a
direct code access procedure [18], FALCON searches for the
cognitive node which matches with the current state using
the same code activation and code competition processes
according to equations (4) and (5).

Upon selecting a winning F c
2 node J , the chosen node J

performs a readout of its weight vector into the action field
F c2

1 such that

xc2(new) = xc2(old) ∧wc2
J . (8)

FALCON then examines the output activities of the action
vector xc2 and selects an action aI , which has the highest
activation value

xc2
I = max{xc2(new)

i : for all F c2
1 node i}. (9)

V. LEARNING BEHAVIOR PATTERNS IN UNREAL 2004

A. UT2004 Environment

Unreal Tournament 2004 (UT2004) is a first person shooting
game featuring close combat fighting between robots and
human. Figure 3 provides a snapshot of the game environ-
ment taken from the view of a human player. The armed
soldiers running and shooting in the environment are non-
player characters, called Bots. The gun shown at the lower
right hand corner is controlled by the human player. In our
experiments, we use a ”Deathmatch” mode, in which every
Bot must fight with any other player in order to survive and
win.

UT2004 does not merely offer an environment for gaming.
More importantly, it also provides a platform for building
and evaluating autonomous agents. Specifically, an Integrated
Development Environment (IDE), called Pogamut [7], is
available to developers for building agents for the UT en-
vironment. This means the developers can implement their
own agents (or Bots) using any specific algorithms and run
them in UT. Running as a plug-in for the NetBeans Java
development environment, Pogamut communicates with the
UT2004 game through Gamebots 2004 (GB2004), which is
a built-in server inside UT2004 for exporting information
from the game to the agent and vice versa. Pogamut also

3652



TABLE I
THE EIGHT BEHAVIORS OF THE HUNTER BOT.

No. Behaviors Description
A1 ChangeToBetterWeapon Switch to a better weapon.
A2 Engage Shooting the enemy.
A3 StopShooting Stop shooting.
A4 ResponseToHit Turn around, try to find the enemy.
A5 Pursue Pursue the enemy spotted.
A6 Walking Walk and check walking path.
A7 GrabItem Grab the most suitable item.
A8 GetMedicalKit Pick up medical kit.

TABLE II
THE TEN STATE ATTRIBUTES OF THE HUNTER BOT.

No. State attributes Type Description
Att1 SeeAnyEnemy Boolean See enemy?
Att2 HasBetterWeapon Boolean Have a better weapon?
Att3 HasAnyLoadedWeapon Boolean Have weapon loaded?
Att4 IsShooting Boolean Is shooting?
Att5 IsBeingDamaged Boolean Is being shot?
Att6 LastEnemy Boolean Have enemy target to pursue?
Att7 IsColliding Boolean Colliding with wall?
Att8 SeeAnyReachableItemAndWantIt Boolean See any wanted item?
Att9 AgentHealth [0, 1] Agent’s health level
Att10 CanRunAlongMedKit Boolean Medical kit can be obtained?

TABLE III
THE HARD-CODED RULES OF THE HUNTER BOT IN UT2004.

No. IF (Condition) THEN (Behavior)
1 see the enemy, has better weapons, and is being shot by others ChangeToBetterWeapon
2 see the enemy, has weapon loaded, and is being shot Engage
3 has weapon loaded, is shooting and being shot, and is pursuing enemy StopShooting
4 is pursuing enemy, has weapon loaded, and gets damaged ResponseToHit
5 has weapon loaded Pursue
6 has weapon loaded, see some item he want, but colliding on the path Walking
7 spots some item and want it GrabItem
8 has weapon loaded, and health level is weak GetMedicalKit

Fig. 3. Unreal Tournament 2004 game environment.

has a built-in parser module, which is used for translating
messages into Java objects and vice versa.

B. The Behavior Learning Task

We focus on the task of learning from the behaviour patterns
from a sample Bot called Hunter provided in UT2004.
Hunter is a rule-based Bot, which exhibits a full range of
combat competency, including fighting with enemies and
making use of resources such as weapons and medical kits.
Hunter has eight types of behaviors (shown in Table I) which
he switches from one to the other based on ten state attributes
(shown in Table II). With the exception of the health attribute,
all attributes are boolean. There are in total eight main rules
captured in the Hunter’s behavior mechanism based on these
state attributes, which are summarized in Table III.

When playing the UT2004 game, the internal states, ex-

3653



ternal states, and behavior patterns of Hunter are recorded
as training data. Each training example consists of a vector
of the state attribute values as well as the behaviour (ac-
tion chosen). The collected data are then used to train the
self-organizing neural models using the supervised learning
paradigm. After learning, the behavior pattern rules can
be utilized as the embedded knowledge of a new bot. By
assimilating the behaviour of the sample Bot, the new Bot
is expected to exhibit similar behavior patterns in the same
environment and produce comparable fight competency to
the sample Bot.

VI. EXPERIMENTS

To evaluate the effectiveness of SGNN and FALCON in
learning NPC, we first conduct benchmark experiments based
on off-line learning to compare their performance in terms
of learning time, generalization capability and computational
cost. Online testing of Bots are subsequently conducted,
wherein we investigate the competency of the new Bots when
fighting against the sample Bot which they learn from.

A. Off-line Testing

We first conduct empirical experiments to evaluate the
performance of SGNN and FALCON in off-line learning.
The data set consists of a total of 8000 training samples
and 8000 test samples generated by the Hunter Bot. By
training on a varying number of training examples, we test
the generalization capability of SGNN and FALCON on an
equivalent number of test samples. We also measure their
efficiency in terms of the number of internal nodes/rules
created and the time taken for learning.

In our experiments, SGNN and FALCON use a standard
set of parameter values. For SGNN, we adopt ξ = 0 and η =
1.5. For FALCON, we adopt the parameter setting as follows:
choice parameter α=(0.1, 0.1, 0.1); learning rate parameter
β=(1, 1, 1); contribution parameter γ=(1, 0, 0); and vigilance
parameter ρ=(1, 1, 0).

Fig. 4. The accuracy of baseline SGNN, SGNN with pruning, and FALCON
in classifying the test samples.

Figure 4 summaries the performance of the baseline
SGNN (without pruning), SGNN with pruning, and FAL-
CON, in terms of the classification accuracy on the test set.
As the size of the training data increases, the accuracies of
all three models converge to 100%. In general, SGNN with

Fig. 5. The number of nodes generated by baseline SGNN, SGNN with
pruning, and FALCON.

Fig. 6. The learning time of baseline SGNN, SGNN with pruning, and
FALCON.

pruning achieves roughly the same accuracy level as SGNN
without pruning. Comparing with SGNN, FALCON shows
a faster rate of convergence by obtaining a higher accuracy
with small data sets.

Figure 5 depicts the performance of the baseline SGNN
(without pruning), SGNN with pruning, and FALCON, in
terms of the average number of neurons/nodes created during
learning. We see that the pruning method greatly reduces
the number of neurons in SGNN. However, the number of
nodes created by FALCON is significantly less than those of
SGNN.

Figure 6 shows the learning time taken by baseline SGNN
without pruning, SGNN with pruning, and FALCON. For
the two SGNNs, the learning time is about the same. Nev-
ertheless, considering all aspects, the pruning method is still
proved to be effective for SGNN, as it effectively reduces the
number of neurons, while maintaining the learning accuracy.
Partly because the number of nodes generated by FALCON
is the least among these three systems, the required learning
time is also significantly less than those of SGNN. This
suggests that FALCON is clearly a more suitable candidate
for real time learning and performance.

B. Online Testing of SGNN Bots

In this section, experiments are conducted in the UT2004
game environment to check if the Bots created based on
the two SGNN models could learn the behavior patterns and
contend against the Hunter Bot. In this set of the experiments,

3654



all SGNN Bots are trained using 8000 training sample data
recorded from the Hunter Bot.

Under the Deathmatch scenario, each of the learning Bots
enters into a series of one-on-one battles with the Hunter
Bot. When a Bot kills its opponent, one point is awarded.
The battle repeats until any one of the Bots reaches a
maximum score of 25. During the battles, the scores, updated
in intervals of 25 seconds, indicate the fighting competency
of the Bots. For benchmark purpose, we run the game for
ten times and record the average scores obtained.

1) Experiment 1: Battle between Hunter and SGNN Bot:
This experiment examines the competency of the Bot created
using the baseline SGNN (without pruning). As shown in
Figure 7, the SGNN Bot can achieve a respectable level of
performance but its scores are always 2 to 3 points lower
than those of Hunter.

Fig. 7. Performance of SGNN Bot fighting against Hunter.

2) Experiment 2: Battle between Hunter and Pruned
SGNN Bot: This experiment examines the competency of the
Bot created using SGNN with pruning. As shown in Figure 8,
after applying SGNN pruning, the new Bot produces a
lower level of performance, widening the gap between the
competency of SGNN Bot and Hunter.

Fig. 8. Performance of SGNN Bot (with pruning) fighting against Hunter.

C. Online Testing of FALCON Bot

In this section, a series of experiments are conducted in
UT2004 game environment to check if the Bots created based
on FALCON could learn the behavior patterns and contend
against the Hunter Bot. The FALCON Bot, trained using the

Fig. 9. Performance of FALCON Bot fighting against Hunter.

same 8000 training samples data recorded from the Hunter
Bot, consists of 647 behavior rules.

Figure 9 shows the scores of the FALCON Bot fighting
against Hunter averaged across ten games. We see that the
fighting competency of FALCON Bot is almost identical to
that of Hunter. This shows that FALCON has learned most,
if not all, of the Hunter’s knowledge perfectly. Comparing
with Bots created based on SGNN, FALCON Bot is thus
obviously a much better learner in assimilating the behavior
patterns from the Hunter Bot.

Table IV shows a set of sample rules learned by FALCON.
Their translated symbolic form, as exemplified in Table V,
shows that FALCON rules are close to the original rules of
Hunter and are easy to interpret.

VII. CONCLUSION

Learning from behavior patterns is becoming a promis-
ing approach to modeling non-player characters (NPC) in
computer games. This paper has successfully shown that
two classes of self-organizing neural networks, namely self-
generating neural network (SGNN) and Fusion Architecture
for Learning, and COgnition (FALCON), can be used to
learn behaviour patterns of sample characters and produce
new NPCs with similar behaviour and a comparable level of
performance. Our empirical experiments based on the Unreal
Tournament game also show that, compared with SGNN,
FALCON is able to achieve a higher level of performance
with a much more compact network structure and a much
shorter learning time.

Moving forward, we aim to create more versatile NPCs
which are able to further learn and adapt during game play
in real time. As FALCON is designed to support a myriad
of learning paradigms, including unsupervised learning, su-
pervised learning and reinforcement learning [19], it is our
natural choice for modeling autonomous NPCs in games.

REFERENCES

[1] D. Barrios-Aranibar and P.J. Alsina. In Hybrid Intelligent Systems,
2005. HIS ’05. Fifth International Conference on, page 6, 2005.

[2] G. A. Carpenter and S. Grossberg. ART 2: Self-organization of stable
category recognition codes for analog input patterns. Applied Optics,
26:4919–4930, July 1987.

[3] G. A. Carpenter and S. Grossberg. A massively parallel architecture
for a self-organizing neural pattern recognition machine. Computer
Vision, Graphics, and Image Processing, 37:54–115, June 1987.

3655



TABLE IV
FALCON RULE EXAMPLES OF LEARNING ”HUNTER” IN UT2004

No. Att1 Att2 Att3 Att4 Att5 Att6 Att7 Att8 Att9 Att10 Action
R1 1 1 1 0 0 0 1 0 0.481 1 A1

R2 1 0 1 0 1 0 0 1 0.489 1 A2

R3 0 0 1 1 1 1 0 0 0.874 1 A3

R4 0 0 1 0 1 1 0 0 0.474 1 A4

R5 0 0 1 0 0 1 0 0 0.953 1 A5

R6 0 0 1 0 0 0 1 1 0.384 1 A6

R7 0 0 1 0 0 0 0 1 0.216 1 A7

R8 0 0 1 0 0 0 0 0 0.205 1 A8

TABLE V
FALCON RULES IN SYMBOLIC FORM.

No. IF (Condition) THEN (Behavior)
R5 weapon loaded, 95.3% health, enemy spotted, and medical kits around Persue
R7 weapon loaded, 21.6% health, see some needed item, and it can be obtained GetMedicalKit

[4] G. A. Carpenter, S. Grossberg, and D. B. Rosen. Fuzzy art: Fast
stable learning and categorization of analog patterns by an adaptive
resonance system. Neural Networks, 4:759–771, 1991.

[5] P. Gaussier, S. Moga, J.P. Banquet, and M. Quoy. From perception-
action loops to imitation precesses: A bottom-up approach of learning
by imitation. Applied Artificial Intelligence, 7-8(12):701–727, 1998.

[6] B. Gorman, C. Thurau, C. Bauckhage, and M. Humphrys. Bayesian
imitation of human behavior in interactive computer games. In Pattern
Recognition, 2006. ICPR 2006. 18th International Conference on,
volume 1, pages 1244–1247, 2006.

[7] Pogamut homepage is available online.
http://artemis.ms.mff.cuni.ca/pogamut/.

[8] H. Inoue and H. Narihisa. Effective online pruning method for
ensemble self-generating neural networks. In Midwest Symposium on
Circuits and Systems, volume 3, pages III85 – III88, Hiroshima, Japan,
2004.

[9] H. Inoue and H. Narihisa. Self-organizing neural grove and its
applications. In Proceedings of the International Joint Conference
on Neural Networks, volume 2, pages 1205 – 1210, Montreal, QC,
Canada, 2005.

[10] Y. Kuniyoshi and H. Inoue. Qualitative recognition of ongoing human
action sequences. In International Joint Conference on Artificial
Intelligence (IJCAI93), volume 13, pages 1600–1609, 1993.

[11] S. C. Lee, E. Lee, W. Choi, and U. M. Kim. Extracting temporal
behavior patterns of mobile user. In Fourth International Conference
on Networked Computing and Advanced Information Management,
pages 455–462, Sept. 2008.

[12] H. Miyamoto and M. Kawato. A tennis serve and upswing learning
robot based on bi-directional theory. Neural Networks, 11(7/8):1331–
1344, 1998.

[13] I. Noda. Hierarchical hidden markov modeling for teamplay in
multiple agents. In IEEE International Conference on Systems, Man
and Cybernetics, volume 1, pages 38–45, Oct 2003.

[14] S. Schaal. Is imitation learning the route to humanoid robots? Trends
in Cognitive Sciences, 3(6):233–242, 1999.

[15] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[16] A.-H. Tan. Cascade ARTMAP: Integrating neural computation and

symbolic knowledge processing. IEEE Transaction on Neural Net-
works, 8(2):237–250, 1997.

[17] A.-H. Tan. FALCON: A fusion architecture for learning, cognition, and
navigation. In 2004 IEEE International Joint Conference on Neural
Networks, volume vol.4, pages 3297 – 3302, Piscataway, NJ, USA,
2004.

[18] A.-H. Tan. Direct code access in self-organizing neural architectures
for reinforcement learning. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI’07), pages 1071–1076,
2007.

[19] A.-H. Tan, G.A. Carpenter, and S. Grossberg. Intelligence Through
Interaction: Towards A Unified Theory for Learning. In Proceedings
of the 4th International Symposium on Neural Networks: Advances in
Neural Networks, LNCS 4491, pages 1094–1107, 2007.

[20] A.-H. Tan, N. Lu, and D. Xiao. Integrating temporal difference
methods and self-organizing neural networks for reinforcement learn-
ing with delayed evaluative feedback. IEEE Transactions on Neural
Networks, 9(2):230–244, 2008.

[21] D. Wang, B. Subagdja, A.-H. Tan, and G. W. Ng. Creating human-
like autonomous players in real-time first person shooter computer
games. In Proceedings of Twenty-First Annual Conference on Inno-
vative Applications of Artificial Intelligence (IAAI’09), pages 14–16,
Pasadena,California, July 2009.

[22] S. Wanitchaikit, P. Tangamchit, and T. Maneewarn. Self-organizing
approach for robot’s behavior imitation. In Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on, pages 3350–3355, May 2006.

[23] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-
4):279–292, 1992.

[24] W.X. Wen, H. Liu, and A. Jennings. Self-generating neural networks.
In Neural Networks, 1992. IJCNN., International Joint Conferencen,
volume 4, pages 850 – 855, June 1992.

[25] W.X. Wen, V. Pang, and A. Jennings. Self-generating vs. self-
organizing, what’s different? In 1993 IEEE International Conference
on Neural Networks, pages 1469 – 1473, New York, NY, USA, 1993.

[26] D. Xiao and A.-H. Tan. Self-organizing neural architectures and
cooperative learning in multi-agent environment. IEEE Transactions
on Systems, Man, and Cybernetics - Part B, 37(6):1567–1580, 2007.

3656


	Self-organizing neural networks for behavior modeling in games
	Citation

	tmp.1643272401.pdf.E79BV

