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Self-Organizing Agents for
Reinforcement Learning in Virtual Worlds

Yilin Kang, Student Member, IEEE and Ah-Hwee Tan, Senior Member, IEEE

Abstract— We present a self-organizing neural model for
creating intelligent learning agents in virtual worlds. As agents
in a virtual world roam, interact and socialize with users and
other agents as in real world without explicit goals and teachers,
learning in virtual world presents many challenges not found
in typical machine learning benchmarks. In this paper, we
highlight the unique issues and challenges of building learning
agents in virtual world using reinforcement learning. Specif-
ically, a self-organizing neural model, named TD-FALCON
(Temporal Difference - Fusion Architecture for Learning and
Cognition), is deployed, which enables an autonomous agent
to adapt and function in a dynamic environment with im-
mediate as well as delayed evaluative feedback signals. We
have implemented and evaluated TD-FALCON agents as virtual
tour guides in a virtual world environment. Our experimental
results show that the agents are able to adapt and improve
their performance in real time. To the best of our knowledge,
this is one of the few in-depth works on building complete
learning agents that adapt their behaviors through real time
reinforcement learning in virtual world.

I. INTRODUCTION

Virtual world has become a popular platform used in a
variety of contexts, including teaching in classrooms, infor-
mal learning, distance learning, business, and e-commerce.
Studies in South Korea have recently shown that users prefer
virtual world to television [1]. Gartner even predicted that 80
percent of the Internet users will be actively participating in
non-gaming virtual world by the end of 2011.

With the popularity of virtual world, many people have
been working on various approaches to incorporate intelli-
gent learning agents to improve its interactivity and playa-
bility. Indeed, learning in a virtual world, just like in the real
world, poses many challenges not addressed by traditional
machine learning algorithms. In particular, learning in virtual
world is typically unsupervised, without an explicit teacher
to guide the agent in learning. Furthermore, it requires an
interplay of a myriad of learning paradigms.

In this paper, we highlight the issues and challenges of
building learning agents in virtual world using reinforcement
learning. Specifically, we investigate how a self-organizing
neural model, known as TD-FALCON [2], may be exploited
as learning agents in virtual world. TD-FALCON integrates
temporal difference methods [3] and self-organizing neu-
ral networks [4], [5] for reinforcement learning with de-
layed evaluative feedback. Recently applied to a first-person
shooter game, namely Unreal Tournament 2004 [6], the TD-
FALCON agent has been shown to be capable of adjusting its
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tactical strategies and choosing appropriate weapons during
run time similar to a human player. In this work, we extended
TD-FALCON in a non-trivial way to address the challenges
of learning in virtual world, including the lack of explicit
goals and well defined evaluative feedback.

By incorporating TD-FALCON, an agent will be able to
learn from sensory and evaluative feedback signals received
from the virtual environment without involving human su-
pervision and intervention. In this way, the agent needs
neither an explicit teacher nor a perfect model to learn from.
Performing reinforcement learning in real time, it is also able
to adapt itself to the variations in the virtual environment
and changes in the user behavior patterns. Furthermore,
by incorporating temporal difference learning, TD-FALCON
agents can overcome the issues, such as the absence of
immediate reward (or penalty) signals in virtual world by
estimating the credit of an action based on what it will lead
to eventually.

We have developed personal agents using TD-FALCON
and deployed them in a 3-D virtual world called Youth
Olympic Games (YOG) Co-Space. In this application, the
personal agents are designed to befriend human users and
proactively offer them with functions and services in the vir-
tual environment. Empirical experiments based on synthetic
user models and real users both supported the validity of our
approach. To the best of our knowledge, this is one of the
few in-depth works on building complete agents that perform
reinforcement learning in real time and adapt their actions
and behaviors with immediate as well as delayed evaluative
feedback in virtual world.

The rest of this paper is organized as follows. In section II,
we give a brief review of the related work. In section III, we
discuss the issues and challenges of building learning agents
in virtual world. We provide an overview of TD-FALCON
and a discussion of its key enabling features in section IV.
In section V, we present the procedure and methods for
using TD-FALCON for reinforcement learning in real time.
In section VI, we describe the case study on the YOG Co-
Space with the results of the empirical experiments and real
user case study. The final section concludes and highlights
future work.

II. RELATED WORK

Intelligent agents have been popularly used for improving
the interactivity and playability of virtual worlds. However,
most such agents are based on scripts or predefined rules.
For example, in the Virtual Theater project, synthetic actors
portray fictive characters and provide improvising behaviors.
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The agents are based on a scripted social-psychological
model with the defined personality traits which rely on the
values of moods and attitudes [7]. Agents in Metaverse,
built using Active Worlds, are capable of performing the
tasks typically associated with human beings, such as taking
tickets for rides and acting as shopkeepers. However, these
agents are basically reactive agents which work in a hard-
coded manner. Virtual psychotherapist ELIZA [8], designed
to take care of the ’patients’, is also achieved with rule-based,
adeptly modeled small talk. A conversational virtual agent
Max has been developed as a guide to the HNF computer
museum, where he interacts with visitors and provides them
with information daily [9]. However, the design remains rule-
based.

In view of the limitations of static agents, some researchers
have adopted learning methods into service agents in vir-
tual world. For example, Yoon et.al. present a Creature
Kernel framework to build interactive synthetic characters
in the project Sydney K9.0 [10]. Their agents can reflect
the characters’ past experience and allow individual per-
sonalization. But all the capabilities of the agents rely on
past knowledge and couldn’t adapt to user gradually during
run time. The co-present agents in a virtual gallery [11]
utilize a knowledge base containing general input response
knowledge, augmented with knowledge modules for special
domains. More recently, an embodied conversational agent
that serves as a virtual tour guide in Second Life has been
implemented by Jan [12]. It uses NPCEditor [13] to learn
the best output for any input from a training set of linked
questions and answers. Again, it learns from past experience
but does not adapt over time according to the habits of a
particular player or the changes in the environment.

All the work described above have developed a wide range
of agents in virtual world with specific motivations. However,
to the best of our knowledge, there has been very few in-
depth work, if any, building complete agents that perform
reinforcement learning and adapt their actions and behaviors
in real time. Our work is motivated by such a consideration.

III. ISSUES AND CHALLENGES

Learning in virtual world presents many challenges not
found in typical machine learning benchmark problems. The
key issues are discussed as follows.

A. What Are The Goals?

Traditional games, such as card games and board games,
often have a clear objective of defeating the adversary. In
first-person shooter games, the primary concern is to survive
and kill the enemies. For a real-time strategy game, the goal
is to secure the team and destroy the opponents’ assets. In
contrast, players in virtual world explore the environment,
meet other residents, socialize, participate in activities, create
and trade virtual properties and services with one another
without explicit goals. This key characteristic has led to an
important distinction between virtual world and traditional
games on the requirement of learning.

The issue of implicit goals also brings about other issues
such as how to measure the learning performance. As the
players in the virtual world may roam in the virtual world
without any keen desire, how we can measure the learning
performance is one of the main concerns.

B. When to Start and Stop Learning?

Exploring and playing in a virtual world is a continuous
experience. Depending on the constraints and implementation
of the virtual world, sensory signals and evaluative feedback
are received and updated in synchronous or asynchronous
fashion. It is thus important to associate an evaluative
feedback to the correct state and action for reinforcement
learning. Furthermore, agents need not learn all the time, as
an agent may be left idle at times while the players wonder
around or engage in chatting with other online residents.
Enabling learning at all time consumes excessive computing
resources and results in low efficiency.

C. How to Compute Evaluative Feedback?

The most important feature distinguishing reinforcement
learning from other types of learning is that it uses training
information that evaluates the actions taken rather than the in-
structs of correct actions [3]. It requests for active exploration
as well, which includes an explicit trial-and-error search for
good behavior [14]. In standard reinforcement learning tasks,
the outcome of a trial is typically used in computing the
evaluative feedback. In a First Person Shooting game, for
example, a reward of 0.5 can be given for a hit and a reward
of 1 is given for a kill during combat [6]. As virtual world is
a continuous experience, evaluative feedback in virtual world
cannot be defined simply by the final outcome of a game play.
Since an agent is supposed to continue assisting or servicing
a user, a more subtle way of defining evaluative feedback
should be considered.

D. How to Learn in A Dynamic, Real-time Environment?

Virtual world presents a highly dynamic environment. In
particular, it is a system driven by a rendering cycle that
ideally works at 50 or 60 Hertz so that changes appear as
smooth animation [15]. Therefore, agents in virtual world
cannot afford to operate in terms of primitive actions, such
as ”moves one step to north” or ”turns to face northwest”.
Instead, abstractions have to be formed, which allow learn-
ing to conduct forward searches in a manageable abstract
space and to translate the solutions found back into action
sequences in the original state space. In addition, learning
should be made online in order to meet the real-time needs.

IV. TD-FALCON AS VIRTUAL AGENTS

TD-FALCON [2], [16] incorporates Temporal Difference
(TD) methods to estimate and learn value functions of action-
state pairs Q(s, a) that indicates the goodness for a learning
system to take a certain action a in a given state s. Such value
functions are then used in the action selection mechanism,
also known as the policy, to select an action with the maximal
payoff. TD-FALCON algorithm [2] selects an action with the
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maximal Q-value in a state s by enumerating and evaluating
each available action a by presenting the corresponding state
and action vectors S and A to FALCON.

Fig. 1. TD-FALCON architecture.

There are several considerations making TD-FALCON a
suitable candidate for building learning agents in virtual
world. We provide a discussion of the key enabling properties
below.

1) Self-Adaptation: TD-FALCON learns by getting re-
wards, which does not involve any human supervision and
intervention. In this way, the agent does not need a perfect
model to learn from. The agent is able to adjust its behaviors
in different situations, if enough training is provided.

2) Generalization: Memory consumption is a major lim-
iting factor to the size of the problems that a learning agent
can tackle. Classical approaches of reinforcement learning
usually causes a scalability issue for continuous and/or very
large state and action spaces since policy function and/or
value function must be learned for each and every possible
state or possible pair of state and action. A self-organizing
neural network can ease the memory requirement by its
ability of generalizing and finding patterns in data. By
incorporating self-organizing neural network, TD-FALCON
can deal with the problem of learning a massive amount of
data in virtual environment.

3) TD Learning: It is important to note that reward
information may not always be available in a virtual world
environment. TD-FALCON has incorporated temporal differ-
ence methods to estimate and learn value function of state-
actions pairs Q(s, a) based on a combination of current and
future estimated rewards. By making use of TD methods,
they can perform multiple-step prediction in virtual world,
in which the merit of an action can only be known after
several steps into the future.

4) Fast and Stable Real-time Learning: Based on
Adaptive Resonance Theory (ART), TD-FALCON is capable
of performing fast and stable reinforcement learning in real
time. Indeed, it has shown in a prior study that TD-FALCON
produces a stable performance in a pace much faster than
those of standard gradient-descent based reinforcement learn-
ing systems [2].

V. LEARNING ALGORITHM

A. FALCON Dynamic

FALCON employs a three-channel architecture (Figure 1),
comprising a category field F2 and three input fields, namely,

a sensory field F c1
1 for representing current states, a motor

field F c2
1 for representing actions, and a feedback field F c3

1

for representing reward values [17]. The generic network
dynamics of FALCON, based on fuzzy ART operations [18],
is described as follows.
Input vectors: Let S = (s1, s2, . . . , sn) denote the state
vector, where si ∈ [0, 1] indicates the value of sensory input
i. Let A = (a1, a2, . . . , am) denote the action vector, where
ai ∈ [0, 1] indicates the preference of a possible action i. Let
R = (r, r) denote the reward vector, where r ∈ [0, 1] is the
reward signal value and r is given by r = 1− r. The whole
input vectors are with complement coding.
Activity vectors: Let xck denote the F ck

1 activity vector for
k = 1, . . . , 3. Let y denote the F2 activity vector.
Weight vectors: Let wck

j denote the weight vector associated
with the jth node in F2 for learning the input patterns in F ck

1

for k = 1, . . . , 3. Initially, F2 contains only one uncommitted
node. An uncommitted node is one which has not been used
to encode any pattern and its weight vector contains all 1s.
Parameters: The FALCON’s dynamics is determined by
choice parameters αck ≥ 0, learning rate parameters βck ∈
[0, 1], contribution parameters γck ∈ [0, 1] and vigilance
parameters ρck ∈ [0, 1] for k = 1, . . . , 3.

The FALCON pattern processing cycle comprises of five
key stages, namely code activation, code competition, ac-
tivity readout, template matching, and template learning, as
described below.
Code activation: A bottom-up propagation process first
takes place in which the activities of the category nodes in the
F2 field are computed. Specifically, given the activity vectors
xc1,xc2,xc3, for each F2 node j, the choice function Tj is
computed as follows:

Tj =
3∑

k=1

γck
|xck ∧wck

j |
αck + |wck

j |
, (1)

where the fuzzy AND operation ∧ is defined by (p∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡ ∑

i pi for
vectors p and q.
Code competition: A code competition process follows
under which the F2 node with the highest choice function
value is identified. The system is said to make a choice
when at most one F2 node can become active after the code
competition process. The winner is indexed at J where
TJ = max{TJ : for all F2 node j}.
When a category choice is made at node J , yJ = 1 and yj =
0 for all j 6= J . This indicates a winner-take-all strategy.
Activity readout: The chosen F2 node J performs a readout
of its weight vectors into the input fields F ck

1 such that

xck(new) = xck(old) ∧ wck
J . (2)

The resultant F ck
1 activity vectors are thus the fuzzy AND of

their original values and their corresponding weight vectors.
Template matching: Before the node J can be used for
learning, a template matching process checks that the weight
templates of node J are sufficiently close to their respective
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input patterns. Specifically, resonance occurs if for each
channel k, the match function mck

J of the chosen node J
meets its vigilance criterion ρck:

mck
J =

|xck ∧wck
J |

|xck| ≥ ρck. (3)

If any of the vigilance constraints is violated, mismatch reset
occurs in which the value of the choice function TJ is set
to 0 for the duration of the input presentation. The search
process then selects another F2 node J until a resonance is
achieved.
Template learning: Once a resonance occurs, for each chan-
nel ck, the weight vector wck

J is modified by the following
learning rule:

wck(new)
J = (1− βck)wck(old)

J + βck(xck ∧wck(old)
J ). (4)

When an uncommitted node is selected for learning, it
becomes committed and a new uncommitted node is added
to the F2 field. Fusion ART thus expands its network
architecture dynamically in response to the input patterns.

B. TD-FALCON

TD-FALCON integrates temporal difference learning with
the FALCON dynamics described above for reinforcement
learning. The general sense-act-learn algorithm is summa-
rized in Table I.

As mentioned earlier, agents do not learn all the time
in the virtual world. Therefore, TD-FALCON first needs to
detect an opportunity for learning. The cues for learning
typically include a change in the situation (state) and a receipt
of an evaluative feedback. Given the current state s, the
FALCON network is used to predict the value of performing
each available action a in the action set A based on the
corresponding state vector S and action vector A. The value
functions are then processed by an action selection strategy
(also known as policy) to select an action.

After performing the action, a feedback (if any) from the
environment is received. In the virtual worlds, the feedback
could be a synthesis of the user’s verbal expression, body
language or emotional expression. Upon receiving the feed-
back, a TD-formula is used to compute a new estimate of
the Q-value for performing the chosen action in the current
state.

A typical Temporal Difference (TD) equation for iterative
estimation of the value functions Q(s,a) is given by

∆Q(s, a) = αTDerr, (5)

where α ∈ [0, 1] is the learning parameter and TDerr is a
function of the current Q-value predicted by FALCON and
the Q-value newly computed by the TD formula.

Using the Q-learning rule, the temporal error term is
computed by

TDerr = r + γmaxa′Q(s′, a′)−Q(s, a), (6)

where r is the immediate reward value, γ ∈ [0, 1] is the dis-
count parameter, and maxa′Q(s′, a′) denotes the maximum
estimated value of the next state s′.

This new Q-value is then used as the teaching signal
(represented as reward vector R) for FALCON to learn the
association of the current state and the chosen action to the
estimated value. The above steps repeat until a terminal state
s is reached. This happens when the user has completed
his/her journey of exploring the virtual world.

VI. A CASE STUDY ON YOG CO-SPACE

Co-Spaces are virtual worlds developed for mirroring a
real physical world in terms of look-and-feel, functions and
services. The objective of Youth Olympic Games (YOG)
Co-Space is to introduce the YOG and the hosting country
to visitors around the world in an interactive and playable
manner. To achieve this objective, we are in the process of
developing and populating human-like cognitive agents in
the form of autonomous avatars that roam in the landscape
of YOG Co-Space. The agents are designed to be aware of
its surrounding and can interact with users through their
human avatars. With the autonomous avatars befriending
and providing personalized context-aware services to human
avatars, we aim to make the content and services readily
available to the users.

Fig. 2. The architecture of Co-Space.

The architecture of Co-Space is shown in Figure 2. As il-
lustrated in this framework, the TD-FALCON based personal
agent works in conjunction with the search agent in recom-
mending functions and services to the users. Specifically, the
personal agent determines the appropriate type of services to
recommend whereas the search agent retrieves the specific
services based on the environment situations as well as the
users’ context parameters. Figure 3 provides a screenshot of
the virtual world, showing the personal agent Carol serving
the user.
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TABLE I
GENERIC FLOW OF THE TD-FALCON ALGORITHM

1. Initialize the FALCON network
2. Given the current state s, for each available action a in the action set A, predict the value of the action Q(s,a)

by presenting the corresponding state and action vectors S and A to FALCON.
3. Based on the value functions computed, select an action a from A following an action selection policy.
4. Perform the action a, observe the next state s′, and receive a reward r (if any) from the environment.
5. Estimate the value function Q(s, a) following a temporal difference formula given by ∆Q(s, a) = αTDerr

6. Present the corresponding state, action, and reward (Q-value) vector, namely S, A and R, to FALCON for learning.
7. Update the current state by s = s′.
8. Repeat from Step2 until s is a terminal state.

Fig. 3. A screenshot of TD-FALCON based personal agent in Co-Space.

A. Embodiment of TD-FALCON in Co-Space

1) State Representation: The input state of the personal
agent consists of five sets of attributes, namely time, loca-
tion and the player’s request, interest and current activity.
A summary of these attributes together with the possible
values is given in Table II. All attributes adopt a binary
encoding scheme in the state vector. Although we include
user request as part of the state space, the agents are intended
to work without explicit user request. In other words, they
are supposed to proactively make recommendation based on
user’s interest, context and situation.

TABLE II
ATTRIBUTES AND POSSIBLE VALUES IN THE STATE SPACE

Attributes Values
Time Morning, lunch Time, Afternoon,

Dinner Time, Evening, Bed Time
Player’s Central, North, South, East, West
location
Player’s Hotel, Dining, YOG Venue, Place of
request Interest(POI), Shopping, Unknown
Player’s Dining, YOG, POI, Shopping,
interest Unknown
Player’s Hotel, Dining, YOG, POI, Shopping,
activity Unknown

2) Action Space Representation: The personal agent is
designed to determine the most appropriate service for rec-
ommendation to its user. The action field thus consists of
recommendations of five types of services, namely hotel,
dinning, YOG, place of interest and shopping. Using a
binary encoding scheme, the action vector is represented as

a = (a1, a2, . . . , a5), where aj = 1 and ak = 0 for all k 6= j
indicate that action j is recommended.

3) Computing Reward Signals: The reward function r(t)
is defined as a synthesis of the player’s feedback and mood
as r(t) = (f(t) + m(t))/2, where f is an explicit reward
based on the user feedback through the dialog menu and
f is an implicit reward value suggested by the gestures of
the user. The dialog menu enables a player to choose among
“wonderful”, “thanks”, “good”, “fair”, and “leave me alone”,
which correspond to a reward value of 1, 0.75, 0.5, 0.25 and
0 respectively. Meanwhile, we gauge a player’s mood by
observing the gestures of the player avatar. Gestures, such as
waving, dancing, and jumping, indicate a positive reward of
1 since they indicate satisfaction with the service. In contrast,
a reward of 0 is given to gestures, such as angry and walk
away, which suggest unhappiness.

B. Empirical Experiments

We build a TD-FALCON network comprising 33 nodes
in the sensory field, five nodes in the action field, and
two nodes in the reward field. We conduct four sets of
experiments to analyze how TD-FALCON performs in vari-
ous settings, including learning in real time, learning with
pre-inserted rules, adapting to changing user models, and
learning with delayed feedback. In order to evaluate our
system performance empirically, we design an automatic
test procedure using synthetic user models. We simulate the
user’s feedback to the agent’s service by using a set of user
logic. By matching the agent’s recommendations with the
user’s expectation, we are able to compute reward signals
that can be used to guide the agent in learning. A sample set
of user logic is given in Table III as an illustration.

1) Performance Measures: As the main role of personal
agents is to provide services to the users, one important
performance indicator is the accuracy of the service given to
the users over a period of time. In addition, in the motivation
of elevating the user experience in virtual world, we define
a general goal of maximizing the user’s satisfaction. For a
recency-biased indication of the system’s performance, we
compute the user’s satisfaction index at time t by S(t) =
γr(t) + (1− γ)S (t− 1), where S(0) = 0, γ ∈ [0, 1] is the
recency weighting factor, and r(t) indicates the reward value
received at time t.
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TABLE III
USER LOGIC FOR GENERATING REWARDS.

IF Time=Lunch or Dinner Time,
Activity != Dinning, Request = Unknown,

EXPECT Recommend restaurant

IF Time=Lunch or Dinner Time,
Activity = Dinning, Request = Unknown,
Interest contains X

EXPECT Recommend X

IF Time = Bed Time, Request = Unknown
EXPECT Recommend Hotel

2) Learning with User Feedback: TD-FALCON uses a
default set of parameter values as listed in Table IV. The
recommendation accuracy without pre-inserted rules and user
satisfaction index (γ=0.25) averaged at 100-trial intervals
over 3000 trials are shown in Figure 4 and Figure 5 re-
spectively. The results, obtained after averaging across five
sets of experiments, indicate that the agents are able to
gradually improve their performance through user feedback
continuously over time. We have also conducted experiments
with different sets of vigilance parameter values. As summa-
rized in Table V, vigilance parameters have a considerable
influence on the system: a higher vigilance produces highly
detailed memories, while a lower vigilance results in more
general memories. Nevertheless, we see that the performance
of the agents are generally stable over a reasonable range of
parameter values. Reducing the vigilance values drastically
however causes a degrade in the system’s performance.

TABLE IV
TD-FALCON PARAMETER SETTING.

FALCON Parameters Values
Choice parameter(αc1,αc2,αc3) 0.1, 0.1, 0.1
Learning rates(βc1,βc2,βc3) 1.0, 1.0, 1.0
Contribution parameter(γc1,γc2,γc3) 1/3, 1/3, 1/3
Baseline vigilance parameter(ρc1,ρc2,ρc3) 1.0, 1.0, 1.0
TD Learning Parameters
TD learning rate α 1
Discount factor γ 0
Initial Q-value 0
ε-greedy Action Policy Parameters
Initial ε value 0.5
ε decay rate 0.0002

TABLE V
PERFORMANCE OF TD-FALCON WITH DIFFERENT PARAMETER VALUE

SETTINGS.

ρc1, ρc2, ρc3 Success rate at Number
3000 decision cycles of Nodes

1.0 1.0 1.0 97% 523
1.0 1.0 0.5 99% 515
0.9 0.2 0.5 98% 518
0.8 0.2 1.0 78% 178
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Fig. 4. Recommendation accuracy of TD-FALCON with and without pre-
inserted rules.
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Fig. 5. User satisfaction index obtained over time.

3) Experimenting with Pre-existing Rules: In this set of
the experiments, we investigate the performance of TD-
FALCON with the pre-existing knowledge in the form of
symbolic rules as illustrated in Table VI. A total of 180 rules
are generated based on a selected user model. Each of these
rules is inserted into TD-FALCON with a reward value of 1
before learning commences.

TABLE VI
A SAMPLE SET OF PRE-INSERTED RULES.

IF Time = Lunch Time or Dinner Time,
Request = Unknown, Interest = POI and YOG,
Activity = Hotel

THEN Action = Recommend Dining

IF Time = Bed Time, Request = Unknown,
Interest = POI and YOG, Activity = Hotel

THEN Action = Recommend Hotel

IF Time = Morning or Afternoon or Evening,
Request = Unknown, Interest = POI and YOG,
Activity = Hotel;

THEN Action = Recommend YOG or POI

Comparing to the 33,480 possible combinations of state
and actions, the 180 rules represent only a small fraction of
the knowledge. Figure 4 and Figure 6 depict the compar-
ative performance of TD-FALCON with pre-inserted rules
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and without pre-inserted rules in terms of recommendation
accuracy and user satisfaction index respectively. We can
observe that with the pre-inserted rules, the performance
generally increases slightly faster in the first few hundreds of
the interaction cycles comparing to that without pre-inserted
rules. However, their performance are largely similar after
1000 interaction cycles.
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Fig. 6. User satisfaction index with and without pre-inserted rules.

4) Adapting to Changing User Logic: In this set of the
experiments, we evolve a user model during run-time to
investigate how the agents may cope with a shift in user’s
interests. We changed 10% of the rules after 3000 learning
trials to shift the user’s interest to dinning and shopping.

To put the adaptation performance of TD-FALCON into
perspective, we build an agent based on a set of rules,
which readily achieves 100% accuracy at the beginning of the
experiments. As shown in Figure 7 and Figure 8, the accuracy
of the rule based system (RBS) suffers a significant drop and
hovers around 60% after the change. This is because when
the user model is changed, it does not have the capability of
adapting to it. In contrast, TD-FALCON, despite suffering a
drop to an accuracy of 55%, quickly adapts to the new user.
After 1000 decision cycles, it manages to regain an accuracy
of more than 90%.
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Fig. 7. Recommendation accuracy of TD-FALCON and the rule based
agent (RBS).

5) Learning with Delayed Feedback: It is significant to
note that all the above mentioned experiments rely on the
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Fig. 8. User satisfaction index obtained by TD-FALCON and the rule
based system (RBS).

feedback obtained after performing each action. However,
in a realistic environment, it may take a long sequence of
actions before a reward or penalty is finally given. This is the
reason why we incorporate TD method to estimate the credit
of an action based on what it will lead to eventually rather
than learning a function mapping states to actions directly.

In order to observe the effect of temporal difference
learning, we evaluate TD-FALCON with a set of synthetic
users, who may or may not provide feedback to each and
every recommendations given by the agents. As a guide, the
users respond to roughly 50% of the recommendations given.
For the rest of the cases, the immediate reward value is zero
and the agents rely on the Q-value computed using the TD-
learning rule. The performance of TD-FALCON, in terms of
prediction accuracy and user satisfaction index, can be found
in Figure 9 and Figure 10 respectively.
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Fig. 9. Average recommendation accuracy (with range bars) of TD-
FALCON agents without immediate rewards.

We note that learning with delayed feedback is a much
more difficult task due to the lack of explicit immediate
reward signals and the large variety of the input instances.
For both performance measures, we observe that the overall
performance is degraded comparing with those obtained in
the previous experiments. However, a reasonable level of
performance is still maintained as TD-FALCON manages
the conflicting requirement of short-term reactivity and long-
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Fig. 10. User satisfaction index of TD-FALCON agents without immediate
rewards.

term goal-driven behavior.

C. User case study

We invited several people to be the trial users of YOG
Co-Space. These people have different interest profiles and
different personal attitudes towards giving feedback rewards
to system (Active/ Passive). We inserted 300 rules initially
and let users try out the system. These rules represent some
common knowledge of human-being. The criterion for mea-
suring the performance is the success rate of recommending
services.

TABLE VII
RESULT OF REAL USER STUDY.

userID Interest Active/ Success Number
profile passive rate of Nodes

1 Sport Active 90% 515
2 Dinning Active 86% 518

Shopping
3 POI Passive 83% 522

Sport
4 Shopping Active 82% 558

POI
Dinning

5 Sport Passive 77% 440
Shopping
Dinning

As shown in Table VII, although facing users with differ-
ent interests and attitudes, our learning agent still achieved
a good success rate of 83.6% on average. For people whose
interest is relatively simple and active in providing feedback,
the success rates are correspondingly higher than the others.
As a matter of fact, this performance pattern is in accordance
with that of a human tour guide as well.

VII. CONCLUSIONS

We set off to improve the interactivity and playability of
virtual world and make the environment more enjoyable by
employing agent technologies. In this paper, we have focused
on the issues and challenges for building learning agents
in virtual world. To this end, we presented TD-FALCON,
which enables an autonomous agent to adapt and function

in a dynamic environment, as the model for implementing
learning agents for personal services in virtual worlds.

Our experimental results and user case study have so far
supported the validity of our agent systems. Moving forward,
we wish to develop agents that can roam autonomously,
discover knowledge and services on its own, and accumulate
its knowledge and capabilities over time. We also want
to extend the capability of TD-FALCON based agents to
more complex tasks involving more situational factors and
actions. Another possible extension is to provide planning
of customized itinerary for individual players in the virtual
world.
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