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Fast Reinforcement Learning under Uncertainties
with Self-Organizing Neural Networks

Teck-Hou Teng and Ah-Hwee Tan
School of Computer Engineering

Nanyang Technological University, Singapore
{thteng,asahtan}@ntu.edu.sg

Abstract—Using feedback signals from the environment, a
reinforcement learning (RL) system typically discovers action
policies that recommend actions effective to the states based
on a Q-value function. However, uncertainties over the esti-
mation of the Q-values can delay the convergence of RL. For
fast RL convergence by accounting for such uncertainties, this
paper proposes several enhancements to the estimation and
learning of the Q-value using a self-organizing neural network.
Specifically, a temporal difference method known as Q-learning
is complemented by a Q-value Polarization procedure, which
contrasts the Q-values using feedback signals on the effect of the
recommended actions. The polarized Q-values are then learned
by the self-organizing neural network using a Bi-directional
Template Learning procedure. Furthermore, the polarized Q-
values are in turn used to adapt the reward vigilance of the
ART-based self-organizing neural network using a Bi-directional
Adaptation procedure. The efficacy of the resultant system called
Fast Learning (FL) FALCON is illustrated using two single-
task problem domains with large MDPs. The experiment results
from these problem domains unanimously show FL-FALCON
converging faster than the compared approaches.

Index Terms—Intelligent Agent, Self-Organizing Neural Net-
work, Reinforcement Learning

I. INTRODUCTION

Using feedback signals from the environment, reinforcement
learning (RL) discovers action policies that recommend actions
effective to the states. The effectiveness of the action policies
is signified using the Q-value. Estimated using Q-learning [1],
the Q-value can fluctuate due to uncertainties over the feed-
back signal [2] and the states [3]. RL cannot converge when
the Q-values do not saturate.

RL problems with state uncertainties are addressed by [4],
[5], [6], [3]. [2] addresses uncertainties over credit assign-
ment. Other works include the fuzzy-based approach [7], a
probabilistic-based approach [8] and kernel-based approach [9]
are also known. However, most of these works are mostly seen
in problems with uncertainties over the states, the feedback
signals and the action policies. In contrast, this work addresses
the uncertainty to the estimation and learning of the Q-values.

This work observes that the fluctuation of the Q-values can
delay the convergence of RL. The hypothesis is that RL can
converge faster by accounting for the uncertainties that delay
the saturation of the Q-values. Therefore, this work proposes
the polarization of the Q-value estimated using Q-learning
using a Q-value Polarization procedure. This polarized Q-
value is then learned using a new template learning procedure

known as the Bi-direction Template Learning. In addition, the
polarized Q-value is used to adapt the reward vigilance using
the Bi-directional Adaptation procedure.

The function approximator is based on the adaptive reso-
nance theory (ART) [10]. It is an ART-based self-organizing
neural network derived from FALCON [11]. The proposed
enhancements are integrated with the one-shot incremental
learning FALCON to give a fast learning (FL) FALCON.
The efficacy of FL-FALCON is illustrated using the Minefield
Navigation Task (MNT) and the Pursuit-Evasion (PE) problem
domains. The experiments based on the MNT problem domain
illustrate the performance difference FL-FALCON has over
the comparable approaches. The experiments based on the
PE problem domain compare the efficacy of the proposed
enhancements and the comparable approaches.

The presentation of this paper continues in Section II with
a survey of the related works. This is followed by a summary
of the self-organizing neural network in Section III. The
proposed enhancements to this self-organizing neural network
are introduced in Section IV. After that, the problem domains,
the experiments and the results are presented in Section V. The
conclusion is seen in Section VI.

II. RELATED WORK

A large body of reinforcement learning (RL) approaches
exists, which addresses uncertainties over the states, the action
policies and the feedback signals. For example, a model-
based policy search method known as PILCO was proposed to
improve learning speed in the continuous state and the control
spaces [6]. Model uncertainty is incorporated into controller
learning and long-term planning to reduce model errors.
This approach learns a probabilistic, non-parametric Gaussian
process transition model of the system with unprecedented
learning speed.

A Knowledge Evaluation-based Credit Assignment ap-
proach is proposed for addressing the uncertainty over the
credit assignment problem [2]. A knowledge measure known
as certainty derived using the Q-value estimates the role of
the knowledge to the overall performance. State uncertainty
due to noisy stimuli can create difficulties to the allocation
of the observed rewards. To address the state uncertainty, [3]
proposes the Posterior Weighted RL (PWRL) to update the
estimated state probabilities using the observed rewards. The
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PWRL approach can react to the switching of the reward
distribution using estimations of the variance.

Large scale disassembling line balancing problems with un-
certainty can be addressed using Monte-Carlo-based RL [12].
The RL approach addresses uncertainty due to demand fluctua-
tions. It converges to optimality after training for a reasonable
number of episodes. Longer training is necessary for RL to
converge when the demand is stochastic. The k-Certainty
Exploration method was used to track the use of the learned
rules and assign a k-certainty factor to the tracked rules [13].
Using this approach, uncertainty over the learned rules is
reduced and the environment can be identified gradually. An l-
Certainty Exploration method that considers the state transition
probabilities is also proposed to identify the environment more
efficiently.

A Weighted Strategy Sharing architecture is proposed for
agents to learn from each other [4]. Using different measures
of expertness for agents with different experiences, the ex-
periment results show that certain expertness measures are
less sensitive when the knowledge is incorrect and data is
uncertain. The uncertainty over the states can also be addressed
using an automatic action-based soft partitioning of the state
space [5]. This approach uses multiple agents to suggest
actions based on partial observations of the state space. The
suggested actions are then fused using an expertness criterion.
Results from experiments based on real-world setting show
the proposed learning approach can converge faster.

A Generalized Probabilistic Fuzzy RL (GPFRL) algorithm
is proposed for systems with uncertain conditions [7]. GPFRL
has a simple control structure, high learning efficiency and
generalizes well in stochastic environments. The learned action
policies are used with the weighted combination of action
probabilities to avoid risky behaviours effectively. Online
learning controllers can be used to address issues with unreli-
able teachers [8]. This approach assigns subjective probability
that approaches 1.0 to the optimal action of the events. A
Potential Function Method is used in cases where the features
are continuous.

A Kernel-based Dual Heuristic Programming (KDHP) is
proposed for learning control policies in real time [9]. KDHP
is found to be better than DHP and multi-layer perceptron
neural networks at approximating control policies of real-
time systems with model uncertainties. The Dyna-H algorithm
was proposed for sequential decision-making under uncer-
tainty [14]. Dyna-H searches for the possible solutions by
using a general function to guess the worst action a for state s.
Experiment results show Dyna-H can find the actions effective
to the states more efficiently than Q-learning and Dyna-Q.

The surveyed RL approaches are used in problems with
uncertainties over the states, the action policies and the
feedback signals. However, none of these works consider
the uncertainty to the estimation of the value function. This
work proposes novel enhancements that allow reinforcement
learning to converge fast in situations with such uncertainties.

III. THE TD-FALCON NEURAL NETWORK

TD-FALCON is an ART-based self-organizing neural net-
work derived from FALCON [11]. It is used as a function
approximator during reinforcement learning. Learning incre-
mentally in real time, TD-FALCON generalizes on the vector
patterns without compromising on its prediction accuracy.

Algorithm 1 The Fusion ART algorithm
Require: Activity vectors xck and all weights vector wck

j
1: for each F c

2 node j do
2: Code Activation: Derive choice function T c

j using

T c
j =

3∑

k=1

γck
|xck ∧wck

j |
αck + |wck

j |

where the fuzzy AND operation (p ∧ q)i ≡ min(pi, qi), the norm
‖.‖ is defined by |p| ≡ ∑

i pi for vectors p and q, αck ∈ [0, 1] is
the choice parameters, γck ∈ [0, 1] is the contribution parameters and
k = {1, 2, 3}

3: end for
4: repeat
5: Code Competition: Index of winning cognitive node J is found using

J = argmax
j
{T c

j : for all F c
2 node j}

6: Template Matching: Check whether the match functions mck
J of

cognitive node J meet the vigilance criterion

mck
J =

‖xck ∧wck
J ‖

|xck| ≥ ρck

where ρck ∈ [0, 1] for k = {1, 2, 3} are the vigilance parameters
7: if vigilance criterion is satisfied then
8: Resonance State is attained
9: else

10: Match Tracking: Modify state vigilance ρc1 using

ρc1 = min{mck
J + ψ, 1.0}

where ψ is a very small step increment to match function mck
J

11: Reset: T c
j = 0.0

12: end if
13: until Resonance State is attained
14: if operating in LEARN/INSERT mode then
15: Template Learning: modify weight vector wck

J using

w
ck(new)
J = (1 − βck)w

ck(old)
J + βck(xck ∧w

ck(old)
J ) (1)

where βck ∈ [0, 1] is the learning rate
16: else if operating in PERFORM mode then
17: Activity Readout: Read out the action vector A of cognitive node J

using
xc2(new) = xc2(old) ∧wc2

J

Decode xc2(new) to derive recommended action choice a
18: end if

A. Structure and Operating Modes

Seen in Fig. 1, TD-FALCON [15] has a two-layer architec-
ture, comprising an input/output (IO) layer and a knowledge
layer. The IO layer has a sensory field F c1

1 for accepting state
vector S, an action field F c2

1 for accepting action vector A,
and a reward field F c3

1 for accepting reward vector R. The
category field F c

2 at the knowledge layer stores the committed
and uncommitted cognitive nodes. Each cognitive node j has
template weights wck for k = {1, 2, 3}.
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Fig. 1. The TD-FALCON architecture.

TD-FALCON has three modes of operation. In the PER-
FORM mode, Algorithm 1 is used to select cognitive node J
for deriving action choice a for state s. In the LEARN mode,
TD-FALCON learns the effect of action choice a on state s.
In the INSERT mode, domain knowledge can be assimilated
into FALCON [16].

B. Incorporating Temporal Difference Method

Seen in Algorithm 2, a temporal difference (TD) method
known as the Q-Learning [1] is used to estimate the Q-value
Q(s, a) of action choice a in state s [17]. At state s′, the
estimated Q-value is used as the teaching signal to learn the
association of state s and action choice a.

Algorithm 2 The TD-FALCON algorithm
1: Initialize FALCON
2: Sense the environment and formulate a state representation s
3: Choose to explore at a probability of ε
4: if Exploration then
5: Use Exploration Strategy [18] to select an action choice a
6: else if Exploitation then
7: Use Direct Code Access [15] to select an action choice from existing

knowledge
8: end if
9: Evaluate effect of action choice a to derive a reward r from the

environment
10: Estimate the Q-value function Q(s, a) following a TD formula given by

ΔQ(s, a) = αTDerr

11: Present S, A and R for Learning
12: Update the current state s = s′
13: Repeat from Step 2 until s is a terminal state

TD-FALCON can be used for reinforcement learning by
representing State s as state vector S, action choice a as
action vector A and the estimated Q-value as reward vector
R. Using memory-based learning, the tuple {S,A,R} is
learned as cognitive node j. Algorithm 1 is used to select the
best-matching cognitive node J during learning and action
selection. Algorithm 2 outlines the reinforcement learning
framework where TD-FALCON is used.
Iterative Value Estimation: The TD method incorporated
into FALCON is known as the Bounded Q-Learning [17].
It estimates the value of applying action choice a to state s
iteratively using

Qnew(s, a) = Q(s, a) + αTDerr(1−Q(s, a)), (2)

where α ∈ [0, 1] is the learning parameter and TDerr is the
temporal error term which is derived using

TDerr = r + γmax
a′

Q(s′, a′)−Q(s, a), (3)

where γ ∈ [0, 1] is the discount parameter and the
maxa′ Q(s′, a′) is the maximum estimated value of the next
state s′ and r is the immediate reward.

C. Knowledge Pruning

Ineffective action policies are pruned to facilitate more ef-
ficient operation. A confidence-based pruning strategy similar
to [11] is adapted to prune the cognitive nodes that encode the
ineffective action policies.

Specifically, cognitive node j has a confidence level cj
where cj ∈ [0.0, 1.0]and an age σj where σj ∈ [0,R]. A
newly committed cognitive node j has an initial confidence
level cj(0) and an initial age σj(0). The confidence level cJ
of winning cognitive node J is reinforced using

cnewJ = coldJ + η(1− coldJ ),

where η is the reinforcement rate of the confidence level.
After each training iteration, the age σj of cognitive node j
is incremented and its confidence level cj is decayed using

cnewj = coldj − ζcoldj ,

where ζ is the decay rate of the confidence level. The age
attribute σj of cognitive node j prevents pre-mature pruning.
Cognitive node j is pruned only when cj < crec where crec is
the recommended confidence threshold and σj ≥ σold where
σold is the old age threshold.

IV. THE FL-FALCON NEURAL NETWORK

The proposed enhancements for a fast learning (FL) version
of FALCON known as the FL-FALCON are presented here.
These enhancements are proposed to handle the uncertainties
seen in the estimation of the Q-value. Integrating these en-
hancements with the one-shot incremental learning FALCON,
reinforcement learning can converge quickly by saturating the
estimated Q-value in the least amount of time.

A. Q-value Polarization

From (2) and (3), Q(s, a) is estimated using the immediate
reward r, Q(s, a) and s′ maxa′ Q(s′, a′). Such an approach
introduces uncertainty into the estimation of Qnew(s, a). The
immediate reward r introduces uncertainty through inaccurate
user-specified reward function. Uncertainty is introduced by
Q(s, a) and maxa′ Q(s′, a′) because both values are estimated
by using Algorithm 1 to find the winning cognitive nodes. Us-
ing this approach, there is a non-zero probability of selecting
cognitive nodes inappropriate for the states.

Assuming a winning cognitive node J1 is used in the
PERFORM mode to derive action choice a and a winning
cognitive node J2 is used in the LEARN mode to derive
Q(s, a). Using the same search criteria, the expected outcome
is for J1 ≡ J2. However, due to perceptual aliasing [19] and
the generalization of the learned action policies, there is a
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non-zero probability that J1 �= J2. In addition, Q-learning
is slow [20] in responding to changes to the effect of action
choice a in state s.

Therefore, the Q-value Polarization method (QPolar) is
proposed to address such issue using

Qnew(s, a) = ε(s, a)Qg + (1− ε(s, a))Qb, (4)

where ε(s, a) ∈ {0.0, 1.0} is the polarity of action choice a on
state s and is obtained using a polarization function aligned to
the reward function. Qg ∈ [0.0, 1.0] is the Q(s, a) for when
ε(s, a) = 1.0 and Qb ∈ [0.0, 1.0] is the Q(s, a) for when
ε(s, a) = 0.0 and are derived using

Qg =
{

Qg+Qnew(s,a)
2 ∨ (Qb +Qm)

}
∧ ζg

and

Qb =
{

Qb+Qnew(s,a)
2 ∧ (Qg −Qm)

}
∨ ζb,

where (p ∨ q) ≡ max(p, q), (p ∧ q) ≡ min(p, q), Qm is the
polarity margin, ζg is the upper bound of Q-value and ζb is
the lower bound of Q-value.
For Comparison: The certainty measure C(s, a) seen in
[2] is considered as an alternative approach (certainty-Q) for
handling the uncertainty seen in estimating the Q-value using

Qnew(s, a) = {Qnew(s, a) + ε(s, a)C(s, a)} ∧ ζg (5)

C(s, a) is a measure of the agent’s knowledge on action choice
a in state s and is derived using

C(s, a) =
eQ(s,a)/T

∑
a′∈A

eQ(s,a′)/T

where T ∈ [0.0, 1.0] is the scaling factor and A is the action
space.

B. Bi-Directional Adaptation

The state and action vigilances specify the required similar-
ity between the activity vectors xck and the template weights
wck for k = {1, 2}. The reward vigilance ρc3 is used to
select cognitive nodes that recommend action choices that are
effective to the states, i.e., ε(s, a) = 1. This means a suitable
ρc3 has to be used. Given that it is difficult to know a priori
a suitable ρc3, ρc3 was adapted iteratively [16] using

ρc3− = {νρc3 + (1 − ν)αlQ(s, a)} ∧ ρc3, (6)

where ν is the adaptation rate, αl suppresses Q(s, a) for the
downward adaptation and Q(s, a) is the estimated Q-value.

To use (6), ρc3 has to be initialized using a high value. The
reward vigilance ρc3 is then adapted downwards. Adapting ρc3

in this way improves the performance of FALCON. However,
as (6) only adapts ρc3 downwards, i.e., ρc3 → 0.0, it cannot
handle noisy situations where ρc3 has to be adapted upwards,
i.e., ρc3 → 1.0. To adapt ρc3 in either directions, the proposed
Bi-directional Adaptation (BiReward) procedure adapts ρc3

using

ρc3(new) = ε(s, a)ρc3− + {1− ε(s, a)}ρc3+,

where ε(s, a) ∈ {0.0, 1.0} is the polarity of action choice a
on state s, ρc3− is the adapted ρc3 when ε(s, a) = 1 and ρc3+

is the adapted ρc3 when ε(s, a) = 0 and is derived using

ρc3+ = {νρc3 + (1− ν)αuQ(s, a)} ∨ ρc3,

where αu boosts Q(s, a) for the upward adaptation. The
reward vigilance ρc3 can be adapted using either Qnew(s, a)
(PolarizedQ) or the learned Q(s, a) (estQ). Details on the use
of either Qnew(s, a) or the learned Q(s, a) are seen in the
following paragraphs.
Using Qnew(s, a) (PolarizedQ): This approach uses the Po-
larized Q-value derived using (4) or (5) to adapt ρc3. After
that, the adapted ρc3 is used when FL-FALCON operates in
the LEARN mode.
Using Q(s, a) (estQ): This approach adapts ρc3 after FL-
FALCON completes learning. FL-FALCON operates in the
LEARN mode using ρc3 adapted in the previous cycle. ρc3

is adapted using the learned Q(s, a) derived using the same
approach for deriving Q(s, a) used in (2) and (3).

C. Bi-directional Template Learning

The uncertainty over the estimated Q-value is seen in the
form of fluctuating Qnew(s, a). Qnew(s, a) is encoded as
a reward vector R and learned as wc3

J . To ensure wc3
J is

adapted towards the main trending direction of Qnew(s, a),
it is necessary to adapt wc3

J in either directions. Therefore,
the Bi-directional Template Learning (BiLearn) approach is
proposed to adapt the template weights w

ck(new)
J using

w
ck(new)
J = (1− βck){xck ∨w

ck(old)
J }+ βck{xck ∧w

ck(old)
J },

(7)
where xck is the activity vector, w

ck(old)
J is the template

weights of cognitive node J and k = {1, 2, 3}. (7) is proposed
to replaced (1) seen in Step 15 of Algorithm 1. When βck = 1
for k = {1, 2, 3}, (7) is equivalent to (1).

V. EXPERIMENTS AND RESULTS

Experiments were conducted to evaluate and compare the
performance of FL-FALCON. The MNT problem domain and
the experiment results are presented in Section V-A. The PE
problem domain and the experiment results are presented in
Section V-B. The default parameters used in these two problem
domains are seen in Table I.

TABLE I
THE DEFAULT PARAMETERS USED IN THE EXPERIMENTS

FALCON for k = {1, 2, 3}
Choice Parameters αck {0.1, 0.1, 0.1}
Contribution Parameters γck {0.333, 0.333, 0.333}
Learning Rates βck {1.0, 1.0, 1.0}
Vigilance ρck {0.95, 0.0/1.0, ρc3}
Essential parameters
TD Learning {α, γ, Initial Q-value} {0.1, 0.5, 0.5}
Pruning - {σold, crec} {50 iterations, 0.65}
Confidence - {cj(0), ζ, η} {0.5, 0.0005, 0.5}
ρc3 Adaptation - {ν, αu, αl} {0.5, 1.05, 0.95}
Q-value Polarization - {Qb, Qg , Qm, ζg , ζb} {0.25, 0.75, 0.5, 0.95, 0.10}
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Fig. 2. The minefield navigation simulator.

A. Minefield Navigation Task Problem Domain

Problem Description: This problem domain has an au-
tonomous vehicle (AV) that navigates a minefield (see Fig. 2)
to a random target position within a specified time frame. Ten
mines are randomly distributed throughout a 16×16 minefield.
The task fails when AV hits a mine or when it is unable to
reach the target position using the allocated number of steps.
The task succeeds when AV reaches the target position within
the allocated number of steps and without moving into any
mine along the way. AV is placed at a random vacant location
and navigates the minefield by sensing, acting and learning
iteratively. The target position and the location of the mines
remain unchanged during training.

This problem domain has a large MDP because the state
space comprises five continuous sonar readings and eight
readings of the relative target bearing. Sonar readings of the
mines are available from the left, left diagonal, front, right
diagonal and right. The sonar reading at direction i is measured
by si =

1
di

, where di is the distance to an obstacle which can
be a mine or the boundary of the minefield. The relative target
bearing comprises front, diagonal right, right, diagonal back
right, back, diagonal back left, left and diagonal left.
Experiment Results: The experiments in the MNT problem
domain are conducted for 20 runs and for 2, 000 training
iterations per run. The mean values for one set of results are
derived using a fixed size window of 100 training iterations.
The success rates seen in Fig. 3 and the code population seen
in Fig. 4 are the mean values based on the 20 runs of the
experiments.

From Fig. 3, FL-FALCON-PolarizedQ is seen hav-
ing the best success rates. TD-FALCON-Reward-Vigilance-
Adaptation is seen as the next best performing approach.
Using (5) with T = 0.5, the success rates of FL-FALCON-
CertaintyQ is seen fluctuating between 80% and 92%, only to
begin to saturate at around the 90% level. Q-learning is seen
performing better than TD-FALCON. The success rates of TD-
FALCON is seen at around the 90% level after 2, 000 training
iterations. The success rates of the Monte-Carlo-Simulation is
seen fluctuating between 10% and 20%.
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Fig. 3. Comparison of the success rates.

With pruning, Q-learning is still seen in Fig. 4 with
the highest code population. TD-FALCON is seen with
the next highest code population and converge to similar
level of code population as TD-FALCON-Reward-Vigilance-
Adaptation. The code population of TD-FALCON-Reward-
Vigilance-Adaptation is seen rising gradually to around 300
nodes while that of FL-FALCON-CertaintyQ is seen fluctuat-
ing and ends with the highest code population after 2, 000
training iterations. In contrast, the code population of FL-
FALCON-PolarizedQ stabilises at less than 100 nodes after
around 100 training iterations, only to be pruned further from
the 1400th training iteration.
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Fig. 4. Comparison of the code population.

From Fig. 3 and Fig. 4, FL-FALCON-PolarizedQ is seen
having significantly better performance than the compared
approaches. It is the fastest approach to reach 100% success
rates and has the smallest code population.
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B. Pursuit-Evasion Problem Domain

Problem Description: Illustrated in Fig. 5, this problem
domain has two virtual agents known as the Blue agent and
the Red agent. The Red agent is hostile towards the Blue
agent. The Blue agent can only evade the Red agent to avoid
elimination. The Red agent touches the Blue agent to eliminate
it. There are two safe areas where the Blue agent is safe
from the Red agent. Moving constantly, the Blue agent can
move into the safe areas to evade the Red agent but does
not remain in it. Like [18], the pursuit strategy of the Red
agent is deterministic while the Blue agent learns the evasive
strategies. The feedback signal to the Blue agent indicates the
effectiveness of the evasive maneuvres.

Fig. 5. The PE problem domain with safe and unsafe areas.

Based on a situation-awareness model [21], the state space
of the agent comprises eight types of multi-valued attributes
on the enemy and the terrain. The perception layer has four
types of attributes, the comprehension layer has three types of
attributes and the projection layer has just one type of attribute.
Therefore, this problem domain has a large MDP with up to
around 2.86× 1010 possible states.

For evading the Red agent, the action space of the Blue
agent comprise eight compass directions. The compass direc-
tions are north, northeast, east, southeast, south, southwest,
west and northwest. The effect of choosing an evade direction
as a response to the states is learned. The learned action
policies may be exploited in the subsequent cycles.
Experiment Results: Experiments in the PE problem domain
were conducted for 20 runs and for 500 training iterations per
run. The mean values for one set of results are derived using
a fixed size window of 20 training iterations. The mission
completion rates seen in Fig. 6, the exploitation rates seen in
Fig. 7 and the code population seen in Fig. 8 are the mean
values based on the 20 runs of the experiments.

From Fig. 6, FL-FALCON-PolarizedQ has the best-
performing outcome. TD-FALCON-QPolar-estQ-BiLearn has
the next best-performing outcome. The mission completion
rates of FL-FALCON-estQ lags in the first 80 training iter-
ation but reaches 100% at around the same time as these
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Fig. 6. Comparison of the mission completion rates.

two approaches. TD-FALCON-QPolar-estQ-BiReward is the
last approach to attain 100% mission completion rates. The
mission completion rates of TD-FALCON saturates at around
75%. Using (5) with T = 0.5, the mission completion
rates of FL-FALCON-CertaintyQ is seen improving slowly
towards 75%. The mission completion rates of the Monte-
Carlo-Simulation fluctuates between 10% and 30%.
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Fig. 7. Comparison of the exploitation rates.

From Fig. 7, all FALCON-based approaches are seen with
100% exploitation rates after around 100 training iterations.
The order of saturation of the exploitation rates tracks the
order of saturation of the mission completion rates in Fig. 6.
The exploitation rates of TD-FALCON also saturates at 100%
though its mission completion rates reaches only 75%. The
exploitation rates of FL-FALCON-CertaintyQ is seen improv-
ing slowly. The exploitation rates of Monte-Carlo-Simulation
is expectedly seen at 0%.

From Fig. 8, FL-FALCON-estQ and FL-FALCON-
CertaintyQ have similar peak code population. The code

56



population of FL-FALCON-PolarizedQ and TD-FALCON-
QPolar-estQ-BiLearn peaks at similar levels. In comparison,
the code population of TD-FALCON-QPolar-estQ-BiReward
peaks earlier but is pruned gradually to similar levels of code
population. Among the highest for almost the entire train-
ing process, the code population of FL-FALCON-CertaintyQ
peaks and declines slowly. In contrast, the code population of
TD-FALCON has the lowest peak and is also pruned to similar
level as the other approaches. In general, the code population
tracks the movement of the exploitation rates.
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Fig. 8. Comparison of the code population.

VI. CONCLUSION

This work addresses the delay to the convergence of rein-
forcement learning due to the uncertainty on the estimation of
the Q-value in problem domains with large markov decision
processes. The uncertainties are attributed to perceptual alias-
ing and the inappropriate choice of generalized action policies.
This work improves the estimation of the Q-values using a Q-
value Polarization procedure. The learning of the estimated
Q-values by a self-organizing neural network is improved
using a Bi-directional Adaptation of the reward vigilance
and a Bi-directional Template Matching. The integration of
these enhancements gives a fast learning self-organizing neural
network known as the FL-FALCON.

The efficacy of FL-FALCON is illustrated using the MNT
and the PE problem domains. The experiments based on
the MNT problem domain compare the performance of FL-
FALCON with recent versions of FALCON and a few other
approaches. The experiment results show FL-FALCON with
Polarized Q-value (FL-FALCON-PolarizedQ) attains 100%
success rates faster than the compared approaches. The ex-
periments based on the PE problem domain compare the uses
of the proposed enhancements and the other approaches. Com-
paring to the other approaches, the experimental results show
FL-FALCON-PolarizedQ has the smallest code population and
the best performance outcome.

The use of FL-FALCON in these two single-task problem
domains reveals little rooms for improvement. Therefore, the
plan is to move beyond single-task problem domains into
multi-task problem domains. Specifically, there is plan to
attempt reinforcement learning of task coordination in multi-
task problem domains with multiple performance constraints.
Initial results from multi-task problem domains highlight the
need for better performance using the fast learning self-
organizing neural network.
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