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Abstract
The quantal response (QR) model is widely used in Stack-
elberg security games (SSG) to model a bounded rational
adversary. The QR model is a model of human response
from among a large variety of prominent models known as
discrete choice models. QR is the simplest type of discrete
choice models and does not capture commonly observed phe-
nomenon such as correlation among choices. We introduce
the nested QR adversary model (based on nested logit model
in discrete choice theory) in SSG which addresses shortcom-
ing of the QR model. We present tractable approximation of
the resulting equilibrium problem with nested QR adversary.
We do so by deriving an interesting property of the equi-
librium problem, namely a loosely coupled split into nested
problems that mirrors the nested decision making by the ad-
versary in the nested QR model. We show that each separate
nested problem can be approximated efficiently and that the
loosely coupled overall problem can be solved approximately
by formulating it as a discretized version of a continuous dy-
namic program. Finally, we conduct experiments that show
the scalability and parallelizability of our approach, as well
as advantages of the nested QR model.

Introduction
Discrete choice models (Train 2009) are a prominent class
of models for modelling human response when faced with
choices over alternatives. Indeed, many prominent be-
havioral game models such as quantal responding play-
ers (McKelvey and Palfrey 1995) have origins in discrete
choice theory; the model adopted widely in the game theo-
retic works is the quantal response model (called multino-
mial logit (MNL) model in the discrete choice literature).
MNL (McFadden 1973) is the simplest class of discrete
choice models and suffers from deficiencies such as the in-
ability to model correlations among alternatives and failure
to account for observed human behavior in the presence of
large number of choices. In this work, with the aim of ad-
dressing the aforementioned problems with MNL model, we
present a first work on employing the nested logit (NL) dis-
crete choice model (Ben-Akiva 1973) in Stackelberg secu-
rity games (Tambe 2011) and solving these efficiently.

As far as we know, there is no work on use of NL models
in Stackelberg security games (SSG). We argue that the NL
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model is natural in SSG when a human attacker faces numer-
ous options with correlations, as the NL model posits that
the player partitions the choice set into nests, first chooses
a nest, and then an alternative within the chosen nest. The
model allows taking into consideration correlations between
alternatives that belong to the same nest. For example, in de-
ployed applications of SSG for wildlife security (Fang et al.
2016) the adversary chooses where to attack in a large for-
est with the number of choices ranging in thousands; here,
intuitively, it is more natural that the adversary chooses a
sub-region (and choices within a sub-region are correlated)
and then chooses a specific place in that sub-region to at-
tack. The NL model is also mathematically well-motivated
and derived using concepts from generalized extreme value
distributions (Train 2009). The resulting Stackelberg equi-
librium problem with the NL model is quite challenging.

Our main result in this work is a tractable guaranteed ap-
proximation of the equilibrium computation in a SSG where
the follower employs a NL response model; we call this the
nested QR model in the context of SSG. We achieve this
overall result via a series of contributions that reveal interest-
ing properties of the NL model in a game. Our first contribu-
tion is a result that shows that the main equilibrium compu-
tation optimization splits into a two level structure, with the
root optimization dependent on multiple sub-optimizations
at the lower level (a generalization of bi-level optimization).
The tree structure of the optimizations’ dependency reflects
the tree structure of the nests in the NL model. The over-
all defender resource budget is divided among the multiple
lower level optimizations, and the overall bound on budget
loosely couples the lower level optimizations.

Next, as our second contribution, we show that the lower
level optimizations can be transformed to an unconstrained
optimization in a single scalar variable but where the objec-
tive function can be evaluated only by solving yet another
multi-variable optimization (which is convex). We solve
each lower level optimization by performing a grid search
on the single variable, where the grid points are determined
adaptively by bounding the gradient at the prior explored
grid point. This provides a large computational saving over
a naive set of grid points constructed at regular intervals. We
also provide approximation bounds for this approach.

Our third contribution is a dynamic programming based
algorithm to solve the root optimization via a recursive for-



mulation of the problem in terms of resource budget allotted
(these can be real numbers) to the lower level optimizations.
As solving the continuous dynamic programming problem
is intractable in practice, we solve an discretized version and
show approximation bounds for the solution.

Finally, we test our algorithms over many scenarios. Our
results show the practical scalability of our algorithm and the
ability to exploit parallel computation, and compares it with
other baselines as well as other possible design choices in
our algorithm. We also show in simulation that the nested
QR model better models human response when there are
a large number of correlated choices, thereby, providing
higher utility to the defender in a SSG. We believe this work
provides a pathway to explore richer and more realistic be-
havioral game models for real world applications.

Related Work
Our work most closely relates to SSG with QR adversaries
and discrete choice modeling, especially in product pricing.

SSG: SSGs (Tambe 2011) are a prominent class of se-
curity models that have many real world applications as
well (Pita et al. 2008; Fang et al. 2017; An et al. 2012; Sinha
et al. 2018). A number of behavioral models have been ex-
plored in SSG, the most studied is the QR model (Yang et al.
2011; Yang, Ordonez, and Tambe 2012; Haghtalab et al.
2016). Variations of QR have also been explored including
the subjective utility QR model (Nguyen et al. 2013) and
prospect theory inspired models (Kar et al. 2015). In con-
trast, we handle the failure of QR (and variations) to model
correlation among alternatives; this shortcoming is known
as the independence from irrelevant alternatives (IIA) prop-
erty in discrete choice literature; IIA means that the ratio
between the probabilities of choosing two alternatives does
not change even if the value of the other alternatives change.

Among work on gradient based solving of saddle point
problems and games (Mertikopoulos and Sandholm 2016;
Mertikopoulos et al. 2018; Li et al. 2020), a closely related
work (Ling, Fang, and Kolter 2019) focuses on learning
and solving a zero-sum game with NL responses by play-
ers, following up on a similar work for QR model (Ling,
Fang, and Kolter 2018). Our model differs as our game is
general-sum and only one of the players is NL responding,
while the other is perfectly rational (typical SSG setting).
Another work (Perrault et al. 2020) applies similar differ-
entiating through optimization technique for SSG with QR
adversary and like all gradient based methods this guaran-
tees only a local optimum. For the highly non-convex NL
adversary problem, our focus is on solving the SSG with
guaranteed approximation by exploiting the structure of the
NL model.

Besides the above work, some works (Jiang et al. 2013;
Cerny et al. 2020; Milec et al. 2021) have focussed on un-
derstanding other variations of the QR model in the Stack-
elberg setting and analyzing computational and learnability
aspects of the same. These variations still do not take into
account correlation among alternatives.

Discrete Choice Modeling: Discrete choice models have
a long history and have been very popular in many model-
ing problems that involve human behavior. Among them, the

nested logit model (Ben-Akiva 1973) seems to be the first
attempt to overcome the IIA issue from the classical MNL
model. This model is widely used in various applications in,
for instance, transportation modeling (Ben-Akiva and Ler-
man 1985), healthcare (de Bekker-Grob, Ryan, and Gerard
2012), or revenue management (Li and Huh 2011). In fact,
in the context of descriptive representation, the NL model
is found empirically more widely applicable than MNL and
the advantages of MNL over standard QR have been exper-
imentally validated (Goldberg 1995; Bhat 1995; McFadden
1977). However, in prescriptive optimization (i.e., decision-
making), the use of the NL is limited due to its complicated
nonlinear structure.

An area where NL has been used in decision-making is
product pricing problems where a firm needs to make a pric-
ing decision for a set of products, assuming that customers
select a product according to a discrete choice model. The
literature of product pricing has a number of works making
use of the NL (Li and Huh 2011; Gallego and Wang 2014;
Rayfield, Rusmevichientong, and Topaloglu 2015). To the
best of our knowledge, all the related studies in this area
only solve unconstrained optimization problems (i.e. no con-
straints on the prices) or problems with price bounds (i.e.,
box constraints where the price of each product can vary
freely between a lower and upper bounds). In contrast, we
consider more general constraints (i.e., budget constraints)
accounting for dependency between security decisions. Such
constraints make our model more challenging to handle.

Model
Background and Notation
Notation: Boldface characters represent matrices (or vec-
tors), and ai denotes the i-th element of vector a. We use
[m], for any m ∈ N, to denote the set {1, . . . ,m}.

NL Model: The nested logit framework models a situa-
tion when a player is faced with options that can be grouped
into N non-overlapping nests. Let the choices in each nest
n ∈ [N ] be given by Kn and the utility of choosing j ∈ Kn
be uj . Then, the NL model posits that the player chooses
option j with probability

qj =
∑
n∈[N ]

Wσn
n∑

n′∈[N ]W
σn′
n′

eλuj∑
j′∈Kn e

λuj′

where Wn =
∑
j′∈Kn e

uj′ ∀n, and σn ∈ [0, 1] ∀n, λ ≥
0 are parameters. This above formulation is derived us-
ing the random utility maximization (extreme value) frame-
work (Train 2009) and is a well-accepted discrete choice
model that handles correlations within a nest n. Note that
the MNL (QR) model is a special case of the above where
σn = 1 for all n ∈ [N ]. Moreover, since λ is a fixed scaling
factor for utility uj of any choice j, for sake of simplicity
of notation we absorb λ into uj and just write uj instead of
λuj in the rest of the paper.

SSG with NL adversary
A SSG model is one where a defender aims to protect a set
of targets and adversary aims to attack one of these targets.



Following the NL description above, we specify the num-
ber of targets as

∑
n∈[N ] |Kn|. The defender’s pure strat-

egy is to allocate M security resources to the targets. The
mixed strategy is represented by the marginal probabili-
ties of defending target j given by xj , which should sat-
isfy

∑
n∈[N ]

∑
j∈Kn xj ≤ M and xj ∈ [0, 1]. The vector

x represents marginal probabilities for all targets. Follow-
ing standard terminology, for every target j, if the adversary
attacks j and the target is protected then the defender ob-
tains reward rdj and the adversary obtains laj . Conversely, if
the defender is not protecting target j, then the defender ob-
tains ldj (rdj > ldj ) and the adversary gets raj (raj > laj ). We
assume all utility parameters are upper and lower bounded
by fixed constants. Given xj , the expected utility of the de-
fender and attacker for an attack on an operational facility j
is formulated as follows: udj (xj) = xjr

d
j + (1 − xj)ldj and

uaj (xj) = xj l
a
j + (1− xj)raj . Succinctly,

udj (xj) = δdj xj + ldj where δdj = rdj − ldj ≥ 0

uaj (xj) = −δaj xj + raj where δaj = raj − laj ≥ 0.

Under a nested logit adversary response model, the de-
fender’s expected utility can be formulated as

f(x) =
∑
n∈[N ]

Wσn
n∑

n′∈[N ]W
σn′
n′

∑
j∈Kn

eu
a
j (xj)udj (xj)∑
j′∈Kn e

ua
j′ (xj′ )

(1)

where Wn =
∑
j′∈Kn e

ua
j′ (xj′ ). The Stackelberg equilib-

rium can be computed by solving the following problem

max
x∈X

f(x), (OPT-0)

where X is the feasible set of marginal probabilities {x ∈
[0, 1]M |

∑
n∈[N ]

∑
j∈Kn xj ≤M}.

Equilibrium Computation
We can re-formulate the optimization (OPT-0) as

max
x∈X

f(x) = max{δ| ∃x ∈ X , f(x) ≥ δ}

Next, note that f(x) ≥ δ can be equivalently written as∑
n∈[N ]

Wσn
n∑

n′∈N W
σn′
n′

∑
j∈Kn

eu
a
j (xj)udj (xj)

Wn
≥ δ or equivalently

∑
n∈[N ]

∑
j∈Kn

Wσn−1
n φ(xj) ≥ δ

∑
n′∈[N ]

(Wn′)
σn′ or equivalently

∑
n∈[N ]

(
Wσn−1
n

( ∑
j∈Kn

φ(xj)
)
− δWσn

n

)
≥ 0 (2)

where φ(xj) = eu
a
j (xj)udj (xj) for notational convenience.

Thus, the optimization is now

max
x∈X

f(x) = max{δ| ∃x ∈ X , Eq. 2 holds}

Next, we perform binary search over δ above where for a
given δ ∈ R, we need to check if

max
x∈X

{ ∑
n∈[N ]

(
Wσn−1
n

( ∑
j∈Kn

φ(xj)
)
− δWσn

n

)}
≥ 0 (3)

The above problem is challenging as: (1) it is non-convex
and (2) it is not separable in xj’s, thus, prior known methods
for QR (Yang, Ordonez, and Tambe 2012) cannot be used.
We address this problem in the next sub-sections.

Nested Budget Constraints
We first split the budget M into a real-valued budgets
M1, . . . ,MN per nest with

∑
nMn = M . Then, consider

the following restricted feasible set for fixed M1, . . . ,MN

Xr =

{
x ∈ [0, 1]m

∣∣∣ ∑
j∈Kn

xj ≤Mn,∀n ∈ [N ]

}
Xr has N independent sub-sets, each corresponding to the
targets Kn in nest n. In this section, we show how to solve
the maximization problem in (3) for x ∈ Xr for a given
Xr and then in the next sub-section we use this solver as a
sub-routine to solve the over all problem with x ∈ X . With
decomposable Xr, the maximization problem in Eq. (3) de-
composes into N problems, one for each nest. We show this
problem for n ∈ [N ] below:

max
xj ,j∈Kn

Wσn−1
n

( ∑
j∈Kn

φ(xj)
)
− δWσn

n (subOPT-1)

subject to
∑
j∈Kn

xj ≤Mn ,

xj ∈ [0, 1], ∀j ∈ Kn
In the above formulation we introduce the variableWn, then
(subOPT-1) can be further formulated equivalently as

max
Wn∈[Wn,Wn]

Wσn−1
n g(Wn)− δWσn

n (subOPT-2)

where Wn > Wn > 0 are upper and lower bounds of Wn,
and g(Wn) is defined as

g(Wn) = max
xj ,j∈Kn

∑
j∈Kn

φ(xj) (subOPT-3)

subject to
∑
j′∈Kn

eu
a
j′ (xj′ ) = Wn ,∑

j∈Kn

xj ≤Mn ,

xj ∈ [0, 1], ∀j ∈ Kn
First, we show that g(Wn) can be computed efficiently.
Proposition 1. Given Wn > 0, (subOPT-3) can be refor-
mulated as a strict convex optimization.

Proof. The variable transformation yj = e−δ
a
j xj , or xj =

− ln yj
δaj

, transforms (subOPT-3) into the equivalent problem:

g(Wn) = max
yj∈[e

−wa
j ,1],j∈Kn

∑
j∈Kn

yje
laj

(−δdj ln yj

δaj
+ ldj

)
subject to

∑
j∈Kn

yje
laj = Wn ,

∑
j∈Kn

− ln yj
δaj

≤Mn .



Algorithm 1: Subproblemn(Mn)

1 Form the grid {W 1
n ,W

2
n , . . . ,W

T
n } as stated in

Theorem 1 and for all t evaluate
Φ(W t

n) = (W t
n)σn−1g(W t

n)− δ(W t
n)σn using the

solver for g(·)
2 Using the above, solve (subOPT-4) to get W̃n

3 Using obtained W̃n and given Mn solve (subOPT-3)
to get x∗j for all j ∈ Kn

4 return x∗j for all j ∈ Kn

Then, it can be readily verified that the objective above is
strictly concave, and the constraints are convex.

The bounds Wn,Wn can be readily shown to be

Wn = max
{ ∑
j′∈Kn

e−δ
a
j′xj′+l

a
j′
∣∣∣ ∑
j′∈Kn

xj′ ≤Mn

}
Wn = min

{ ∑
j′∈Kn

e−δ
a
j′xj′+l

a
j′
∣∣∣ ∑
j′∈Kn

xj′ ≤Mn

}
with a note that the above maximization and minimization
problems can be converted into convex optimization prob-
lems using the variable transformation yj = e−δ

a
j xj .

The convex optimization (subOPT-3) always has a
unique optimal solution for anyWn ∈ [Wn,Wn] that can be
computed to arbitrary precision in polynomial time. In prac-
tice, for better running time, we use the dual descent method
for solving the convex optimization above due to the sepa-
rability of the problem into the yj’s as well as a closed form
solution for the Lagrangian in the primal variables. We defer
description of this standard method to the appendix and also
show in the appendix that evaluating g has time complexity
O(|Kn|) assuming fixed (constant) precision of computer.

Since (subOPT-2) is single scalar variable problem, we
can use grid search to find a good approximation of the op-
timal solution. To build an efficient grid search method, we
first bound |g(Wn + ε)− g(Wn)|, for ε > 0.

Proposition 2. For any Wn and 0 < ε < 1, we have

|g(Wn + ε)− g(Wn)| ≤ ετn where

τn = max
j∈Kn

{
δdj + |ldj |+

δdj (el
a
j + 1)

δaj e
laj−δaj

}
Next, let Φ(Wn) = Wσn−1

n g(Wn) − δWσn
n . We bound

|Φ(Wn + ε)− Φ(Wn)| using the result from Prop. 2:

Proposition 3. For any Wn and 0 < ε ≤ ρ < 1, we have

|Φ(Wn + ε)−Φ(Wn)| ≤ ρTn where

Tn = max
{

(1− σn)(Wn)σn−2(g(Wn) + τn)

+ δσn(Wn)σn−1; (Wn)σn−1τn

}
From the above result about the change of Φ with a

change in its argument, we can construct a one-dimensional

grid {W 1
n = Wn,W

2
n , . . . ,W

T
n ≥ Wn} where the

grid points are irregularly spaced at G(W t
n, ρ) apart, i.e.,

W t+1
n = W t

n + G(W t
n, ρ). The form of G(W t

n, ρ) and the
number of grid points T is specified in the theorem and its
corollary below. Given this grid, we find an approximate so-
lution of (subOPT-2) by searching over the grid

W̃ ∗n = argmaxt=0,...,T

{
Φ(W t

n)
}

(subOPT-4)

Theorem 1. Given ρ > 0, if we choose G(W t
n, ρ) = ρ

/
Tn

then (subOPT-4) returns an approximate solution W̃ ∗n with

|Φ(W̃ ∗n)− Φ(W ∗n)| ≤ ρ,

where W ∗n is an optimal solution to (subOPT-2).

Corollary 1. The number of points in the grid
{W 1

n , . . . ,W
T
n } is at most

T ≤ 1

ρ
(Wn −Wn) max

{
(1− σn)(Wn)σn−2(g̃n + τn)

+δσn(Wn)σn−1; (Wn)σn−1τn
}
,

where g̃n = max
xj∈[0,1],j∈Kn

{ ∑
j∈Kn

φ(xj)
∣∣∣ ∑
j∈Kn

xj ≤Mn

}
Approximation Algorithm Putting all the claims till now
together, we state the algorithm to solve (subOPT-1) (re-
call, this is equivalent to (subOPT-2)) in Algorithm 1. The
algorithm first solves for Φ(·) (line 1, 2) using the grid ap-
proach stated in Theorem 1. Note that we need to evaluate
g(·) in line 1, which is done using the dual descent solver
stated earlier. From Theorem 1 the algorithm provides ad-
ditive ρ approximate solution and from Corollary 1 it has
O(|Kn|/ρ) time complexity. For time complexity, we used
T from Corollary 1 with the earlier stated assumption that
all utility parameters are bounded.

Full Budget Constraint

We now return to the original aim of solving the problem
stated in Equation 3 with x ∈ X . The dependency between
the security variables of different subsetKn makes the prob-
lem more challenging. We show an efficient solution of the
problem by formulating it as a dynamic programming prob-
lem where the sub-problems are the problem solved in the
previous sub-section.

Dynamic Programming Formulation Recall the prob-
lem stated in Equation 3 under the full budget constraint is

max
xj ,j∈Kn
n∈[N ]

∑
n∈[N ]

Wσn−1
n

( ∑
j∈Kn

φ(xj)
)
− δ(Wn)σn

subject to
∑
n∈[N ]

∑
j∈Kn

xj ≤M ,

xj ∈ [0, 1], ∀j ∈ Kn,∀n ∈ [N ]



We define the following value function V n(M), for given
n ∈ [N ] andM∈ [0,M ]

V n(M) = max
xj ,j∈Kk
k=n,...,N

N∑
k=n

W
σk−1
k

( ∑
j∈Kk

φ(xj)
)
− δ(Wk)σk

subject to
N∑
k=n

∑
j∈Kk

xj ≤M ,

xj ∈ [0, 1], ∀j ∈ Kk, k ∈ {n, . . . , N}

Let us define a notation for problem (subOPT-1)

Hn(Mn) = max
xj ,j∈Kn

Wσn−1
n

( ∑
j∈Kn

φ(xj)
)
− δ(Wn)σn

subject to
∑
j∈Kn

xj ≤Mn ,

xj ∈ [0, 1], ∀j ∈ Kn.

Then, it can be readily checked that V n(M) satisfies the
Bellman equation below. Further, from standard dynamic
programming set-up (Bertsekas 2011), V 1(M) is the opti-
mal value of the problem in Equation 3.

V n(M) =


max

Mn∈[0,M]

{
Hn(Mn) + V n+1(M−Mn)

}
for n = 1, . . . , N

0 for n = N + 1
(DYN)

Approximation for the Continuous Dynamic Program
The above dynamic program is based on a continuous state
space, which is not tractable to handle. We build a tractable
approximation algorithm by discretizing the interval [0,M ].
By choosing a step size ψ > 0 we discretize [0,M ] into
dM/ψe points as {0, ψ, 2ψ, . . . , bM/ψcψ}. We define the
approximate value function V̂ n as a surrogate of V n

V̂ n(kψ) =


max

k′∈{0,1,...,k}

{
Ĥn(k′ψ) + V̂ n+1((k − k′)ψ)

}
for n = 1, . . . , N

0 for n = N + 1

(DYN-APPROX)
Note that in (DYN-APPROX) we use Ĥn(·) instead of
Hn(·) because we solve (subOPT-1) approximately. Given
the above discrete recursive formulation, a standard dy-
namic programming approach can solve the problem. The
next result follows from standard properties of dynamic pro-
grams (Bertsekas 2011):
Proposition 4. The dynamic programming system
(DYN-APPROX) can be solved in O(dM/ψeN) steps.

Next we analyze the approximation errors yielded by the
approximate dynamic program (DYN-APPROX). A first
step is the following observation:∣∣∣∣V̂ 1

(⌊M
ψ

⌋
ψ
)
− V 1(M)

∣∣∣∣ ≤ ∣∣∣∣V̂ 1
(⌊M

ψ

⌋
ψ
)
− V 1

(⌊M
ψ

⌋
ψ
)∣∣∣∣

+

∣∣∣∣V 1
(⌊M

ψ

⌋
ψ
)
− V 1(M)

∣∣∣∣

Towards obtaining the bound above we bound the gaps∣∣∣V̂ n(kψ)− V n(kψ)
∣∣∣ , ∀k = 0, . . . ,

⌊
M

ψ

⌋
|V n(M)− V n(M+ ε)| , ∀n = 1, . . . , N, ε ∈ [0, ψ],

and for allM∈ [0,M − ε]. (4)
We do so via a sequence of results. Recall that, from Theo-
rem 1, we can solve (subOPT-1) with a worst-case approx-
imation error of ρ, i.e., |Ĥn(M) − Hn(M)| ≤ ρ for all
M ∈ [0,M ]. We first define auxiliary quantities that show
up in our result: for n = 1, . . . , N define

JHn (ψ) = sup
ε∈[0,ψ]

M∈[0,m−ε]

{|Hn(M+ ε)−Hn(M)|}

JVn (ψ) = JHn (ψ) + JVn+1(ψ)

J V̂n (ψ) = ρ+ JHn (ψ) + J V̂n+1(ψ) + JVn+1(ψ)

and JVN+1(ψ) = 0, J V̂N+1(ψ) = 0. The following readily
follows from the above definition
Proposition 5. JVn (ψ) and J V̂n (ψ) can be computed as

JVn (ψ) =

N∑
n′=n

JHn′(ψ)

J V̂n (ψ) = (N − n+ 1)ρ+

N∑
n′=n

(n′ + 1− n)JHn′(ψ)

Next, define the scalar
U∗n = (1− σn)(U1

n)σn−2U2
n max
j∈Kn

{δaj el
a
j }+

(U1
n)σn−1 max

j∈Kn

{
δaj e

laj (δdj + |ldj |) + δdj e
laj

}
+ δσn(U1

n)σn−2 max
j∈Kn

{δaj el
a
j }

U1
n =

∑
j∈Kn

el
d
j−δ

d
j and U2

n =
∑
j∈Kn

el
a
j (δdj + |ldj |).

We prove the following:
Lemma 1. JHn (ψ) ≤ ψU∗n, for all n.

We bound the required gaps (as stated above in Equa-
tion 4) using the auxiliary quantities as follows:
Lemma 2. We have

JVn (ψ) ≥ sup
ε∈[0,ψ]

M∈[0,M−ε]

|V n(M+ ε)− V n(M)|

J V̂n (ψ) ≥ max
k=0,...,bMψ c

∣∣∣V̂ n(kψ)− V n(kψ)
∣∣∣ (5)

Using the above results, we bound the approximation er-
ror of (DYN-APPROX).

Theorem 2. V̂ 1
(⌊

M
ψ

⌋
ψ
)

is the optimal value obtained by

solving (DYN-APPROX), the approximation error can be
bounded as∣∣∣∣∣V̂ 1

(⌊M
ψ

⌋
ψ
)
− V 1(M)

∣∣∣∣∣ ≤ Nρ+
( ∑
n∈[N ]

(n+ 1)U∗n
)
ψ



Algorithm 2: BinSearchDynProg(M)

1 while D − d > ε do
2 δ = (D + d)/2
3 Solve (DYN-APPROX) with δ, using the

sub-routine Subproblemn(Mn) to solve Ĥn(·)
4 if V̂ 1

(⌊
M
ψ

⌋
ψ
)
> 0 then

5 d = δ
6 else
7 D = δ

8 For δ, backtrack using (DYN-APPROX) recursive
formulation to find Mn for all n ∈ [N ]

9 Using the sub-routine Subproblemn(Mn) obtain x∗j
for all j ∈ Kn,∀n ∈ [N ]

10 return x∗j for all j ∈ Kn,∀n ∈ [N ]

Proof. We bound the gap using Eq 4 and Lemma 2 (for the
first inequality below) as below∣∣∣∣∣V̂ 1

(⌊M
ψ

⌋
ψ
)
− V 1(M)

∣∣∣∣∣ ≤ J V̂1 (ψ) + JV1 (ψ)

= Nρ+
∑
n∈[N ]

(n+ 1)JHn (ψ)
(a)

≤ Nρ+
( ∑
n∈[N ]

(n+ 1)U∗n
)
ψ,

where the equality is due to Proposition 5 and (a) is due to
Lemma 1.

Corollary 2. Given any ε > 0, an additive ε-
approximation solution of (DYN) can be obtained by solving
(DYN-APPROX) with ρ = ε

2N and ψ = ε∑
n∈[N] 2(n+1)U∗n

.

The corollary also implies that if the number of nests in-
creases, to maintain the precision level ε, one needs to de-
crease ρ, thus increase the number of grid points.

Algorithm and Complexity Analyses We collect all our
results and present the overall algorithm in Algorithm 2.
As stated earlier, the overall approach is a binary search
on δ which forms the while loop in the algorithm. Inside
the loop, the (DYN-APPROX) is solved. After the binary
search, standard backtracking (in dynamic programming) is
used to obtain the optimal choices of Mn for all n ∈ [N ],
which are further used to provide the final solution. Recall
that (DYN-APPROX) optimizes the surrogate V̂ 1(·) objec-
tive. Thus, the binary search provides a direct guarantee
about V̂ 1(·) and using Corollary 2 we can obtain the fol-
lowing guarantee for Algorithm 2.
Lemma 3. Given choice of ρ, ψ from Corollary 2, Al-
gorithm 2 runs in O((1/ε) log(1/ε)dM/ψeN2 maxn |Kn|)
time and solves problem (OPT-0) with O(ε)-additive ap-
proximation.

Experiments
We denote our method (i.e., Algorithm 2) as DYN. We gen-
erate 8 random instances for each measurement that we re-
port. For each game instance, each target is assigned ran-
domly to a nest Kn, n ∈ [N ], and the nest parameters σn

Figure 1: Performance as the number of grid points in
(DYN-APPROX) increases

are generated randomly in [0.5, 1]. We also choose the re-
source parameter as M =

∑
n∈[N ] |Kn|/5. All the experi-

ments were conducted using Matlab on a PC with Intel(R)
Core(TM) i7-9700 CPUs running at 3.00GHz. We use a sin-
gle CPU core for all the experiments except the computa-
tional scalability part where 8 CPU cores are used to demon-
strate how our algorithm scales up with parallel computing.

Analyzing the Number of Grid Points

In this experiment we determine the number of grid points
needed in (DYN-APPROX) to have a good approxima-
tion. We first note that the bound for the inner optimiza-
tion (subOPT-2) stated in Theorem 1 is conservative. For
(subOPT-2), in order to have good approximations, we sim-
ply select ρ such that the number of grid points is 10. We
then pick the interval between two consecutive points that
achieves the best values and generate another set of 5 points
to further improve the solution within this interval. Overall,
this only requires to compute g(Wn) 15 times, but provides
very good approximation to the true solution.1

For the discretized dynamic program (DYN-APPROX),
we note that the bound in Corollary 2 is too conservative and
in practice we will need a much smaller number. To assess
the performance of DYN w.r.t the number of grid points, we
vary the number of grid points (denoted as T ) from 20 to
120 and compare the percentage gaps between the resultant
objective values and the objective values given by T = 200.
Figure 1 reports those gaps as well as the computing times
as T increases, with N = 5 and N = 10. We observe that
with T = 60, the algorithm is able to reduce the gaps to
under 0.5%, and with T = 100 the gaps will go under 0.1%.
Based on this observation, we use T = 100 for rest of the
experiments. The left plot in Figure 1 also shows that one
would need more grids points to achieve a similar precision
level if the number of nests N increases. This is consistent
with the remark below Corollary 2. Moreover, computing
time is proportional to the number of grid points, which is
an expected observation.

1We do not know exactly the “true solution” but can obtain a
near-optimal solution using a large number of grid points.



Figure 2: Performance comparison between classical QR
and nested QR adversaries.

Classical QR versus Nested QR
We evaluate the performance hit if the correlation between
alternatives is ignored by modelling the problem using QR.
To this end, for each nested game instance, we set all the nest
parameters to 1, i.e., σn = 1 for all n ∈ [N ] to convert the
nested model into classical QR (or MNL). Such an instance
can be solved efficiently by binary search and convex opti-
mization (Yang, Ordonez, and Tambe 2012). Recall that for
nested model σn’s are chosen at random from [0.5, 1]. We
then compare the objective values given by solutions ob-
tained from solving classic QR instances and from nested
instances in Figure 2. We see that the gaps are significant,
indicating significant losses when the correlation is ignored.

DYN versus a Sampling-based Approach
Our dynamic programming approach requires generating
several grid points and solving several instances of the inner
problem (subOPT-2). An alternative approach that would
secure a performance guarantee is to sample the nested bud-
gets {Mn, n ∈ [N ]} such that

∑
n∈[N ] = M and solve

subOPT-2 for each sample. It is then expected that this
sampling approach would give good solutions if the num-
ber of samples is sufficient. In this experiment, we compare
DYN with a sampling-based approach (denoted as SA) as
a baseline. For the SA, we simply sample {Mn, n ∈ [N ]}
and solve the inner problems for each sample and pick the
best solutions. Figure 3 reports comparisons of the two ap-
proaches, in terms of objective value and computing time,
where the SA approach is denoted by “SA” followed by
the number of samples (denoted by L). Here we plot the
comparisons with N = 5 and provide a similar figure with
N = 10 in the appendix. The objective values given by the
SA are remarkably lower than those given by DYN, indi-
cating that the numbers of samples used (up 160) are still
far below a sufficient number. On the other hand, we see
that SA becomes more costly with L ≥ 160. In general, the
DYN clearly outperforms the SA baseline approach.

Computational Scalability
We look at the scalability of out approach as the number of
targets increases. As mentioned, we use parallel computing

Figure 3: DYN and SA (N = 5)

Figure 4: Scalability as the number of targets increases.

with 8 CPU cores to compute Ĥn(kψ) with different n and
k in (DYN− APPROX) simultaneously. We vary the num-
ber of targets up to 400 and report the computing times in
Figure 4 with N ∈ {5, 10, 15}. We see that the computing
time scales linearly as the number of targets increases. With
400 targets, the DYN approach only needs about 40 minutes
to finish. As compared to the nonparallel setting, we observe
that the parallelized code can expedite our algorithm up to
4 times. We also provide a figure showing how DYN scales
up as the number of nests increases in the appendix. More-
over, to further assess the scalability in much larger prob-
lem settings, we increase the number of targets to 2500 and
the number of nests up to 500, and we observe that DYN
needs about 2.7 and 6.1 hours to terminate with N = 5 and
N = 500, respectively. This is tractable in practice and more
parallel CPU cores can make the computation even faster.

Conclusion
We presented a first use of the nested logit (or nested QR)
model, a well-established discrete choice model, in SSGs
and an efficient approximate solution with guarantees of
the same. Our scalable approximation can also tackle previ-
ously unaddressed constrained pricing problems in the prod-
uct pricing literature. We hope that our work can lead to im-
proved security in real world deployed applications, espe-
cially when adversarial choices exhibit correlations.
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