
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2021

Building action sets in a deep reinforcement learner Building action sets in a deep reinforcement learner

Yongzhao WANG

Arunesh SINHA
Singapore Management University, aruneshs@smu.edu.sg

Sky C.H. WANG

Michael P. WELLMAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Citation Citation
WANG, Yongzhao; SINHA, Arunesh; WANG, Sky C.H.; and WELLMAN, Michael P.. Building action sets in a
deep reinforcement learner. (2021). Proceedings of the 20th IEEE International Conference on Machine
Learning and Applications, Virtual Conference, 2021 December 13-15. 484-489.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6785

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Building Action Sets in a Deep Reinforcement
Learner

Yongzhao Wang
University of Michigan

Ann Arbor, USA
wangyzh@umich.edu

Arunesh Sinha
Singapore Management University

Singapore
aruneshs@smu.edu.sg

Sky CH-Wang
Columbia University

New York, USA
skywang@cs.columbia.edu

Michael P. Wellman
University of Michigan

Ann Arbor, USA
wellman@umich.edu

Abstract—In many policy-learning applications, the agent may
execute a set of actions at each decision stage. Choosing among an
exponential number of alternatives poses a computational chal-
lenge, and even representing actions naturally expressed as sets
can be a tricky design problem. Building upon prior approaches
that employ deep neural networks and iterative construction of
action sets, we introduce a reward-shaping approach to apportion
reward to each atomic action based on its marginal contribu-
tion within an action set, thereby providing useful feedback
for learning to build these sets. We demonstrate our method
in two environments where action spaces are combinatorial.
Experiments reveal that our method significantly accelerates and
stabilizes policy learning with combinatorial actions.

I. INTRODUCTION

Deep reinforcement learning (DRL) has had remarkable
success in many challenging domains [1]–[3]. These achieve-
ments have inspired researchers to use DRL for a broad
range of complex problem formulations. One such challenge
arises from combinatorial action spaces, that is, where an
action taken in any state is a subset of underlying set of
atomic actions. Tasks with combinatorial action spaces appear
naturally in many areas. For example, a recommendation task
may call for proposing a portfolio of suggestions. Besides, in
the domain of security, an attacker may be able to strike a set
of targets simultaneously, forcing upon the defender a choice
of which subset of targets to protect.

Solving tasks with combinatorial action spaces is challeng-
ing for DRL because policy networks typically devote a node
to every exclusive option, of which there are exponentially
many. In order to handle problems with combinatorial action
space, existing methods either focus on certain selected actions
[4], [5] or transform the problem of choosing a combinatorial
action into a sequence of choices of the underlying atomic
actions [6]–[8].

In this study, we focus on efficiently learning to build
action sets for single-agent DRL problems with combinatorial
action space. We are guided by the observation that learning
efficiency is impeded in existing methods because reward
feedback is associated with the action set as a whole, making
it difficult to attribute reward to individual constituent atomic
actions.

This work was supported by funding from the US Army Research Office
(MURI grant W911NF-13- 1-0421) and from DARPA SI3-CMD.

To mitigate this issue, we propose a general reward-shaping
scheme that credits each atomic action with its marginal
contribution (MC) towards the reward of the action set that
it belongs to. This marginal contribution is used to update the
reward for each atomic action in an a posteriori manner. We
also consider the relation of our reward-shaping scheme to the
concept of Shapley value from coalitional games.

We demonstrate the efficacy and generality of our algorithm
in two environments with combinatorial action space: a simple
goods-matching problem which represents the essence of com-
binatorial choice in a one-shot setting, and a complex cyber-
security game featuring imperfect information, sequential de-
pendence, and asymmetric players. To verify the flexibility of
our approach, we test our scheme in these two environments
by combining it with different action-set building methods
and DRL algorithms. Our experimental results show that our
proposed reward-shaping scheme can significantly accelerate,
stabilize, and improve learning performance compared to cases
without the marginal contribution signal. Finally, we empiri-
cally investigate factors that affect the performance of reward-
shaping by analyzing different constitutions of a combinatorial
action, which provides an intuitive understanding of how they
impede learning in such problems.

The key contributions of this work are: (a) a detailed
analysis of issues in DRL with combinatorial action spaces;
(b) a general reward-shaping scheme for efficient learning with
combinatorial action space in DRL; (c) a detailed demonstra-
tion of reward-shaping efficacy in two realistic environments;
and (d) experimental analysis of factors that affect the perfor-
mance of reward-shaping.

II. PRELIMINARIES AND PRIOR WORK

Preliminaries.: We work in a single-agent RL setting
with an underlying MDP characterized by a state space S and
a set of atomic actions A. The action taken in state s 2 S is
denoted by A and A 2 2A is a subset of the atomic actions.
Clearly, the action space 2A is combinatorial in nature. The
immediate reward is R(s,A) and the goal is to learn a policy
⇡ : S ! 2A that maximizes the value function.

We broadly classify previous approaches for RL problems
with combinatorial action space into two categories.

Independent selection.: In independent selection, the RL
learner selects each atomic action with only limited consid-

484

2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-6654-4337-1/21/$31.00 ©2021 IEEE
DOI 10.1109/ICMLA52953.2021.00081

eration of its joint effect with other selected atomic action.
Such selection is usually driven by a ranking of the atomic
action or sampling from a very limited sets of atomic actions.
[4] address the problem of recommending a subset of K news
articles from a large candidate set. They then sample a finite
number of candidate subsets and choose the best. [5] focus on
another NLP task where actions correspond to fixed-length
word sequences. The action space is combinatorial in the
length and the size of the dictionary. They present a DRL
architecture which prunes the actions available in each state
to make the problem tractable. [9] tackle a text-based problem
where actions are sets of words. They first learn a dense
representation of actions from word embeddings, then apply
specialized matching techniques to construct candidate sets.
[10] propose a variant of dueling double deep Q-networks
with multiple action network branches and a shared decision
module. Each branch corresponds to one action component of
a combinatorial action and selects action independently.

Sequential selection.: In sequential selection, the selec-
tion of a combinatorial action is based on a sequence of
choices of the underlying atomic actions and thus avoiding
handling the exponentially large combinatorial space directly.
For example, [7] tackle a video-game domain where actions
are compound combinations of primitive actions. They employ
an auto-regressive method based on Asynchronous Advantage
Actor Critic to factor the joint distribution over actions into
marginal distributions, thus reducing the action dimensionality
through a sequential action selection based on the marginal
distributions. In the problem studied by [6], a scheduler
chooses a set of jobs to run at each time step. To circumvent
the combinatorial action space issue, they model the agent as
selecting the jobs in sequence within a time step, generating a
state transition after each selection. The time step terminates
when a void or invalid action is chosen, upon which point
the agent receives rewards based on the selected actions. Like
[6], [8] build the action set incrementally, in an approach they
term greedy action set building (GASB). After each selection,
they feed the partially constructed action set back to the
neural network as modified input, and select the next atomic
action. This approach accounts for value dependencies among
actions by learning the incremental values for each candidate
conditioned on the current partial set.

III. REWARD SHAPING BY MARGINAL CONTRIBUTION

As a motivation for our approach, we identify two general
causes of inefficient learning in past work on DRL problems
with combinatorial action space. First, the reward feedback
R(s,A) is associated with the overall action set A, and so
does not distinguish the relative benefit or harm of constituent
atomic actions in A. In effect, the atomic actions in A are
treated the same. We term this the homogeneous-action issue.
In principle, with sufficient data over a variety of overlapping
sets, a reinforcement learner could eventually figure out the
effect of each atomic action as well as the dependency among
these atomic actions. However, the number of samples required
to achieve this could be prohibitive.

A second reason for inefficient learning, which arises in
sequential selection approaches, is what we term the sparse-
reward issue. Since the agent receives feedback R(s,A)
from the environment only when the entire action set A is
assembled, there are many intermediate steps (selecting indi-
vidual atomic actions) not associated with any reward. Again,
whereas DRL can eventually propagate rewards backward to
properly credit earlier decisions, sparseness in intermediate
rewards is known to seriously impede efficient learning.

To deal with these two issues, we propose a general reward-
shaping approach that credits individual atomic actions based
on their marginal contribution to the sequential construction of
an action A. We implement the reward shaping in a posteriori
manner and update immediate rewards of the atomic actions
in an action set by their marginal contributions after the action
A is built and deployed.

Formally, we represent the constructed action as a sequence
A = (a1, . . . , an) reflecting the order that the atomic actions
ai2[n] are added to the set. We use pass to denote a special
dummy action that serves to indicate the end of the iterative
building of A; pass is not included explicitly in A as it is
not an actual playable action. Let Ak be a subset of A that
contains the first k items in A where 0 k < n. The key step
in reward shaping is to decompose immediate reward R(s,A)
into marginal contributions r(ak+1 | s, Sk), crediting the
(k+1)st action added based on its marginal contribution with
respect to the set Sk. To preserve overall reward semantics, this
decomposition should obey the following accounting identity:

R(s,A) = r(pass | s,A) +
n�1X

k=0

r(ak+1 | s,Ak) . (1)

Note that pass, which is considered as a special atomic action,
earns a credit like other atomic actions. We found that a proper
contribution of pass plays an important role in learning and
therefore we discuss the contribution of pass in detail later in
the paper.

Example 1. Goods-Matching Problem
Consider a middleman who purchases goods from manufac-
turers in the morning and sells to consumers at the end of the
day. The middleman’s decision on which goods to purchase
forms a combinatorial action. The cost to buy item x is given
by c(x), which is independent across items. The sale price
depends on the entire bundle X of items acquired, designated
by the function P (X), with P (;) = 0. The bundle price may
be greater or less than the sum of individual items, depending
on whether the goods are complements or substitutes. For
example, consider the goods B1, B2, and T, representing two
badminton shuttlecocks and a racket. The two shuttlecocks are
substitutes: P ({B1,B2}) < P ({B1}) + P ({B2}). Bundling
a shuttlecock with a racket, in contrast, exhibits complemen-
tarity: P ({B1,T}) > P ({B1}) + P ({T}).

The definition of marginal contribution for this example
domain is straightforward. The reward for adding an item to
the set (considered as an atomic action) is the marginal revenue
it contributes to the bundle, minus its individual cost.

485

In general, the definition of marginal contribution will be
domain specific, and may be defined in hindsight once the
outcome of the action set is known.

Relation to Shapley Value: In coalitional game theory,
Shapley value is a well-known and accepted way of distribut-
ing value generated from a coalition to the individual players
in the coalition [11]. Shapley value for any set R and ai 2 R

is defined as �i(R) =
P

T⇢R((t � 1)!(r � t)!/r!)r(ai|T),
where r(ai|T) as defined earlier is the marginal contribution
of ai given T and r, t denote size of sets R, T . We additionally
define a conditional Shapley value: �i,B(R) =

P
T⇢R((t �

1)!(r � t)!/r!)r(ai|T [B) that is conditioned on actions in
B always chosen apriori. As a convention �i,B(R) = 0 if
ai /2 R.

Our reward-shaping scheme computes a sampling-based
weighted combination of conditional Shapley values, where
the samples are generated by the RL agent interacting with
the environment. We show this in the first item of the result
below (proof in Appendix A) that additionally shows that
our approach satisfies desirable properties. In order to state
these formally, we make a number of mild assumptions and
definitions: (1) the marginal contribution is at most 1, (2) ai, aj
are complementary if they together contribute marginal value
1 but no value alone, (3) ai, aj are substitutes if they provide
marginal value 1 on their own without the other action present
but slightly lower than 1 together, and (4) ✏-greedy in our
context means choosing the action set given by current policy
with probability 1�✏ and continuing to grow the atomic action
set more by random atomic action selection with probability
✏.

Theorem 1. Let the current policy be choosing a set B ⇢
A of actions and ai /2 B. Let m = |A\B|. With ✏-greedy
exploration, we have

• The expected reward assigned for atomic action ai isPm
j=0(m� j + 1)�1

�m
j

��1 P
R⇢A\B:|R|=j �i,B(R).

• The max expected reward of ai is (1 + 1/m)Hm+1 � 1,
where Hn =

Pn
i=1 1/i is the harmonic number.

• For complementary ai, ak, if ak 2 B then ai is assigned
max expected reward and consequently chosen in future.

• For substitutes ai, ak, if ak 2 B then ai is assigned
negative reward and is not chosen in future.

IV. REWARD SHAPING INSTANCES

We instantiate the general approach from the previous
section for two problems: goods-matching (Example 1) and
attack-graph games.

A. Goods-Matching Problem

We have already described this problem in Example 1. For
sequence of atomic actions A let xk denote the item added by
the kth atomic action ak, and Xk the set of items added by
the first k atomic actions Ak. Then the marginal contribution
reward for the single state s is given by r(ak | s, Sk�1) =
P (Xk) � P (Xk�1) � c(xk). Reducing the telescoping sum
reveals that this satisfies Equation (1), with r(pass | s, S) =

0. The difficulty for learning in the goods-matching problem
is that, first, the price of an item may fluctuate wildly and
hence a large number of samples are needed to figure out if
purchasing a item would be profitable. Second, the middleman
needs to learn the formation of the bundles (i.e. which items
are complements or substitutes) to maximize his payoff. As the
number of items increases in a bundle, the learning becomes
more arduous.

B. Attack-Graph Game

To verify the efficacy and generality of our reward-shaping
scheme for real-world problem solving, we consider a complex
cyber-security domain, i.e the attack-graph games which have
imperfect information and asymmetric players. We solve the
attack-graph game following a generalized version of the dou-
ble oracle (DO) procedure, termed the policy-space response
oracle (PSRO) [12]. The PSRO involves alternate solving
of single-agent RL problems for the two players. These RL
problems of both players feature combinatorial action space in
attack-graph games. In this section, we present how to apply
our approach to this problem.

Attack Graph.: Attack graphs are a tool in cyber-security
analysis employed to model the paths by which an adversary
may compromise a system. Informally, attack graphs are
directed acyclic graphs (DAGs) where the nodes represent
security conditions (for example, vulnerability or root access
on a machine) and edges correspond to exploits that can
probabilistically activate a security condition. An exploit is
considered feasible for the attacker only if the origin node
of its edge is activated. Nodes are either AND or OR type,
depending on whether all (AND) or at least one (OR) of the
exploits on incoming edges need to be taken to activate it.
Figure 1 is an example of an attack graph fragment.

Fig. 1: Example fragment of an attack graph modeling a
ransomware attack.

The attacker’s aim is to reach goal nodes, which provides
a large benefit RA for the attacker and a substantial loss L

for the defender. The defender’s actions are to protect any
node (for example, patch vulnerability or deny access). Both
offensive and defensive actions are associated with a cost,
denoted by ca with respect to certain action a. The ability
of the attacker to choose any subset of feasible exploits and

486

of the defender to defend any subset of the nodes induces
action spaces of combinatorial size.

Game Model.: Formally, the attack graph [13] is given by
a DAG G = (V,E), where vertices v 2 V represent security
conditions and edges e 2 E are labelled by exploits. An
attack-graph game is defined by an attack graph endowed with
additional specifications. The game is a two-player partially
observable stochastic game that is played over a finite number
of time steps T . At each time step t, the state of the game
is given by the state of the graph, which is simply whether
nodes are active or not (i.e., compromised by attacker or
not), indicated by st(v) 2 {0, 1}. It is assumed to be fully
observable for the attacker while the defender receives a noisy
observation ot(v) 2 {0, 1} of the state, based on commonly
known probabilities Pv(o | s) for each node v. Positive
observations are called alerts.

The attacker and defender act simultaneously at each time
step t. The defender’s atomic action is to defend a node, thus,
the atomic actions are simply V . The defender’s action space
is 2V , meaning it can choose to defend any subset of the nodes.
The attacker’s atomic action set varies with the graph state.
Exploits on an edge are feasible only if the origin node of the
edge is activated. Nodes without parents, called root nodes,
can be attacked without preconditions. The attacker’s action
space at any time step is the power set of feasible atomic
actions.

Defender actions override attacker actions, that is, any node
v that is defended becomes inactive. Otherwise, active nodes
remain active; attacks succeed not with certainty but with given
probability.

Each goal node, v, carries reward RA(v) for attacker and
penalty PD(v) for defender for all time steps in which v is
active. Any atomic action a of an agent has a cost: ca,D(v) for
nodes defended in case of defender; ca,A(v) for AND nodes
selection and ca,A(e) for edges selection in case of attacker.
For simplicity, we omit the argument (v or e) for action a

in the notation. When obvious from context we also drop the
subscript D and A, simply using va and ca to denote the target
node of a and the cost of action a respectively.

The defender’s immediate loss (negative reward) is the cost
of all its atomic actions (i.e., total cost of nodes defended),
plus the penalty for goal nodes active after the moves. The
defender’s long-term payoff is the discounted expected sum
of losses over time. Similarly, the attacker’s long-term payoff
is the discounted expected sum of immediate payoff, where the
immediate payoff is the reward for active goal nodes minus
the cost of atomic actions used in that time step.

A policy for either player (pure strategy in the game) maps
its observations at any step to a set of actions. For the attacker,
the mapping is from states to action sets. The defender only
partially observes state, so its policy maps observation histories
to action sets. In our implementation, we limit the defender to
a fixed length h of past observations for tractability. Solving
the game means finding a pair of mixed strategies (distribution
over pure strategies), one for each player, that constitutes a NE.

Game-Solving via Single-Agent RL.: Briefly, in the DO
framework, each player starts with an initial set of strategies
(policies) and then the following steps are repeated: (1) Com-
pute a Nash equilibrium (NE) of the current game; (2) Fix one
player’s strategy to the NE strategy (possibly mixed) and find
a best-responding strategy (policy) of the other player; (3) If
a better response policy is found for any player then add it
to the strategy (policy) set of corresponding player and go to
step 1 or else stop. For the second step, any single-agent RL
method for computing a best- (or better-) response policy can
be employed. Specifically, we use double DQNs [14] to find an
approximate best response here. We demonstrate the benefits
of our reward-shaping approach based on the second step
wherein defender or attacker plays against various opponent’s
strategies and then learning performance is measured. We also
show that our reward-shaping approach improves overall game
learning quality.

Action-Selection Procedure.: To construct an action set
for the single-agent RL problems, we follow the GASB
method by [8] (see Section II) endowed with reward shaping.
For completeness, a summary of GASB is in Appendix B.
We first propose a variant of GASB where infeasible ac-
tions are filtered. This variant, which we call Masking GASB
(MGASB), improves performance when available actions vary
with states—as they do for the attacker in the attack-graph
game; MGASB is same as GASB for defender. We choose
MGASB without reward shaping as our baselines.

Reward Shaping Details.: We elaborate reward shaping
details for both players due to the considerable literature on
applications of attack graphs [13], [15], [16].

Algorithm 1 shows our reward-shaping approach for the
attacker. In particular, if an attacker’s atomic action a suc-
cessfully compromises a goal node va (line 4), its immediate
reward ra (marginal contribution) is equal to the sum of
negative cost �ca and reward of that goal node RA(va) (line
5). Otherwise, it is only equal to the negative cost (line 7). At
each time step, the attacker also receives a reward, denoted by
Rex, from goal nodes compromised in previous time steps and
which are not yet defended. Rex can be zero if there are no
goal nodes already compromised from the last time step or if a
previously compromised node was defended. This extra reward
is independent of the current action, and the attacker gets this
reward irrespective of its current action. As the atomic action
pass is present with all actions, we assign this extra reward to
pass.

The dummy action pass should be chosen by the agent when
there is nothing to gain by including more atomic actions. To
enable the agent to learn when to choose pass, it needs to be
associated with an appropriate immediate reward. In general,
pass should get a zero reward, indicating that adding any other
atomic action would have negative impact. Our attack-graph
game has specific complications, as agents may receive extra
rewards from actions in prior time steps. For example, the
attacker continues to receive rewards Rex (and defender a
corresponding penalty) from compromised goal nodes until
the goal node is defended. Conceptually, the immediate reward

487

Algorithm 1 Attacker reward shaping with M.C.
1: Build attackSet and defendSet .
2: Both players deploy their action sets.
3: for action a in attackSet do
4: if a succeeds ^ va is a goal node then
5: ra RA(va)� ca

6: else
7: ra �ca
8: rpass Rex

Algorithm 2 Defender reward shaping with M.C.
1: Build attackSet and defendSet ; A defendSet

2: Both players deploy their action sets.
3: Calculate defender’s penalty L based on graph states.
4: for atomic action a in defendSet do
5: if va is a compromised node or under attack then
6: ra �ca
7: A A\{a}
8: for atomic action a in A [{pass} do
9: ra �ca � L

|A|+1

assigned to pass should reflect this excess because if an empty
atomic action set was chosen (that is, pass was chosen first),
the immediate reward of pass should indicate the reward of
staying in current state given opponent’s actions. Though this
Rex immediate reward for pass does not provide information
about the relative contribution of atomic actions at the current
time step, it is important as it is required for proper inter-
temporal accounting of rewards and action selection given
previous states.

Algorithm 2 shows our reward shaping for the defender. For
the defender, the reward of an action depends both on nodes it
protects through its atomic actions (defendSet in line 1) and
on compromised goal nodes that it fails to protect through an
absence of atomic actions. In order to account for the penalty
from the absence of atomic actions (L in the algorithm), we
distribute the penalty from such unprotected nodes to specific
atomic actions present in the action (set A ✓ defendSet in the
algorithm). In particular, any atomic action a that does protect
a compromised node or prevent a successful attack (line 5) is
excluded from A (line 7) and the immediate reward for such
atomic actions is just a negative cost �ca (line 6). Then, the
penalty L is equally distributed among the atomic actions in
A and pass (line 9).

V. EXPERIMENTS

We exhibit experimental results for large goods-matching
problems and complex attack-graph games. For goods-
matching problems, we apply our reward-shaping scheme to
the popular auto-regressive approach for building action set [3]
in environments with two scales. We show that the learning
performance improves dramatically with our reward shaping
scheme. We put experimental details in the Appendix A. In the

remaining of this section, we show and analyze experimental
details for attack-graph games.

For attack-graph games, we consider variations of experi-
mental settings from two perspectives: players’ rationality and
environmental structures. We first select two types of oppo-
nent’s strategies, e.g., a uniform strategy and a NE strategy,
representing different degree of rationality of opponent. We
demonstrate our approach is stable under different opponent’s
strategies.

We test our RS scheme on three types of graphs with dif-
ferent structures: random graphs (RG), separate-layer graphs
with OR nodes (SEP), and separate-layer graphs with AND
nodes (SEPA).

These graphs represent different degrees of difficulty for
defense and attack. Specifically, the separate-layer graph with
OR nodes is the easiest graph to attack since a node can be
activated if any one of its preconditions is satisfied. Corre-
spondingly defense on such graph is the hardest. In contrast,
the separate-layer graph with AND nodes is the easiest to
defend on and the most difficult to attack. The difficulty of
attacking a random graph lies in the middle as the attacker
needs to attack a reasonable number of nodes to reach a goal
node.

Results on Random Graphs.: As a base case, Figure 2a
shows the defender’s learning curve when training against an
attacker with uniform random policy, where shadows indicate
the maximum and minimum expected payoff in each epoch.
The defender’s performance under reward RS shows a steady
improvement and a faster convergence. The expected payoffs
of both methods are similar on convergence, though much
more samples are needed with MGASB to reach this state.
This highlights the contribution of our RS method towards
improving sample efficiency.

Figure 2b shows the defender’s performance against a
strategic attacker who plays a NE policy (strategy) of the
combined game. A combined game is the game with a strategy
set that includes all strategies from different iteration of the
DO. Comparing Figure 2a and 2b, we can observe that a
strategic attacker lowers the defender’s expected payoff, as
expected. In this scenario, RS is shown to be even more
helpful in the initial rounds of training, resulting in much
faster convergence compared to MGASB. Also, in order to
compute NE, learning a best-response policy in every iteration
of DO happens in a different environment (due to changed
opponent strategy). Thus, setting proper hyperparameters that
guarantee convergence in all iterations of DO is not trivial
in case of MGASB, more so because the learning curve in a
single iteration has very high variance (as seen in the figure).
Our RS scheme mitigates this problem to a large extent.

Results on Separate-Layer Graphs.: Figure 2c is for
a three-layer graph with OR nodes and a uniform random
policy attacker. As stated earlier, this is a difficult setting for
the defender and we observe that convergence takes more
training rounds. RS leads to much faster convergence, on
average requiring 500,000 fewer time steps and with much less
variance across runs. In contrast with the results on random

488

(a) RG: Def RS vs Uni. Att (b) RG: Def RS vs NE Att (c) SEP: Def RS vs Uni. Att

Fig. 2: Experimental Results

graphs, we observe an improved expected utility. We find that
the set of atomic actions that the defender needs to build
is large in separate-layer graphs, which exacerbates the two
issues that we identified with combinatorial actions. Hence,
the performance fluctuates tremendously for MGASB.

Attacker’s Results.: Analogous to the defender’s per-
formance under RS, the attacker’s performance exhibits a
steady improvement and converges faster in both scenarios.
We described attacker’s learning performance and our analysis
in Appendix E, where we also shed light on which among the
two issues affects the performance of reward-shaping more
and show other results on SEPA graph.

Better Learning Yields Stable NE.: To measure the
contribution of RS in learning a stable NE at the end of
DO iterations, we compare the performance of the resulting
strategies at NE by measuring their regrets with respect to the
NE of the combined game. The defender’s mean regret with
RS is 27.68 whereas for MGASB it is 19.04, which indicates
that RS encourages strategy exploration and improves NE
stability. We observe that without reward shaping GASB fails
to learn a better response that should have been learned at
certain rounds, which decreases the stability of NE.

VI. CONCLUSION

We studied efficient building of action sets with DRL for
problems with combinatorial action space. We identify the
homogeneous-action and sparse-reward issues in this domain,
and propose a novel reward-shaping approach that credits each
action with its marginal contribution towards the total reward
of an action set. Our results show substantial improvement of
policy learning where primitive actions have a diverse level of
contributions to optimal action sets.

REFERENCES

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of Go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[2] OpenAI, “OpenAI Five,” https://openai.com/blog/openai-five/, 2018, ac-
cessed 2018-06-25.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Hor-
gan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou,
M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard,
D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang,
T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney,

O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps,
and D. Silver, “Grandmaster level in StarCraft II using multi-agent
reinforcement learning,” Nature, vol. 575, pp. 350–354, 2019.

[4] J. He, M. Ostendorf, X. He, J. Chen, J. Gao, L. Li, and L. Deng, “Deep
reinforcement learning with a combinatorial action space for predicting
popular Reddit threads,” in Conference on Empirical Methods in Natural
Language Processing, 2016, pp. 1838–1848.

[5] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor,
“Learn what not to learn: Action elimination with deep reinforcement
learning,” in Advances in Neural Information Processing Systems, 2018,
pp. 3562–3573.

[6] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in 15th ACM Workshop on Hot
Topics in Networks, 2016, pp. 50–56.

[7] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser et al.,
“StarCraft II: A new challenge for reinforcement learning,” arXiv, Tech.
Rep. 1708.04782v1, 2017.

[8] M. Wright, Y. Wang, and M. P. Wellman, “Iterated deep reinforcement
learning in games: History-aware training for improved stability,” in 20th
ACM Conference on Economics and Computation, 2019, pp. 617–636.

[9] C. Tessler, T. Zahavy, D. Cohen, D. J. Mankowitz, and S. Mannor,
“Action assembly: Sparse imitation learning for text based games with
combinatorial action spaces,” arXiv preprint arXiv:1905.09700, 2019.

[10] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures
for deep reinforcement learning,” in 32nd AAAI Conference on Artificial
Intelligence, 2018, pp. 4131–4138.

[11] L. S. Shapley, “A value for n-person games,” Contributions to the Theory
of Games, vol. 2, no. 28, pp. 307–317, 1953.

[12] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat,
D. Silver, and T. Graepel, “A unified game-theoretic approach to mul-
tiagent reinforcement learning,” in 31st Annual Conference on Neural
Information Processing Systems, 2017, pp. 4190–4203.

[13] E. Miehling, M. Rasouli, and D. Teneketzis, “Optimal defense policies
for partially observable spreading processes on Bayesian attack graphs,”
in 2nd ACM Workshop on Moving Target Defense, 2015, pp. 67–76.

[14] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in 30th AAAI Conference on Artificial Intelli-
gence, 2016, pp. 2094–2100.

[15] T. H. Nguyen, M. Wright, M. P. Wellman, and S. Singh, “Multi-stage
attack graph security games: Heuristic strategies, with empirical game-
theoretic analysis,” Security and Communication Networks, vol. Article
ID 2864873, 2018.

[16] K. Durkota, V. Lisỳ, B. Bošanskỳ, and C. Kiekintveld, “Optimal network
security hardening using attack graph games,” in 24th International Joint
Conference on Artificial Intelligence, 2015, pp. 526–532.

[17] K. Durkota, V. Lisỳ, C. Kiekintveld, B. Bošanskỳ, and M. Pěchouček,
“Case studies of network defense with attack graph games,” IEEE
Intelligent Systems, vol. 31, no. 5, pp. 24–30, 2016.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

489

	Building action sets in a deep reinforcement learner
	Citation

	Building Action Sets in a Deep Reinforcement Learner

