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Abstract—Natural human interactions for Mixed Reality Ap-
plications are overwhelmingly multimodal: humans communicate
intent and instructions via a combination of visual, aural and
gestural cues. However, supporting low-latency and accurate
comprehension of such multimodal instructions (MMI), on
resource-constrained wearable devices, remains an open chal-
lenge, especially as the state-of-the-art comprehension techniques
for each individual modality increasingly utilize complex Deep
Neural Network models. We demonstrate the possibility of
overcoming the core limitation of latency–vs.–accuracy tradeoff
by exploiting cross-modal dependencies–i.e., by compensating for
the inferior performance of one model with an increased accuracy
of more complex model of a different modality. We present a
sensor fusion architecture that performs MMI comprehension
in a quasi-synchronous fashion, by fusing visual, speech and
gestural input. The architecture is reconfigurable and supports
dynamic modification of the complexity of the data processing
pipeline for each individual modality in response to contextual
changes. Using a representative “classroom” context and a set of
four common interaction primitives, we then demonstrate how
the choices between low and high complexity models for each
individual modality are coupled. In particular, we show that (a)
a judicious combination of low and high complexity models across
modalities can offer a dramatic 3-fold decrease in comprehension
latency together with an increase ∼10-15% in accuracy, and (b)
the right collective choice of models is context dependent, with
the performance of some model combinations being significantly
more sensitive to changes in scene context or choice of interaction.

Index Terms—sensor fusion, mixed reality, multimodal inter-
actions

I. INTRODUCTION

The rapid growth in the sensing capabilities of mobile and
wearable devices, together with advances in machine learning-
based perception, has spawned growing interest in the Mixed
Reality (MR) applications across various domains [1], [2].
Broadly speaking, MR seeks to present users with a richer
interaction and instructioning capability over a combination
of both (a) synthetically-generated virtual objects, and (b)
real-world objects located in the user’s physical world. MR-
based interaction now encompasses both unimodal [3] and
multimodal [4] paradigms. In general, unimodal interaction
(e.g., via touch-screen interactions) is easier to parse, but
is less natural, for two reasons: (a) human instructioning
and interaction is inherently multimodal, employing voice,
vision, gestures and touch, and (b) the constraints of uni-
modal technologies often imply the use of unnaturally longer

sequence of actions & instructions. Indeed, certain modalities
may be better adapted for certain types of interaction tasks–
for example, speech is better for describing object attributes
such as type and color, whereas gestures are more powerful
for disambiguating object location.

To enable truly interactive MR applications, it is important
to support such multimodal instructioning and interaction
capability in a real-time fashion–e.g., with a system response
latency that does not exceed 1-2 secs. Multi-modality has
thus emerged as a powerful paradigm for improving the
effectiveness of real-time MR interaction, with a large body of
work demonstrating that multi-modality can (a) enhance the
overall expressiveness of interactions [5], (b) reduce overall
interaction time [5], (c) increase interaction accuracy [6] and
(d) support more natural interaction [6]. Moreover, multi-
modal interactions (MMI) are very effective in overcoming the
natural ambiguity in intent expression that exists in unimodal
systems. For example, in a study room scenario where several
people are in the same MR realm, instructional ambiguity can
arise due to imprecise perspectives [7], such as the speech
command “look at this book” which involves the deictic
expression this. Using further verbal elaboration of “this” to
overcome this ambiguity is decidedly unnatural and requires
more human effort. An intuitive and alternative disambiguation
approach is to introduce another modality (such as a pointing
gesture directed towards the object referred to by the “this”
qualifier) [8]. This can also be viewed as providing more
contextual evidence, with the gestural modality effectively
providing additional context [9] in addition to linguistic cues.

Most unimodal sensing and comprehension pipelines, how-
ever, explicit a natural latency vs. accuracy tradeoff, that poses
a challenge to our natural desire for low-latency, accurate
interaction. This tradeoff problem has exacerbated with the
recent explosion of Deep Neural Network (DNN) models for
perception tasks in vision and speech [10], [11]–while such
DNNs can increase accuracy significantly, they are often im-
possible to execute on resource-constrained wearable devices
and must be offloaded to a GPU-rich, cloud infrastructure
which imposes non-trivial additional network latency.

Our work in this paper explores the implications of such
performance tradeoffs in MMI-based MR scenarios, with a
view to developing techniques to “flatten this accuracy-vs-
latency curve”— effectively, allowing wearable devices to ex-
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ploit the enhanced accuracy of multimodality without suffering
the penalty of significantly longer execution latency. More
specifically, the work is driven by two observations:

• Current MMI designs perform algorithm selection of indi-
vidual modalities in isolation, rather than jointly. In other
words, the choice between a (more complex, higher-delay)
DNN model vs. a (less complex, lower latency) alternative
for visual object recognition is determined independently of
similar choices made for other modalities. This is arguably
sub-optimal as it ignores the possible interactions between
different modalities, and the possibility that errors in one
particular modality might be sufficiently compensated by
improved capabilities of another modality.

• Besides not being optimized jointly, the current algorithm
choices are also not adaptive–i.e., they typically tend to have
a predefined fusion logic across different input modalities,
independent of context. For example, for an MR application
that combines audio and gestural cues, it will continue
to execute a pre-defined fusion process even if, in certain
situations (e.g., a very sparse, spatially well-separated layout
of books in the aforementioned study room), the gestural
input may have sufficient discriminative ability, making high
verbal comprehension accuracy unnecessary.

Our contribution is to propose a sensor fusion architecture
for such interactive MR applications, targeted to resource-
constrained wearable devices, that can address the above-
mentioned limitations. We design an architecture that is con-
figurable–i.e., it allows the different sense-making pipelines
for each individual modality to be configured or modified,
to better match (a) different types of environmental context
(e.g. classrooms, conference rooms, and industrial settings),
and (b) varying performance characteristics of the underlying
system (e.g. clock speed, RAM size and network latency). The
architecture is designed to handle the asynchronous execution
of each modality’s perception pipeline. While our proposed
architecture is generic, we specifically instantiate and evaluate
it for fusing three common modalities: vision, speech, and
gestures. Using state-of-the-art DNN-based pipelines for each
modality, we experimentally show that the judicious joint
selection of modality-specific perception pipelines helps to
significantly improve the MMI latency-vs-accuracy tradeoff.
Key Contributions: This paper makes the following key
contributions:

• Configurable Multi-modal Fusion Architecture: We propose
an asynchronous sensor fusion approach for multimodal
instruction comprehension (a key building block of MMI),
which combines the inferences from different modalities
in a flexible fashion, while allowing the sense-making
pipelines of individual modalities to be adaptively modified
in response to changing environmental or device context.
The proposed architecture utilizes soft-synchronization via
communication queues to coordinate inputs across different
modalities, while accommodating the differences in process-
ing latency for each modality-specific inferencing pipeline.

• Demonstrate Coupled MMI Tradeoffs across Modalities:

By profiling a multiplicity of different inferencing models
(varying from low to high complexity), we first characterize
the accuracy vs. latency characteristics for each modality.
We subsequently perform multimodal fusion, under these
varying low←→high complexity alternatives, to quantify
the overall impact on the performance of multimodal in-
struction comprehension. We show that the intelligent ex-
ploitation of compensatory synergies across different modes
has significant impact: for example, (a) we can reduce
latency by 10+% without any loss of accuracy, and (b)
maintain high comprehension accuracy while lowering the
CPU utilization by ∼7%.

We believe that our work provides tangible evidence of the
benefits of a adaptive fusion model for pervasive multimodal
instruction comprehension, and should motivate future work
on developing context-adaptive MMI systems that can improve
the efficiency of instruction comprehension by dynamically
adapting the individual sense-making pipelines.

II. RELATED WORK

We describe past work on both (a) mixed reality interactions
and (b) the broader topic of multimodal sensor fusion.

A. Mixed Reality Interactions

Auditory Modality: Hughes et al. [12] emphasized the use
of audio/speech as a modality to interact with non-linear
MR environments, highlighting the importance of employing
3D surround technologies to enrich immersive experiences.
Audio/speech interactions are vital to natural MR interactions,
as it has been demonstrated [13] to be the primary modality
for natural human communication. Use of different auditory-
related technologies such as surround [14], binaural [15] and
3D [12], enrich the user experience of MR applications.
Gesture Modality: Gestures have been widely used to convey
(or clarify) human intent, in a variety of MR applications. In
particular, gestures such as pointing, grabbing, or stretching
have been shown to increase the immersiveness of these
systems [16]. Contact- and vision-based devices are the two
main technologies in gesture recognition systems [17]. A
physical interfacing device captures the interaction of the user
in the systems that have employed a contact-based device.
The latter approach captures gestures with different kinds of
cameras, e.g., depth camera, stereo camera, web-camera, etc.
Visual Modality: In MR realms, visual modality is especially
important as it displays both digitally synthesized and real-
world physical objects, permitting seamless interaction with
both object types [18]. A key factor for an effective MR
experience is modeling a seamless boundary between the real
and virtual objects, so that interacting with either presents no
discernible difference [19]. Technologies such as see-through
screens and opaque HMDs make the visual interactions pos-
sible in various application domains, e.g., education [20] and
training & simulation [21].



B. Multimodal Sensor Fusion

There is a significantly large body of academic work in the
past on the fusion of different sensing modalities to extract a
variety of insights in different domains [22]. In [23], Sargin
et al. applied Hidden Markov Models (HMM) to interpret
the correlation between gestures (for example, head gestures)
and speech. Asano et al. presented a Bayesian network-
based approach for detecting speech events, using both 1)
sounds captured by an array of microphones and 2) human
gestures captured by video sensors [24]. A similar use case
was investigated in [25], to perform audio localization and
thereby separate multiple speakers from one other and from
surrounding noise. Hara et al. [26] also present a similar so-
lution, using Bayesian Networks to isolate and extract speech
utterances by specific individuals involved in interactions with
robotic agents. Hol et. al. [27] apply Kalman filters to fuse
trajectories estimated from inertial and vision sensors, to
accurately identify camera dynamics (such as orientation and
position) for AR applications. These techniques are leveraged
in applications presented in [28], which primarily fuse visual
and auditory cues for a natural human-agent interaction.

III. PROPOSED APPROACH FOR MMI-DRIVEN SENSOR
FUSION

Sensor fusion methodologies can be categorized into multi-
ple types [29]: (a) data fusion combines data from several
sources; (b) feature fusion extracts features from various
modalities and embeds them into a composite feature map
for final inference; while (c) decision fusion involves fus-
ing decisions generated by multiple independent inferencing
models. To support the fusion of visual, speech, and gestural
modalities (the 3 input modes most commonly used in natural
interactions), we propose an architecture that consists of
multiple independent subsystems (engines). The Vision, Aural,
and Gestural engines perform modality-specific inferencing
tasks, including object detection, speech recognition and text
classification, and gesture recognition, respectively. The final
outcome of a user interaction is based on a decision fusion of
the output of these individual inferencing pipelines.

Figure 1 illustrates the functional architecture of our pro-
posed fusion framework. The outputs of each modality-specific
Engine are exchanged via a common Communication Queue,
which performs soft timestamp matching of token sequences
output by each engine before feeding them into the Fusion
Engine. As mentioned, state-of-the-art methods for each En-
gine often include complex DNN models, thus presenting
significant challenges for low-latency execution on resource-
constrained devices. To study the interplay between these
different Engines, we shall test our framework with several
different combinations of Engine-specific models and identify
the resulting tradeoff between overall system accuracy and
latency. We now further describe the individual components
(Engines) of our overall system.

Vision engine: The purpose of this subsystem is to recognize
the objects with which the user interacts. This component takes
raw images as input and feeds them to an object detection

Fig. 1: High-level fusion architecture

algorithm. Afterward, its predictions are relayed to the Fusion
engine. Once the object is identified by the object detection
algorithm, the objects are tracked across successive frames
by an object tracker, namely KCF (Kernelized Correlation
Filter) [30], which helps to reduce the computational overhead.

Aural engine: This subsystem is responsible for transcribing
users’ utterances and classifying them to infer the user’s
action (or command). The speech modality is considered to
be the primary input interaction modality of our system. An
Automatic Speech Recognition (ASR) algorithm consumes the
pre-processed captured audio signal before being fed into a
text classification algorithm, which requires encoding text into
a data structure appropriate for both training and inference.
In order to extract the object with which user interacts, the
utterance is passed through a hash table in which the keys are
the names of objects and values are pre-defined identifiers.
Multiple keys can have the same identifier since an object
can have synonyms (e.g., mobile phone or smart phone).
Afterward, a token consisting of the following three attributes
is sent to Fusion engine: (1) operation-id which is an identifier
for the intended operation, (2) object-id which is an identifier
for the object, and (3) multiplicity which denotes whether or
not the user mentioned multiple objects.

Gestural engine: Humans typically use hand gestures to
supplement and disambiguate their vocal instructions. Accord-
ingly, the gestural engine’s goal is to classify gestures not
only to identify interaction primitives, but to also support
the refinement of issued voice commands. The vision-based
devices are widely used in gesture recognition system as
the contact-based methods can be detrimental to health [17].



Therefore, we choose to implement this engine with a vision-
based device. This engine currently uses a Leap Motion
Controller 1 to capture depth images of the hand, which are
then processed by a classifier to identify the gesture performed
by the user. Finally, the inferred gesture label is relayed to the
Fusion engine via a token.

Fusion engine: This subsystem performs fusion of the
three modalities mentioned above to identify the interaction
performed. In our current framework, this fusion is triggered
via the inputs of Aural and Gestural engines. Both of them
will enqueue a token into a synchronized queue, with the
tokens being subsequently consumed by the Fusion engine.
The Fusion engine triggers the Object detector in the Vision
engine to identify the relevant objects. The Fusion engine
waits for 5 secs (this is configurable) for the output of the
Vision engine. The objects returned by the Vision Engine
(these objects have the same taxonomy as the objects identified
by the Aural Engine) are compared with the object identifiers
from the Aural and Gestural engines to identify a matching
target. However, if the primary object detection algorithm fails
to identify the corresponding object, the Fusion engine signals
the Vision engine to switch to another higher-accuracy, high-
latency alternative object detector. Once the corresponding
(target) object has been determined, the Fusion engine signals
the Vision engine to continue tracking this object.

IV. TEST ENVIRONMENT AND IMPLEMENTATION

To effectively demonstrate the capabilities of this archi-
tecture and study the tradeoffs between different instruction
modalities, we decided to narrow down the implementation
to fit a constrained scenario—one involving interactions in a
class/study room. By carefully studying the operations and
activities that would be possible in such a well-defined context,
we would be able to first select a set of suitable modality-
specific classification models and then study the individual
and coupled accuracy-vs.-latency tradeoffs. In the selected
scenario:
• The vision-based object detection pipeline is optimized to

detect generic items typical of a classroom environment,
including a laptop, keyboard, monitor, mobile phone, book,
bottle and cups.

• The size of the vocabulary of the utterances, for the aural
engine, is set to 188 (after filtering the stop words of a set
of utterances that we gathered to describe and locate the
aforementioned objects in different ways).

• The system focuses on recognizing 4 distinct gestures: (1)
pointing, (2) zoom-in, (3) zoom-out, and (4) capture.
Our implementation supports 4 main operations as depicted

in Table I.
Locate: “Locate” operation is performed when the user wants
to search for an object in the real world, within the visual
frame of the camera.
Zoom: The ”Zoom” operation is a fusion of visual and
gestural modalities, which together result in an enlargement

1https://www.ultraleap.com/product/leap-motion-controller

Operation Interaction
Modalities

Use-case Output

Locate Visual and
speech

Searching for an object
in the real environment
with an utterance.

Identified object
highlighted in the
video feed.

Describe Visual,
speech,
and
gestural

Learn more about an
object with an utterance
and/or a pointing ges-
ture

Several
properties of
an object are
superimposed on
the display.

Zoom Visual and
gestural

Zoom into the frame to
make interactions with
smaller objects easier

The current video
feed is enlarged.

Capture Visual and
gestural

Saving the current
frame(s) for future
reference

An instance of
the video feed is
saved as an im-
age.

TABLE I: Fusion operations

of the video feed displayed on the wearable device. While
most past work on MR applications involve human interactions
with nearby objects, it is known that interactions with distant
objects is more challenging [31]. To overcome instructional
ambiguity for such distant objects, the Zoom gesture is used
to enlarge an appropriate portion of the video frame.
Describe: In the ”Describe” operation, a user can perform
an action, using speech and/or gestural modalities, to elicit a
descriptive feedback from the MR application. The execution
branches depending on the semantics of the speech command
(i.e. whether the command is explicit or ambiguous). Ambigu-
ous Describe commands may come about with the use of the
word this, in which case the system will automatically look for
gestural inputs. For example, the user may utter “What is this
book”, together with a corresponding pointing gesture. In this
case, our system first identifies the inherent ambiguity in the
referring expression “this“, and then incorporates the sensed
pointing gesture to identify the referred object. Another way
in which a command can be deemed ambiguous depends on
the speech command coupled with the environmental context.
This entire fusion process is executed in three steps:

1) Inferring speech command: The token passed by Aural
engine consists of the object identifier and its multiplicity.
This operation can be implicitly ambiguous when the
utterance includes this keyword, hence there are two types
of operation-ids for the describe operations.

2) Localizing the object: The vision engine scans the current
video feed to find the object(s) specified by the token
output of Aural Engine. The detection of the hand is
necessary in cases where the user has issued an ambigu-
ous command, thus scanning for elements of two object
classes, (a) the object and (b) the hand of the user, is
needed. In such cases, the nearest (relevant) object is
estimated by comparing its relative distance to the hand
if a pointing gesture is detected (by examining the token
passed by Gestural engine).

3) Resolving the ambiguity: The overall command can either
be explicit operation (in which the user’s intention is

https://www.ultraleap.com/product/leap-motion-controller


executed as it is) or ambiguous (in which additional
information is required to perform correct comprehen-
sion). Ambiguity in the speech command may occur
due to mismatch between the multiplicity of an object
mentioned in an utterance and the number of instances
of the particular object detected by the Visual Engine.
When the user mentions only one instance of an object
but the Visual Engine detects multiple object instances,
disambiguation of the utterance is performed with the aid
of the pointing gesture.

Capture: The Capture command is a relatively trivial one,
that causes the system to record and archive of the video feed
for future reference.

A. Implementation Details

Our sensor fusion architecture is designed to be eventually
deployed on wearable head-mounted display (HMD) smart-
glasses. For our current studies, which focus on exploring
the tradeoff space across different modalities, we execute the
developed framework on a desktop-class machine. All our
experimental studies (results to be detailed in Section V-B)
are conducted on a desktop machine with an Intel Core i5-
8300H processor (a 4-core CPU which can operate upto 4
GHz), 16 GB of RAM, and one Nvidia GTX 1060 GPU with
6GB of VRAM.

Our code is implemented in Python. The various DNN
components are implemented using Tensorflow2, while the
other non-DNN ML models are implemented with Scikit-
learn3. Additionally, we use OpenCV4 to execute the image
processing tasks, NLTK5 to preprocess the inputs for text
classification, and PyKaldi6 as a Python wrapper for Kaldi7

to implement on-device speech recognition.

V. EXPERIMENTS

Our overall system is designed to be modular and
configurable–i.e., allow the specific instance of each individual
component (e.g., speech recognition, object detection algo-
rithms) to be modified, without affecting the overall fusion
logic. To evaluate the interplay between the performance
profiles of each component and the performance of the overall
fusion engine, we adopt a “divide-and-conquer” approach [32],
where we first evaluate each subsystem independently and then
study the results of their coupled interaction.

A. Subsystem Evaluation

To understand the tradeoff between accuracy and computa-
tional overhead, we choose two representatives for each such
sub-system/component: H represents a model instance with
higher computational requirements and likely higher accuracy,
while L denotes the model instance with low computation
requirements.

2https://www.tensorflow.org
3https://scikit-learn.org/stable/
4https://opencv.org
5https://www.nltk.org
6https://pykaldi.github.io/
7https://kaldi-asr.org/

Algorithm mAP FPS

SSD Inception v2 0.797 39
YOLO v3 0.963 12

TABLE II: Results obtained from object detection algorithms

1) Object detection: In general, two-stage detectors outper-
form one-stage detectors in terms of detection accuracy, but
they are computationally intensive for wearable platforms [33].
Therefore, we chose two state-of-the-art one-stage object
detection algorithms, namely, SSD [34] and YOLO v3 [35],
and empirically evaluated their performance based on two
parameters: speed, defined as the number of processed frames
per second (FPS), and accuracy, defined by mean average
precision (mAP) of object detection. We first employ transfer
learning to re-train the detection models (which were initially
trained for the COCO dataset [36]) with labeled data matching
our class/study environment. We manually prepared a nearly
balanced dataset comprising 2095 instances of 10 objects
(laptop, keyboard, mouse, monitor, mobile phone, bottle, cup,
pen, book, and hand); this dataset allows the object detector to
be trained to recognize a sufficiently diverse, but finite number
of object classes.

Table II depicts the performance of re-trained models.
YOLO v3 is regarded as a high computational (H) model, as
it has significantly higher latency, but outperforms the other
algorithm in terms of accuracy. SSD Inception V2 model has
been chosen as a low computational (L) model as it can
achieve a higher throughput (higher number of frames per
second), albeit at the expense of a lower accuracy.

2) Automatic Speech Recognition: The resources of a wear-
able device (the eventual target for our proposed MMI system)
will be significantly constrained, especially for multimodal
comprehension where multiple ML models will need to be
executed concurrently. Accordingly, we explore various alter-
natives for ASR (automatic speech recognition) that exhibit
moderate to high accuracy and relatively low computational
overhead. The algorithms that were tested include Deep-
speech8, Kaldi9, and IBM Watson Speech-to-text10 on the
cloud.

Table III tabulates our experimental results. Note that tools
like IBM Watson offload the computation to the cloud and
are thus suitable for resource-constrained devices, even though
the additional round-trip propagation latency is likely to cause
perceptible lag in an interactive system, especially under
limited network bandwidth. Accordingly, we designate IBM
Watson as the L model with low computational overhead,
while Kaldi, which provides a relatively high accuracy (low
word error rate (WER)) with relatively low transcription time
but imposes higher local computation, is chosen as the H
model. The use of Kaldi along with the extended ASpIRE
model11 provides good results with an acceptable latency of

8https://github.com/mozilla/DeepSpeech
9https://kaldi-asr.org/
10https://www.ibm.com/cloud/watson-speech-to-text
11http://kaldi-asr.org/models/m1

https://www.tensorflow.org
https://scikit-learn.org/stable/
https://opencv.org
https://www.nltk.org
https://pykaldi.github.io/
https://kaldi-asr.org/
https://github.com/mozilla/DeepSpeech
https://kaldi-asr.org/
https://www.ibm.com/cloud/watson-speech-to-text
http://kaldi-asr.org/models/m1


WER Transcription Time

DeepSpeech 13.59% 2.9s
Kaldi 15.60% 1.5s
Modified Kaldi 12.50% 1.5s
IBM Watson Speech-to-Text 5.50% 2.5s

TABLE III: Performance of speech detection algorithms

Algorithm Precision Recall F1-Score

SVM (Linear Kernel) 0.927 0.915 0.920
NN 0.910 0.486 0.647
LSTM 0.978 0.973 0.977

TABLE IV: Accuracies of text-classification models

processing. This model was modified by creating our own
dictionary and language model using context specific grammar
and merging them with the original dictionary and language
models of ASpIRE. The resulting enhanced model increased
the likelihood of recognizing the context-specific words for
our scenario.

3) Text Classification: To support high-accuracy text classi-
fication, we developed a modified Long-Short Term Memory
(LSTM) neural model as LSTM-based models have proven
to be extremely popular for text analysis [37]. We adopted
a word embedding layer which learns the multidimensional
mapping of the input vector. Each test utterance is tokenized
using word counts learned in the training process (the training
process uses the data from the speech engine to learn a
dictionary where the counts of words are stored) which are
then fed into trained DNN. Confirming results reported pre-
viously, we observed that the sequential approach is superior
to a simpler bag-of-words (BoW) approach. For example, for
an utterance such as ‘‘Show me the details of the
book’’, the LSTM model correctly classifies the instruction
as Describe, whereas a BoW model would incorrectly label
this as a Locate instruction. While our LSTM model is
not perfect, we find that the accuracy is sufficiently high
for our MMI scenarios, where utterances will be further
disambiguated by additional complementary modalities. The
model was trained with a dataset consisting of 700+ utterances
belonging to 3 distinct operations: (1) locate, (2) describe
and (3) no op, with no op representing a ‘null’ class to
capture non-command utterances (which arise as the system
is continuously listening to the user). As an alternative to the
LSTM model, we also tested two alternative modes: (a) a
vanilla neural network (NN) and (b) a Support Vector Machine
(SVM) model as well. Table V tabulates the results. As the
precision and recall of NN is much lower compared to the
other two models, we then settle on the LSTM and SVM
models as the H and L models, respectively.

4) Gesture recognition: We collected data from 20 users
performing a total of 260 samples of 4 distinct gestures:
pointing, zooming in and out, and capture. Using this dataset,
we formulated two features, namely single-finger (euclidean
distance between the palm center and the fingertip of each
finger) and double-finger features (euclidean distances be-
tween adjacent fingertips) using an approach similar to what

Algorithm Precision Recall F1-Score Latency

LSTM NN 0.78 0.77 0.77 2.2ms
NN 0.77 0.77 0.77 1.5ms
SVM (Linear kernel) 0.74 0.72 0.72 0.1ms

TABLE V: Performance of gesture classification models

is presented in [38]. Based on the observed time taken to per-
form a gesture (mean=487ms, std=197ms) and the sampling
frequency (145 Hz) of Leap Motion Controller, we aggregate
features from 30 samples and feed this aggregated feature set
into an LSTM-based classifier. As before, the LSTM model
is compared with two other models: (a) a Support Vector
Machine (SVM) and (b) a vanilla Neural Network (NN).
Although the accuracy of LSTM and NN models (detailed
in Table V) are roughly comparable, LSTM was chosen over
NN because of its higher precision. LSTM and SVM models
were similarly chosen as H and L model, respectively.

B. Fusion-based System Evaluation

The performance of the sensor fusion architecture can
be modeled as a function of 4 algorithms, namely, object
detection (OD), automatic speech recognition (ASR), text
classification (TC), and gesture recognition (GR). We chose
two models (H and L) for each algorithm and evaluated
the latency of the system (time taken to display the output
for 5 frames from the start of an action). If the system
utilizes a cloud-based service, the latency figures include the
additional overhead of network communication. To compute
latency, two fusion operations, Locate (O1) and Describe
(O2), are considered as they require multimodal interactions,
whereas Zoom and Capture operations are determined solely
via gesture recognition. Each operation was repeated 30 times–
i.e, the study involved 30 different utterances with different
objects, for both the Describe and Locate operations).

Because the comprehension accuracy is a function of not
just the choice of algorithms but also the environmental
context, we evaluated the performance of different fusion
strategies under two distinct contexts: (a) Context A in which
5 objects (4 large objects and 1 small objects) are placed at
a distance of 1 meter from the observer; and (b) Context B
in which 5 different objects (3 large and 2 small objects) are
placed at a distance of 2 meters. To understand the impact
of different algorithm choices (H vs. L) in detail, we also
measured the resource consumption in terms of usage of RAM,
VRAM, CPU and GPU resources.

Table VI tabulates the observed latency and accuracy values,
for 24 = 16 different combinations of the individual model
pipelines, as well as the corresponding consumption of com-
puting resources. Note that the Locate primitive (O1) does not
involve the use of a gestural input; accordingly, the latency and
accuracy numbers for O1 are evaluated only for 23 = 8 distinct
combinations. We make the following key initial observations:
• The overall latency of the fusion process is roughly constant

across different contexts and operator primitives, given
a specific combination of (OD, ASR, TC, GC) models.
However, the latency exhibits significant variation across



Algorithm Context A Context B Resource ConsumptionLatency (msecs) Accuracy (%) Latency (msecs) Accuracy (%)
OD ASR TC GR O1 (Loc.) O2 (Desc.) O1 (Loc.) O2 (Desc.) O1 (Loc.) O2 (Desc.) O1 (Loc.) O2 (Desc.) RAM CPU GPU VRAM

H H H H 1209 1276 90.2 87.0 1255 1290 77.8 72.0 6217 38 32 5657
H H H L 1265 77.3 1282 64.0 6155 31 31 5597
H H L H 1152 1187 90.2 87.0 1187 1194 77.8 72.0 5949 31 31 5597
H H L L 1180 77.3 1185 64.0 5890 31 31 5753
H L H H 3171 3296 60.0 75.0 2864 3089 49.6 60.0 5195 35 23 5658
H L H L 3253 66.7 3140 53.3 5110 34 24 5597
H L L H 3102 3190 60.0 75.0 3048 3149 49.6 60.0 4904 35 24 5597
H L L L 3211 66.7 3007 53.3 4854 34 19 5755
L H H H 846 919 71.5 69.0 860 877 52.9 51.0 3479 53 17 3479
L H H L 916 61.3 859 45.3 3411 53 17 3617
L H L H 789 844 71.5 69.0 782 784 52.9 51.0 3197 53 18 3617
L H L L 834 61.3 780 45.3. 3170 51 17 3556
L L H H 2727 3001 52.2 60.0 2656 2584 36.5 42.0 2444 37 15 3678
L L H L 3065 53.3 2665 37.3 2383 37 15 3617
L L L H 2774 3007 52.2 60.0 2664 2602 36.5 42.0 2172 39 18 3617
L L L L 2745 53.3 2552 37.3 2116 39 18 3554

TABLE VI: Performance comparison of different model combinations (OD[L] - SSD, OD[H] - YOLO, ASR[L] - IBM Watson, ASR[H] -
Kaldi, TC[L] - SVM, TC[H] - LSTM, GR[L] - SVM, GR[H] - LSTM)

different model choices–e.g., for O1, the latency can vary
from approx. 850 msecs (for the (L,H,H) tuple) to over
2700 msecs (for the (L,L,L)) combination. Interestingly, the
choice of ASR = L results in a significant increase in
computation latency, due to the added network latency of
interacting with the cloud-based ASR engine.

• While there is still an overall trend of a tradeoff between
overall complexity and accuracy, the tradeoff is not linear
in the performance of individual components, but varies due
to the coupling across the different modalities. For example,
for the case of the O2(=Describe) primitive, the accuracy
numbers for (H,H,L,H) and (H,H,H,H) are both approximate
equal, reaching a value of 87% for context A and 72% for
context B, respectively. The choice of a lower complexity
TC model does, however, result in significantly lower re-
source overhead–e.g., the CPU utilization reduces by ∼7%–
and a nearly 100msec reduction in latency. Clearly, in this
case, TC = L is a preferred choice, as it results in lower
processing overhead and latency without any concomitant
negative impact on system accuracy.

Latency vs. Accuracy for different Contexts: We next
study the impact of different environmental contexts on this
overall latency-vs.-accuracy tradeoff. Figures 2 and 3 plot the
variations in accuracy and latency for both contexts A and B,
for the cases of the Locate & Describe operators, respectively.
We can see that the relative performance is context dependent.
For example, context B (which has a more distant view of ob-
jects) observes a steeper drop in accuracy as we progressively
select less complex models. In particular, with the increased
distance to the observed objects (context B), the accuracy of
the SSD (OD=L) algorithm becomes significantly inferior to
that obtained by the use of YOLO (OD=H). On the other hand,
both TC = L and TC = H models show similar performance
in terms of accuracy across different contexts, implying that
the SVM-based classifier (TC=L) model is preferable for
both contexts. The overall latency variation also differs across
contexts–e.g., for the Locate operator, the (H,L,L) combination
incurs higher latency for Context B but lower latency for
Context A, compared to the (H,L,H) combination.

(a) Context A (b) Context B

Fig. 2: Tradeoff between accuracy and latency in locate
operation

(a) Context A (b) Context B

Fig. 3: Tradeoff between accuracy and latency in describe
operation

Latency vs. Accuracy for Different Operators: Figures 2
and 3 also help us study and evaluate the impact of different
model choices, for different interaction operations. We see that
the Describe operation experiences a higher latency (almost
100 msecs higher for the (H,L,H,H) combination), compared
to the latency experienced by an identical model applied to the
Locate operation. Moreover, there are significant differences
in the resulting accuracy. In general, for an identical selection
of model choices, the Describe operation has approx. 10-15%
lower accuracy. However, most interestingly, this degradation
in accuracy is not universal across all model choices. Note,
for example, that (H,L,L,H) has approx. 15% higher accuracy
for the Describe operation, compared to the corresponding
accuracy for the Locate operator. In this case, the additional
information provided by the recognition of the pointing gesture
helps to isolate the target object much more precisely, without
a significant increase in the overall processing latency.

Effect of resource utilization on latency: From the results



obtained and plotted in Table VI, it is clear that the choice of
different models can result in very different profiles of resource
consumption as well. For example, we observe that for the
object recognition pipeline, the YOLO model (OD=H) utilize
significantly more resources (49% in RAM, 35% in GPU, and
36% in VRAM) compared to SSD (OD=L), but with lower
CPU usage (35%). Consequently, the choice of SSD seems to
reduce the latency by 17 - 22%. Similarly, the use of a cloud
offloading for ASR results in a significantly higher processing
latency (approx. 180-200% higher), due to the network latency.
However, the resource consumption in terms of RAM (24%)
and CPU (10%) are slightly lower compared to the alternate
on-device implementation.
Key Takeaways: Our detailed performance results demon-
strates the absence of an universally superior combination of
models–the choice of models and the consequent accuracy vs.
latency tradeoff depends on the complexity of the environ-
mental context and the interaction primitive being performed.
For the specific Study Room setting that we analyzed, 3
combinations emerge as suitable candidates under different
contexts: (1) HHLH, a combination that imposes high CPU
and GPU overhead, but is suitable for scenarios where high
accuracy and low latency are essential, (2) LHLH, which
is a CPU-intensive (high RAM and CPU usage and low
GPU usage) combination and is suitable for contexts where
latency is prioritized over the accuracy, and (3) LLLH which
is especially appropriate for situations where the accuracy and
latency constraints are less stringent.

VI. DISCUSSION

While our work establishes the non-obvious coupling be-
tween the computation pipelines of different modalities (and
the resulting latency vs. accuracy tradeoffs), there are, however
several issues that need additional exploration.
Automatic Inference of Context (Scene Complexity): Our
work shows that the right choice of model combinations
is context dependent. However, for practical application of
context-based model selection, the context itself must first
be determined. Context determination itself (e.g., whether
the current physical scene is cluttered or only has a few
objects) requires additional computation, and the benefit of
context-dependent model adaptation may be negated if the
context determination process itself has high complexity and
latency. Accordingly, developing low-complexity, lightweight
complexity estimators is an important prerequisite for our
proposed operational model.
Incorporating History in the Interaction Comprehension
Pipeline: Our current experimentation settings and results
utilize a memoryless interaction model, where each interac-
tion primitive is analyzed and estimated in isolation. In real
environments, interaction primitives are obviously temporally
correlated–e.g., a Zoom operation is likely to be followed by
a Describe operation. The incorporation of such priors (like-
lihoods) is likely to further improve the process of dynamic
model selection.

Incorporating Additional Metrics in the Overall Tradeoff:
Our current evaluation has concentrated primarily on the accu-
racy vs. latency tradeoff. While these are important system pa-
rameters, the choice of models may need to consider additional
metrics as well. For example, the energy overhead is likely
to be another important constraint, especially when battery-
constrained wearable devices are used continuously (e.g., in
smart factories or warehouses). As our results demonstrate,
latency itself may be distinct from resource consumption–e.g.,
the cloud-based ASR model has higher latency due to network
overheads, but consumes lower CPU and RAM resources.

VII. CONCLUSION

In this paper, we focused on the problem of developing a
suitable multimodal sensing and fusion framework to support
natural interactivity for mixed reality (MR) applications. Our
work is motivated by the rapid growth in use of DNN-based
complex models for sensing-based comprehension and percep-
tion tasks, and the challenge of executing them on resource-
limited pervasive devices. We demonstrate that multimodal
fusion may offer a way to reduce the reliance on such complex
DNN models—high accuracy estimation on one or more
sensing modalities may allow the overall accuracy of fusion to
remain unaffected, even if the other sensing modalities utilize
less computationally-complex processing pipelines.

To support such a model, we first present a configurable
and extensible multimodal sensor fusion framework, where the
models for individual sensing modalities can be dynamically
modified without affecting the the overall fusion process. We
then study a specific instantiation of this framework, applied
to a study room setting, which utilizes vision, aural and
gestural input to support four different interaction primitives.
By experimental studies, we quantify the performance of
two different choices (low and high complexity) for each
model, first in isolation and then jointly (after sensor fusion).
Our studies reveal the choice of an appropriate combination
of modality-specific models is non-trivial: depending on the
models chosen, the instruction comprehension latency can vary
from ∼700-3200 msecs and the accuracy between ∼26-90%.
Moreover, the optimal model combination depends both on the
scene complexity and the specific interaction primitive. On
finer inspection, we see that (a) most optimal combinations
involve the use of a higher complexity Gesture Recognizer
(GR) and a low-complexity Text Classifier (TC), (b) the choice
of a high vs. low complexity Object Detector (OD) is de-
pendent on the scene complexity and (c) a higher-complexity
automatic speech recognizer (ASR) is usually preferred over
a lower-complexity cloud-based model, except for extremely
resource-poor devices. We hope that our work motivates more
careful focus on the problem of adaptive model selection for
low-latency, interactive instruction comprehension.
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