
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

1-1999

Algorithms for scheduling projects with generalized precedence Algorithms for scheduling projects with generalized precedence

relations relations

Bert DE REYCK
Singapore Management University, bdreyck@smu.edu.sg

Erik DEMEULEMEESTER

Willy HERROELEN

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

 Part of the Business Administration, Management, and Operations Commons, and the Management

Information Systems Commons

Citation Citation
DE REYCK, Bert; DEMEULEMEESTER, Erik; and HERROELEN, Willy. Algorithms for scheduling projects with
generalized precedence relations. (1999). Project scheduling: Recent models, algorithms and
applications. 77-105.
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6770

This Book Chapter is brought to you for free and open access by the Lee Kong Chian School of Business at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6770&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

4 ALGORITHMS FOR
SCHEDULING PROJECTS WITH

GENERALIZED PRECEDENCE
RELATIONS

4.1. Introduction

Bert De Reyck 1

Erik Demeulemeester2

Willy Herroelen 2

1. Erasmus University Rotterdam (The Netherlands)
2. Katholieke Universiteit Leuven (Belgium)

The problem of scheduling projects under various types of resource
constraints constitutes an important and challenging problem which has
received increasing attention during the past several years. The bulk of the
models and procedures designed for coping with these problem types aim at
scheduling project activities to minimize the project duration subject to
constant availability constraints on the required set of resources and
precedence constraints that indicate that activities can only be started when
all of their predecessors have already been fmished. However, real-life
project scheduling applications often involve more complicated types of
precedence relations such as arbitrary minimal and maximal time lags
between the starting and completion times of the activities, and require more
sophisticated regular and nonregular objective functions. Over the past few

78

years, considerable progress has been made in the use of exact solution
procedures for this problem type and its variants. We will review the
fundamental logic and report new computational experience with solution
procedures for optimally solving resource-constrained project scheduling
problems in which such generalized precedence relations and objective
functions can be explicitly considered.

We distinguish between four .types of generalized precedence relations
(GPRs): start-start (SS), start-finish (SF), finish-start (FS) and finish-finish
(FF). These relations specify a minimal or maximal time lag between a pair
of activities. A minimal time lag specifies that an activity j can only start
(finish) when its predecessor i has already started (finished) for a certain
time period. A maximal time lag specifies that an activity should be started
(finished) at the latest a specific number of time periods beyond the start
(finish) of activity i.

GPRs enhance the capabilities of project scheduling models because they
can be used to model a wide variety of real-life problem characteristics.
Next to the straightforward use of GPRs, namely allowing activity overlaps
(which will often lead to a substantial decrease of the project makespan) and
ensuring a maximal delay between the execution of specific activities
(useful, for instance, when dealing with perishable products or chemical
operations), GPRs can be used to model a wide variety of specific problem
characteristics, including activity release dates and deadlines, activities that
have to start or terminate simultaneously, non-delay execution of activities,
several types of mandatory activity overlaps, fixed activity start times, time
varying resource requirements and availabilities, set-up times, overlapping
production activities (process batches, transfer batches) and assembly line
zoning constraints.

The first comprehensive treatment of GPRs is due to Kerbosch and Schell
(1975), based on the pioneering work of Roy (1962). Other studies include
Crandall (1973), Elmaghraby (1977), Wiest (1981), Moder et al. (1983),
Bartusch et al. (1988), Elmagbraby and Kamburowski (1992), Zhan (1994),
Neumann and Zhan (1995), Schwindt (1996), Brinkmann and Neumann
(1996), Schwindt and Neumann (1996), Franck and Neumann (1996), De
Reyck and Herroelen (1 996b, 1997, 1998ab), Neumann and Schwindt
(1997), Demeulemeester and Herroelen (1 997b) and De Reyck (1998).

The remainder of this chapter is organized as follows. Section 4.2
elaborates on the concept of GPRs and clarifies the terminology and project
representation used. Section 4.3 briefly reviews the temporal analysis of
activity networks with GPRs. A distinction is made between the precedence
diagramming case, i.e. start-start, start-finish, finish-start and finish-finish

79

relations with minimal time lags for minImizmg the project makespan
(defined as minlCmax using the classification scheme of Herroelen et al.
1998), and the case of minimal and maximal time lags (gprICmax). In Section
4.4, the resource analysis required by the introduction of additional resource
constraints is discussed. In Section 4.5, we discuss the fundamentals of a
branch-and-bound procedure for optimally solving resource-constrained
project scheduling problems with generalized precedence relations of the
precedence diagramming type. This problem type, when extended to cope
with activity release dates and deadlines as well as variable resource
availabilities, is also referred to as the generalized resource-constrained
project scheduling problem (Demeulemeester and Herroelen 1997b) and is
denoted as m, 1, valmin,p;, b;ICmax using the classification scheme of Herroelen
et al. (1998). Subsequently in Section 4.6, we review several branch-and
bound procedures for the case of minimal and maximal time lags
(m,llgprICmax), and demonstrate how the solution methodology can be
extended to cope with variable resource availabilities and requirements as
well as other real-life project characteristics (m,l,valgpr,p;,b;,vrICmax), and
with other regular (m,l,valgpr,p;,b;,vrlreg) and nonregular
(m,l,valgpr,p;,b;,vrlnonreg) objective functions. In Section 4.7, we briefly
describe the modifications that the original algorithms have undergone since
their development. In Section 4.8, computational experience is reported
using a set of randomly generated problem instances. Section 4.9 is reserved
for our conclusions.

4.2. Terminology and representation

Assume a project represented in activity-on-the-node format by a directed
graph G = {V, E} in which V is the set of vertices or activities, and E is the
set of edges or GPRs. The non-preemptable activities are numbered from 1
to n, where the dummy activities 1 and n mark the beginning and the end of
the project. The duration of an activity is denoted by d j (1 ::; i ::; n) , its start

time by Sj (1 ::; i ::; n) and its finish time by /; (1 ::; i ::; n). There are m

renewable resource types, with rjkx (1 ::; i ::; n, 1 ::; k ::; m, 1 ::; x ::; d j) the

resource requirements of activity i with respect to resource type k in the xth

period it is in progress and akt (1 ::; k ::; m; 1 ::; t ::; n the availability of

resource type k in time period]t-I, t] (T is an upper bound on the project
length). If the resource requirements and availabilities are not time
dependent, they are represented by 'ik (I::; i ::; n, 1 ::; k ::; m) and

ak (1 ::; k ::; m) respectively. The minimal and maximal time lags between

two activities i andj have the form:

80

Sj + SSijin ~ Sj ~ Sj + SSijax; Sj + SFjTin ~ f j ~ Sj + SFjTax

J; + FSijin ~ Sj ~ J; + FSijax; J; + FFtin ~ f j ~ J; + FFjTax

where SSijin represents a minimal time lag between the start time of activity

i and the start time of activity j (similar definitions apply for

SSijax ,FSijin , ...). The various time lags can be represented in a

standardized form by transforming them to minimal start-start precedence
relations, using the transformation rules given in Bartusch et al. (1988).
Consequently, all GPRs are consolidated in the expression Sj + Ii) ~ Sj'

where lij denotes a minimal start-start time lag.

A path <is. it, i" ... , if> is called a cycle if S = t. With 'path' we mean a
directed path, and with 'cycle' we mean a directed cycle. The length of a
path (cycle) is defined as the sum of the lags associated with the arcs
belonging to that path (cycle). To ensure that the dummy start and fmish
activities correspond to the start and the completion of the project, we
assume that there exists at least one path with nonnegative length from node
1 to every other node and at least one path from every node i to node n
which is equal to or larger than d;. If there are no such paths, we can insert

arcs (1 ,i) or (i,n) with weight zero or d; respectively. P(i) = {j I (j, i) E E}

is the set of all immediate predecessors of node i, Q(i) = {j I (i, j) E E} is

the set of all its immediate successors.

4.3. Temporal analysis

The (resource-unconstrained) project scheduling problem with GPRs under
the minimum makespan objective (gprICmm) can be mathematically
formulated as follows:

Minimize sn [1]
Subject to

Sj + lij ~ Sj (i,j) E E [2]
Sj EN iEV [3]

where N denotes the set of natural numbers. The objective function [1]
minimizes the project duration (makespan), determined by the completion
time (or start time, since d n = 0) of the dummy end activity n. Constraints

[2] represent the GPRs. Constraints [3] ensure that all start times assume
nonnegative integer values. Solving this problem can be accomplished by

81

finding a precedence-feasible earliest start schedule (ESS), i.e. the
minimum start times (est. eS2, ... , esn) satisfying [2] and [3]. The earliest
start of an activity i can be computed by finding the longest path from node
1 to node i.

4.3.1. The precedence diagramming case

The CPM analysis for project networks with zero-lag fmish-start precedence
relations (cpmICmax) can easily be extended to cope with minimal time lags

(minICmax). A forward computation step eSi = max{esj + IAVj E P(i)}

yields an ESS (assuming that eSI = 0). A backward computation step

lSi = min{/sj -lijlVj E Q(i)} (assuming that ISn = esn) yields a latest start

schedule (LSS) which can be used for float calculations and activity
criticality analysis.

4.3.2. The case of generalized precedence relations

When maximal time lags are introduced (gprICmax), there may not be a
schedule that satisfies all of the GPRs. There exists a precedence-feasible
schedule for G iff G has no cycle of positive length (Bartusch et al. 1988).
Therefore, if we compute the matrix D = [dij], where dij denotes the longest
path from node i to node j, a positive path length from node i to itself (dii>O)
indicates the existence of a cycle of positive length and, consequently, the
non-existence of a precedence-feasible schedule. The computation of the

matrix D can be done by the Floyd-Warshall algorithm in time O(n3) (see
Lawler 1976). The ESS = (est. eS2, ... , esn) is given by (dlJ' d J2 , ••• , dIn).

4.4. Resource analysis

When we introduce additional renewable resource constraints, we obtain
problems m,llminlCmax and m, IlgprlCmax, which can both be conceptually
formulated as follows:

Minimize sn

Subject to

s, + lij 5, Sj V(i,j) E E

L>k 5, ak k = 1, 2, ... , m t = 1, 2, ... , T
ieS(t)

Si EN i = 1,2, ... ,n

82

where S(t) is the set of activities in progress in time period]t-I, t] and T is an
upper bound on the project duration, for instance

T = L max{d;, max {/ij}}. The objective function [4] minimizes the
;EV JEQ(i}

project duration. The GPRs are denoted in standardized form by constraints
[5]. Constraints [6] represent the resource constraints and constraints [7]
ensure that the activity start times assume nonnegative integer values.

In the precedence diagramming case, the lij values are restricted to
nonnegative values. Consequently, an activity can never start before its
predecessor. Activity release dates Pi need not be specified separately
because they can be modelled using standardized time lags of the type Iii =

Pi. The algorithm of Demeulemeester and Herroelen (1997b) for the
generalized resource-constrained project scheduling problem (GRCPSP;
m, I, valmin,pi' biICmax), also deals with deadlines bi and variable resource
availabilities.

In the case of GPRs, the lij values may assume arbitrary integer values. In
that case also, there is no need to specify activity deadlines separately,
because they can be modelled using negative standardized time lags of the
type Iii = d; - bi. Also time-varying resource availabilities and requirements
need not be specified explicitly (Bartusch et al. 1988). Time-varying
resource availabilities can be handled by creating dummy activities which
absorb a certain amount of each resource type for which a constant
availability (equal to the maximum availability over time of that resource
type) can then be assumed. These dummy activities should then be assigned
a fixed start time using appropriate minimal and maximal time lags. Time
varying resource requirements can be modelled by splitting up the activities
in a number of subactivities with a different constant resource requirement
for each of the resource types. The subactivities should then be connected
with appropriate minimal and maximal time lags which ensure a non-delay
execution of all the subactivities of each activity. Therefore, problem
m, l,valgprlCmax and problem m, I ,valgpr,Pb bi,vrlCmax can be solved using the
same algorithm.

Problems m,llminlCmax and m, IlgprlCmax are known to be strongly NP
hard. For problem m, IlgprlCmax or problem m, Ilmin, onlCmax with an imposed
project deadline, even the decision problem of detecting problem
(in)feasibility is NP-complete (Bartusch et al. 1988). To the best of our
knowledge, the only exact solution procedures presented in the literature are
the branch-and-bound algorithms of Bartusch et al. (1988), Demeulemeester
and Herroelen (1997b) and De Reyck and Herroelen (1 998a). Because of
the extreme complexity of problem m,llgprICmax, quite a number of

83

heuristics have been developed (Zhan 1994, Neumann and Zhan 1995,
Brinkmann and Neumann 1996, Franck and Neumann 1996, Schwindt and
Neumann 1996).

In the next section, we will review two exact solution procedures for
project scheduling problems with GPRs. Again, we distinguish between the
precedence diagramming case (m, I, valmin,Pb b;ICmax), for which the
procedure of Demeulemeester and Herroelen (1997b) will be reviewed, and
the case of generalized precedence relations (m, I,valgpr,p;, b;,vrICmax), for
which the fundamentals of the procedure developed by De Reyck and
Herroelen (1998a) will be discussed.

4.5. A branch-and-bound procedure for the GRCPSP

4.5. 1. The search tree

The branch-and-bound procedure of Demeulemeester and Herroelen (1997b,
further referred to as GDH) is an extension of the DH-algorithm presented in
Demeulemeester and Herroelen (1992,1997a) for the resource-constrained
project scheduling problem with zero-lag finish-start precedence constraints
(m,llcpmICmax). It is based on a depth-first solution strategy in which nodes
in the search tree represent resource- and precedence-feasible partial
schedules. Branches emanating from a parent node correspond to exhaustive
and subset-minimal combinations of activities, the delay of which resolves a
resource conflict at the parent node (referred to as minimal delaying
alternatives). The search process closely resembles the one used in the
procedure of Demeulemeester and Herroelen (1992) for the RCPSP
(m,llcpmICmax). The modifications involve a different defmition of the
decision point, a different process of delaying temporarily scheduled
activities, a different definition of the cutset activities, and a modified
backtracking scheme. In addition, the procedure relies on a different set of
dominance rules and bounding calculations.

The nodes in the search tree correspond to partial schedules in which
finish times temporarily have been assigned to a subset of the activities of
the project. Scheduling decisions are temporary in the sense that scheduled
activities may be delayed as the result of decisions made at later stages in the
search process. Partial schedules are constructed by semi-active
timetabling1; i.e. each activity is started as soon as possible within the

I Sprecher and Drexl (1996) correctly claim that the procedure of Demeulemeester and
Herroelen (1992) does not only generate semi-active schedules. The same applies to the
algorithm described here. Only if the left-shift dominance rule is extended to examine also
local left-shifts prior to the current decision point, the schedules are guaranteed to be semi-

84

precedence and resource constraints. A precedence-based lower bound is
calculated by adding the maximal remaining critical path length of any of the
activities that belong to a delaying alternative to the current delaying point.
The delaying alternative with the smallest lower bound is chosen for further
branching. When a complete schedule is constructed or when a partial
schedule can be dominated using one of the node fathoming rules described
below, the procedure backtracks to a previous level in the search tree. The
procedure is completed upon backtracking to level O. Activity deadlines are
coped with through a standard critical path-based backward pass
computation starting from the deadlines.

4.5.2. Node fathoming rules

Three dominance rules are used to prune the search tree. Proofs can be
found in Demeulemeester and Herroelen (1997b).

THEOREM 1. In order to resolve a resource conflict it is sufficient to
consider only minimal delaying alternatives (which do not contain other
delaying alternative as a subset).

THEOREM 2. Consider a partial schedule PSI (the set of scheduled or
completed activities) at level p of the search tree in which activity i is
started at time t. If activity i was delayed at level p-l of the search tree, and
if this activity can be left-shifted without violating the precedence or
resource constraints, then the partial schedule PSI is dominated.

THEOREM 3. Consider a cutset CI (the set of unscheduled activities for
which at least one direct predecessor belongs to PSJ which contains the
same activities as a cutset CI • , which was previously saved during the
search of another path in the search tree, and which was considered during
the same resource interval. If t' ~ t , if all activities in progress at time t' did
not finish later than the maximum of t and the finish time of the
corresponding activities in PSI' and if the earliest possible start time of
every activity in CI , is smaller than or equal to the earliest start time of the
corresponding activity in CI , then the current partial schedule PSI is
dominated.

Remark here that the definition of the cutset differs slightly from the one
formulated in Demeulemeester and Herroelen (1 997b). In the GRCPSP,
contrary to the RCPSP, it is possible that an unscheduled activity is
precedence constrained by an already scheduled activity, while some of its

active. However, the branching scheme and the dominance rules are based on the principle of
semi-active timetabling.

85

other predecessors are not yet scheduled. A subtle change in the defmition
of the cutset is therefore needed. This fact was overlooked in the original
implementation of the algorithm. Based on new computational experience
presented in this chapter, we discovered one project example (out of the
many examined) for which the optimal solution was missed because of this
flaw. As will be indicated in Section 4.8.2.3, the correction of the flaw only
slightly affects the computational results.

4.6. A branch-and-bound procedure for the RCPSP
GPR

4.6. 1. The search tree

Essentially, the algorithm of De Reyck and Herroelen (1998a, further
referred to as DRR) is a hybrid depth-first / laser beam search branch-and
bound algorithm. The nodes in the search tree represent the initial project
network, described by the longest path matrix D = [dij], extended with extra
zero-lag finish-start precedence relations to resolve a number of resource
conflicts, which results in an extended matrix D' = [d'ij]. Nodes which
represent precedence-feasible but resource-infeasible project networks and
which are not fathomed by any node fathoming rules described below lead to
a new branching. Resource conflicts are resolved using the concept of
minimal delaying alternatives. However, contrary to the GDH procedure,
each of these minimal delaying alternatives is delayed (enforced by extra
zero-lag finish-start precedence relations i -< j , implying s i + d i :s; S j) by

each of the remaining activities also belonging to the coriflict set S(t*), the
set of activities in progress in period]t*-I, t*] (the period of the first
resource conflict). Consequently, each minimal delaying alternative can
give rise to several minimal delaying modes.

In general, the delaying set DS, i.e. the set of all minimal delaying
alternatives, is equal to

{
Dd I Dd c S(t*) and 'Ir;f resource k: L 'ik - L rik :s; ak }

DS = ieS(tO) iEDd

and'lr;f Dd, EDS\{Dd}: Dd, ct. Dd

The set of minimal delaying modes equals:

M = {Mml Mm = {k -< Dd }, k ES(t*) \ Dd, Dd E DS}. Activity k is called

the delaying activity: k -< Dd implies that k -< I for all lED d •

86

THEOREM 4. The delaying strategy which consists of delaying all minimal
delaying alternatives D d by each activity k E S(t*) \ D d will lead to the

optimal solution in a finite number of steps.

PROOF. See De Reyck and Herroelen (1 998a).

Each minimal delaying mode is then examined for precedence-feasibility
and evaluated by computing the critical path-based lower bound Ibo. Each

precedence-feasible minimal delaying mode with a lower bound Ibo<T is
then considered for further branching, which occurs from the node with
smallest Ibo. If the node represents a project network in which a resource
conflict occurs, a new branching occurs. If it represents a feasible schedule,
the upper bound T is updated and the procedure backtracks to the previous
level in the search tree. Branching occurs until at a certain level in the tree,
there are no delaying modes left to branch from. Then, the procedure
backtracks to the previous level in the search tree and reconsiders the other
delaying modes (not yet branched from) at that level. The procedure stops
upon backtracking to level O.

The fact that semi-active timetabling cannot be applied when dealing with
both minimal and maximal time lags results in a different solution strategy
employed by the GDH and DRH procedures. In the GDH procedure, partial
schedules based on the precedence relations are constructed, until a resource
conflict is observed. The remainder of the schedule need not be computed.
A resource conflict is resolved through the delay of activities participating in
the conflict, which corresponds to the addition of precedence relations. The
search then advances through time to subsequent resource conflicts until the
dummy end activity is scheduled. Upon finding such a complete
(precedence- and resource-feasible) schedule, the procedure backtracks,
which corresponds to a partial destruction of the schedule. Contrary, in the
DRH procedure, in each node of the search tree, complete (precedence
based) schedules are evaluated. The first resource conflict in that schedule
is subsequently resolved using additional precedence relations. However,
contrary to the GDH procedure, the procedure cannot proceed through time,
because in a newly derived schedule, obtained by resolving a resource
conflict at time t, a new conflict can occur at a time instant t'<t. When a
precedence- and resource-feasible schedule is encountered, the procedure
backtracks to the previous level in the search tree which corresponds to
removing precedence relations from the project network.

87

4.6.2. Node fathoming rules

Nodes are fathomed if they represent a precedence-infeasible project
network or when lbo exceeds (or equals) T. Four additional node fathoming

rules (three dominance rules and a new lower bound) and a procedure which
reduces the solution space and which can be executed as a pre-processing
rule are added. These rules are given below. Additional information and
proofs can be found in De Reyck and Herroelen (1998a).

THEOREM 5. If there exists a minimal delaying alternative Dd with activity
i E Dd but its real successor j!i!: Dd (dij ~ 0), we can extend Dd with

activity j. If the resulting delaying alternative becomes non-minimal as a
result o/this operation, it may be eliminatedfromfurther consideration.

THEOREM 6. When a minimal delaying alternative Dd gives rise to two
minimal delaying modes Mm and Mm with delaying activities i andj

1 2

respectively, M m2 is dominated by M mJ if d ij + d j ~ d i' If
dij + d j = d j and d jj + d j = d j' either delaying mode M mJ or Mm2

can be dominated

Mingozzi et al. (1998) have developed five new lower bounds for the
RCPSP, namely lb , Ib2 , lb ,lb and lb , derived from different relaxations

I p x 3

of a new mathematical formulation. They compute Ib3 using a heuristic for

the maximum weighted independent set problem. Demeulemeester and
Herroelen (1997a) have incorporated another version of Ib3 in their GDH

algorithm, which can be extended to the RCPSP-GPR as follows. For each
activity i E V , its companions are determined (the activities with which it
can be scheduled in parallel, respecting both the precedence (diJ < d; and
dji < d) and resource constraints ('rI k ::;; m: 'ik + rjk ::;; ak ». All activities i are

then entered in a list L in non-decreasing order of the number of companions
(non-increasing duration as tie-breaker). The following procedure then

yields a lower bound, lbf. For each activity, we define a remaining

duration d'j . Initially, all d'j are equal to ~ and lbf = 0 .

while L not empty do
take the first activity (activity l) in L and remove it from L

IbI = IbI +dJ
for every companionj of i do

if d ij > 0 then d'j = d'j - (d i - d ij)

88

enddo
enddo

THEOREM 7.

else if d ji > 0 then dj = dj - min{dj - dj;A}

else dj = dj - d;

endif
if dj ::;; 0, remove activity j from L

Ib3
g is a valid lower bound for problem

m, 1, valgpr,p;, 0;, vrlCmax.

IbI is used to fathom nodes for which IbI ~ T. However, whereas lbo
is calculated immediately upon the creation of a node, the calculation of

IbI is deferred until a decision has been made to actually branch from that

node. The rationale behind this is that (a) IbI is more difficult to compute

than lbo, and (b) calculating IbI implies calculating the entire matrix D.

We defer the calculation of Ib3g and D until the node is actually selected for.

branching. As a result, only lbo is used as a branching criterion.

THEOREM 8. If the set of added precedence constraints which leads to the
project network in node x contains as a subset another set of precedence
constraints leading to the project network in a previously examined node y
in another branch of the search tree, node x can be fathomed.

THEOREM 9. If:3 i,j EV and k::;; m for which r;k +rjk > ak and

-dJ < dij < d;, we can set lij = d;.

4.6.3. Extensions to other objective functions

In real-life project scheduling applications, the minimization of the project
length is undoubtedly the most popular objective function. Minimizing the
project makespan implies that the resources tied up in the activities of the
project are released as soon as possible, thereby making them available for
other projects in the future. Also, minimizing the project length releases
tied-up capital because in many projects, the majority of income payments
occur at the end of a project (Kolisch 1996).

Nevertheless, for many actual project scheduling applications,
minimizing the project length may be a misrepresentation of the actual

89

conditions, in which considerations such as cost minimization, tardiness
minimization and revenue maximization may be much more relevant. In the
literature, a rich variety of objective functions has been the subject of
extensive study. These objective functions can be classified into two distinct
classes: regular and nonregular measures of performance. A regular
measure of performance (which is to be minimized) is a nondecreasing
function of the activity completion times. When not imposed by resource,
precedence or temporal constraints, it will not be advantageous to delay
activities solely to obtain an improved performance under a regular measure
of performance. For a nonregular objective function, the condition above
does not hold. This implies that delaying activities may improve the
performance of the schedule, even if such a delay is not imposed by any
constraints.

4.6.3.1. Regular performance measures. Practical applications of regular
measures of performance often take the form of a cost function based on the
activity completion times. Such cost functions may take the following form:

• Minimizing project costs determined by a weighted function of the
tardiness of the activities with respect to pre-set due dates

(m,l,valgpr,p;,o;,vrILwiTi)' where T j = max{fi -t5i,o}, t5 j

represents the due date of activity i (not to be confused with the activity
deadlines 0; which can also be present and which constitute hard
constraints that cannot be violated) and W; denotes the weight (penalty)
associated with an additional delay (of one time period) of activity i
beyond its due date. We may also want to minimize the number of tardy
activities (m,l,valgpr,p;,bi,vrlnr) or the maximal activity tardiness
(m, 1 ,valgpr,p;, bi,vrl Tmm).

• Minimize the mean flow time: m,l,valgpr,p;,bi,vrl F, where
n

F = ..!.. L (fi - P j) and Pi denotes the release date of activity i.
n

i= 1

In the ORR procedure, we evaluate the project networks in each node of
the search tree by computing an ESS (by means of a longest path matrix D),
which yields a critical path-based lower bound lbo. If we optimize any other
regular measure of performance (m,l,valgpr,p;,bi,vrlreg), we can still use the
ESS to evaluate the project networks and simply replace the calculation of
lbo by the regular performance measure under consideration. The branching
strategy based on minimal delaying modes (Theorem 4) can also be used
when dealing with other regular performance measures. Also Theorems 5,
6, 8 and 9 are still applicable. Therefore, only two slight modifications are

90

needed to extend the procedure. First, we need to replace lbo by the new
measure and use the resulting value as a lower bound. Second, the lower

bound Ib3
g can no longer be used as a node fathoming rule since it is based

on the minimum makespan objective.

4.6.3.2. Nonregular performance measures. If we optimize a nonregular
measure of performance (m,l,valgpr,p;,bi,vrlnonreg), the branching strategy
based on minimal delaying modes to resolve resource conflicts (Theorem 4)
can still be used. However, we cannot use the ESS anymore to compute the
objective function value and replace the calculation of Ibo by the
performance measure under consideration. Rather, the project networks in
each node of the search tree should be optimized using the nonregular
objective function while discarding the resource constraints (gprlnonreg).
Also resource-feasibility should be checked against the schedule obtained by
optimizing the nonregular objective function for the resource-unconstrained
project network.

A popular nonregular performance measure is the maximization of
the net present value (npv) of the project, in which positive and negative
cash flows are associated with the activities (m,l,valgpr,p;,bi,vr,c;lnpv):

n di

Maximize L cie-cr/i with ci = Lgit ea(di-t), the cash flow (positive
i=1 t=1

or negative) associated with each activity compounded up to its completion.

For a review of project scheduling problems in which financial
considerations are explicitly included, we refer the reader to Herroelen et al.
(1997). When maximizing the project npv, the evaluation and optimization
of the project networks in each node should be accomplished by maximizing
the npv of the corresponding (precedence-feasible, but not necessarily
resource-feasible) project without taking the resource constraints into
account (gpr,b;"c;lnpv). Algorithms for the unconstrained max-npv project
scheduling problem (cpm,on.c;lnpv) can be found in Russell (1970), Grinold
(1972), Elmaghraby and Herroelen (1990), Herroelen and Gallens (1993)
and Herroelen et al. (1996). Unfortunately, none of these algorithms can
cope with GPRs (gpr,p;,bi,c;lnpv). De Reyck and Herroelen (1996b) have
developed an exact recursive enumeration procedure for optimizing the npv
in project networks with GPRs (gpr,p;,bi,c;lnpv), which will be briefly
reviewed in the next section.

4.6.3.3. Maximizing the net present value of projects: the resource
unconstrained case. The algorithm of De Reyck and Herroelen (1996b) for
problem gpr,p;,bi,c;lnpv is based on the intuitive idea that activities carrying

91

positive cash flows should be executed as early as possible, whereas
activities with a negative cash flow should be delayed as much as possible.
The procedure consists of 3 steps. In STEP 1, the longest path matrix D is
computed. If the project is precedence-feasible, the early tree is computed,
which spans all activities scheduled at their earliest start time. For every
activity i, a predecessor j is determined for which d1,j +dj,; = dl,i, upon

which activities j and i are linked.

The current tree is computed in STEP 2 of the algorithm by delaying all
activities i with a negative cash flow C; and no successor in the early tree as
much as possible within the early tree, i.e. without affecting the start times of
the successor activities in the constraint digraph. This results in a local
optimum which cannot be improved by delaying single activities and will
reduce the number of recursions required in STEP 3 of the procedure which
examines the simultaneous delay of activities. If any activity i has been
delayed while computing the current tree, STEP 2 is repeated. After STEP 2
has been repeated a sufficient number of times, the procedure enters a
recursive search in STEP 3, in which partial trees PT (with a negative npv)
are identified that can be disconnected from the current tree and shifted
forwards in time in order to increase the npv of the project. When such a
partial tree is found, the algorithm computes the maximal shift of the partial
tree by identifying the maximal possible increase in the start times of the
activities belonging to the partial tree without violating any of the
precedence constraints, keeping all activities not belonging to PT at their
current start times. Therefore, a new arc is determined with minimal
displacement, i.e. an arc (k,l) (k ePT, I ~PT) with minimal value for

d1,1 - d1,k - dk,l' We disconnect the partial tree from the remainder of the

current tree and we add the arc (k,l) to the current tree, thereby relinking the
forward-shifted partial tree to the current tree. Then, we update the
completion times of the activities in the partial tree as follows: V j e PT:

d 1 J' = d 1 J' + min {dl/ - d lk - dk I} . If a shift has been found and
, , kePT' , ,

IEPT

implemented, the recursive procedure is restarted until no further shift can
be accomplished. Then, the optimal schedule with its corresponding npv is
reported.

4.6.3.4. Maximizing the net present value of projects: the resource
constrained case. De Reyck and Herroelen (I 998b) have developed a
branch-and-bound procedure for problem m,1,valgpr,p;,4,vr,c;lnpv based on
the DRR algorithm for the minimum makespan case, using the recursive
search procedure described above for the calculation of a bound on the
project npv. Each time a node in the branch-and-bound tree is chosen to

92

branch from, the corresponding longest path matrix D is computed and the
schedule which optimizes the project npv is computed, yielding an upper
bound on the npv. However, in the DRH procedure, when a number of
nodes are created at a certain level of the search tree (not yet chosen to be
branched from), the matrices D are not yet computed. Therefore, it is not
possible to use the algorithm for the unconstrained npv maximization to
compute an upper bound on the project npv. Therefore, the computation of
the upper bound ub on the project npv is not made upon creation of a node,
but is deferred until a decision has been made to actually branch from it. As
a result, another criterion (a myopic criterion based on the cash flows of the
delayed activities) is used in order to select the node to branch from at a
certain level.

Another often encountered example of a nonregular performance measure
is the minimization of the weighted earliness-tardiness of the activities in a
project, in which a due date, earliness penalties as well as tardiness penalties
are associated with the activities (m,l,valgpr,p;,bi,vrlearlyltardy):
nisi

L Wi LI t + d i - 8 i IXi/' In that case, the project network in each node
i=l t=esi

of the search tree should be optimized such that a minimum penalty value
due to earliness or tardiness of the activities is obtained, while the activities
are subject to GPRs only (gpr,p;,bilearlyltardy). Exact solution procedures
for optimizing due date performance in project networks are sparse. To the
best of our knowledge, if the precedence relations among the activities are
allowed to be GPRs, no solution procedure is available at all for minimizing
earliness-tardiness-based objective functions. This constitutes a promising
area for future research.

4.6.3.5. Multiple objective functions. From the discussion above, it is
clear that project management has the choice between a wide variety of
performance measures. These measures may pertain to the makespan of the
project, the tardiness of activities or subprojects, the activity flow times, the
levelness of the resource profile(s) and may even include financial
considerations. In many situations, several of these objective functions may
be relevant at the same time. Often, however, the relevant objectives are in
conflict. In that case, a trade-off will be present in the sense that the project
manager will have to decide which performance measure is the most
important, in which order they should be considered or which weights
should be assigned to each of the measures.

This gives rise to the problem of scheduling projects under multiple
objectives. We distinguish between the case where (a) multiple objectives
are considered in a pre-specified order or have been assigned a weight

93

determining the trade-off between the measures, and (b) where the solution
method should present a series of alternative solutions from which the
decision maker should select a solution based on his/her perspectives of the
relation between the performance measures. In the former case, the solution
procedure can unambiguously determine the optimal solution because the
multiple objectives can be merged into a single objective function. In the
latter case, the solution procedure cannot determine an optimal schedule
because a trade-off between the various performance measures has not been
firmly established. The procedure should then present a number of efficient
solutions, from which the decision maker can select a schedule.

If mUltiple regular performance measures are considered, each one given
a weight to determine its importance vis-a-vis the other measures (or a rank
order), the DRH procedure can still be used. In that case, the ESS can still
be used to evaluate the resource-unconstrained project networks in each
node of the search tree. If, however, nonregular performance measures are
considered, the problem becomes much more complex. In that case, the
resource-unconstrained projects should be optimized taking into account the
weighted nonregular (and regular) objective functions. Also when no
weights or strict order can be assigned to the measures, the solution
approach should be modified rather extensively. In that case, the procedure
should present multiple viable alternatives and allow the user to determine
which schedule he/she prefers based on the associated values for the various
objective functions.

4.7. Modifications to the original algorithms

The GDH and DRH procedures have been recoded and compiled using
Microsoft Visual c++ 4.0 under Windows NT for use on a Dell Pentium
Pro-200Mhz personal computer. The GDH code requires 91 Kb, whereas
the data structures are allowed to use up to 16 Mb. This memory is mainly
allocated to the application of the cutset dominance rule. For the DRH code,
which requires 90 Kb, only 400 Kb should be reserved for storing the data.

The GDH procedure has undergone some modifications since its
development. First, we have corrected the application of the cutset
dominance rule as explained in Section 4.5.2. Secondly, we now only
consider efficient cutsets when applying the cutset dominance rule: every
time a new cutset is saved, all cutsets that are dominated by it are removed,
resulting in a significantly smaller set of cutsets and a substantial speed-up
of the dominance rule. The codes of both algorithms have been modified in
order to take full advantage of modem 32-bit compiler architecture. This
results in a significant efficiency gain. The major change in the GDH

94

procedure involves a new coding scheme for the cutset dominance rule.
Similar adjustments have been described for the case with zero-lag finish
start precedence relations (see Demeulemeester and Herroelen I 997a).
Other changes involve merging different resource types into one global
resource type (using 32-bit integers). Additional code polishing also leads
to an increase in performance. For technical details we refer the reader to
Demeulemeester and Herroelen (1997a).

4.8. Computational experience

4.8. 1. Previous computational experience

4.8.1.1. The GRCPSP (m,l,valmin,pj,bjICmax). Computational experience
with the GDH procedure is reported by Demeulemeester and Herroelen
(1997b) on the problem set consisting of the 110 RCPSP instances
assembled by Patterson (1984). The results were very promising and
indicated that the algorithm was, on the average, only 2.5 times slower than
the similar procedure designed for the RCPSP. For the Simpson problem
set, consisting of the same 110 RCPSP instances, extended with variable
resource availabilities by Simpson et al. (1992), the procedure also
performed substantially better than the procedure of Simpson et al. (1992).
A third problem set consisted of ten problem instances based on Patterson
problem 72 in which ready times, deadlines and precedence diagramming
constraints were introduced. All ten instances could be solved very quickly
(in at most 32.08 seconds).

The changes in the coding of the GDH procedure result in a dramatic
decrease in the computation times for these problem instances. Using a
Pentium Pro-200Mhz computer, the average computation time for the
Simpson problem set decreases by a factor of more than one thousand (0.009
seconds versus 9.273 seconds). For the ten problems based on Patterson
problem 72, the speed-up factor is only 12 (0.434 seconds versus 0.035
seconds).

4.8.1.2. The RCPSP-GPR (m,l,valgpr,pj,bj,vrICmax). De Reyck and
Herroelen (1998a) report computational results on three different problem
sets in order to validate the DRH procedure against the serial and parallel
heuristics developed by Franck and Neumann (1996). These heuristics
improve upon the procedures developed by Neumann and Zhan (1995),
Zhan (1994) and Brinkmann and Neumann (1996). All three data sets have
been generated using the random problem generator ProGenimax developed
by Schwindt (1996). The first problem set consists of 1,080 100-activity

95

instances. The second set consists of 1,440 100-activity problem instances.
The third set consists of 7,200 instances with 10 up to 100 activities.

Table 4: I shows some computational results on the first problem set.
These results are obtained using Microsoft Visual C++ 2.0 under Windows
NT for a Digital Venturis Pentium-60 personal computer with 16Mb of
internal memory. The branch-and-bound procedure is truncated after a
specific amount of running time (1, 10 and 100 seconds). The results
include the number of problems solved to optimality (for which the optimum
was found and verified), the number of problems for which the optimal
solution is obtained (but not necessarily verified), the number of problems
for which the best known solution is obtained, the number of unsolved
problems (for which a feasible solution could not be determined and neither
infeasibility of the instance could be proven), the average deviation from a
lower bound and the average deviation from the best known solution. The
lower bound lb used to compute the deviations, is the maximum of the
critical path-based lower bound lbo, the resource-based lower bound

lbr = ~~;{ri~/irik / ak l} and lbf (computed in the root node of the

search tree after pre-processing). The column labelled F&N in Table 4: 1
contains the results obtained by Franck and Neumann (1996), which are
obtained by running a collection of 44 different heuristics which rank among
the best currently available. The best known solution referred to in Table
4: 1 is the best of the solutions obtained with various versions of the DRH
algorithm running for up to 1 hour per problem and with the heuristic (F&N)
solutions, and can therefore be considered as near-optimal.

Table 4:1. The results on problem set I

F&N DRH DRH DRH

I sec 10 sec 100 sec

Solved to optimality 196 (18%) 543 (50%) 592 (55%) 609 (56%)

Optimal solution is found 220 (20%) 578 (54%) 596 (55%) 609 (56%)

Best known solution is found 378 (35%) 606 (56%) 652 (60%) 682 (63%)

Unsolved problems 21 (2%) 205 (19%) 86 (8%) 68 (6%)

Average deviation from Ib 17.02% 5.99% 9.77% 10.00%

Average deviation from best solution 7.20% 2.20% 2.54% 2.31%

The DRH procedure manages to solve more than 50% of the 100-activity
problem instances to optimality within 1 second of computation time.
However, increasing the allowed computation time from 1 second to 100

96

seconds leads to an increase of only 12% in the problem instances solved to
optimality (from 543 to 609). The average deviation from the best known
solution (lower bound) never exceeds 2.54% (10.00%), whereas the F&N
heuristics result in an average deviation of 7.20% (17.02%). Less
reassuring, however, is that, especially for small time limits, a relatively
large number of problems remains unsolved. The F&N heuristics do a better
job on this issue.

This inspired us to develop another approach which is based on finding a
feasible solution first, rather than going immediately for the optimal
solution. When no feasible solution has been obtained yet, this approach
uses a new criterion (referred to as time window slack TWS) to decide on
which node to branch from, based on feasibility criteria. The node that
entails the highest chance of leading to a feasible solution is selected first,
regardless of its lower bound (which is only used as a tie-breaker). When a
feasible solution is obtained, again the lower bound is used as a branching
criterion. Using this new approach, the number of unsolved problems
decreases to 27 (2.5%), 8 (0.7%) and 6 (0.6%) for the three time limit
settings, whereas the number of problems solved to optimality does not
significantly differ from the original approach. The average deviation from
the best known solution (lower bound) increases somewhat, but never
exceeds 4.5% (14%), thereby still outperforming the heuristics. More
details can be found in De Reyck and Herroelen (1998a).

4.8.2. New computational results

4.8.2.1. Benchmark problem set. In this section, we present new
computational experience with the two enhanced branch-and-bound
procedures on a new benchmark problem set consisting of 1,620 randomly
generated instances. The parameters used to generate the new problem set
are given in Table 4:2. The indication [x,y] means that the corresponding
value is randomly generated in the interval [x,y], whereas x; y; z means that
three settings for that parameter were used in a full factorial experiment. For
each combination of parameter values, 10 instances have been generated.

The resource factor RF (Pascoe 1966) reflects the average portion of
resources requested per activity. If RF=I, then each activity requests all
resources. RF=O indicates that no activity requests any resource:

1 n K {I, if rik > 0
RF = -K L L 0 h . . The resource strength RS (Cooper 1976) is

n i=!k=! ,ot erwlse

redefined by Kolisch et a!. (1995) as (ak _rtin)/(rt3X -rrn), where ak is

97

the total availability of renewable resource type k, rt in = max rik (the
l=l, ... ,n

maximum resource requirement for each resource type), and rrax is the

peak demand for resource type k in the precedence-based early start
schedule. The resource availability is assumed to be constant over time.

Table 4:2. The parameter settings of the new problem sets

Control parameter

number of activities

activity durations

number of resource types

minimum 1 maximum number of resources used per activity

activity resource demand

resource factor, RF (Pascoe 1966)

resource strength, RS (Kolisch et al. 1995)

number of initial and terminal activities

maximum number of predecessors and successors

order strength, OS (Mastor 1970)

% maximal time lags

number of cycle structures (Brinkmann and Neumann 1996)

minimum 1 maximum number of nodes per cycle structure

coefficient of cycle structure density (Schwindt 1996)

cycle structure tightness (Schwindt 1996)

Values

10;20;30

[2,10]

4

1/4

[I, I 0]

0.50; 1.00

0.00; 0.25; 0.50

[2,4]

3

0.35; 0.50; 0.65

0%; 10%;20%

[I, I 0]

2/30

0.3

0.5

The order strength as is defmed as the number of precedence
relations, including the transitive ones, divided by the theoretical maximum
of such precedence relations, namely n(n-I)/2, where n denotes the number
of activities (Mastor 1970). Because as only applies to acyclic networks, it
is applied to the acyclic skeleton of the generated project networks obtained
by ignoring all maximal time lags (for details see Schwindt 1996). For the
definition of cycle structures and related measures, we refer the reader to
Schwindt (1996).

4.8.2.2. Overall results. The problems without any maximal time lags
correspond to instances of the GRCPSP, whereas the problems with 10%
and 20% maximal time lags correspond to instances of the RCPSP-GPR.
Therefore, we solved the former (540) instances with the GDH procedure,

98

and the latter (1,080) instances with the DRH procedure. A time limit of
1,000 seconds is imposed. The overall results can be found in Table 4:3.

Table 4:3. Overall results

0% 10% 20% All problems

n Optimal CPU-time Optimal CPU-time Optimal CPU-time Optimal CPU-

time

10 180 0.001 180 0.00 180 0.00 540 0,00

20 180 0,005 180 0.11 180 0,12 540 0,08

30 180 0.021 177 36.37 178 34,27 535 23,56

All 540 0.009 537 12,16 538 11.46 1,615 7,88

The GRCPSP instances can be solved to optimality within very small
CPU-times using the GDH procedure. However, the RCPSP-GPR instances,
solved using the DRH procedure, require much more time. Five out of the
1,080 instances cannot be solved to (verified) optimality within 1,000
seconds. This illustrates the much higher complexity of the RCPSP-GPR
versus the GRCPSP. The main reason for the difference in complexity is
that for solving the RCPSP-GPR, semi-active timetabling cannot be applied.
Consequently, most of the concepts developed for the minimal time lag case
are not transferable to the GPR-case. The fundamental logic of the GDH
procedure, namely its branching strategy, is based on the principle of semi
active timetabling and can therefore not be applied for the GPR case. Also
the dominance rules, including the left-shift dominance rule and the
powerful cutset dominance rule, which is mainly responsible for the
efficiency of the GDH procedure, are not applicable anymore.
Consequently, the DRH procedure is based on a different branching strategy
and a new set of dominance rules and lower bounds.

The fact that the branching strategy and the dominance rules which are
applicable for the GPR case are less powerful than those used for the
precedence diagramming case, can be illustrated by comparing the
performance of both algorithms on the problem instances with minimal time
lags only. Whereas the GDH procedures solves all 540 instances to
optimality with an average CPU-time of 0.009 seconds, the more general
DRH procedure cannot solve 12 out of the 540 instances within 1,000
seconds. Naturally, when no maximal time lags are present, the DRH
procedure is no longer efficient because it is designed for the inclusion of
maximal time lags. In that case, the GDH procedure should be used.
Similarly, when all precedence relations are of the zero-lag fmish-start type,

99

the procedure of Demeulemeester and Herroelen (1992, 1997a) should be
used instead. The efficiency of the DRH procedure heavily depends on the
relative number of maximal time lags in the problem instances. The more
maximal time lags, the more effective the dominance and bounding rules,
and the more efficient the DRH procedure.

4.8.2.3. The modified cutset dominance rule. We examined the impact of
the new cutset dominance rule on the efficiency of the GDH procedure by
implementing the original cutset dominance rule in the new procedure. The
results indicate that the efficiency of the procedure does not substantially
differ. For all but 1 instance, the optimal solution is obtained despite the use
of the erroneous cutset dominance rule. The computation times using the
modified cutset dominance rule are only slightly higher (0.009 versus 0.008
seconds).

4.8.2.4. Results with truncated procedures. Table 4:4 presents the results
with a truncated version of the DRH procedure. We did not report any
results with a truncated GDH procedure since it is able to solve all of the
instances with minimal time lags to optimality with very little computational
effort. Therefore, we report the results with the DRH procedure only (also
for the instances without maximal time lags). The results reported are the
number of instances for which the optimal solution is found (not necessarily
verified, including the problems proven to be infeasible) and the average
deviation from the best known solution (all but five of these solutions are
known to be optimal). The deviations are only computed for the instances
which are feasible and for which the truncated procedure was able to find a
feasible solution.

Although the DRH procedure cannot solve all instances to optimality
when the imposed time limit is rather small, the obtained heuristic solutions
are of high quality, especially when the relative amount of maximal time lags
is rather high. The results conform to the results of previous computational
experiments (De Reyck and Herroelen 1998a), which show a similar
performance of the truncated DRH procedure on instances with up to 100
activities (see also Table 4: 1).

4.8.2.5. Impact of problem characteristics. In Table 4:5, the impact of the
order strength as on the complexity of the problem instances is examined.
Clearly, as has a negative impact on the problem complexity, measured by
the number of problems solved to optimality and the required CPU-time.
This result is in line with other results reported in the literature (De Reyck
1995, Schwindt 1996, De Reyck and Herroelen 1998a).

100

Table 4:4. Heuristic results

0% 10% 20% All problems

Optimal %dev. Optimal %dev. Optimal %dev. Optimal %dev.

n - 10 180 0.00% 180 0.00% 180 0.00% 540 0.00%

time limit n =20 168 0.26% 178 0.06% 179 0.01% 525 0.11%

1 SECOND n= 30 112 2.23% 152 1.23% 148 1.68% 412 1.71%

All 460 0.83% 510 0.43% 507 0.56% 1,477 0.61%

n = 10 180 0.00% 180 0.00% 180 0.00% 540 0.00%

time limit n=20 177 0.05% 180 0.00% 180 0.00% 537 0.02%

10 SECONDS n= 30 131 1.31% 167 0.59% 164 0.76% 462 0.89%

All 488 0.46% 527 0.20% 524 0.25% 1,539 0.30%

n= 10 180 0.00% 180 0.00% 180 0.00% 540 0.00%

time limit n=20 180 0.00% 180 0.00% 180 0.00% 540 0.00%

100 SECONDS n= 30 151 0.65% 172 0.30% 173 0.14% 496 0.36%

All 511 0.22% 532 0.10% 533 0.05% 1.576 0.12%

Table 4:5. Impact of as

OS=0.35 OS=0.50 OS= 0.75

Optimal CPU-time Optimal CPU-time Optimal CPU-time

n= 10 180 0.00 180 0.00 180 0.00

n=20 180 0.89 180 0.31 180 0.06

n=30 166 136.22 175 58.29 177 22.38

All problems 526 45.71 535 19.53 537 7.48

The impact of the resource-based measures RF and RS is given in Tables
4:6 and 4:7. RFhas a strong impact on the complexity of the problem. The
higher RF, the harder the corresponding problem instances. These results
conform to the conclusions drawn by other research for related problem
types (Kolisch et al. 1995, De Reyck and Herroelen 1998a). The effect of
RS is not monotonously increasing or decreasing. On the contrary, it is bell
shaped, the hardest instances corresponding to an intermediate RS setting
(equal to 0.25). However, there is a clear difference between the complexity
of problems with small or large RS values. Problems with small RS values
(RS=O) are much more difficult than problems with a high RS value
(RS=0.5). Therefore, the 'top' of the bell-shaped complexity curve is

101

skewed towards RS=O. The impact of RS corresponds to the conjecture of
Elmaghraby and Herroelen (1980) and the results of De Reyck and
Herroelen (1996a) for the RCPSP.

Table 4:6. Impact of RF

RF=0.50 RF= 1.00

Optimal CPU-time Optimal CPU-time

n = 10 270 0.00 270 0.78

n=20 270 0.00 269 14.66

n=30 270 0.06 249 129.94

All problems 810 0.02 788 48.46

Table 4:7. Impact of RS

RS=O.OO RS= 0.25 RS=0.50

Optimal CPU-time Optimal CPU-time Optimal CPU-time

n= 10 180 0.00 180 0.00 180 0.00

n=20 180 0.98 180 0.21 180 0.07

n=30 173 93.63 166 112.35 179 10.91

All problems 533 31.54 526 37.52 539 3.66

4.8.2.6. Variable resource availabilities. When the resource availabilities
are allowed to vary over time, the complexity of the GRCPSP and the
RCPSP-GPR increases. The GDH procedure needs to be explicitly
equipped with the ability to handle such time-varying resource availabilities,
which will result in an increased number of decision periods and nodes in
the search tree. The DRH procedure need not be modified in order to be
able to handle time-varying resource availabilities (or, for that matter,
variable resource requirements). The introduction of dummy activities and
appropriate time lags, as discussed in Section 4.4, will transform an instance
with variable availabilities (and requirements) into an equivalent instance
with constant availabilities (and requirements). Naturally, the increased
number of activities in the project network will have a substantial effect on
the efficiency of the DRH procedure.

In order to estimate the effect of introducing variable resource
availabilities on the performance of the GDH procedure, we modified the

102

540 instances with minimal time lags as follows. The constant availabilities
are replaced by variable availabilities which are constant for an interval
equal to 5 time periods. The availability is varied from interval to interval
by increasing, respectively decreasing the availability with 1 or 2 units (or
by keeping it constant), each with equal probability. Each time the resource
availability dropped below the maximal demand of any of the activities for
that resource type, the availability was assigned that maximal demand. The
computational results indicate that the performance of the GDH procedure
does not suffer significantly from this relaxed assumption. The average
computation time increases from 0.009 to 0.018 seconds, while the average
number of nodes in the search tree increases from 781 to 1,492.

4.9. Conclusions

In this chapter, we review a number of algorithms for project scheduling
problems with resource constraints and generalized precedence relations.
These generalized precedence relations specify minimal and/or maximal
time lags between the starting and completion times of activities, and allow
to model various types of activity overlaps (either permissible or
mandatory), and also allow to model a wide variety of characteristics of real
life project scheduling applications. Also several objective functions are
dealt with, including all kinds of regular performance measures and the
nonregular measure of maximizing the net present value of a project.

The algorithms are enhanced and recoded in order to gain computational
efficiency taking full advantage of modem 32-bit compiler architecture. We
report new comptltational results using these algorithms on a problem set
consisting of randomly generated problem instances. A comparison with
results reported in the literature reveals that the algorithms presented here
constitute the state-of-the-art for project scheduling with generalized
precedence relations. When the optimal solution cannot be guaranteed, a
truncated version of the algorithms can be used to provide high-quality
solutions at acceptable computational cost. The experiments also highlight
the fundamental difference in complexity between the precedence
diagramming case, i.e. the case with minimal time lags only, and the
generalized precedence relations case, in which both minimal and maximal
time lags are allowed.

An investigation into the relationship between the complexity of a
problem instance, defined by the computational effort required for its
solution, and its intrinsic characteristics, reveals that the network
morphology as well as the resource-constrainedness of the problems
significantly influence the required computational effort. The more dense

103

the project network becomes, measured by an increase in the order strength,
the easier it is to obtain the optimal solution. When more activities require
the use of resources, measured by an increase in the resource factor, the
harder the instances become. The resource-constrainedness, measured by
the . resource strength, has a bell-shaped impact on the computational
complexity. Instances with a low or high resource-constrainedness are easier
to solve than instances with an intermediate resource-constrainedness,
although the most difficult problems are relatively highly resource
constrained.

Acknowledgements

We would like to thank Klaus Neumann and Christoph Schwindt from the
University of Karlsruhe for providing us with the project generator
ProGenimax and Jan Weglarz for providing the opportunity for contributing
to the Handbook on Recent Advances in Project Scheduling.

References

BARTUSCH, M., R. H. MOHRING, AND F. J. RADERMACHER. 1988. Scheduling Project
Networks with Resource Constraints and Time Windows. Annals o.R. 16, 201-
240.

BRINKMANN, K. AND K. NEUMANN. 1996. Heuristic Procedures for Resource
Constrained Project Scheduling with Minimal and Maximal Time Lags: The
Minimum Project-Duration and Resource-Levelling Problem. J Dec. Syst. 5,
129-156.

COOPER, D. F. 1976. Heuristics for Scheduling Resource-Constrained Projects: An
Experimental Comparison. Mgmt. Sci. 22, 1186-1194.

CRANDALL, K. C. 1973. Project Planning with Precedence Lead / Lag Factors.
Project Mgmt. Quart. 4, 18-27.

DE REYCK, B. 1995. On the Use of the Restrictiveness as a Measure of Complexity
for Resource-Constrained Project Scheduling. Research Report 9535,
Department of Applied Economics, Katholieke Universiteit Leuven.

DE REYCK, B. 1998. Scheduling Projects with Generalized Precedence Relations -
Exact and Heuristic Procedures. Ph.D. Dissertation, Department of Applied
Economics, Katholieke Universiteit Leuven.

DE REYCK, B. AND W. HERROELEN. 1996a. On the Use of the Complexity Index as a
Measure of Complexity in Activity Networks, Eur. J Opnl. Res. 91, 347-366.

DE REYCK, B. AND W. HERROELEN. 1996b. An Optimal Procedure for the
Unconstrained Max-npv Project Scheduling Problem with Generalized
Precedence Relations. Research Report 9642, Department of Applied Economics,
Katholieke Universiteit Leuven.

DE REYCK, B. AND W. HERROELEN. 1997. The Multi-Mode Resource-Constrained
Project Scheduling Problem with Generalized Precedence Relations. Research

104

Report 9725, Department of Applied Economics, Katholieke Universiteit
Leuven.

DE REYCK, B. AND W. HERROELEN. 1998a. A Branch-and-Bound Algorithm for the
Resource-Constrained Project Scheduling Problem with Generalized Precedence
Relations, Eur. J Opnl. Res., to appear.

DE REYCK, B. AND W. HERROELEN. 1998b. An Optimal Procedure for the Resource
Constrained Project Scheduling Problem with Discounted Cash Flows and
Generalized Precedence Relations, Comput. and o.R. 25, 1-17.

DEMEULEMEESTER, E. AND W. HERROELEN. 1992. A Branch-and-Bound Procedure
for the Multiple Resource-Constrained Project Scheduling Problem. Mgmt. Sci.
38, 1803-1818.

DEMEULEMEESTER, E. AND W. HERROELEN. 1997a. New Benchmark Results for the
Resource-Constrained Project Scheduling Problem. Mgmt. Sci. 43, 1485-1492.

DEMEULEMEESTER, E. AND W. HERROELEN. 1997b. A Branch-and-Bound Procedure
for the Generalized Resource-Constrained Project Scheduling Problem. Opns.
Res. 45,201-212.

ELMAGHRABY, S. E. 1977. Activity Networks - Project Planning and Control by
Network Models. Wiley Interscience, New York.

ELMAGHRABY, S. E. AND W. HERROELEN. 1980. On the Measurement of Complexity
in Activity Networks, Eur. J Opnl. Res. 5, 223-234.

ELMAGHRABY, S. E. AND W. HERROELEN. 1990. The Scheduling of Activities to
Maximize the Net Present Value of Projects. Eur. J Opnl. Res. 49,35-49.

ELMAGHRABY, S. E. AND 1. KAMBUROWSKI. 1992. The Analysis of Activity Networks
under Generalized Precedence Relations. Mgmt. Sci. 38, 1245-1263.

FRANCK, B. AND K. NEUMANN. 1996. Priority-Rule Methods for the Resource
Constrained Project Scheduling Problem with Minimal and Maximal Time Lags -
An Emprical Analysis. Proceedings of the Fifth International Workshop on
Project Management and Scheduling, 11 - 13 April, Poznan, 88-91.

GRINOLD, R. C. 1972. The Payment Scheduling Problem, Nav. Res. Log. Quart. 19,
123-136.

HERROELEN, W. AND E. GALLENS. 1993. Computational Experience with an Optimal
Procedure for the Scheduling of Activities to Maximize the Net Present Value of
Projects. Eur. J Opnl. Res. 65, 274-277.

HERROELEN, W., E. DEMEULEMEESTER, AND P. VAN DOMMELEN. 1996. An Optimal
Recursive Search Procedure for the Deterministic Unconstrained Max-npv
Project Scheduling Problem. Research Report 9603, Department of Applied
Economics, Katholieke Universiteit Leuven.

HERROELEN, W., P. VAN DOMMELEN AND E. DEMEULEMEESTER. 1997. Project
Network Models with Discounted Cash Flows: A Guided Tour through Recent
Developments, Eur. J Opnl. Res. 100,97-121.

HERROELEN, W., E. DEMEULEMEESTER AND B. DE REYCK. 1998. A Classification
Scheme for Project Scheduling Problems, in: Weglarz 1. (Ed.), Handbook on
Recent advances in Project Scheduling, Kluwer Academic Publishers, this
volume.

KERBOSH, J. A. G. M. AND H. J. SCHELL. 1975. Network Planning by the Extended
METRA Potential Method. Report KS-I.1, University of Technology Eindhoven,
Department of Industrial Engineering.

KOLISCH, R. 1996. Efficient Priority Rules for the Resource-Constrained Project
Scheduling Problem. J Opns. Mgmt. 14, 179-192.

105

KOLISCH, R., A. SPRECHER AND A. DREXL. 1995. Characterization and Generation of
a General Class of Resource-Constrained Project Scheduling Problems. Mgmt.
Sci. 41,1693-1703.

LAWLER, E. L. 1976. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, New York.

MASTOR, A. A. 1970. An Experimental and Comparative Evaluation of Production
Line Balancing Techniques. Mgmt. Sci. 16, 728-746.

MINGOzzi, A., V. MANIEZZO, S. RICCIARDELLI, AND L. BIANCO. 1998. An Exact
Algorithm for Project Scheduling with Resource Constraints Based on a New
Mathematical Programming Formulation. Mgmt. SCi., to appear.

MODER, J. J., C. R. PHILLIPS, AND E. W. DAVIS. 1983. Project Management with
CPM, PERT and Precedence Diagramming. Van Nostrand Reinhold Company,
Third Edition.

NEUMANN, K. AND C. SCHWINDT. 1997. Activity-on-Node Networks with Minimal
and Maximal Time Lags and Their Application to Make-to-Order Production. OR
Spektrum. 19,205-217.

NEUMANN, K. AND J. ZHAN. 1995. Heuristics for the Minimum Project-Duration
Problem with Minimal and Maximal Time Lags under Fixed Resource
Constraints. J. Intelligent Manufacturing. 6, 145-154.

PASCOE, T. L. 1966. Allocation of Resources - CPM, Revjr. Rech. Oper. 38,31-38.
PATTERSON, 1. H. 1984. A Comparison of Exact Procedures for Solving the Multiple

Resource-Constrained Project Scheduling Problem. Mgmt. Sci. 30, 854-867.
RoY, B. 1962. Graphes et Ordonnancement. Rev. fro Rech. Oper. 25,323-333.
RUSSELL, A. H. 1970. Cash Flows in Networks. Mgmt. Sci. 16,357-373.
SCHWINDT, C. 1996. Generation of Resource-Constrained Project Scheduling

Problems with Minimal and Maximal Time Lags. Report WIOR-489, Institut flir
Wirtschaftstheorie und Operations Research, Universitat Karlsruhe.

SCHWINDT, C. AND K. NEUMANN. 1996. A New Branch-and-Bound-Based Heuristic
for Resource-Constrained Project Scheduling with Minimal and Maximal Time
Lags. Proceedings of the Fifth International Workshop on Project Management
and Scheduling, 11 - 13 April, Poznan, 212-215.

SIMPSON III, W. P. AND J. H. PATTERSON. 1992. A Parallel Exact Solution Procedure
for the Multiple Resource-Constrained Project Scheduling Problem. Research
Report, Indiana University.

SPRECHER, A. AND A. DREXL. 1996. Minimal Delaying Alternatives and Semi-Active
Timetabling in Resource-Constrained Project Scheduling. Research Report 426,
Christian-Albrechts-Universitat zu Kiel.

WIEST, J. D. 1981. Precedence Diagramming Methods: Some Unusual
Characteristics and their Implications for Project Managers, J. Opns. Mgmt. 1,
121-130.

ZHAN, 1. 1994. Heuristics for Scheduling Resource-Constrained Projects in MPM
Networks. Eur. J. Opnl. Res. 76, 192-205.

	Algorithms for scheduling projects with generalized precedence relations
	Citation

	tmp.1630423880.pdf.GyyRh

