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4 ALGORITHMS FOR 
SCHEDULING PROJECTS WITH 

GENERALIZED PRECEDENCE 
RELATIONS 

4.1. Introduction 

Bert De Reyck 1 

Erik Demeulemeester2 

Willy Herroelen 2 

1. Erasmus University Rotterdam (The Netherlands) 
2. Katholieke Universiteit Leuven (Belgium) 

The problem of scheduling projects under various types of resource 
constraints constitutes an important and challenging problem which has 
received increasing attention during the past several years. The bulk of the 
models and procedures designed for coping with these problem types aim at 
scheduling project activities to minimize the project duration subject to 
constant availability constraints on the required set of resources and 
precedence constraints that indicate that activities can only be started when 
all of their predecessors have already been fmished. However, real-life 
project scheduling applications often involve more complicated types of 
precedence relations such as arbitrary minimal and maximal time lags 
between the starting and completion times of the activities, and require more 
sophisticated regular and nonregular objective functions. Over the past few 
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years, considerable progress has been made in the use of exact solution 
procedures for this problem type and its variants. We will review the 
fundamental logic and report new computational experience with solution 
procedures for optimally solving resource-constrained project scheduling 
problems in which such generalized precedence relations and objective 
functions can be explicitly considered. 

We distinguish between four .types of generalized precedence relations 
(GPRs): start-start (SS), start-finish (SF), finish-start (FS) and finish-finish 
(FF). These relations specify a minimal or maximal time lag between a pair 
of activities. A minimal time lag specifies that an activity j can only start 
(finish) when its predecessor i has already started (finished) for a certain 
time period. A maximal time lag specifies that an activity should be started 
(finished) at the latest a specific number of time periods beyond the start 
(finish) of activity i. 

GPRs enhance the capabilities of project scheduling models because they 
can be used to model a wide variety of real-life problem characteristics. 
Next to the straightforward use of GPRs, namely allowing activity overlaps 
(which will often lead to a substantial decrease of the project makespan) and 
ensuring a maximal delay between the execution of specific activities 
(useful, for instance, when dealing with perishable products or chemical 
operations), GPRs can be used to model a wide variety of specific problem 
characteristics, including activity release dates and deadlines, activities that 
have to start or terminate simultaneously, non-delay execution of activities, 
several types of mandatory activity overlaps, fixed activity start times, time
varying resource requirements and availabilities, set-up times, overlapping 
production activities (process batches, transfer batches) and assembly line 
zoning constraints. 

The first comprehensive treatment of GPRs is due to Kerbosch and Schell 
(1975), based on the pioneering work of Roy (1962). Other studies include 
Crandall (1973), Elmaghraby (1977), Wiest (1981), Moder et al. (1983), 
Bartusch et al. (1988), Elmagbraby and Kamburowski (1992), Zhan (1994), 
Neumann and Zhan (1995), Schwindt (1996), Brinkmann and Neumann 
(1996), Schwindt and Neumann (1996), Franck and Neumann (1996), De 
Reyck and Herroelen (1 996b, 1997, 1998ab), Neumann and Schwindt 
(1997), Demeulemeester and Herroelen (1 997b ) and De Reyck (1998). 

The remainder of this chapter is organized as follows. Section 4.2 
elaborates on the concept of GPRs and clarifies the terminology and project 
representation used. Section 4.3 briefly reviews the temporal analysis of 
activity networks with GPRs. A distinction is made between the precedence 
diagramming case, i.e. start-start, start-finish, finish-start and finish-finish 
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relations with minimal time lags for minImizmg the project makespan 
(defined as minlCmax using the classification scheme of Herroelen et al. 
1998), and the case of minimal and maximal time lags (gprICmax). In Section 
4.4, the resource analysis required by the introduction of additional resource 
constraints is discussed. In Section 4.5, we discuss the fundamentals of a 
branch-and-bound procedure for optimally solving resource-constrained 
project scheduling problems with generalized precedence relations of the 
precedence diagramming type. This problem type, when extended to cope 
with activity release dates and deadlines as well as variable resource 
availabilities, is also referred to as the generalized resource-constrained 
project scheduling problem (Demeulemeester and Herroelen 1997b) and is 
denoted as m, 1, valmin,p;, b;ICmax using the classification scheme of Herroelen 
et al. (1998). Subsequently in Section 4.6, we review several branch-and
bound procedures for the case of minimal and maximal time lags 
(m,llgprICmax), and demonstrate how the solution methodology can be 
extended to cope with variable resource availabilities and requirements as 
well as other real-life project characteristics (m,l,valgpr,p;,b;,vrICmax), and 
with other regular (m,l,valgpr,p;,b;,vrlreg) and nonregular 
(m,l,valgpr,p;,b;,vrlnonreg) objective functions. In Section 4.7, we briefly 
describe the modifications that the original algorithms have undergone since 
their development. In Section 4.8, computational experience is reported 
using a set of randomly generated problem instances. Section 4.9 is reserved 
for our conclusions. 

4.2. Terminology and representation 

Assume a project represented in activity-on-the-node format by a directed 
graph G = {V, E} in which V is the set of vertices or activities, and E is the 
set of edges or GPRs. The non-preemptable activities are numbered from 1 
to n, where the dummy activities 1 and n mark the beginning and the end of 
the project. The duration of an activity is denoted by d j (1 ::; i ::; n) , its start 

time by Sj (1 ::; i ::; n) and its finish time by /; (1 ::; i ::; n). There are m 

renewable resource types, with rjkx (1 ::; i ::; n, 1 ::; k ::; m, 1 ::; x ::; d j ) the 

resource requirements of activity i with respect to resource type k in the xth 

period it is in progress and akt (1 ::; k ::; m; 1 ::; t ::; n the availability of 

resource type k in time period ]t-I, t] (T is an upper bound on the project 
length). If the resource requirements and availabilities are not time
dependent, they are represented by 'ik (I::; i ::; n, 1 ::; k ::; m) and 

ak (1 ::; k ::; m) respectively. The minimal and maximal time lags between 

two activities i andj have the form: 
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Sj + SSijin ~ Sj ~ Sj + SSijax; Sj + SFjTin ~ f j ~ Sj + SFjTax 

J; + FSijin ~ Sj ~ J; + FSijax; J; + FFtin ~ f j ~ J; + FFjTax 

where SSijin represents a minimal time lag between the start time of activity 

i and the start time of activity j (similar definitions apply for 

SSijax ,FSijin , ... ). The various time lags can be represented in a 

standardized form by transforming them to minimal start-start precedence 
relations, using the transformation rules given in Bartusch et al. (1988). 
Consequently, all GPRs are consolidated in the expression Sj + Ii) ~ Sj' 

where lij denotes a minimal start-start time lag. 

A path <is. it, i" ... , if> is called a cycle if S = t. With 'path' we mean a 
directed path, and with 'cycle' we mean a directed cycle. The length of a 
path (cycle) is defined as the sum of the lags associated with the arcs 
belonging to that path (cycle). To ensure that the dummy start and fmish 
activities correspond to the start and the completion of the project, we 
assume that there exists at least one path with nonnegative length from node 
1 to every other node and at least one path from every node i to node n 
which is equal to or larger than d;. If there are no such paths, we can insert 

arcs (1 ,i) or (i,n) with weight zero or d; respectively. P(i) = {j I (j, i) E E} 

is the set of all immediate predecessors of node i, Q(i) = {j I (i, j) E E} is 

the set of all its immediate successors. 

4.3. Temporal analysis 

The (resource-unconstrained) project scheduling problem with GPRs under 
the minimum makespan objective (gprICmm) can be mathematically 
formulated as follows: 

Minimize sn [ 1] 
Subject to 

Sj + lij ~ Sj (i,j) E E [2] 
Sj EN iEV [3] 

where N denotes the set of natural numbers. The objective function [1] 
minimizes the project duration (makespan), determined by the completion 
time (or start time, since d n = 0) of the dummy end activity n. Constraints 

[2] represent the GPRs. Constraints [3] ensure that all start times assume 
nonnegative integer values. Solving this problem can be accomplished by 
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finding a precedence-feasible earliest start schedule (ESS), i.e. the 
minimum start times (est. eS2, ... , esn) satisfying [2] and [3]. The earliest 
start of an activity i can be computed by finding the longest path from node 
1 to node i. 

4.3.1. The precedence diagramming case 

The CPM analysis for project networks with zero-lag fmish-start precedence 
relations (cpmICmax) can easily be extended to cope with minimal time lags 

(minICmax). A forward computation step eSi = max{esj + IAVj E P(i)} 

yields an ESS (assuming that eSI = 0). A backward computation step 

lSi = min{/sj -lijlVj E Q(i)} (assuming that ISn = esn) yields a latest start 

schedule (LSS) which can be used for float calculations and activity 
criticality analysis. 

4.3.2. The case of generalized precedence relations 

When maximal time lags are introduced (gprICmax), there may not be a 
schedule that satisfies all of the GPRs. There exists a precedence-feasible 
schedule for G iff G has no cycle of positive length (Bartusch et al. 1988). 
Therefore, if we compute the matrix D = [dij], where dij denotes the longest 
path from node i to node j, a positive path length from node i to itself (dii>O) 
indicates the existence of a cycle of positive length and, consequently, the 
non-existence of a precedence-feasible schedule. The computation of the 

matrix D can be done by the Floyd-Warshall algorithm in time O(n3) (see 
Lawler 1976). The ESS = (est. eS2, ... , esn) is given by (dlJ' d J2 , ••• , dIn). 

4.4. Resource analysis 

When we introduce additional renewable resource constraints, we obtain 
problems m,llminlCmax and m, IlgprlCmax, which can both be conceptually 
formulated as follows: 

Minimize sn 

Subject to 

s, + lij 5, Sj V(i,j) E E 

L>k 5, ak k = 1, 2, ... , m t = 1, 2, ... , T 
ieS(t) 

Si EN i = 1,2, ... ,n 
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where S(t) is the set of activities in progress in time period ]t-I, t] and T is an 
upper bound on the project duration, for instance 

T = L max{d;, max {/ij}}. The objective function [4] minimizes the 
;EV JEQ(i} 

project duration. The GPRs are denoted in standardized form by constraints 
[5]. Constraints [6] represent the resource constraints and constraints [7] 
ensure that the activity start times assume nonnegative integer values. 

In the precedence diagramming case, the lij values are restricted to 
nonnegative values. Consequently, an activity can never start before its 
predecessor. Activity release dates Pi need not be specified separately 
because they can be modelled using standardized time lags of the type Iii = 

Pi. The algorithm of Demeulemeester and Herroelen (1997b) for the 
generalized resource-constrained project scheduling problem (GRCPSP; 
m, I, valmin,pi' biICmax), also deals with deadlines bi and variable resource 
availabilities. 

In the case of GPRs, the lij values may assume arbitrary integer values. In 
that case also, there is no need to specify activity deadlines separately, 
because they can be modelled using negative standardized time lags of the 
type Iii = d; - bi. Also time-varying resource availabilities and requirements 
need not be specified explicitly (Bartusch et al. 1988). Time-varying 
resource availabilities can be handled by creating dummy activities which 
absorb a certain amount of each resource type for which a constant 
availability (equal to the maximum availability over time of that resource 
type) can then be assumed. These dummy activities should then be assigned 
a fixed start time using appropriate minimal and maximal time lags. Time
varying resource requirements can be modelled by splitting up the activities 
in a number of subactivities with a different constant resource requirement 
for each of the resource types. The subactivities should then be connected 
with appropriate minimal and maximal time lags which ensure a non-delay 
execution of all the subactivities of each activity. Therefore, problem 
m, l,valgprlCmax and problem m, I ,valgpr,Pb bi,vrlCmax can be solved using the 
same algorithm. 

Problems m,llminlCmax and m, IlgprlCmax are known to be strongly NP
hard. For problem m, IlgprlCmax or problem m, Ilmin, onlCmax with an imposed 
project deadline, even the decision problem of detecting problem 
(in)feasibility is NP-complete (Bartusch et al. 1988). To the best of our 
knowledge, the only exact solution procedures presented in the literature are 
the branch-and-bound algorithms of Bartusch et al. (1988), Demeulemeester 
and Herroelen (1997b) and De Reyck and Herroelen (1 998a). Because of 
the extreme complexity of problem m,llgprICmax, quite a number of 
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heuristics have been developed (Zhan 1994, Neumann and Zhan 1995, 
Brinkmann and Neumann 1996, Franck and Neumann 1996, Schwindt and 
Neumann 1996). 

In the next section, we will review two exact solution procedures for 
project scheduling problems with GPRs. Again, we distinguish between the 
precedence diagramming case (m, I, valmin,Pb b;ICmax), for which the 
procedure of Demeulemeester and Herroelen (1997b) will be reviewed, and 
the case of generalized precedence relations (m, I,valgpr,p;, b;,vrICmax), for 
which the fundamentals of the procedure developed by De Reyck and 
Herroelen (1998a) will be discussed. 

4.5. A branch-and-bound procedure for the GRCPSP 

4.5. 1. The search tree 

The branch-and-bound procedure of Demeulemeester and Herroelen (1997b, 
further referred to as GDH) is an extension of the DH-algorithm presented in 
Demeulemeester and Herroelen (1992,1997a) for the resource-constrained 
project scheduling problem with zero-lag finish-start precedence constraints 
(m,llcpmICmax). It is based on a depth-first solution strategy in which nodes 
in the search tree represent resource- and precedence-feasible partial 
schedules. Branches emanating from a parent node correspond to exhaustive 
and subset-minimal combinations of activities, the delay of which resolves a 
resource conflict at the parent node (referred to as minimal delaying 
alternatives). The search process closely resembles the one used in the 
procedure of Demeulemeester and Herroelen (1992) for the RCPSP 
(m,llcpmICmax). The modifications involve a different defmition of the 
decision point, a different process of delaying temporarily scheduled 
activities, a different definition of the cutset activities, and a modified 
backtracking scheme. In addition, the procedure relies on a different set of 
dominance rules and bounding calculations. 

The nodes in the search tree correspond to partial schedules in which 
finish times temporarily have been assigned to a subset of the activities of 
the project. Scheduling decisions are temporary in the sense that scheduled 
activities may be delayed as the result of decisions made at later stages in the 
search process. Partial schedules are constructed by semi-active 
timetabling1; i.e. each activity is started as soon as possible within the 

I Sprecher and Drexl (1996) correctly claim that the procedure of Demeulemeester and 
Herroelen (1992) does not only generate semi-active schedules. The same applies to the 
algorithm described here. Only if the left-shift dominance rule is extended to examine also 
local left-shifts prior to the current decision point, the schedules are guaranteed to be semi-
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precedence and resource constraints. A precedence-based lower bound is 
calculated by adding the maximal remaining critical path length of any of the 
activities that belong to a delaying alternative to the current delaying point. 
The delaying alternative with the smallest lower bound is chosen for further 
branching. When a complete schedule is constructed or when a partial 
schedule can be dominated using one of the node fathoming rules described 
below, the procedure backtracks to a previous level in the search tree. The 
procedure is completed upon backtracking to level O. Activity deadlines are 
coped with through a standard critical path-based backward pass 
computation starting from the deadlines. 

4.5.2. Node fathoming rules 

Three dominance rules are used to prune the search tree. Proofs can be 
found in Demeulemeester and Herroelen (1997b). 

THEOREM 1. In order to resolve a resource conflict it is sufficient to 
consider only minimal delaying alternatives (which do not contain other 
delaying alternative as a subset). 

THEOREM 2. Consider a partial schedule PSI (the set of scheduled or 
completed activities) at level p of the search tree in which activity i is 
started at time t. If activity i was delayed at level p-l of the search tree, and 
if this activity can be left-shifted without violating the precedence or 
resource constraints, then the partial schedule PSI is dominated. 

THEOREM 3. Consider a cutset CI (the set of unscheduled activities for 
which at least one direct predecessor belongs to PSJ which contains the 
same activities as a cutset CI • , which was previously saved during the 
search of another path in the search tree, and which was considered during 
the same resource interval. If t' ~ t , if all activities in progress at time t' did 
not finish later than the maximum of t and the finish time of the 
corresponding activities in PSI' and if the earliest possible start time of 
every activity in CI , is smaller than or equal to the earliest start time of the 
corresponding activity in CI , then the current partial schedule PSI is 
dominated. 

Remark here that the definition of the cutset differs slightly from the one 
formulated in Demeulemeester and Herroelen (1 997b). In the GRCPSP, 
contrary to the RCPSP, it is possible that an unscheduled activity is 
precedence constrained by an already scheduled activity, while some of its 

active. However, the branching scheme and the dominance rules are based on the principle of 
semi-active timetabling. 
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other predecessors are not yet scheduled. A subtle change in the defmition 
of the cutset is therefore needed. This fact was overlooked in the original 
implementation of the algorithm. Based on new computational experience 
presented in this chapter, we discovered one project example (out of the 
many examined) for which the optimal solution was missed because of this 
flaw. As will be indicated in Section 4.8.2.3, the correction of the flaw only 
slightly affects the computational results. 

4.6. A branch-and-bound procedure for the RCPSP
GPR 

4.6. 1. The search tree 

Essentially, the algorithm of De Reyck and Herroelen (1998a, further 
referred to as DRR) is a hybrid depth-first / laser beam search branch-and
bound algorithm. The nodes in the search tree represent the initial project 
network, described by the longest path matrix D = [dij], extended with extra 
zero-lag finish-start precedence relations to resolve a number of resource 
conflicts, which results in an extended matrix D' = [d'ij]. Nodes which 
represent precedence-feasible but resource-infeasible project networks and 
which are not fathomed by any node fathoming rules described below lead to 
a new branching. Resource conflicts are resolved using the concept of 
minimal delaying alternatives. However, contrary to the GDH procedure, 
each of these minimal delaying alternatives is delayed (enforced by extra 
zero-lag finish-start precedence relations i -< j , implying s i + d i :s; S j ) by 

each of the remaining activities also belonging to the coriflict set S(t*), the 
set of activities in progress in period ]t*-I, t*] (the period of the first 
resource conflict). Consequently, each minimal delaying alternative can 
give rise to several minimal delaying modes. 

In general, the delaying set DS, i.e. the set of all minimal delaying 
alternatives, is equal to 

{
Dd I Dd c S(t*) and 'Ir;f resource k: L 'ik - L rik :s; ak } 

DS = ieS(tO) iEDd 

and'lr;f Dd, EDS\{Dd}: Dd, ct. Dd 

The set of minimal delaying modes equals: 

M = {Mml Mm = {k -< Dd }, k ES(t*) \ Dd, Dd E DS}. Activity k is called 

the delaying activity: k -< Dd implies that k -< I for all lED d • 
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THEOREM 4. The delaying strategy which consists of delaying all minimal 
delaying alternatives D d by each activity k E S(t*) \ D d will lead to the 

optimal solution in a finite number of steps. 

PROOF. See De Reyck and Herroelen (1 998a). 

Each minimal delaying mode is then examined for precedence-feasibility 
and evaluated by computing the critical path-based lower bound Ibo. Each 

precedence-feasible minimal delaying mode with a lower bound Ibo<T is 
then considered for further branching, which occurs from the node with 
smallest Ibo. If the node represents a project network in which a resource 
conflict occurs, a new branching occurs. If it represents a feasible schedule, 
the upper bound T is updated and the procedure backtracks to the previous 
level in the search tree. Branching occurs until at a certain level in the tree, 
there are no delaying modes left to branch from. Then, the procedure 
backtracks to the previous level in the search tree and reconsiders the other 
delaying modes (not yet branched from) at that level. The procedure stops 
upon backtracking to level O. 

The fact that semi-active timetabling cannot be applied when dealing with 
both minimal and maximal time lags results in a different solution strategy 
employed by the GDH and DRH procedures. In the GDH procedure, partial 
schedules based on the precedence relations are constructed, until a resource 
conflict is observed. The remainder of the schedule need not be computed. 
A resource conflict is resolved through the delay of activities participating in 
the conflict, which corresponds to the addition of precedence relations. The 
search then advances through time to subsequent resource conflicts until the 
dummy end activity is scheduled. Upon finding such a complete 
(precedence- and resource-feasible) schedule, the procedure backtracks, 
which corresponds to a partial destruction of the schedule. Contrary, in the 
DRH procedure, in each node of the search tree, complete (precedence
based) schedules are evaluated. The first resource conflict in that schedule 
is subsequently resolved using additional precedence relations. However, 
contrary to the GDH procedure, the procedure cannot proceed through time, 
because in a newly derived schedule, obtained by resolving a resource 
conflict at time t, a new conflict can occur at a time instant t'<t. When a 
precedence- and resource-feasible schedule is encountered, the procedure 
backtracks to the previous level in the search tree which corresponds to 
removing precedence relations from the project network. 
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4.6.2. Node fathoming rules 

Nodes are fathomed if they represent a precedence-infeasible project 
network or when lbo exceeds (or equals) T. Four additional node fathoming 

rules (three dominance rules and a new lower bound) and a procedure which 
reduces the solution space and which can be executed as a pre-processing 
rule are added. These rules are given below. Additional information and 
proofs can be found in De Reyck and Herroelen (1998a). 

THEOREM 5. If there exists a minimal delaying alternative Dd with activity 
i E Dd but its real successor j!i!: Dd (dij ~ 0), we can extend Dd with 

activity j. If the resulting delaying alternative becomes non-minimal as a 
result o/this operation, it may be eliminatedfromfurther consideration. 

THEOREM 6. When a minimal delaying alternative Dd gives rise to two 
minimal delaying modes Mm and Mm with delaying activities i andj 

1 2 

respectively, M m2 is dominated by M mJ if d ij + d j ~ d i' If 
dij + d j = d j and d jj + d j = d j' either delaying mode M mJ or Mm2 

can be dominated 

Mingozzi et al. (1998) have developed five new lower bounds for the 
RCPSP, namely lb , Ib2 , lb ,lb and lb , derived from different relaxations 

I p x 3 

of a new mathematical formulation. They compute Ib3 using a heuristic for 

the maximum weighted independent set problem. Demeulemeester and 
Herroelen (1997a) have incorporated another version of Ib3 in their GDH 

algorithm, which can be extended to the RCPSP-GPR as follows. For each 
activity i E V , its companions are determined (the activities with which it 
can be scheduled in parallel, respecting both the precedence (diJ < d; and 
dji < d) and resource constraints ('rI k ::;; m: 'ik + rjk ::;; ak ». All activities i are 

then entered in a list L in non-decreasing order of the number of companions 
(non-increasing duration as tie-breaker). The following procedure then 

yields a lower bound, lbf. For each activity, we define a remaining 

duration d'j . Initially, all d'j are equal to ~ and lbf = 0 . 

while L not empty do 
take the first activity (activity l) in L and remove it from L 

IbI = IbI +dJ 
for every companionj of i do 

if d ij > 0 then d'j = d'j - (d i - d ij ) 
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enddo 
enddo 

THEOREM 7. 

else if d ji > 0 then dj = dj - min{dj - dj;A} 

else dj = dj - d; 

endif 
if dj ::;; 0, remove activity j from L 

Ib3
g is a valid lower bound for problem 

m, 1, valgpr,p;, 0;, vrlCmax. 

IbI is used to fathom nodes for which IbI ~ T. However, whereas lbo 
is calculated immediately upon the creation of a node, the calculation of 

IbI is deferred until a decision has been made to actually branch from that 

node. The rationale behind this is that (a) IbI is more difficult to compute 

than lbo, and (b) calculating IbI implies calculating the entire matrix D. 

We defer the calculation of Ib3g and D until the node is actually selected for. 

branching. As a result, only lbo is used as a branching criterion. 

THEOREM 8. If the set of added precedence constraints which leads to the 
project network in node x contains as a subset another set of precedence 
constraints leading to the project network in a previously examined node y 
in another branch of the search tree, node x can be fathomed. 

THEOREM 9. If:3 i,j EV and k::;; m for which r;k +rjk > ak and 

-dJ < dij < d;, we can set lij = d;. 

4.6.3. Extensions to other objective functions 

In real-life project scheduling applications, the minimization of the project 
length is undoubtedly the most popular objective function. Minimizing the 
project makespan implies that the resources tied up in the activities of the 
project are released as soon as possible, thereby making them available for 
other projects in the future. Also, minimizing the project length releases 
tied-up capital because in many projects, the majority of income payments 
occur at the end of a project (Kolisch 1996). 

Nevertheless, for many actual project scheduling applications, 
minimizing the project length may be a misrepresentation of the actual 
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conditions, in which considerations such as cost minimization, tardiness 
minimization and revenue maximization may be much more relevant. In the 
literature, a rich variety of objective functions has been the subject of 
extensive study. These objective functions can be classified into two distinct 
classes: regular and nonregular measures of performance. A regular 
measure of performance (which is to be minimized) is a nondecreasing 
function of the activity completion times. When not imposed by resource, 
precedence or temporal constraints, it will not be advantageous to delay 
activities solely to obtain an improved performance under a regular measure 
of performance. For a nonregular objective function, the condition above 
does not hold. This implies that delaying activities may improve the 
performance of the schedule, even if such a delay is not imposed by any 
constraints. 

4.6.3.1. Regular performance measures. Practical applications of regular 
measures of performance often take the form of a cost function based on the 
activity completion times. Such cost functions may take the following form: 

• Minimizing project costs determined by a weighted function of the 
tardiness of the activities with respect to pre-set due dates 

(m,l,valgpr,p;,o;,vrILwiTi)' where T j = max{fi -t5i,o}, t5 j 

represents the due date of activity i (not to be confused with the activity 
deadlines 0; which can also be present and which constitute hard 
constraints that cannot be violated) and W; denotes the weight (penalty) 
associated with an additional delay (of one time period) of activity i 
beyond its due date. We may also want to minimize the number of tardy 
activities (m,l,valgpr,p;,bi,vrlnr) or the maximal activity tardiness 
(m, 1 ,valgpr,p;, bi,vrl Tmm). 

• Minimize the mean flow time: m,l,valgpr,p;,bi,vrl F, where 
n 

F = ..!.. L (fi - P j) and Pi denotes the release date of activity i. 
n 

i= 1 

In the ORR procedure, we evaluate the project networks in each node of 
the search tree by computing an ESS (by means of a longest path matrix D), 
which yields a critical path-based lower bound lbo. If we optimize any other 
regular measure of performance (m,l,valgpr,p;,bi,vrlreg), we can still use the 
ESS to evaluate the project networks and simply replace the calculation of 
lbo by the regular performance measure under consideration. The branching 
strategy based on minimal delaying modes (Theorem 4) can also be used 
when dealing with other regular performance measures. Also Theorems 5, 
6, 8 and 9 are still applicable. Therefore, only two slight modifications are 
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needed to extend the procedure. First, we need to replace lbo by the new 
measure and use the resulting value as a lower bound. Second, the lower 

bound Ib3
g can no longer be used as a node fathoming rule since it is based 

on the minimum makespan objective. 

4.6.3.2. Nonregular performance measures. If we optimize a nonregular 
measure of performance (m,l,valgpr,p;,bi,vrlnonreg), the branching strategy 
based on minimal delaying modes to resolve resource conflicts (Theorem 4) 
can still be used. However, we cannot use the ESS anymore to compute the 
objective function value and replace the calculation of Ibo by the 
performance measure under consideration. Rather, the project networks in 
each node of the search tree should be optimized using the nonregular 
objective function while discarding the resource constraints (gprlnonreg). 
Also resource-feasibility should be checked against the schedule obtained by 
optimizing the nonregular objective function for the resource-unconstrained 
project network. 

A popular nonregular performance measure is the maximization of 
the net present value (npv) of the project, in which positive and negative 
cash flows are associated with the activities (m,l,valgpr,p;,bi,vr,c;lnpv): 

n di 

Maximize L cie-cr/i with ci = Lgit ea(di-t), the cash flow (positive 
i=1 t=1 

or negative) associated with each activity compounded up to its completion. 

For a review of project scheduling problems in which financial 
considerations are explicitly included, we refer the reader to Herroelen et al. 
(1997). When maximizing the project npv, the evaluation and optimization 
of the project networks in each node should be accomplished by maximizing 
the npv of the corresponding (precedence-feasible, but not necessarily 
resource-feasible) project without taking the resource constraints into 
account (gpr,b;"c;lnpv). Algorithms for the unconstrained max-npv project 
scheduling problem (cpm,on.c;lnpv) can be found in Russell (1970), Grinold 
(1972), Elmaghraby and Herroelen (1990), Herroelen and Gallens (1993) 
and Herroelen et al. (1996). Unfortunately, none of these algorithms can 
cope with GPRs (gpr,p;,bi,c;lnpv). De Reyck and Herroelen (1996b) have 
developed an exact recursive enumeration procedure for optimizing the npv 
in project networks with GPRs (gpr,p;,bi,c;lnpv), which will be briefly 
reviewed in the next section. 

4.6.3.3. Maximizing the net present value of projects: the resource
unconstrained case. The algorithm of De Reyck and Herroelen (1996b) for 
problem gpr,p;,bi,c;lnpv is based on the intuitive idea that activities carrying 
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positive cash flows should be executed as early as possible, whereas 
activities with a negative cash flow should be delayed as much as possible. 
The procedure consists of 3 steps. In STEP 1, the longest path matrix D is 
computed. If the project is precedence-feasible, the early tree is computed, 
which spans all activities scheduled at their earliest start time. For every 
activity i, a predecessor j is determined for which d1,j +dj,; = dl,i, upon 

which activities j and i are linked. 

The current tree is computed in STEP 2 of the algorithm by delaying all 
activities i with a negative cash flow C; and no successor in the early tree as 
much as possible within the early tree, i.e. without affecting the start times of 
the successor activities in the constraint digraph. This results in a local 
optimum which cannot be improved by delaying single activities and will 
reduce the number of recursions required in STEP 3 of the procedure which 
examines the simultaneous delay of activities. If any activity i has been 
delayed while computing the current tree, STEP 2 is repeated. After STEP 2 
has been repeated a sufficient number of times, the procedure enters a 
recursive search in STEP 3, in which partial trees PT (with a negative npv) 
are identified that can be disconnected from the current tree and shifted 
forwards in time in order to increase the npv of the project. When such a 
partial tree is found, the algorithm computes the maximal shift of the partial 
tree by identifying the maximal possible increase in the start times of the 
activities belonging to the partial tree without violating any of the 
precedence constraints, keeping all activities not belonging to PT at their 
current start times. Therefore, a new arc is determined with minimal 
displacement, i.e. an arc (k,l) (k ePT, I ~PT) with minimal value for 

d1,1 - d1,k - dk,l' We disconnect the partial tree from the remainder of the 

current tree and we add the arc (k,l) to the current tree, thereby relinking the 
forward-shifted partial tree to the current tree. Then, we update the 
completion times of the activities in the partial tree as follows: V j e PT: 

d 1 J' = d 1 J' + min {dl/ - d lk - dk I} . If a shift has been found and 
, , kePT' , , 

IEPT 

implemented, the recursive procedure is restarted until no further shift can 
be accomplished. Then, the optimal schedule with its corresponding npv is 
reported. 

4.6.3.4. Maximizing the net present value of projects: the resource
constrained case. De Reyck and Herroelen (I 998b ) have developed a 
branch-and-bound procedure for problem m,1,valgpr,p;,4,vr,c;lnpv based on 
the DRR algorithm for the minimum makespan case, using the recursive 
search procedure described above for the calculation of a bound on the 
project npv. Each time a node in the branch-and-bound tree is chosen to 
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branch from, the corresponding longest path matrix D is computed and the 
schedule which optimizes the project npv is computed, yielding an upper 
bound on the npv. However, in the DRH procedure, when a number of 
nodes are created at a certain level of the search tree (not yet chosen to be 
branched from), the matrices D are not yet computed. Therefore, it is not 
possible to use the algorithm for the unconstrained npv maximization to 
compute an upper bound on the project npv. Therefore, the computation of 
the upper bound ub on the project npv is not made upon creation of a node, 
but is deferred until a decision has been made to actually branch from it. As 
a result, another criterion (a myopic criterion based on the cash flows of the 
delayed activities) is used in order to select the node to branch from at a 
certain level. 

Another often encountered example of a nonregular performance measure 
is the minimization of the weighted earliness-tardiness of the activities in a 
project, in which a due date, earliness penalties as well as tardiness penalties 
are associated with the activities (m,l,valgpr,p;,bi,vrlearlyltardy): 
nisi 

L Wi LI t + d i - 8 i IXi/' In that case, the project network in each node 
i=l t=esi 

of the search tree should be optimized such that a minimum penalty value 
due to earliness or tardiness of the activities is obtained, while the activities 
are subject to GPRs only (gpr,p;,bilearlyltardy). Exact solution procedures 
for optimizing due date performance in project networks are sparse. To the 
best of our knowledge, if the precedence relations among the activities are 
allowed to be GPRs, no solution procedure is available at all for minimizing 
earliness-tardiness-based objective functions. This constitutes a promising 
area for future research. 

4.6.3.5. Multiple objective functions. From the discussion above, it is 
clear that project management has the choice between a wide variety of 
performance measures. These measures may pertain to the makespan of the 
project, the tardiness of activities or subprojects, the activity flow times, the 
levelness of the resource profile(s) and may even include financial 
considerations. In many situations, several of these objective functions may 
be relevant at the same time. Often, however, the relevant objectives are in 
conflict. In that case, a trade-off will be present in the sense that the project 
manager will have to decide which performance measure is the most 
important, in which order they should be considered or which weights 
should be assigned to each of the measures. 

This gives rise to the problem of scheduling projects under multiple 
objectives. We distinguish between the case where (a) multiple objectives 
are considered in a pre-specified order or have been assigned a weight 
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determining the trade-off between the measures, and (b) where the solution 
method should present a series of alternative solutions from which the 
decision maker should select a solution based on his/her perspectives of the 
relation between the performance measures. In the former case, the solution 
procedure can unambiguously determine the optimal solution because the 
multiple objectives can be merged into a single objective function. In the 
latter case, the solution procedure cannot determine an optimal schedule 
because a trade-off between the various performance measures has not been 
firmly established. The procedure should then present a number of efficient 
solutions, from which the decision maker can select a schedule. 

If mUltiple regular performance measures are considered, each one given 
a weight to determine its importance vis-a-vis the other measures (or a rank 
order), the DRH procedure can still be used. In that case, the ESS can still 
be used to evaluate the resource-unconstrained project networks in each 
node of the search tree. If, however, nonregular performance measures are 
considered, the problem becomes much more complex. In that case, the 
resource-unconstrained projects should be optimized taking into account the 
weighted nonregular (and regular) objective functions. Also when no 
weights or strict order can be assigned to the measures, the solution 
approach should be modified rather extensively. In that case, the procedure 
should present multiple viable alternatives and allow the user to determine 
which schedule he/she prefers based on the associated values for the various 
objective functions. 

4.7. Modifications to the original algorithms 

The GDH and DRH procedures have been recoded and compiled using 
Microsoft Visual c++ 4.0 under Windows NT for use on a Dell Pentium 
Pro-200Mhz personal computer. The GDH code requires 91 Kb, whereas 
the data structures are allowed to use up to 16 Mb. This memory is mainly 
allocated to the application of the cutset dominance rule. For the DRH code, 
which requires 90 Kb, only 400 Kb should be reserved for storing the data. 

The GDH procedure has undergone some modifications since its 
development. First, we have corrected the application of the cutset 
dominance rule as explained in Section 4.5.2. Secondly, we now only 
consider efficient cutsets when applying the cutset dominance rule: every 
time a new cutset is saved, all cutsets that are dominated by it are removed, 
resulting in a significantly smaller set of cutsets and a substantial speed-up 
of the dominance rule. The codes of both algorithms have been modified in 
order to take full advantage of modem 32-bit compiler architecture. This 
results in a significant efficiency gain. The major change in the GDH 
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procedure involves a new coding scheme for the cutset dominance rule. 
Similar adjustments have been described for the case with zero-lag finish
start precedence relations (see Demeulemeester and Herroelen I 997a). 
Other changes involve merging different resource types into one global 
resource type (using 32-bit integers). Additional code polishing also leads 
to an increase in performance. For technical details we refer the reader to 
Demeulemeester and Herroelen (1997a). 

4.8. Computational experience 

4.8. 1. Previous computational experience 

4.8.1.1. The GRCPSP (m,l,valmin,pj,bjICmax). Computational experience 
with the GDH procedure is reported by Demeulemeester and Herroelen 
(1997b) on the problem set consisting of the 110 RCPSP instances 
assembled by Patterson (1984). The results were very promising and 
indicated that the algorithm was, on the average, only 2.5 times slower than 
the similar procedure designed for the RCPSP. For the Simpson problem 
set, consisting of the same 110 RCPSP instances, extended with variable 
resource availabilities by Simpson et al. (1992), the procedure also 
performed substantially better than the procedure of Simpson et al. (1992). 
A third problem set consisted of ten problem instances based on Patterson 
problem 72 in which ready times, deadlines and precedence diagramming 
constraints were introduced. All ten instances could be solved very quickly 
(in at most 32.08 seconds). 

The changes in the coding of the GDH procedure result in a dramatic 
decrease in the computation times for these problem instances. Using a 
Pentium Pro-200Mhz computer, the average computation time for the 
Simpson problem set decreases by a factor of more than one thousand (0.009 
seconds versus 9.273 seconds). For the ten problems based on Patterson 
problem 72, the speed-up factor is only 12 (0.434 seconds versus 0.035 
seconds). 

4.8.1.2. The RCPSP-GPR (m,l,valgpr,pj,bj,vrICmax). De Reyck and 
Herroelen (1998a) report computational results on three different problem 
sets in order to validate the DRH procedure against the serial and parallel 
heuristics developed by Franck and Neumann (1996). These heuristics 
improve upon the procedures developed by Neumann and Zhan (1995), 
Zhan (1994) and Brinkmann and Neumann (1996). All three data sets have 
been generated using the random problem generator ProGenimax developed 
by Schwindt (1996). The first problem set consists of 1,080 100-activity 
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instances. The second set consists of 1,440 100-activity problem instances. 
The third set consists of 7,200 instances with 10 up to 100 activities. 

Table 4: I shows some computational results on the first problem set. 
These results are obtained using Microsoft Visual C++ 2.0 under Windows 
NT for a Digital Venturis Pentium-60 personal computer with 16Mb of 
internal memory. The branch-and-bound procedure is truncated after a 
specific amount of running time (1, 10 and 100 seconds). The results 
include the number of problems solved to optimality (for which the optimum 
was found and verified), the number of problems for which the optimal 
solution is obtained (but not necessarily verified), the number of problems 
for which the best known solution is obtained, the number of unsolved 
problems (for which a feasible solution could not be determined and neither 
infeasibility of the instance could be proven), the average deviation from a 
lower bound and the average deviation from the best known solution. The 
lower bound lb used to compute the deviations, is the maximum of the 
critical path-based lower bound lbo, the resource-based lower bound 

lbr = ~~;{ri~/irik / ak l} and lbf (computed in the root node of the 

search tree after pre-processing). The column labelled F&N in Table 4: 1 
contains the results obtained by Franck and Neumann (1996), which are 
obtained by running a collection of 44 different heuristics which rank among 
the best currently available. The best known solution referred to in Table 
4: 1 is the best of the solutions obtained with various versions of the DRH 
algorithm running for up to 1 hour per problem and with the heuristic (F&N) 
solutions, and can therefore be considered as near-optimal. 

Table 4:1. The results on problem set I 

F&N DRH DRH DRH 

I sec 10 sec 100 sec 

Solved to optimality 196 (18%) 543 (50%) 592 (55%) 609 (56%) 

Optimal solution is found 220 (20%) 578 (54%) 596 (55%) 609 (56%) 

Best known solution is found 378 (35%) 606 (56%) 652 (60%) 682 (63%) 

Unsolved problems 21 (2%) 205 (19%) 86 (8%) 68 (6%) 

Average deviation from Ib 17.02% 5.99% 9.77% 10.00% 

Average deviation from best solution 7.20% 2.20% 2.54% 2.31% 

The DRH procedure manages to solve more than 50% of the 100-activity 
problem instances to optimality within 1 second of computation time. 
However, increasing the allowed computation time from 1 second to 100 
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seconds leads to an increase of only 12% in the problem instances solved to 
optimality (from 543 to 609). The average deviation from the best known 
solution (lower bound) never exceeds 2.54% (10.00%), whereas the F&N 
heuristics result in an average deviation of 7.20% (17.02%). Less 
reassuring, however, is that, especially for small time limits, a relatively 
large number of problems remains unsolved. The F&N heuristics do a better 
job on this issue. 

This inspired us to develop another approach which is based on finding a 
feasible solution first, rather than going immediately for the optimal 
solution. When no feasible solution has been obtained yet, this approach 
uses a new criterion (referred to as time window slack TWS) to decide on 
which node to branch from, based on feasibility criteria. The node that 
entails the highest chance of leading to a feasible solution is selected first, 
regardless of its lower bound (which is only used as a tie-breaker). When a 
feasible solution is obtained, again the lower bound is used as a branching 
criterion. Using this new approach, the number of unsolved problems 
decreases to 27 (2.5%), 8 (0.7%) and 6 (0.6%) for the three time limit 
settings, whereas the number of problems solved to optimality does not 
significantly differ from the original approach. The average deviation from 
the best known solution (lower bound) increases somewhat, but never 
exceeds 4.5% (14%), thereby still outperforming the heuristics. More 
details can be found in De Reyck and Herroelen (1998a). 

4.8.2. New computational results 

4.8.2.1. Benchmark problem set. In this section, we present new 
computational experience with the two enhanced branch-and-bound 
procedures on a new benchmark problem set consisting of 1,620 randomly 
generated instances. The parameters used to generate the new problem set 
are given in Table 4:2. The indication [x,y] means that the corresponding 
value is randomly generated in the interval [x,y], whereas x; y; z means that 
three settings for that parameter were used in a full factorial experiment. For 
each combination of parameter values, 10 instances have been generated. 

The resource factor RF (Pascoe 1966) reflects the average portion of 
resources requested per activity. If RF=I, then each activity requests all 
resources. RF=O indicates that no activity requests any resource: 

1 n K {I, if rik > 0 
RF = -K L L 0 h . . The resource strength RS (Cooper 1976) is 

n i=!k=! ,ot erwlse 

redefined by Kolisch et a!. (1995) as (ak _rtin )/(rt3X -rrn ), where ak is 
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the total availability of renewable resource type k, rt in = max rik (the 
l=l, ... ,n 

maximum resource requirement for each resource type), and rrax is the 

peak demand for resource type k in the precedence-based early start 
schedule. The resource availability is assumed to be constant over time. 

Table 4:2. The parameter settings of the new problem sets 

Control parameter 

number of activities 

activity durations 

number of resource types 

minimum 1 maximum number of resources used per activity 

activity resource demand 

resource factor, RF (Pascoe 1966) 

resource strength, RS (Kolisch et al. 1995) 

number of initial and terminal activities 

maximum number of predecessors and successors 

order strength, OS (Mastor 1970) 

% maximal time lags 

number of cycle structures (Brinkmann and Neumann 1996) 

minimum 1 maximum number of nodes per cycle structure 

coefficient of cycle structure density (Schwindt 1996) 

cycle structure tightness (Schwindt 1996) 

Values 

10;20;30 

[2,10] 

4 

1/4 

[I, I 0] 

0.50; 1.00 

0.00; 0.25; 0.50 

[2,4] 

3 

0.35; 0.50; 0.65 

0%; 10%;20% 

[I, I 0] 

2/30 

0.3 

0.5 

The order strength as is defmed as the number of precedence 
relations, including the transitive ones, divided by the theoretical maximum 
of such precedence relations, namely n(n-I)/2, where n denotes the number 
of activities (Mastor 1970). Because as only applies to acyclic networks, it 
is applied to the acyclic skeleton of the generated project networks obtained 
by ignoring all maximal time lags (for details see Schwindt 1996). For the 
definition of cycle structures and related measures, we refer the reader to 
Schwindt (1996). 

4.8.2.2. Overall results. The problems without any maximal time lags 
correspond to instances of the GRCPSP, whereas the problems with 10% 
and 20% maximal time lags correspond to instances of the RCPSP-GPR. 
Therefore, we solved the former (540) instances with the GDH procedure, 
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and the latter (1,080) instances with the DRH procedure. A time limit of 
1,000 seconds is imposed. The overall results can be found in Table 4:3. 

Table 4:3. Overall results 

0% 10% 20% All problems 

n Optimal CPU-time Optimal CPU-time Optimal CPU-time Optimal CPU-

time 

10 180 0.001 180 0.00 180 0.00 540 0,00 

20 180 0,005 180 0.11 180 0,12 540 0,08 

30 180 0.021 177 36.37 178 34,27 535 23,56 

All 540 0.009 537 12,16 538 11.46 1,615 7,88 

The GRCPSP instances can be solved to optimality within very small 
CPU-times using the GDH procedure. However, the RCPSP-GPR instances, 
solved using the DRH procedure, require much more time. Five out of the 
1,080 instances cannot be solved to (verified) optimality within 1,000 
seconds. This illustrates the much higher complexity of the RCPSP-GPR 
versus the GRCPSP. The main reason for the difference in complexity is 
that for solving the RCPSP-GPR, semi-active timetabling cannot be applied. 
Consequently, most of the concepts developed for the minimal time lag case 
are not transferable to the GPR-case. The fundamental logic of the GDH 
procedure, namely its branching strategy, is based on the principle of semi
active timetabling and can therefore not be applied for the GPR case. Also 
the dominance rules, including the left-shift dominance rule and the 
powerful cutset dominance rule, which is mainly responsible for the 
efficiency of the GDH procedure, are not applicable anymore. 
Consequently, the DRH procedure is based on a different branching strategy 
and a new set of dominance rules and lower bounds. 

The fact that the branching strategy and the dominance rules which are 
applicable for the GPR case are less powerful than those used for the 
precedence diagramming case, can be illustrated by comparing the 
performance of both algorithms on the problem instances with minimal time 
lags only. Whereas the GDH procedures solves all 540 instances to 
optimality with an average CPU-time of 0.009 seconds, the more general 
DRH procedure cannot solve 12 out of the 540 instances within 1,000 
seconds. Naturally, when no maximal time lags are present, the DRH 
procedure is no longer efficient because it is designed for the inclusion of 
maximal time lags. In that case, the GDH procedure should be used. 
Similarly, when all precedence relations are of the zero-lag fmish-start type, 



99 

the procedure of Demeulemeester and Herroelen (1992, 1997a) should be 
used instead. The efficiency of the DRH procedure heavily depends on the 
relative number of maximal time lags in the problem instances. The more 
maximal time lags, the more effective the dominance and bounding rules, 
and the more efficient the DRH procedure. 

4.8.2.3. The modified cutset dominance rule. We examined the impact of 
the new cutset dominance rule on the efficiency of the GDH procedure by 
implementing the original cutset dominance rule in the new procedure. The 
results indicate that the efficiency of the procedure does not substantially 
differ. For all but 1 instance, the optimal solution is obtained despite the use 
of the erroneous cutset dominance rule. The computation times using the 
modified cutset dominance rule are only slightly higher (0.009 versus 0.008 
seconds). 

4.8.2.4. Results with truncated procedures. Table 4:4 presents the results 
with a truncated version of the DRH procedure. We did not report any 
results with a truncated GDH procedure since it is able to solve all of the 
instances with minimal time lags to optimality with very little computational 
effort. Therefore, we report the results with the DRH procedure only (also 
for the instances without maximal time lags). The results reported are the 
number of instances for which the optimal solution is found (not necessarily 
verified, including the problems proven to be infeasible) and the average 
deviation from the best known solution (all but five of these solutions are 
known to be optimal). The deviations are only computed for the instances 
which are feasible and for which the truncated procedure was able to find a 
feasible solution. 

Although the DRH procedure cannot solve all instances to optimality 
when the imposed time limit is rather small, the obtained heuristic solutions 
are of high quality, especially when the relative amount of maximal time lags 
is rather high. The results conform to the results of previous computational 
experiments (De Reyck and Herroelen 1998a), which show a similar 
performance of the truncated DRH procedure on instances with up to 100 
activities (see also Table 4: 1). 

4.8.2.5. Impact of problem characteristics. In Table 4:5, the impact of the 
order strength as on the complexity of the problem instances is examined. 
Clearly, as has a negative impact on the problem complexity, measured by 
the number of problems solved to optimality and the required CPU-time. 
This result is in line with other results reported in the literature (De Reyck 
1995, Schwindt 1996, De Reyck and Herroelen 1998a). 
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Table 4:4. Heuristic results 

0% 10% 20% All problems 

Optimal %dev. Optimal %dev. Optimal %dev. Optimal %dev. 

n - 10 180 0.00% 180 0.00% 180 0.00% 540 0.00% 

time limit n =20 168 0.26% 178 0.06% 179 0.01% 525 0.11% 

1 SECOND n= 30 112 2.23% 152 1.23% 148 1.68% 412 1.71% 

All 460 0.83% 510 0.43% 507 0.56% 1,477 0.61% 

n = 10 180 0.00% 180 0.00% 180 0.00% 540 0.00% 

time limit n=20 177 0.05% 180 0.00% 180 0.00% 537 0.02% 

10 SECONDS n= 30 131 1.31% 167 0.59% 164 0.76% 462 0.89% 

All 488 0.46% 527 0.20% 524 0.25% 1,539 0.30% 

n= 10 180 0.00% 180 0.00% 180 0.00% 540 0.00% 

time limit n=20 180 0.00% 180 0.00% 180 0.00% 540 0.00% 

100 SECONDS n= 30 151 0.65% 172 0.30% 173 0.14% 496 0.36% 

All 511 0.22% 532 0.10% 533 0.05% 1.576 0.12% 

Table 4:5. Impact of as 

OS=0.35 OS=0.50 OS= 0.75 

Optimal CPU-time Optimal CPU-time Optimal CPU-time 

n= 10 180 0.00 180 0.00 180 0.00 

n=20 180 0.89 180 0.31 180 0.06 

n=30 166 136.22 175 58.29 177 22.38 

All problems 526 45.71 535 19.53 537 7.48 

The impact of the resource-based measures RF and RS is given in Tables 
4:6 and 4:7. RFhas a strong impact on the complexity of the problem. The 
higher RF, the harder the corresponding problem instances. These results 
conform to the conclusions drawn by other research for related problem 
types (Kolisch et al. 1995, De Reyck and Herroelen 1998a). The effect of 
RS is not monotonously increasing or decreasing. On the contrary, it is bell
shaped, the hardest instances corresponding to an intermediate RS setting 
(equal to 0.25). However, there is a clear difference between the complexity 
of problems with small or large RS values. Problems with small RS values 
(RS=O) are much more difficult than problems with a high RS value 
(RS=0.5). Therefore, the 'top' of the bell-shaped complexity curve is 
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skewed towards RS=O. The impact of RS corresponds to the conjecture of 
Elmaghraby and Herroelen (1980) and the results of De Reyck and 
Herroelen (1996a) for the RCPSP. 

Table 4:6. Impact of RF 

RF=0.50 RF= 1.00 

Optimal CPU-time Optimal CPU-time 

n = 10 270 0.00 270 0.78 

n=20 270 0.00 269 14.66 

n=30 270 0.06 249 129.94 

All problems 810 0.02 788 48.46 

Table 4:7. Impact of RS 

RS=O.OO RS= 0.25 RS=0.50 

Optimal CPU-time Optimal CPU-time Optimal CPU-time 

n= 10 180 0.00 180 0.00 180 0.00 

n=20 180 0.98 180 0.21 180 0.07 

n=30 173 93.63 166 112.35 179 10.91 

All problems 533 31.54 526 37.52 539 3.66 

4.8.2.6. Variable resource availabilities. When the resource availabilities 
are allowed to vary over time, the complexity of the GRCPSP and the 
RCPSP-GPR increases. The GDH procedure needs to be explicitly 
equipped with the ability to handle such time-varying resource availabilities, 
which will result in an increased number of decision periods and nodes in 
the search tree. The DRH procedure need not be modified in order to be 
able to handle time-varying resource availabilities (or, for that matter, 
variable resource requirements). The introduction of dummy activities and 
appropriate time lags, as discussed in Section 4.4, will transform an instance 
with variable availabilities (and requirements) into an equivalent instance 
with constant availabilities (and requirements). Naturally, the increased 
number of activities in the project network will have a substantial effect on 
the efficiency of the DRH procedure. 

In order to estimate the effect of introducing variable resource 
availabilities on the performance of the GDH procedure, we modified the 
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540 instances with minimal time lags as follows. The constant availabilities 
are replaced by variable availabilities which are constant for an interval 
equal to 5 time periods. The availability is varied from interval to interval 
by increasing, respectively decreasing the availability with 1 or 2 units (or 
by keeping it constant), each with equal probability. Each time the resource 
availability dropped below the maximal demand of any of the activities for 
that resource type, the availability was assigned that maximal demand. The 
computational results indicate that the performance of the GDH procedure 
does not suffer significantly from this relaxed assumption. The average 
computation time increases from 0.009 to 0.018 seconds, while the average 
number of nodes in the search tree increases from 781 to 1,492. 

4.9. Conclusions 

In this chapter, we review a number of algorithms for project scheduling 
problems with resource constraints and generalized precedence relations. 
These generalized precedence relations specify minimal and/or maximal 
time lags between the starting and completion times of activities, and allow 
to model various types of activity overlaps (either permissible or 
mandatory), and also allow to model a wide variety of characteristics of real
life project scheduling applications. Also several objective functions are 
dealt with, including all kinds of regular performance measures and the 
nonregular measure of maximizing the net present value of a project. 

The algorithms are enhanced and recoded in order to gain computational 
efficiency taking full advantage of modem 32-bit compiler architecture. We 
report new comptltational results using these algorithms on a problem set 
consisting of randomly generated problem instances. A comparison with 
results reported in the literature reveals that the algorithms presented here 
constitute the state-of-the-art for project scheduling with generalized 
precedence relations. When the optimal solution cannot be guaranteed, a 
truncated version of the algorithms can be used to provide high-quality 
solutions at acceptable computational cost. The experiments also highlight 
the fundamental difference in complexity between the precedence 
diagramming case, i.e. the case with minimal time lags only, and the 
generalized precedence relations case, in which both minimal and maximal 
time lags are allowed. 

An investigation into the relationship between the complexity of a 
problem instance, defined by the computational effort required for its 
solution, and its intrinsic characteristics, reveals that the network 
morphology as well as the resource-constrainedness of the problems 
significantly influence the required computational effort. The more dense 
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the project network becomes, measured by an increase in the order strength, 
the easier it is to obtain the optimal solution. When more activities require 
the use of resources, measured by an increase in the resource factor, the 
harder the instances become. The resource-constrainedness, measured by 
the . resource strength, has a bell-shaped impact on the computational 
complexity. Instances with a low or high resource-constrainedness are easier 
to solve than instances with an intermediate resource-constrainedness, 
although the most difficult problems are relatively highly resource
constrained. 
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