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Chapter 4
Valuation of Risky Projects and Illiquid
Investments Using Portfolio Selection Models

Janne Gustafsson, Bert De Reyck, Zeger Degraeve, and Ahti Salo

Abstract We develop a portfolio selection framework for the valuation of projects
and other illiquid investments for an investor who can invest in a portfolio of
private, illiquid investment opportunities as well as in securities in financial markets,
but who cannot necessarily replicate project cash flows using financial intruments.
We demonstrate how project values can be solved using an inverse optimization
procedure and prove several general analytical properties for project values. We also
provide an illustrative example on the modeling and pricing of multiperiod projects
that are characterized by managerial flexibility.

4.1 Introduction

Project valuation and selection has attracted plenty of attention among researchers
and practitioners over the past few decades. Suggested methods for this purpose
include (1) discounted cash flow analysis (DCF, see e.g. Brealey and Myers
2000) to account for the time value of money, (2) project portfolio optimization
(see Luenberger 1998) to account for limited resources and several competing
projects, and (3) options pricing analysis, which has focused on the recognition of
the managerial flexibility embedded in projects (Dixit and Pindyck 1994; Trigeorgis
1996). Despite the research efforts that have been made to address challenges in
project valuation, traditional methods tend to suffer from shortcomings which limit
their practical use and theoretical relevance. For example, DCF analysis does not
specify how the discount rate should be derived so as to properly account for (a) the
time value of money, (b) risk adjustment implied by (1) the investor’s risk aversion
(if any) and (2) the risk of the project and its impact on the aggregate risk faced
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by the investor through diversification and correlations; and (c) opportunity costs
imposed by alternative investment opportunities such as financial instruments and
competing project opportunities. Traditionally, it is proposed that a project’s cash
flows should be discounted at the rate of return of a publicly traded security that is
equivalent in risk to the project (Brealey and Myers 2000). However, the definition
of what constitutes an “equivalent” risk is problematic; in effect, unless a publicly
traded instrument (or a trading strategy of publicly traded instruments) exactly
replicates the project cash flows in all future states of nature, it is questionable
whether a true equivalence exists. (Also, it is not clear if such a discount rate would
account for anything else than opportunity costs implied by securities.) Likewise,
traditional options pricing analysis requires that the project’s cash flows are
replicated with financial instruments. Still, most private projects and other similar
illiquid investments are, by their nature, independent of the fluctuations of the prices
of publicly traded securities. Thus, the requirement of the existence of a replicating
portfolio for a private project seems unsatisfactory as a theoretical assumption.

In this chapter, we approach the valuation of private investment opportunities
through portfolio optimization models. We examine a setting where an investor can
invest both in market-traded, infinitely divisible assets as well as lumpy, nonmarket-
traded assets so that the opportunity costs of both classes of investments can be
accounted for. Examples of such lumpy assets include corporate projects, but in
general the analysis extends to any nontraded, all-or-nothing-type investments.
Market-traded assets include relevant assets that are available to the investor, such
as equities, bonds, and the risk-free asset which provides a risk-free return from
one period to the next. In particular, we demonstrate how portfolio optimization
models can be used to determine the value of each nontraded lumpy asset within the
portfolio. We also show that the resulting values are consistent with options pricing
analysis in the special case that a replicating portfolio (or trading strategy) exists for
such a private investment opportunity.

Our procedure for the valuation of a project resembles the traditional net present
value (NPV) analysis in that we determine what amount of money at present
the investor equally prefers to the project, given all the alternative investment
opportunities. Because this equivalence can be determined in two similar but
different ways (where the choice of the appropriate way depends on the setting
being modeled), we present two pricing concepts: breakeven selling price (BSP) and
breakeven buying price (BBP), which have been used frequently in decision analytic
approaches to investment decision making and even other settings (Luenberger
1998; Raiffa 1968; Smith and Nau 1995). Regarding the investor’s preferences, we
seek to keep the treatment quite generic by allowing the use of virtually any rational
preference model. The preference model merely influences the objective function
of the portfolio model and possibly introduces some risk constraints, which do not
alter the core of the valuation procedure, on condition that the preference model
makes it possible to determine when two investment portfolios are equally preferred.
In particular, we show that the required portfolio models can be formulated for both
expected utility maximizers and mean-risk optimizers.
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To illustrate how the project valuation procedure can be implemented in
a multiperiod setting with projects that are characterized by varying degrees
of managerial flexibility, we use contingent portfolio programming (CPP, see
Gustafsson and Salo 2005) to formulate a multiperiod project-security portfolio
selection model. This approach uses project-specific decision trees to capture
real options that are embedded in projects. Furthermore, we provide a numerical
example that parallels the example in Gustafsson and Salo (2005). This example
suggests that while there is wide array of issues to be addressed in multiperiod
settings, it is still possible to deal with them all with the help of models that remain
practically tractable.

Relevant applications of our valuation methodology include, for instance, phar-
maceutical development projects, which are characterized by large nonmarket-
related risks and which are often illiquid due to several factors (see Chapter 13 in
this book). For example, if the project is very specialized, the expertise to evaluate
it may be available only within the company, in which case it may be difficult
for outsiders to verify the accuracy and completeness of evaluation information.
Also, details concerning pharmaceutical compounds may involve corporate secrets
that can be delivered only to trusted third parties, which may lower the number of
potential buyers and decrease the liquidity of the project.

This chapter is structured as follows. Section 4.2 introduces the basic structure
of integrated project-security portfolio selection models and discusses different
formulations of portfolio selection problems. In Section 4.3, we introduce our
valuation concepts and examine their properties. Section 4.4 discusses the valuation
of investment opportunities such as real options embedded in the project. Section 4.5
gives an example of the framework in a multiperiod setting, which allows us
to compare the results with a similar example in Gustafsson and Salo (2005).
In Section 4.6, we summarize our findings and discuss implications of our results.

4.2 Integrated Portfolio Selection Models for Projects
and Securities

4.2.1 Basic Model Structure

We consider investment opportunities in two categories: (1) securities, which can
be bought and sold in any quantities and (2) projects, lumpy all-or-nothing type
investments. From a technical point of view, the main difference between these two
types of investments is that the projects’ decision variables are binary, while those
of the securities are continuous. Another difference is that the cost, or price, of
securities is determined by a market equilibrium model, such as the Capital Asset
Pricing Model (CAPM, see Lintner 1965; Sharpe 1964), while the investment cost
of a project is an endogenous property of the project.
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Portfolio selection models can be formulated either in terms of rates of return
and portfolio weights, like in Markowitz-type formulations, or by specifying a
budget constraint, expressing the initial wealth level, subject to which the investor’s
terminal wealth level is maximized. The latter approach is more appropriate to
project portfolio selection, because the investor is often limited by a budget
constraint and it is natural to characterize projects in terms of cash flows rather
than in terms of portfolio weights and returns.

4.2.2 Types of Preference Models

Early portfolio selection formulations (see, e.g., Markowitz 1952) were bi-criteria
decision problems minimizing risk while setting a target for expected return. Later,
the mean-variance model was formulated in terms of expected utility theory (EUT)
using a quadratic utility function. However, there are no similar utility functions
for most other risk measures, including the widely used absolute deviation (Konno
and Yamazaki 1991). In effect, due to the lexicographic nature of bi-criteria decision
problems, most mean-risk models cannot be represented by a real-valued functional,
thus being distinct from the usual preference functional models such as the expected
utility model. Therefore, we distinguish between two classes of preference models:
(1) preference functional models, such as the expected utility model, and (2) bi-
criteria optimization models or mean-risk models.

For example, for EUT, the preference functional is U ŒX� D EŒu.X/�, where u.�/
is the investor’s von Neumann–Morgenstern utility function. Many other kinds of
preference functional models, such as Choquet-expected utility models, have also
been proposed. In addition to preference functional models, mean-risk models have
been widely used in the literature. These models are important, because much of
the modern portfolio theory, including the CAPM, is based on a mean-risk model,
namely the Markowitz mean-variance model (Markowitz 1952).

Table 4.1 describes three possible formulations for mean-risk models:
risk minimization, where risk is minimized for a given level of expectation
(Luenberger 1998), expected value maximization, where expectation is maximized
for a given level of risk (Eppen et al. 1989), and the additive formulation, where the
weighted sum of mean and risk is maximized (Yu 1985) and which is effectively
a preference functional model. The models employed by Sharpe (1970) and
Ogryczak and Ruszczynski (1999) are special cases of this model. The latter one, in
particular, is important, because it can represent the investor’s certainty equivalent.
In Table 4.1, � is the investor’s risk measure, � is the minimum level for expectation,
and R is the maximum level for risk. The parameters � are tradeoff coefficients.

In our setting, the sole requirement for the applicable preference model is that it
can uniquely identify equally preferable portfolios. By construction, models based
on preference functionals have this property. Also, risk minimization and expected
value maximization models can be employed if we define that equal preference
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Table 4.1 Formulations of mean-risk preference models

Objective Constraints

Risk minimization min �ŒX� EŒX� � �

Expected value maximization max EŒX� �ŒX� � R

General additive max �1 �EŒX�� �2 � �ŒX�

Sharpe (1970) max ��EŒX�� �ŒX�

Ogryczak and Ruszczynski (1999) max EŒX�� �� �ŒX�

prevails whenever the objective function values are equal and the applicable
constraints are satisfied (but not necessarily binding).

In general, there no particular reason to favor any one of these models, because
the choice of the appropriate model may depend on the setting. For example, in
settings involving the CAPM, the mean-variance model may be more appropriate,
while decision theorists may prefer to opt for the expected utility model.

4.2.3 Single-Period Example Under Expected Utility

A single-period portfolio model under expected utility can be formulated as follows.
Let there be n risky securities, a risk-free asset (labeled as the 0th security), and m

projects. Let the price of asset i at time 0 be S0
i and let the corresponding (random)

price at time 1 be QS1
i . The price of the risk-free asset at time 0 is 1 and 1 C rf

at period 1, where rf is the risk-free interest rate. The amounts of securities in the
portfolio are denoted by xi ; i D 0; : : : ; n. The investment cost of project k in time
0 is C 0

k and the (random) cash flow at time 1 is QC 1
k . The binary variable zk indicates

whether project k is started or not. The investor’s budget is b. We can then formulate
the model using utility function u as follows:

1. maximize utility at time 1:

max
x;z

E

"

u

 
nX

iD0

QS1
i xi C

mX

kD1

QC 1
k zk

!#

subject to

2. budget constraint at time 0:
nP

iD0

S0
i xi C

mP

kD1

C 0
k zk � b

3. binary variables for projects: zk 2 f0; 1g; k D 1; : : : ; m

4. continuous variables for securities: xi free i D 0; : : : ; n

In typical settings, the budget constraint could be formulated as an equality, because
in the presence of a risk-free asset all of the budget will normally be expended at
the optimum. In this model and throughout the chapter, it is assumed that there are
no transaction costs or taxes on capital gains, and that the investor is able to borrow
and lend at the risk-free interest rate without limit.
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4.3 Valuation of Projects and Illiquid Investments

4.3.1 Breakeven Buying and Selling Prices

Because we consider projects as illiquid, nontradable investment opportunities,
there is no market price that can be used to value the project. In such a setting,
it is reasonable to define the value of the project as the cash amount at present that
is equally preferred to the project. In a portfolio context, this can be interpreted
so that the investor is indifferent between the following two portfolios: (A1) a
portfolio with the project and (B1) a portfolio without the project and additional
cash equal to the value of the project. Alternatively, however, we may define the
value of a project as the indifference between the following two portfolios: (A2) a
portfolio without the project and (B2) a portfolio with the project and a reduction in
available cash equal to the value of the project. The project values obtained in these
two ways will not, in general, be the same. Analogous to (Luenberger 1998; Raiffa
1968; Smith and Nau 1995), we refer to the first value as the “breakeven selling
price,” as the portfolio comparison can be understood as a selling process, and the
second type of value as the “breakeven buying price.”

A central element in BSP and BBP is the determination of equal preference for
two different portfolios, which holds in many portfolio optimization models when
the optimal values for the objective function match for the two portfolios. This
works straightforwardly under preference functional models where the investor is,
by definition, indifferent between two portfolios with equal utility scores, but the
situation becomes slightly more complicated for mean-risk models where equal
preference might be regarded to hold only when two values – mean and risk –
are equal for the two portfolios. However, as we discussed before, if the risks are
modeled as constraints, the investor can be said to be indifferent if the expectations
of the two portfolios are equal and they both satisfy the risk constraints. Thus, we
can establish equal preference by comparing the optimal objective function values
also in this case.

Table 4.2 describes the four portfolio selection settings and, in particular, the
necessary modifications to the base portfolio selection model for the calculation of
breakeven prices. Here, the base portfolio selection model is simply the model that
is appropriate for the setting being modeled; for example, it can be the simple one-
period project-security model given in Section 4.2.3 or the complex multiperiod
model described in Section 4.5. All that is required for the construction of the
underlying portfolio selection problem is that it makes it possible to establish equal
preference between two portfolios (in this case through the objective function value)
and to have a parameter that describes the initial budget. Here, vs

j and vb
j are

unknown modifications to the budget in Problem 2 such that the optimal objective
function value in Problem 2 matches that of Problem 1. The aim of our valuation
methodology is to determine the values of these unknown parameters.
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Table 4.2 Definitions of the value of project j

A. Breakeven selling price B. Breakeven buying price

Definition vs
j such that W C

s D W �
s vb

j such that W
C

b D W �
b

Problem 1 Problem A1 Problem B1
Mandatory investment in the project Project is excluded from the portfolio

(investment in the project is
prohibited)

Optimal objective function value: W C
s Optimal objective function value: W �

b

Budget at time 0: b0 Budget at time 0: b0

Problem 2 Problem A2 Problem B2
Project is excluded from the portfolio

(investment in the project is
prohibited)

Mandatory investment in the project

Optimal objective function value: W �
s Optimal objective function value: W

C
b

Budget at time 0: b0 C vs
j Budget at time 0: b0 � vb

j

4.3.2 Inverse Optimization Procedure

Finding a BSP and BBP is an inverse optimization problem (see e.g. Ahuja and Orlin
2001): one has to find for what budget the optimal value of the Problem 2 matches
a certain desired value (the optimal value of Problem 1). Indeed, in an inverse
optimization problem, the challenge is to find the values for a set of parameters,
typically a subset of all model parameters, that yield the desired optimal solution.
Inverse optimization problems can broadly be classified into two groups: (a) finding
an optimal value for the objective function and (b) finding a solution vector.
The problem of finding a BSP or BBP falls within the first class.

In principle, the task of finding a BSP is equivalent to finding a root to the

function f s
�

vs
j

�
DW �s

�
vs

j

�
�W Cs , where W Cs is the optimal value of Problem 1

and W �s
�

vs
j

�
is the corresponding optimal value in Problem 2 as the function of

parameter vs
j . Similarly, the BBP can be obtained by finding the root to the function

f b
�

vb
j

�
D W �b � W Cb

�
vb

j

�
. In typical portfolio selection problems where the

investor exhibits normal kind of risk preferences and a risk-free asset is available,
these functions are normally increasing with respect to their parameters. To solve
such root-finding problems, we can use any of the usual root-finding algorithms
(see, e.g. Belegundu and Chandrupatla 1999) such as the bisection method, the
secant method, and the false position method. These methods do not require
knowledge of the functions’ derivatives which are not typically known. If the first
derivatives are known, or when approximated numerically, we can also use the
Newton–Raphson method.

Solution of BSP and BBP in more complex settings with discontinuous or
nonincreasing functions may require more sophisticated methods. It may be noted
that, in some extreme, possibly unrealistic settings, equal preference cannot be
established for any budget amount, which would imply that BSP and BBP would
not exist.
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4.3.3 General Analytical Properties

4.3.3.1 Sequential Consistency

Breakeven selling and buying prices are not, in general, equal to each other. While
this discrepancy is accepted as a general property of risk preferences in EUT
(Raiffa 1968), it may also seem to contradict the rationality of these valuation
concepts. It can be argued that if the investor were willing to sell a project at a lower
price than at which he/she would be prepared to buy it, the investor would create an
arbitrage opportunity and lose an infinite amount of money when another investor
repeatedly bought the project at its selling price and sold it back at the buying
price. In a reverse situation where the investor’s selling price for a project is greater
than the respective buying price, the investor would be irrational in the sense that
he/she would not take advantage of an arbitrage opportunity – if such an opportunity
existed – where it would be possible to buy the project repeatedly at the investor’s
buying price and to sell it at a slightly higher price below the investor’s BSP.

However, these arguments ignore the fact that the breakeven prices are affected
by the budget and that therefore these prices may change after obtaining the project’s
selling price and after paying its buying price. Indeed, it can be shown that in a
sequential setting where the investor first sells the project, adds the selling price
to the budget, and then buys the project back, the investor’s selling price and the
respective (sequential) buying price are always equal to each other. This observation
is formalized as the following proposition. The proof is given in the Appendix. It is
assumed in this proof and throughout Section 4.3.3 that the objective function is
continuous and strictly increasing with respect to the investor’s budget (money
available at present). Thus, an increase in the budget will always result in an increase
in the objective function value.

Proposition 1. A project’s breakeven selling (buying) price and its sequential
breakeven buying (selling) price are equal to each other.

4.3.3.2 Consistency with Contingent Claims Analysis

Option pricing analysis or contingent claims analysis (CCA; see, e.g., Brealey and
Myers 2000; Luenberger 1998), can be applied to value projects whenever the cash
flows of a project can be replicated using financial instruments. According to CCA,
the value of project j is given by the market price of the replicating portfolio
(a portfolio required to initiate a replicating trading strategy) less than the investment
cost of the project:

vCCA
j D I�j � I 0

j

where I 0
j is the time-0 investment cost of the project and I�j is the cash needed to

initiate the replicating trading strategy. A replicating trading strategy is a trading
strategy using financial instruments that exactly replicates the cash flows of the
project in each future state of nature.
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It is straightforward to show that, when CCA is applicable, i.e., if there exists a
replicating trading strategy, then the breakeven buying and selling prices are equal
to each other and yield the same vCCA

j result as CCA (cf. Smith and Nau 1995).
This follows from the fact that a portfolio consisting of (A) the project and (B) a
shorted replicating portfolio is equal to getting a cash flow for sure now and zero
cash flows at all future states of nature. Therefore, whenever a replicating portfolio
exists, the project can effectively be reduced to obtaining a sure amount of money
at present.

To illustrate this, suppose first that vCCA
j is positive. Then, any rational investor

will invest in the project (and hence its value must be positive for any such
investors), since it is possible to make money for sure, amounting to vCCA

j , by
investing in the project and shorting the replicating portfolio. Furthermore, any
rational investor will start the project even when he/she is forced to pay a sum vb

j

less than vCCA
j to gain a license to invest in the project, because it is now possible to

gain vCCA
j � vb

j for sure. On the other hand, if vb
j is greater than vCCA

j , the investor
will not start the project, because the replicating portfolio makes it possible to
obtain the project cash flows at a lower cost. A similar reasoning applies to BSPs.
These observations are formalized in Proposition 2. The proof is straightforward and
is given in the Appendix. Due to the consistency with CCA, the breakeven prices
can be regarded as a generalization of CCA to incomplete markets.

Proposition 2. If there is a replicating trading strategy for a project, the breakeven
selling price and breakeven buying price are equal to each other and yield the same
result as CCA.

4.3.3.3 Sequential Additivity

The BBP and BSP for a project depend on what other assets are in the portfolio.
The value obtained from breakeven prices is, in general, an added value, which
is determined relative to the situation without the project. When there are no
other projects in the portfolio, or when we remove them from the model before
determining the value of the project, we speak of the isolated value of a project.
We define the respective values for a set of projects as the joint added value and
joint value. Figure 4.1 illustrates the relationship between these concepts.

Isolated project values are, in general, non-additive; they do not sum up to
the value of the project portfolio composed of the same projects. However, in
a sequential setting where the investor buys the projects one after the other at
the prevailing buying price at each time, the obtained project values do add
up to the joint value of the project portfolio. These prices are the projects’
added values in a sequential buying process, where the budget is reduced by the
buying price after each step. We refer to these values as sequential added values.
This sequential additivity property holds regardless of the order in which the
projects are bought. Individual projects can, however, acquire different added values
depending on the sequence in which they are bought. These observations are
formalized in the following proposition. The proof is in the Appendix.
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Fig. 4.1 Different types of valuations for projects

Proposition 3. The breakeven buying (selling) prices of sequentially bought (sold)
projects add up to the breakeven buying (selling) price of the portfolio of the projects
regardless of the order in which the projects are bought (sold).

4.4 Valuation of Opportunities

4.4.1 Investment Opportunities

When valuing a project, we can either value an already started project or an
opportunity to start a project. The difference is that, although the value of a
started project can be negative, that of an opportunity to start a project is always
nonnegative, because a rational investor does not start a project with a negative
value. While BSP and BBP are appropriate for valuing started projects, new
valuation concepts are needed for valuing opportunities.

Since an opportunity entails the right but not the obligation to take an action,
we need selling and buying prices that rely on the comparison of settings where
the investor can and cannot invest in the project, instead of does and does not.
The lowest price at which the investor would be willing to sell an opportunity to
start a project can be obtained from the definition of the BSP by removing the
requirement to invest in the project in Problem A1. We define this price as the
opportunity selling price (OSP) of the project. Likewise, the opportunity buying
price (OBP) of a project can be obtained by removing the investment requirement
in Problem B2. It is the highest price that the investor is willing to pay for a license
to start the project. Opportunity selling and buying prices have a lower bound of
zero; it is also straightforward to show that the opportunity prices can be computed
by taking a maximum of 0 and the respective breakeven price. Table 4.3 gives a
summary of opportunity selling and buying prices.
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Table 4.3 Definitions of a value of an opportunity

A. Opportunity selling price B. Opportunity buying price

Definition vs
� such that W C

s D W �
s vb

� such that W
C

b D W �
b

Problem 1 Problem A1 Problem B1
No alteration to base portfolio model Opportunity is excluded from the

portfolio
Optimal objective function value: W C

s Optimal objective function value: W �
b

Budget at time 0: b0 Budget at time 0: b0

Problem 2 Problem A2 Problem B2
Opportunity is excluded from the

portfolio
No alterations to base portfolio model

Optimal objective function value: W �
s Optimal objective function value: W

C
b

Budget at time 0: b0 C vs
� Budget at time 0: b0 � vb

�

4.4.2 Real Options and Managerial Flexibility

Opportunity buying and selling prices can also be used to value real options
(Brosch 2008; Trigeorgis 1996) contained in the project portfolio. These options
result from the managerial flexibility to adapt later decisions to unexpected future
developments. Typical examples include possibilities to expand production when
markets are up, to abandon a project under bad market conditions, and to switch
operations to alternative production facilities.

Real options can be valued much in the same way as opportunities to start
projects. However, instead of comparing portfolio selection problems with and with-
out the possibility to start a project, we will compare portfolio selection problems
with and without the real option. This can typically be implemented by preventing
the investor from taking a particular action (e.g., expanding production) when the
real option is not present. Since breakeven prices are consistent with CCA, also
opportunity prices have this property, and can thus be regarded as a generalization
of the standard CCA real option valuation procedure to incomplete markets.

4.4.3 Opportunity to Sell the Project to Third Party Investor

From the perspective of finance theory, an important application of the real options
concept is the management’s ability to sell the project to a third party investor (or
to the market). Indeed, a valuation where the option to sell the project to a third
party investor is accounted for, in addition to the opportunity costs implied by other
investment opportunities, can be regarded as a holistic valuation that fully accounts
for both private and market factors that influence the value of the project. Projects
where options to sell are important include pharmaceutical development projects,
where the rights to develop compounds further can be sold to bigger companies
after a certain stage in clinical trials is reached.

The possibility to sell the project to the market is effectively an American put
option embedded in the project. When selling the project is a relevant management
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option, the related selling decisions typically need to be implemented as a part of
the project’s decision tree, which necessitates the use of an approach where projects
are modeled through decision trees, such as CPP (Gustafsson and Salo 2005).
That is, at each state, in addition to any other options available to the firm, the
firm can opt to sell the project at the highest price than being offered by any third
party investor. The offer price may depend on several factors and who the investor
is, but if a market-implied pricing is used, then it may be possible to compute the
offer price by using standard market pricing techniques, such as the market-implied
risk-neutral probability distribution. Like any other real option, the opportunity to
sell the project can increase but cannot decrease the value of the project. Also, such
an American put option also sets a lower bound for the value of the project.

4.5 Implementation of Multiperiod Project Valuation Model

4.5.1 Framework

We develop an illustrative multiperiod model using the CPP framework (Gustafsson
and Salo 2005). In CPP, uncertainties are modeled using a state tree, representing
the structure of future states of nature, as depicted in the leftmost chart in
Fig. 4.2. The state tree need not be binomial or symmetric; it may also take the
form of a multinomial tree with different probability distributions in its branches.
In each nonterminal state, securities can be bought and sold in any, possibly
fractional quantities. The framework includes budget balance constraints that allow
the transfer of cash from one time period to the next, adding interest while doing so,
so that the accumulated cash and the impact of earlier cash flows can be measured
in the terminal states.

Projects are modeled using decision trees that span over the state tree. The two
right-most charts in Fig. 4.2 describe how project decisions, when combined with
the state tree, lead to project-specific decision trees. The specific feature of these
decision trees is that the chance nodes are shared by all projects, since they are
generated using the common state tree. Security trading is implemented through
state-specific trading variables, which are similar to the ones used in financial
models of stochastic programming (e.g. Mulvey et al. 2000) and in Smith and
Nau’s method (Smith and Nau 1995). Similar to the single-period portfolio selection
model in Section 4.2.3, the investor seeks either to maximize the utility of the
terminal wealth level, or the expectation of the terminal wealth level subject to a
risk constraint.

4.5.2 Model Components

The two main components of the model are (a) states and (b) the investor’s
investment decisions, which imply the cash flow structure of the model.
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Fig. 4.2 A state tree, decision sequence, and a decision tree for a project

4.5.2.1 States

Let the planning horizon be f0; : : :; T g. The set of states in period t is denoted by

�t , and the set of all states is � D
TS

tD0

�t . The state tree starts with base state !0 in

period 0. Each nonterminal state is followed by at least one state. This relationship
is modeled by the function B W �! � which returns the immediate predecessor of
each state, except for the base state, for which the function gives B.!0/ D !0.
The probability of state !, when B.!/ has occurred, is given by pB.!/.!/.
Unconditional probabilities for each state, except for the base state, can be computed
recursively from the equation p.!/ D pB.!/.!/ � p.B.!//. The probability of the
base state is p.!0/ D 1.

4.5.2.2 Investment Decisions

Let there be n securities available in financial markets. The amount of security i

bought in state ! is indicated by trading variable xi;!; i D 1; : : : ; n; ! 2 �,
and the price of security i in state ! is denoted by Si.!/. Under the assumption
that all securities are sold in the next period, the cash flow implied by security i in
nonterminal state ! ¤ !0 is Si.!/� .xi;B.!/ � xi;!/. In base state !0, the cash flow
is �Si.!0/ � xi;!0 , and in a terminal state !T it is Si.!T/ � xi;B.!T/.

The investor can invest privately in m projects. The decision opportunities for
each project, kD 1; : : : ; m, are structured as a decision tree, where there are decision
points Dk and function ap.d/ that gives the action leading to decision point d 2
Dkn

˚
d 0

k

�
, where d 0

k is the first decision point of project k. Let Ad be the set of
actions that can be taken in decision point d 2 Dk . For each action a in Ad , a binary
action variable za indicates whether the action is selected or not. Action variables at
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each decision point d are bound by the restriction that only one za; a 2 Ad , can be
equal to one. The state in which the action at decision point d is chosen is denoted
by !.d/.

For a project k, the vector of all action variables za relating to the project, denoted
by zk , is called the project management strategy of k. The vector of all action
variables of all projects, denoted by z, is the project portfolio management strategy.
We call the pair (x, z), composed of all trading and action variables, the aggregate
portfolio management strategy.

4.5.2.3 Cash Flows and Cash Surpluses

Let CFp

k .zk; !/ be the cash flow of project k in state ! with project management
strategy zk . When Ca.!/ is the cash flow in state ! implied by action a, this cash
flow is given by

CFp

k .zk; !/ D
X

d 2 Dk W
!.d/ 2 �B .!/

X

a2Ad

Ca.!/ � za

where the restriction in the summation of the decision points guarantees that
actions yield cash flows only in the prevailing state and in the future states that
can be reached from the prevailing state. The set �B.!/ is defined as �B.!/ D˚
!0 2 �j9 k � 0 such that Bk.!/ D !0

�
, where Bn.!/ D B.Bn�1.!// is the nth

predecessor of ! .B0.!/ D !/.
The cash flows from security i in state ! 2 � are given by

CFs
i .xi; !/ D

8
<

:

�Si .!/ � xi;! if ! D !0

Si .!/ � xi;B.!/ if ! 2 �T

Si .!/ � .xi;B.!/ � xi;!/ if ! ¤ !0 ^ ! … �T

Thus, the aggregate cash flow CF.x, z; !/ in state ! 2 �, obtained by summing up
the cash flows for all projects and securities, is

CF.x; z; !/ D
nP

iD1

CFs
i .xi; !/C

mP

kD1

CFp

k .zk; !/

D

8
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂:

nP

iD1

�Si .!/� xi;! C P

d 2 Dk W
!.d/ 2 �B.!/

P

a2Ad

Ca.!/� za; if ! D !0

nP

iD1

Si .!/� xi;B.!/ C P

d 2 Dk W
!.d/ 2 �B .!/

P

a2Ad

Ca.!/� za; if ! 2 �T

nP

iD1

Si .!/� .xi;B.!/ � xi;! /C P

d 2 Dk W
!.d/ 2 �B.!/

P

a2Ad

Ca.!/� za; if ! ¤ !0 ^ ! … �T
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Together with the initial budget in each state, cash flows define cash surpluses that
would result in state ! 2� if the investor chose portfolio management strategy
(x, z). Assuming that excess cash is invested in the risk-free asset, the cash surplus
in state ! 2 � is given by

CS! D
�

b.!/C CF.x; z; !/ if ! D !0

b.!/C CF.x; z; !/C .1C rB.!/!!/ � CSB.!/ if ! ¤ !0

;

where b.!/ is the initial budget in state ! 2 � and rB.!/!! is the short rate at
which cash accrues interest from state B.!/ to !. The cash surplus in a terminal
state is the investor’s terminal wealth level in that state.

4.5.3 Optimization Model

When using a preference functional U , the objective function for the model can be
written as a function of cash surplus variables in the last time period, i.e.

max
x;z;CS

U.CST /;

where CST denotes the vector of cash surplus variables in period T . Under the
risk-constrained mean-risk model, the objective is to maximize the expectation of
the investor’s terminal wealth level

max
x;z;CS

X

!2�T

p.!/ � CS!:

Three types of constraints are imposed on the model: (a) budget constraints, (b)
decision consistency constraints, and (c) risk constraints (in the case of risk-
constrained models). The formulation of a multiperiod portfolio selection model
under both a preference functional and a mean-risk model is given in Table 4.4.

4.5.3.1 Budget Constraints

Budget constraints ensure that there is a nonnegative amount of cash in each state.
They can be implemented using continuous cash surplus variables CS! , which
measure the amount of cash in state !. These variables lead to the budget constraints

CF.x; z; !0/� CS!0 D �b.!0/

CF.x; z; !/C .1C rB.!/!!/ � CSB.!/ � CS! D �b.!/; 8! 2 �nf!0g
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Table 4.4 Multi-period models

Preference functional model Mean-risk model

Objective
function

max
x,z,CS

U.CST / max
x,y,CS

P

!2�T

p.!/ � CS!

Budget
constraints

CF.x,z; !0/� CS!0 D �b.!0/

CF.x, z; !/C .1C rB.!/!! /� CSB.!/ � CS! D �b.!/;

8! 2 �nf!0g
Decision

consistency
constraints

P

a2A
d0
k

za D 1; k D 1; : : : ; m

P

a2Ad

za D zap.d/; 8d 2 Dkn
˚
d0

k

�
; k D 1; : : : ; m

Risk constraints �
�
��; �C

� � R

CS! � �.CST /��C
! C

��
! D 08! 2 �T

Variables
za 2 f0; 1g;8a 2 Ad

8d 2 Dk k D 1; : : : ; m

za 2 f0; 1g;8a 2 Ad

8d 2 Dk k D 1; : : : ; m

xi;!free
8! 2 �; i D 1; : : : ; n

xi;! free8! 2 �;

i D 1; : : : ; n

CS! free 8! 2 � CS! free 8! 2 �

��
! � 0 8! 2 �T

�C
! � 0 8! 2 �T

Note that if CS! is negative, the investor borrows money at the risk-free interest rate
to cover a funding shortage. Thus, CS! can also be regarded as a trading variable
for the risk-free asset.

4.5.3.2 Decision Consistency Constraints

Decision consistency constraints ensure the logical consistency of the projects’
decision trees. They require that (a) at each decision point reached only one action
is selected, and that (b) at each decision point that is not reached, no action is taken.
Decision consistency constraints can be written as

X

a2A
d0
k

za D 1; k D 1; : : : ; m

X

a2Ad

za D zap.d/; 8d 2 Dkn
˚
d 0

k

�
; k D 1; : : : ; m;

where the first constraint ensures that one action is selected in the first decision
point, and the second implements the above requirements for the other decision
points.
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4.5.3.3 Risk Constraints

A risk-constrained model includes one or more risk constraints. We focus on the
single constraint case. When � denotes the risk measure and R the risk tolerance, a
risk constraint can be expressed as

�.CST / � R:

In addition to variance .V /, several other risk measures have been proposed. These
include semivariance (Markowitz 1959), absolute deviation (Konno and Yamazaki
1991), lower semi-absolute deviation (Ogryczak and Ruszczynski 1999), and
their fixed target value counterparts (Fishburn 1977). Semivariance (SV), absolute
deviation (AD) and lower semi-absolute deviation (LSAD) are defined as

SV W N	X D
�XZ

�1
.x � �X /2 dFX.x/; AD W ıX D

1Z

�1
jx � �X j dFX.x/; and

LSAD W NıX D
�XZ

�1
jx � �X j dFX .x/ D

�XZ

�1
.�X � x/dFX .x/;

where �X is the mean of random variable X and FX is the cumulative density
function of X . The fixed target value statistics are obtained by replacing �X by
an appropriate constant target value � . All these measures can be formulated in an
optimization program by introducing deviation constraints. In general, deviation
constraints are expressed as

CS! � �.CST / ��C! C��! D 0 8! 2 �T ;

where �.CST / is a function that defines the target value from which the devia-
tions are calculated, and �C! and ��! are nonnegative deviation variables which
measure how much the cash surplus in state ! 2�T differs from the target value.
For example, when the target value is the mean of the terminal wealth level, the
deviation constraints are written as

CS! �
X

!02�T

p.!0/CS!0 ��C! C��! D 0; 8! 2 �T :

With the help of these deviation variables, some common dispersion statistics can
now be written as follows:

AD W
X

!2�T

p.!/ � .��! C�C! /

LSAD W
X

!2�T

p.!/ ���!
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V W
X

!2�T

p.!/ � .��! C�C! /
2

SV W
X

!2�T

p.!/ � .��! /2

The respective fixed-target value statistics can be obtained with the deviation
constraints

CS! � � ��C! C��! D 0; 8! 2 �T ;

where � is the fixed target level. Expected downside risk (EDR), for example, can
then be obtained from the sum

P

!2�T

p.!/ ���! .

4.5.3.4 Other Constraints

Even other constraints can be modeled, including short selling limitations, upper
bounds for the number of shares bought, and credit limit constraints (Markowitz
1987). For the sake of simplicity, however, we assume in the following sections that
there are no such additional constraints in the model.

4.5.4 Example

We next illustrate project valuation in a multiperiod setting with an example similar
to the one in Gustafsson and Salo (2005). In this setting, the investor can invest in
projects A and B in two stages as illustrated in Fig. 4.3. At time 0, he/she can start
either one or both of the projects. If a project is started, he/she can make a further
investment at time 1. If the investment is made, the project generates a positive
cash flow at time 2; otherwise, the project is terminated with no further cash flows.
In the spirit of the CAPM, it is assumed that the investor can also borrow and lend
money at a risk-free interest rate, in this case 8%, and invest in the equity market
portfolio. The investor is able to buy and short the market portfolio and the risk-free
asset in any quantities. The initial budget is $9 million. The investor is a mean-
LSAD optimizer with a risk (LSAD) tolerance of R D $5 million. Here, we use
a risk-constrained model instead of a preference functional model as in Gustafsson
and Salo (2005), because otherwise the optimal strategy will be unbounded with
the investor investing an infinite amount in the market portfolio and financing this
by going short in the risk-free asset, or vice versa, depending on the value of the
mean-LSAD model’s risk aversion parameter.

Uncertainties are captured through a state tree where uncertainties are divided
into market and private uncertainties (see Figs. 4.3 and 4.4). The price of the market
portfolio is entirely determined by the prevailing market state, while the projects’
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Fig. 4.3 Private states
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cash flows depend solely on the private states. At time 1, there are two possible
private states, 1 and 2, and two possible market states u and d . These states imply
four joint states, 1u; 1d; 2u and 2d , for time 1. At time 2, following the time-
1 private state 1, private state may be 11 or 12; if the time-1 private state was 2,
then the time-2 private state may be either 21 or 22. At time 2, the market state
may be either uu or ud, if u obtained at time 1, or du or dd if the time-1 market
state was d . These private and market states imply the following 16 joint states
for time 2 (the probability of the state is given in parentheses): 1u1u (3.75%),
1u1d (3.75%), 1d1u (3.75%), 1d1d (3.75%), 1u2u (8.75%), 1u2d (8.75%), 1d2u
(8.75%), 1d2d (8.75%), 2u1u (5%), 2u1d (5%), 2d1u (5%), 2d1d (5%), 2u2u
(7.5%), 2u2d (7.5%), 2d2u (7.5%), 2d2d (7.5%).

When project decisions are combined with the state tree implied by Figs. 4.3
and 4.4, we obtain the simplified decision trees in Figs. 4.5 and 4.6, where each
action is associated with an indexed binary action variable z and the cash flows it
generates. The market states are indicated by “x” meaning that the value can be
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Fig. 4.6 Decision tree of project B

either one of u and d , because the project outcomes are independent of the market
state and hence the project will generate the same cash flows regardless of which
one of the market states obtains. The market portfolio is assumed to yield a return
of 24% if u results and 0% if d results, which are both equally probable events.
This implies an expected excess rate of return of 4% for the market portfolio.
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Based on Figs. 4.5 and 4.6, budget constraints can now be written as:

�1zASY � 2zBSY � x!0 � CS!0 D �9

�3zACY1u � 2zBCY1u C 1:24x!0 � 1:24x!1u C 1:08CS!0 � CS!1u D 0

�3zACY2u � 2zBCY2u C 1:24x!0 � 1:24x!2u C 1:08CS!0 � CS!2u D 0

�3zACY1d � 2zBCY1d C 1x!0 � 1x!1d C 1:08CS!0 � CS!1d D 0

�3zACY2d � 2zBCY2d C 1x!0 � 1x!2d C 1:08CS!0 � CS!2d D 0

20zACY1u C 2:5zBCY1u C 1:5376x!1u C 1:08CS!1u � CS!1u1u D 0

20zACY1u C 2:5zBCY1u C 1:24x!1u C 1:08CS!1u � CS!1u1d D 0

20zACY1d C 2:5zBCY1d C 1:24x!1d C 1:08CS!1d � CS!1d1u D 0

20zACY1d C 2:5zBCY1d C 1x!1d C 1:08CS!1d � CS!1d1d D 0

10zACY1u C 1zBCY1u C 1:5376x!1u C 1:08 � CS!1u � CS!1u2u D 0

10zACY1u C 1zBCY1u C 1:24x!1u C 1:08CS!1u � CS!1u2d D 0

10zACY1d C 1zBCY1d C 1:24x!1d C 1:08CS!1d � CS!1d2u D 0

10zACY1d C 1zBCY1d C 1x!1d C 1:08CS!1d � CS!1d2d D 0

5zACY2u C 25zBCY2u C 1:5376x!2u C 1:08CS!2u � CS!2u1u D 0

5zACY2u C 25zBCY2u C 1:24x!2u C 1:08CS!2u � CS!2u1d D 0

5zACY2d C 25zBCY2d C 1:24x!2d C 1:08CS!2d � CS!2d1u D 0

5zACY2d C 25zBCY2d C 1x!2d C 1:08CS!2d � CS!2d1d D 0

10zBCY2u C 1:5376x!2u C 1:08CS!2u � CS!2u2u D 0

10zBCY2u C 1:24x!2u C 1:08CS!2u � CS!2u2d D 0

10zBCY2d C 1:24x!2d C 1:08CS!2d � CS!2d2u D 0

10zBCY2d C 1x!2d C 1:08CS!2d � CS!2d2d D 0

For each terminal state !T 2 �T , there is a deviation constraint CS!T �EV��C!T
C

��!T
D 0, where EV is the expected cash balance over all terminal states, viz.

EV D
X

!T2�T

p!T CS!T :
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Table 4.5 Investments in
securities ($ million)

State xM CS

0 71.37 �64:37

1u 16.40 �4:35

1d 105.46 �106:61

2u 27.28 �16:85

2d 98.71 �98:86

In addition, the following decision consistency constraints apply:

zASY C zASN D 1 zBSY C zBSN D 1

zACY1u C zACN1u D zASY zBCY1u C zBCN1u D zBSY

zACY2u C zACN2u D zASY zBCY2u C zBCN2u D zBSY

zACY1d C zACN1d D zASY zBCY1d C zBCN1d D zBSY

zACY2d C zACN2d D zASY zBCY2d C zBCN2d D zBSY

The risk constraint is now
X

!T2�T

p!T ��!T
� 5;

and the objective function is

Maximize EV D
X

!T2�T

p!T CS!T :

In this portfolio selection problem, the optimal strategy is to start both projects;
project A is terminated at time 1 if private state 2 occurs and project B if private state
1 occurs, i.e., variables zASY; zACY1u; zACY1d ; zBSY; zBCY2u; zBCY2d are one and all
other action variables are zero. The optimal amounts invested in the market portfolio
and the risk-free asset are given in columns 2 and 3 of Table 4.5, respectively.
There is an expected cash balance of EV D $25:63 million and LSAD of $5.00
million at time 2. The portfolio has its least value, $0.32 million, in state 1d2d . It is
worth noting that the value of the portfolio can be negative in some terminal states
at higher risk levels, because the states’ cash surplus variables are not restricted to
nonnegative values. Thus, the investor will borrow money at the risk-free rate and
invest it in the market portfolio, and may hence default on his/her loan obligations
if the market does not go up in either of the time periods and the project portfolio
performs poorly.

Breakeven selling and buying prices for projects A and B, as well as for the entire
project portfolio, are given in the last row in Table 4.6. These prices are now equal,
and we therefore record them in a single cell. (This is a property of the employed
preference model.) For the sake of comparison, we also give the terminal wealth
levels when the investor does and does not invest in the project/portfolio being
valued, denoted by W C and W �, respectively.

The portfolio value differs from the value of $5.85 million obtained in Gustafsson
and Salo (2005), where the investor did not have the possibility to invest in
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Table 4.6 Project values
($ million)

Portfolio A B

W C $25:63 $25:63 $25:63

W � $17:16 $22:17 $20:54

W C �W � $8:47 $3:46 $5:09

v D vb D vs $7:26 $2:97 $4:36

the market portfolio. There are two reasons for this difference. First, due to the
possibility to invest limitless amounts in the market portfolio, we use a risk-
constrained preference model with RD $5:00 million, whereas the example in
Gustafsson and Salo (2005) used a preference functional model with �D 0:5.
With different preference models we also have different risk-adjustment. Second,
because here it is possible to invest in the market portfolio, the optimal portfolio
mix is likely to be different from the setting where investments in market-traded
securities are not possible, and thus the project portfolio is also likely to obtain a
value different from the one obtained in Gustafsson and Salo (2005).

4.6 Summary and Conclusions

In this chapter, we have considered the valuation of private projects in a setting
where an investor can invest in a portfolio of projects as well as securities
traded in financial markets, but where the replication of project cash flows with
financial securities may not be possible. Specifically, we have developed a val-
uation procedure based on the concepts of breakeven selling and buying prices.
This inverse optimization procedure requires the solution of portfolio selection
problems with and without the project that is being valued and determining the
lump sum that makes the investor indifferent between the two settings. We have
also offered analytical results concerning the properties of breakeven prices. Our
results show that the breakeven prices are, in general, consistent valuation measures
in that they exhibit sequential additivity and consistency; they are also consistent
with CCA.

Quite importantly, the proposed methodology overcomes several deficiencies
in earlier approaches to the valuation of projects and other illiquid investments.
That is, the methodology accounts systemically for the time value of money,
explicates the investor’s risk preferences, captures the projects’ risk characteristics
and their impacts on aggregate risks at the portfolio level. This methodology also
accounts for the opportunity costs of alternative investment opportunities which
are explicitly included in the portfolio selection model. Overall, the methodology
constitutes a new, complete and theoretically well-founded approach to the valuation
of nonmarket traded investments.

Furthermore, we have shown that it is possible to include real options and
managerial flexibility in the projects through modeling them as decision trees in
the CPP framework (Gustafsson and Salo 2005). We have also shown how such real
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options can be valued using the concepts of opportunity buying and selling prices,
and demonstrated that such resulting real option values are consistent with CCA.
Indeed, since the present framework does not require the existence of a replicating
trading strategy, a key implication is that the proposed methodology makes it
possible to generalize CCA to the valuation of private projects in incomplete
markets.

This work suggests several avenues for further research. In particular, it is of
interest to investigate settings where the investor can opt to sell the project to
the market (or to a third party investor), as the resulting valuations would then
holistically account for the impact that markets can have on the value of the project
(i.e. implicit market pricing and opportunity costs). Analysis of specific preference
models such as the mean-variance model also seems appealing, not least because
the CAPM (Lintner 1965; Sharpe 1964) is based on such preferences. More work
is also needed to facilitate the use of the methodology in practice and to link it to
existing theories of pricing.

Appendix

Proof of Proposition 1

Let us prove the proposition first for the BSP and the sequential buying price.
Let the BSP for the project be vs

j . Then, based on Table 4.2, vs
j will be defined

by the portfolio setting in the middle column of Table A.1.
Next, we can observe that Problem B1 in determining the sequential buying price

is the same as Problem A2 for the BSP, wherefore also the optimal objective function
values will be the same, i.e., W �b D W �s . Since by definition of breakeven prices

Table A.1 Definition of the sequential buying price value of project j

A. Breakeven selling price B. Sequential buying price

Definition vs
j such that W C

s D W �
s vb

j such that W
C

b D W �
b

Problem 1 Problem A1 Problem B1
Mandatory investment in the project Project is excluded from the portfolio

(investment in the project is
prohibited)

Optimal objective function value: W C
s Optimal objective function value: W �

b

Budget at time 0: b0 Budget at time 0: b0 C vs
j

Problem 2 Problem A2 Problem B2
Project is excluded from the portfolio

(investment in the project is
prohibited)

Mandatory investment in the project

Optimal objective function value: W �
s Optimal objective function value: W

C
b

Budget at time 0: b0 C vs
j Budget at time 0: b0 C vs

j � vb
j
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we have W Cs D W �s and W Cb D W �b , it follows that we also have W Cs D W Cb .
Since Problem A1 and Problem B2 are otherwise the same, except that the first has
the budget of b0 and the second b0 C vs

j � vb
j , and because the optimal objective

function value is strictly increasing with respect to the budget, it follows that
b0 C vs

j � vb
j must be equal to b0 to get W Cs D W Cb , and therefore vb

j D vs
j .

The proposition for the BBP and the respective sequential selling price is proven
similarly. �

Proof of Proposition 2

A replicating trading strategy for a project is a trading strategy that produces exactly
the same cash flows in all future states of nature as the project. Thus, by definition,
starting the project and shorting the replicating trading strategy will lead to a
situation where cash flows net each other out in each state of except at time 0.
At time 0, the cash flow will be I�k � I 0

k , where I 0
k is the time-0 investment cost

of the project and I�j is the cash needed to initiate the replicating trading strategy.
Therefore, a setting where the investor starts the project and shorts the replicating
trading strategy will be exactly the same as a case where the project is not included
in the portfolio and the time-0 budget is increased by I�k � I 0

k (and hence the same
objective function values). Therefore, the investor’s BSP for the project is, by the
definition of BSP, I�k � I 0

k . The proposition for the BBP can be proven similarly. �

Proof of Proposition 3

Let us begin with the BBP and a setting where the portfolio does not include
projects and the budget is b0. Suppose that there are n projects that the investor buys
sequentially. Let us denote the optimal value for this problem by W �b;1. Suppose
then that the investor buys a project, indexed by 1, at his or her BBP, vb

1 . Let us
denote the resulting optimal value for the problem by W Cb;1. By definition of the
BBP, W �b;1 D W Cb;1. Suppose then that the investor buys another project, indexed
by 2, at his or her BBP, vb

2 . The initial budget is now b0 � vb
1 , and after the second

project is bought, it is b0 � vb
1 � vb

2 . Since the second project’s Problem 1 and the
first project’s Problem 2 are the same, the optimal values for these two problems
are the same, i.e., W �b;2 is equal to W Cb;1. Add then the rest of the projects in the same
manner, as illustrated in Table A.2.

The resulting budget in the last optimization problem, which includes all the
projects, is b0 � vb

1 � vb
2 � � � � � vb

n. Because Problem 2 of each project (except for
the last) in the sequence is always Problem 1 of the next project and because by the
definition of the BBP, for each project, the objective function values in Problems 1
and 2 are equal, we have W Cb;n D W �b;n D W Cb;n�1 D W �b;n�1 D W Cb;n�2 D � � � D W �b;1.
Therefore, by the definition of the BBP, the BBP for the portfolio including all the
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Table A.2 Buying prices in a sequential buying process

First project Second project Third project nth project

P1 Optimal value:
W �

b;1

Optimal value:

W �
b;2

�
D W

C
b;1

� Optimal value:

W �
b;3

�
D W

C
b;2

� Optimal value:

W �
b;n

�
D W

C
b;n�1

�

Budget at time
0: b0

Budget at time 0:
b0 � vb

1

Budget at time 0:
b0 � vb

1 � vb
2

Budget at time 0:
b0 � vb

1 � vb
2� � � � � vb

n�1

P2 Optimal value:
W

C
b;1

Optimal value: W
C

b;2 Optimal value: W
C

b;3 Optimal value: W
C

b;n

Budget at time
0: b0 � vb

1

Budget at time 0:
b0 � vb

1 � vb
2

Budget at time 0:
b0 � vb

1 � vb
2 � vb

3

Budget at time 0:
b0 � vb

1 � vb
2� � � � � vb

n

project must be vb
ptf D vb

1 C vb
2 C � � � C vb

n. By re-indexing the projects and using
the above procedure, we can change the order in which the projects are added to
the portfolio. In doing so, the projects can obtain different values, but they still sum
up to the same joint value of the portfolio. Similar logic proves the proposition
for BSPs. �

References

Ahuja RK, Orlin JB (2001) Inverse optimization. Oper Res 49(5):771–783
Belegundu AD, Chandrupatla TR (1999) Optimization concepts and applications in engineering.

Prentice Hall, New York
Brealey R, Myers S (2000) Principles of corporate finance. McGraw-Hill, New York
Brosch R (2008) Portfolios of real options. Lecture notes in economics and mathematical systems,

vol 611. Springer, Berlin
Clemen RT (1996) Making hard decisions – an introduction to decision analysis. Duxbury,

Pacific Grove
Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press, Princeton
Eppen GD, Martin RK, Schrage L (1989) A scenario based approach to capacity planning. Oper

Res 37(4):517–527
Fishburn PC (1977) Mean-risk analysis with risk associated with below-target returns. Am Econ

Rev 67(2):116–126
French S (1986) Decision theory – an introduction to the mathematics of rationality. Ellis Horwood,

Chichester
Gustafsson J, Salo A (2005) Contingent portfolio programming for the management of risky

projects. Oper Res 53(6):946–956
Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization and its applications

to the Tokyo stock market. Manage Sci 37(5):519–531
Lintner J (1965) The valuation of risk assets and the selection of risky investments in stock

portfolios and capital budgets. Rev Econ Stat 47(1):13–37
Luenberger DG (1998) Investment science. Oxford University Press, New York
Markowitz HM (1952) Portfolio selection. J Finance 7(1):77–91



4 Valuing Investments with Portfolio Selection Methods 105

Markowitz HM (1959) Portfolio selection: efficient diversification of investments. Cowles Foun-
dation, Yale

Markowitz HM (1987) Mean-variance analysis in portfolio choice and capital markets. Frank J.
Fabozzi Associates, New Hope

Mulvey JM, Gould G, Morgan C (2000) An asset and liability management model for Towers
Perrin-Tillinghast. Interfaces 30(1):96–114

Ogryczak W, Ruszczynski A (1999) From stochastic dominance to mean-risk models: semidevia-
tions as risk measures. Eur J Oper Res 116(1):33–50

Raiffa H (1968) Decision analysis – introductory lectures on choices under uncertainty. Addison-
Wesley, Reading

Sharpe WF (1964) Capital asset prices: a theory of market equilibrium under conditions of risk. J
Finance 19(3):425–442

Sharpe WF (1970) Portfolio theory and capital markets. McGraw-Hill, New York
Smith JE, Nau RF (1995) Valuing risky projects: option pricing theory and decision analysis.

Manage Sci 41(5):795–816
Trigeorgis L (1996) Real options: managerial flexibility and strategy in resource allocation.

MIT, MA
Yu P-L (1985) Multiple-criteria decision making: concepts, techniques, and extensions. Plenum,

New York


	Valuation of risky projects and other illiquid investments using portfolio selection models
	Citation

	tmp.1630420106.pdf.HPc38

