
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2007

Direct code access in self-organizing neural networks for Direct code access in self-organizing neural networks for

reinforcement learning reinforcement learning

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the OS and Networks Commons

Citation Citation
TAN, Ah-hwee. Direct code access in self-organizing neural networks for reinforcement learning. (2007).
Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI'07), Hyderabad,
India, 2007 January 6-12. 1-6.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6764

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6764&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6764&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6764&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Direct Code Access in Self-Organizing Neural Networks
for Reinforcement Learning

Ah-Hwee Tan

Nanyang Technological University

School of Computer Engineering and Intelligent Systems Centre

Nanyang Avenue, Singapore 639798

asahtan@ntu.edu.sg

Abstract

TD-FALCON is a self-organizing neural network
that incorporates Temporal Difference (TD) meth-
ods for reinforcement learning. Despite the advan-
tages of fast and stable learning, TD-FALCON still
relies on an iterative process to evaluate each avail-
able action in a decision cycle. To remove this defi-
ciency, this paper presents a direct code access pro-
cedure whereby TD-FALCON conducts instanta-
neous searches for cognitive nodes that match with
the current states and at the same time provide max-
imal reward values. Our comparative experiments
show that TD-FALCON with direct code access
produces comparable performance with the origi-
nal TD-FALCON while improving significantly in
computation efficiency and network complexity.

1 Introduction

Reinforcement learning [Sutton and Barto, 1998] is an inter-
action based paradigm wherein an autonomous agent learns
to adjust its behaviour according to feedback from the en-
vironment. Classical solutions to the reinforcement learning
problem generally involve learning one or more of the follow-
ing mappings, the first linking a given state to a desired ac-
tion (action policy), and the second associating a pair of state
and action to a utility value (value function), using temporal
difference methods, such as SARSA [Rummery and Niran-
jan, 1994] and Q-learning [Watkins and Dayan, 1992]. The
problem of the original formulation is that mappings must be
learned for each and every possible state or each and every
possible pair of state and action. This causes a scalability is-
sue for continuous and/or very large state and action spaces.

Neural networks and reinforcement learning have had an
intertwining relationship [Kaelbling et al., 1996]. In particu-
lar, multi-layer feed-forward neural networks, also known as
multi-layer perceptron (MLP), have been used extensively in
many reinforcement learning system and applications [Ack-
ley and Littman, 1990; Sutton, 1984]. Under the recent thread
of research in Approximate Dynamic Programming (ADP)
[Si et al., 2004], MLP and gradient descent backpropagation
(BP) learning algorithms are commonly used to learn an ap-
proximation of the value function from the state and action
spaces (value policy) and/or an approximation of the action

function from the state space (action policy). MLP and BP
however are not designed for online incremental learning as
they typically require an iterative learning process. In addi-
tion, there is an issue of instability in the sense that learning
of new patterns may erode the previously learned knowledge.
Consequently, the resultant reinforcement learning systems
may not be able to learn and operate in real time.

Instead of learning value functions and action policies,
self-organizing neural networks, such as Self-Organizing
Map (SOM), are typically used for the representation and
generalization of continuous state and action spaces [Smith,
2002]. The state and action clusters are then used as the en-
tries in a Q-value table implemented separately. Using a lo-
calized representation, SOM has the advantage of more stable
learning, compared with backpropagation networks. How-
ever, SOM remains an iterative learning system, requiring
many rounds to learn the compressed representation of the
state and action patterns. In addition, as mentioned in Smith
(2002), SOM is expected to scale badly if the dimensions of
the state and actions spaces are significantly higher than the
dimension of the map. As such, most applications of SOM
are limited to low dimensional state and action spaces.

A recent approach to reinforcement learning builds upon
Adaptive Resonance Theory (ART) [Carpenter and Gross-
berg, 1987], also a class of self-organizing neural networks,
but with very distinct characteristics from SOM. Ueda et. al
(2005) use ART models to learn the clusters of state and ac-
tion patterns. The clusters are in turns used as the compressed
states and actions by a Q-learning module. Ninomiya (2002)
couples a supervised ART system with a Temporal Differ-
ence reinforcement learning module in a hybrid architecture.
Whereas the states and actions in the reinforcement mod-
ule are exported from the supervised ART system, the two
learning systems operate independently. The redundancy in
representation unfortunately leads to instability and unnec-
essarily long processing time in action selection as well as
learning of value functions. Through a generalization of ART
from one input pattern field to multiple pattern channels, Tan
(2004) presents a neural architecture called FALCON (Fusion
Architecture for Learning, COgnition, and Navigation), that
learns multi-channel mappings simultaneously across multi-
modal input patterns, involving states, actions, and rewards,
in an online and incremental manner. For handling problems
with delayed evaluative feedback (reward signal), a variant

IJCAI-07
1071

of FALCON, known as TD-FALCON [Tan and Xiao, 2005],
learns the value functions of the state-action space estimated
through Temporal Difference (TD) algorithms. Compared
with other ART-based systems described by Ueda et. al and
Ninomiya, TD-FALCON presents a truly integrated solution
in the sense that there is no implementation of a separate re-
inforcement learning module or Q-value table.

Although TD-FALCON provides a promising approach,
its action selection procedure contains an inherent limitation.
Specifically, TD-FALCON selects an action by weighting the
consequence of performing each and every possible action
in a given state. Besides that the action selection process
is inefficient with a large number of actions, the numerat-
ing step also assumes a finite set of actions, rendering it in-
applicable to continuous action space. In view of this de-
ficiency, this paper presents a direct code access procedure
by which TD-FALCON can perform instantaneous searches
for cognitive nodes that match with the current states and
at the same time provide the highest reward values. Be-
sides that the algorithm is much more natural and efficient,
TD-FALCON can now operate with both continuous state
and action spaces. Our comparative experiments based on a
minefield navigation task show that TD-FALCON with direct
code access produces comparable performance with the orig-
inal TD-FALCON system while improving vastly in terms of
computation efficiency as well as network complexity.

The rest of the paper is organized as follows. For complete-
ness, section 2 presents a summary of the FALCON architec-
ture and the associated learning and prediction algorithms.
Section 3 presents the new TD-FALCON algorithm with the
direct code access procedure. Section 4 introduces the mine-
field navigation simulation task and presents the experimental
results. The final section concludes and provides a brief dis-
cussion of future work.

2 FALCON Dynamics

FALCON employs a 3-channel architecture (Figure 1), com-
prising a cognitive field F c

2 and three input fields, namely a
sensory field F c1

1 for representing current states, an action
field F c2

1 for representing actions, and a reward field F c3
1 for

representing reinforcement values. The generic network dy-
namics of FALCON, based on fuzzy ART operations [Car-
penter et al., 1991], is described below.

Figure 1: The FALCON architecture.

Input vectors: Let S = (s1, s2, . . . , sn) denote the state vec-
tor, where si ∈ [0, 1] indicates the sensory input i. Let A =

(a1, a2, . . . , am) denote the action vector, where ai ∈ [0, 1]
indicates a possible action i. Let R = (r, r̄) denote the re-
ward vector, where r ∈ [0, 1] is the reward signal value and
r̄ (the complement of r) is given by r̄ = 1 − r. Comple-
ment coding serves to normalize the magnitude of the input
vectors and has been found effective in ART systems in pre-
venting the code proliferation problem. As all input values of
FALCON are assumed to be bounded between 0 and 1, nor-
malization is necessary if the original values are not in the
range of [0, 1].
Activity vectors: Let xck denote the F ck

1 activity vector for
k = 1, . . . , 3. Let yc denote the F c

2 activity vector.
Weight vectors: Let wck

j denote the weight vector associ-
ated with the jth node in F c

2 for learning the input patterns
in F ck

1 for k = 1, . . . , 3. Initially, F c
2 contains only one un-

committed node and its weight vectors contain all 1’s. When
an uncommitted node is selected to learn an association, it
becomes committed.
Parameters: The FALCON’s dynamics is determined by
choice parameters αck > 0 for k = 1, . . . , 3; learning rate
parameters βck ∈ [0, 1] for k = 1, . . . , 3; contribution pa-

rameters γck ∈ [0, 1] for k = 1, . . . , 3 where
∑3

k=1 γck = 1;

and vigilance parameters ρck ∈ [0, 1] for k = 1, . . . , 3.
Code activation: A bottom-up propagation process first
takes place in which the activities (known as choice function
values) of the cognitive nodes in the F c

2 field are computed.
Specifically, given the activity vectors xc1, xc2 and xc3 (in
the input fields F c1

1 , F cs
1 and F c3

1 respectively), for each F c
2

node j, the choice function T c
j is computed as follows:

T c
j =

3∑

k=1

γck
|xck ∧ wck

j |

αck + |wck
j |

, (1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡

∑
i pi for

vectors p and q. In essence, the choice function Tj com-
putes the similarity of the activity vectors with their respec-
tive weight vectors of the F c

2 node j with respect to the norm
of individual weight vectors.
Code competition: A code competition process follows un-
der which the F c

2 node with the highest choice function value
is identified. The winner is indexed at J where

T c
J = max{T c

j : for all F c
2 node j}. (2)

When a category choice is made at node J , yc
J = 1; and yc

j =
0 for all j �= J . This indicates a winner-take-all strategy.
Template matching: Before code J can be used for learning,
a template matching process checks that the weight templates
of code J are sufficiently close to their respective activity pat-
terns. Specifically, resonance occurs if for each channel k, the
match function mck

J of the chosen code J meets its vigilance
criterion:

mck
J =

|xck ∧ wck
J |

|xck|
≥ ρck. (3)

The match function computes the similarity of the activity
and weight vectors with respect to the norm of the activity
vectors. Together, the choice and match functions work co-
operatively to achieve stable coding and maximize code com-
pression.

IJCAI-07
1072

When resonance occurs, learning ensues, as defined below.
If any of the vigilance constraints is violated, mismatch re-
set occurs in which the value of the choice function T c

J is
set to 0 for the duration of the input presentation. With a
match tracking process, at the beginning of each input pre-
sentation, the vigilance parameter ρc1 equals a baseline vig-
ilance ρ̄c1. If a mismatch reset occurs, ρc1 is increased until
it is slightly larger than the match function mc1

J . The search
process then selects another F c

2 node J under the revised vig-
ilance criterion until a resonance is achieved. This search and
test process is guaranteed to end as FALCON will either find
a committed node that satisfies the vigilance criterion or acti-
vate an uncommitted node which would definitely satisfy the
criterion due to its initial weight values of 1s.
Template learning: Once a node J is selected, for each chan-
nel k, the weight vector wck

J is modified by the following
learning rule:

w
ck(new)
J = (1 − βck)w

ck(old)
J + βck(xck ∧ w

ck(old)
J). (4)

The learning rule adjusts the weight values towards the fuzzy
AND of their original values and the respective weight val-
ues. The rationale is to learn by encoding the common at-
tribute values of the input vectors and the weight vectors. For
an uncommitted node J , the learning rates βck are typically
set to 1. For committed nodes, βck can remain as 1 for fast
learning or below 1 for slow learning in a noisy environment.
When an uncommitted node is selecting for learning, it be-
comes committed and a new uncommitted node is added to
the F c

2 field. FALCON thus expands its network architecture
dynamically in response to the input patterns.

3 TD-FALCON

TD-FALCON incorporates Temporal Difference (TD) meth-
ods to estimate and learn value functions of action-state pairs
Q(s, a) that indicates the goodness for a learning system to
take a certain action a in a given state s. Such value functions
are then used in the action selection mechanism, also known
as the policy, to select an action with the maximal payoff. The
original TD-FALCON algorithm proposed by Tan and Xiao
(2005) selects an action with the maximal Q-value in a state
s by enumerating and evaluating each available action a by
presenting the corresponding state and action vectors S and
A to FALCON. The TD-FALCON presented in this paper re-
places the action enumeration step with a direct code access
procedure, as shown in Table 1. Given the current state s,
TD-FALCON first decides between exploration and exploita-
tion by following an action selection policy. For exploration,
a random action is picked. For exploitation, TD-FALCON
searches for optimal action through a direct code access pro-
cedure. Upon receiving a feedback from the environment af-
ter performing the action, a TD formula is used to compute
a new estimate of the Q value of performing the chosen ac-
tion in the current state. The new Q value is then used as
the teaching signal for TD-FALCON to learn the association
of the current state and the chosen action to the estimated
Q value. The details of the action selection policy, the direct
code access procedure, and the Temporal Difference equation
are elaborated below.

3.1 Action Selection Policy

The simplest action selection policy is to pick the action with
the highest value predicted by the TD-FALCON network.
However, a key requirement of autonomous agents is to ex-
plore the environment. This is especially important for an
agent to function in situations without immediate evaluative
feedback. If an agent keeps selecting the optimal action that
it believes, it will not be able to explore and discover better
alternative actions. There is thus a fundamental tradeoff be-
tween exploitation, i.e., sticking to the best actions believed,
and exploration, i.e., trying out other seemingly inferior and
less familiar actions.

The ε-greedy policy selects the action with the highest
value with a probability of 1 − ε and takes a random ac-
tion with probability ε [Pérez-Uribe, 2002]. With a constant
ε value, the agent will always explore the environment with
a fixed level of randomness. In practice, it may be benefi-
cial to have a higher ε value to encourage the exploration of
paths in the initial stage and a lower ε value to optimize the
performance by exploiting familiar paths in the later stage. A
decay ε-greedy policy is thus adopted to gradually reduce the
value of ε over time. The rate of decay is typically inversely
proportional to the complexity of the environment as a more
complex environment with larger state and action spaces will
take a longer time to explore.

3.2 Direct Code Access

In an exploiting mode, an agent, to the best of its knowledge,
selects an action with the maximal reward value given the cur-
rent situation (state). Through a direct code access procedure,
TD-FALCON searches for the cognitive node which matches
with the current state and has the maximal reward value. For
direct code access, the activity vectors xc1, xc2, and xc3 are
initialized by xc1 = S, xc2 = (1, . . . , 1), and xc3 = (1, 0).
TD-FALCON then performs code activation and code compe-
tition according to equations (1) and (2) to select a cognitive
node. The following lemma shows that if there is at least one
cognitive node(s) encoding the current state, TD-FALCON
with the given activity vectors will enable the selection of the
cognitive node with the maximum reward value.

Direct Access Principle: During direct code access, given
the activity vectors xc1 = S, xc2 = (1, . . . , 1), and xc3 =
(1, 0), the TD-FALCON code activation and competition pro-
cess will select the cognitive node J with the weight vectors
wc1

J closest to S and wc3
J representing the maximal reward

value, if one exists.
Proof (by Contradiction): Suppose TD-FALCON selects a
F c

2 node J and there exists another F c
2 node K of which

the weight vector wc1
K is more similar to S than wc1

J and the
weight vector wc3

K encodes a higher reward value than wc3
J .

As wc1
K is more similar to S than wc1

J , we derive that

|xc1 ∧wc1
K |

αc1 + |wc1
K |

>
|xc1 ∧ wc1

J |

αc1 + |wc1
J |

. (5)

Likewise, as wc3
K encodes a higher reward than wc3

J , we have

|xc3 ∧wc3
K |

αc3 + |wc3
K |

>
|xc3 ∧ wc3

J |

αc3 + |wc3
J |

. (6)

IJCAI-07
1073

Table 1: TD−FALCON algorithm with direct code access.

1. Initialize the TD-FALCON network.
2. Sense the environment and formulate a state representation s.
3. Following an action selection policy, first make a choice between exploration and exploitation.

If exploring, take a random action.
If exploiting, identify the action a with the maximal Q(s,a) value by presenting the state vector S, the action
vector A=(1,...1), and the reward vector R=(1,0) to TD-FALCON.

4. Perform the action a, observe the next state s′, and receive a reward r (if any) from the environment.
5. Estimate the revised value function Q(s, a) following a Temporal Difference formula such as ΔQ(s, a) = αTDerr .
6. Present the corresponding state, action, and reward (Q-value) vectors (S, A, and R) to TD-FALCON for learning.
7. Update the current state by s=s’.
8. Repeat from Step 2 until s is a terminal state.

By equation (1), the above conditions imply that T c
K > T c

J ,
which means node K should be selected by TD-FALCON
instead of node J (Contradiction).

[End of Proof]

Upon selecting a winning F c
2 node J , the chosen node J

performs a readout of its weight vector to the action field F c2
1

such that

xc2(new) = xc2(old) ∧ wc2
J . (7)

An action aI is then chosen, which has the highest activation
value

xc2
I = max{x

c2(new)
i : for all F c2

1 node i}. (8)

3.3 Learning Value Function

A typical Temporal Difference equation for iterative estima-
tion of value functions Q(s,a) is given by

ΔQ(s, a) = αTDerr (9)

where α ∈ [0, 1] is the learning parameter and TDerr is a
function of the current Q-value predicted by TD-FALCON
and the Q-value newly computed by the TD formula.

TD-FALCON employs a Bounded Q-learning rule,
wherein the temporal error term is computed by

ΔQ(s, a) = αTDerr (1 − Q (s, a)) . (10)

where TDerr = r + γmaxa′Q(s′, a′) − Q(s, a), of which r
is the immediate reward value, γ ∈ [0, 1] is the discount pa-
rameter, and maxa′Q(s′, a′) denotes the maximum estimated
value of the next state s′. It is important to note that the Q
values involved in estimating maxa′Q(s′, a′) are computed
by the same FALCON network itself and not by a separate
reinforcement learning system. The Q-learning update rule is
applied to all states that the agent traverses. With value iter-
ation, the value function Q(s, a) is expected to converge to
r + γmaxa′Q(s′, a′) over time. By incorporating the scal-
ing term 1 − Q (s, a), the adjustment of Q values will be
self-scaling so that they will not be increased beyond 1. The
learning rule thus provides a smooth normalization of the Q
values. If the reward value r is constrained between 0 and 1,
we can guarantee that the Q values will remain to be bounded
between 0 and 1.

Figure 2: The minefield navigation simulator.

4 The Minefield Navigation Task

The objective of the given task is to teach an autonomous ve-
hicle (AV) to navigate through a minefield to a randomly se-
lected target position in a specified time frame without hitting
a mine. In each trial, the AV starts from a randomly chosen
position in the field, and repeats the cycles of sense, act, and
learn. A trial ends when the AV reaches the target (success),
hits a mine (failure), or exceeds 30 sense-act-learn cycles (out
of time). The target and the mines remain stationary during
the trial. All results reported in this paper are based on a 16
by 16 minefield containing 10 mines as illustrated in Figure 2.

The AV has a rather coarse sensory capability with a 180
degree forward view based on five sonar sensors. For each
direction i, the sonar signal is measured by si = 1

di

, where di

is the distance to an obstacle (that can be a mine or the bound-
ary of the minefield) in the i direction. Other input attributes
of the sensory (state) vector include the bearing of the target
from the current position. In each step, the AV can choose
one out of the five possible actions, namely move left, move
diagonally left, move straight ahead, move diagonally right,
and move right. At the end of a trial, a reward of 1 is given

IJCAI-07
1074

when the AV reaches the target. A reward of 0 is given when
the AV hits a mine. For the delayed reward scheme, no im-
mediate reward is given at each step of the trial. A reward of
0 is given when the system runs out of time.

For learning the minefield task, we use a TD-FALCON
network containing 18 nodes in the sensory field (represent-
ing 5x2 complement-coded sonar signals and 8 target bear-
ing values), 5 nodes in the action field, and 2 nodes in the
reward field (representing the complement-coded function
value). TD-FALCON with direct code access employed a set
of parameter values obtained through empirical experiments:
choice parameters αc1 = 0.1, αc2 = 0.001, αc3 = 0.001;
learning rate βck = 1.0 for k = 1, 2, 3 for fast learning; con-
tribution parameters γc1 = γc2 = γc3 = 1

3 ; baseline vigi-

lance parameters ρ̄c1 = 0.25 and ρ̄c2 = 0.2 for a marginal
level of match requirement in the state and action spaces, and
ρ̄c3 = 0.5 for a stricter match criterion on reward values. For
Temporal Difference learning, the learning rate α was fixed
at 0.5 and the discount factor γ was set to 0.9. The initial Q
value was set to 0.5. For action selection policy, ε was initial-
ized to 0.5 and decayed at a rate of 0.0005 until it dropped to
0.005.

Figure 3: The success rates of TD-FALCON using action
enumeration (AE) and direct code access (DA) compared
with those of BP reinforcement learner.

To put the performance of FALCON in perspective, we fur-
ther conducted experiments to evaluate the performance of an
alternative reinforcement learning system, using the standard
Q-learning rule and a multi-layer perceptron network, trained
with a gradient descent based backpropagation algorithm, as
the function approximator. We have chosen the backpropaga-
tion (BP) algorithm as the reference for comparison as gra-
dient descent is by far one of the most widely used universal
function approximation techniques and has been applied in
many contexts, including Q-learning [Sun et al., 2001] and
adaptive critic [Werbos, 2004]. The BP learner employed
a standard three-layer feedforward architecture to learn the
value function with a learning rate of 0.25 and a momentum
term of 0.5. The input layer consisted of 18 nodes repre-

Figure 4: The average normalized steps taken by TD-
FALCON using action enumeration (AE) and direct code ac-
cess (DA) compared with those of BP reinforcement learner.

senting the 5 sonar signal values, 8 possible target bearings,
and 5 selectable actions. The output layer consisted of only
one node representing the value of performing an action in a
particular state. A key issue in using a BP network is the de-
termination of the number of hidden nodes. We experimented
with a varying number of nodes empirically and obtained the
best results with 36 nodes. To enable a fair comparison, the
BP learner also made use of the same action selection module
based on the decay ε-greedy policy.

Figure 3 summarizes the performance of TD-FALCON
with direct code access (FALCON-DA), the original TD-
FALCON with action enumeration (FALCON-AE), and the
BP reinforcement learner in terms of success rates averaged
at 200-trial intervals over 3000 trials across 10 sets of experi-
ments. We observed that the success rates of both FALCON-
DA and FALCON-AE increased steadily right from the be-
ginning. Beyond 1000 trials, both systems can achieve over
90 percent success rates. The backpropagation (BP) based re-
inforcement learner on the other hand required a much longer
exploration phase. In fact, the BP learner only managed to
reach around 90% success rates at 50,000 trials with a lower
ε decay rate of 0.00001. Therefore, in the first 3000 trials, its
success rates remained under 10%.

To evaluate how well the AV traverses from its starting po-
sition to the target, we define a measure called normalized
step given by stepn = step

sd
, where step is the number of

sense-move-learn cycles taken to reach the target and sd is
the shortest distance between the starting and target positions.
A normalized step of 1 means the system has taken the opti-
mal (shortest) path to the target. As depicted in Figure 4, after
1000 trials, both FALCON-AE and FALCON-DA were able
to reach the target in optimal or close to optimal paths in a
great majority of the cases. The BP learner as expected pro-
duced unsatisfactory performance in terms of path optimality.

Considering network complexity, FALCON-DA demon-
strated a great improvement over FALCON-AE by creating

IJCAI-07
1075

Figure 5: The average number of cognitive nodes created by
TD-FALCON using action enumeration (AE) and direct code
access (DA).

a much smaller set of cognitive nodes. In fact, the FALCON-
DA networks consisting of around 38 cognitive nodes were
almost the same size as a BP network with 36 hidden nodes.
With a much more compact network structure, the efficiency
of FALCON-DA in terms of computation time was also much
better than FALCON-AE. The average reaction time taken to
complete a sense-act-learn cycle clocked 0.12 millisecond, in
contrast to 4 to 5 milliseconds as required by FALCON-AE.

5 Conclusion

We have presented an enhanced TD-FALCON model with a
direct code access mechanism for selecting optimal actions in
reinforcement learning. Besides that the network dynamics is
more direct and natural, our comparative experiments show
that TD-FALCON with direct code access is much more ef-
ficient than its predecessor in terms of computation time as
well as network complexity. With a highly efficient learning
architecture, our future work will involve applying FALCON
to more complex and challenging domains. Another interest-
ing extension is to interpret the learned cognitive nodes for
explanation of the system’s behaviour in performing specific
tasks.

References

[Ackley and Littman, 1990] D.H. Ackley and M.L. Littman.
Generalization and scaling in reinforcement learning. In
Advances in Neural Information Processing Systems 2,
pages 550–557. San Mateo, CA. Morgan Kaufmann, 1990.

[Carpenter and Grossberg, 1987] G. A. Carpenter and
S. Grossberg. A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer
Vision, Graphics, and Image Processing, 37:54–115,
1987.

[Carpenter et al., 1991] G. A. Carpenter, S. Grossberg, and
D. B. Rosen. Fuzzy ART: Fast stable learning and cat-

egorization of analog patterns by an adaptive resonance
system. Neural Networks, 4:759–771, 1991.

[Kaelbling et al., 1996] L.P. Kaelbling, M.L. Littman, and
A.W. Moore. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4:237–285, 1996.

[Ninomiya, 2002] S. Ninomiya. A hybrid Learning Ap-
proach Integrating Adaptive Resonance Theory and Re-
inforcement Learning for Computer Generated Agents.
Ph.D. Thesis, University of Central Florida, 2002.

[Pérez-Uribe, 2002] A. Pérez-Uribe. Structure-Adaptable
Digital Neural Networks. PhD thesis, Swiss Federal In-
stitute of Technology-Lausanne, 2002.

[Rummery and Niranjan, 1994] G.A. Rummery and M. Ni-
ranjan. On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR166, Cambridge
University, 1994.

[Si et al., 2004] J. Si, A. G. Barto, W. B. Powell, and
D. Wunsch, editors. Handbook of Learning and Approxi-
mate Dynamic Programming. Wiley-IEEE Press, August
2004.

[Smith, 2002] A. J. Smith. Applications of the self-
organising map to reinforcement learning. Neural Net-
works, 15(8-9):1107–1124, 2002.

[Sun et al., 2001] R. Sun, E. Merrill, and T. Peterson. From
implicit skills to explicit knowledge: a bottom-up model
of skill learning. Cognitive Science, 25(2):203–244, 2001.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto. Rein-
forcement Learning: An Introduction. Cambridge, MA:
MIT Press, 1998.

[Sutton, 1984] R.S. Sutton. Temporal Credit Assignment in
Reinforcement Learning. Ph.D. Thesis, University of Mas-
sachusetts, Amherst, MA, 1984.

[Tan and Xiao, 2005] A.-H. Tan and D. Xiao. Self-
organizing cognitive agents and reinforcement learn-
ing in multi-agent environment. In Proceedings,
IEEE/WIC/ACM International Conference on Intelligent
Agent Technologies, pages 351–357. IEEE Computer So-
ciety press, 2005.

[Tan, 2004] A.H. Tan. FALCON: A fusion architecture for
learning, cognition, and navigation. In Proceedings, In-
ternational Joint Conference on Neural Networks, pages
3297–3302, 2004.

[Ueda et al., 2005] H. Ueda, N. Hanada, H. Kimoto, and
T. Naraki. Fuzzy Q-learning with the modified fuzzy
ART neural network. In Proceedings, IEEE/WIC/ACM In-
ternational Conference on Intelligent Agent Technologies,
pages 308–315. IEEE Computer Society press, 2005.

[Watkins and Dayan, 1992] C.J.C.H. Watkins and P. Dayan.
Q-learning. Machine Learning, 8(3):279–292, 1992.

[Werbos, 2004] P. Werbos. ADP: Goals, opportunities and
principles. In Jennie Si, Andrew G. Barto, Warren Buck-
ler Powell, and Don Wunsch, editors, Handbook of Learn-
ing and Approximate Dynamic Programming, pages 3–44.
Wiley-IEEE Press, August 2004.

IJCAI-07
1076

	Direct code access in self-organizing neural networks for reinforcement learning
	Citation

	Direct Code Access in Self-Organizing Neural Networks for Reinforcement Learning

