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Abstract 

A large number of optimal and suboptimal procedures have been developed for solving combinatorial problems 
modeled as activity networks. The need to differentiate between easy and hard problem instances and the interest in 
isolating the fundamental factors that determine the computing effort required by these procedures, inspired a 
number of researchers to develop various complexity measures. In this paper we investigate the relation between the 
hardness of a problem instance and the topological structure of its underlying network, as measured by the 
complexity index. We demonstrate through a series of experiments that the complexity index, defined as the 
minimum number of node reductions necessary to transform a general activity network to a series-parallel network, 
plays an important role in predicting the computing effort needed to solve easy and hard instances of the multiple 
resource-constrained project scheduling problem and the discrete time/cost trade-off problem. 

Keywords: Project planning; Network complexity measure; Complexity index; Network reduction 

I. Introduction 

A large number  of optimal and suboptimal 
procedures have been described for solving com- 
binatorial problems modeled as activity networks. 
Testing the accuracy and efficiency of these pro- 
cedures requires the use of a set of benchmark  
instances. Ideally, such a set should span the full 
range of complexity, f rom very easy to very hard 
instances. The generation of easy and hard prob- 
lem instances, however, appears  to be a very 
difficult task which heavily depends on the possi- 

* Corresponding author. E-mail: Willy.Herroelen@econ. 
kuleuven.ac.be 

bility to isolate the factors that precisely deter- 
mine the computing effort required by the solu- 
tion procedure used to solve a problem, and the 
calibration of the scale that characterizes such 
effort. It  is not surprising then that only a few 
commonly used benchmark  instances are avail- 
able in the field of activity networks. Patterson 
(1984) has assembled 110 test problems for the 
resource-constrained project scheduling problem 
under  the objective of minimizing the makespan. 
These 110 test problems became a quasi standard 
in the field, and have been adapted to accommo- 
date additional problem parameters  and objec- 
tives (Demeulemees te r  et al., 1994; Baroum and 
Patterson, 1993). The problems, however, are a 
collection from different sources and have not 
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been generated by using a controlled design of 
specified problem parameters. In addition, recent 
advances in the development of optimal proce- 
dures for several classes of resource-constrained 
project scheduling problems (Herroelen and De- 
meulemeester, 1995) have demonstrated that the 
Patterson set is solvable within very small average 
CPU times on a personal computer, which in- 
spired some researchers to question the true 
benchmark nature of the set and to build an 
activity network generator (Kolisch et al., 1992). 
Kolisch et al. (1992) are correct in stating that the 
Patterson set has misled a number of researchers 
in believing that the resource-constrained project 
scheduling problem has become quite tractable. 
They have proven the opposite using 480 net- 
works generated using their own network genera- 
tor. The activity network generator originally de- 
veloped by Caestecker and Herroelen (1979) and 
subsequently refined by Demeulemeester et al. 
(1993a), allows to generate dense and non-dense 
network structures at random from the space of 
all feasible networks. ProGen, the network gener- 
ator developed by Kolisch et al. (1992), goes a 
step further in that it allows for the generation of 
activity network problem instances for a general 
class of resource-constrained project scheduling 
problems by using a controllable set of specified 
problem parameters. 

Since the mid-sixties, parameters for the char- 
acterization of activity networks have been receiv- 
ing attention from researchers who were inter- 
ested in studying the effects of problem structure 
on algorithm performance (Davis, 1975; Patter- 
son, 1976) and the development of a reliable set 
of measures of activity network 'complexity'. Evi- 
dently, a choice between algorithms or the deter- 
mination of the efficiency of a particular algo- 
rithm, would be greatly facilitated if there exists a 
measure of network complexity. This would elimi- 
nate any possible bias in the conclusions regard- 
ing the efficiency of a particular algorithm rela- 
tive to others by ensuring that the algorithm is 
evaluated at several points in the 'range of com- 
plexity' (Elmaghraby and Herroelen, 1980). 

Quite a number of activity network 'complex- 
ity' measures have been proposed in the litera- 
ture (Davis, 1975; Patterson, 1976). In this paper, 

our interest is limited to measures which aim to 
characterize the topological structure of an activ- 
ity network, i.e., the network topology. The best 
known measure for the network topology is the 
coefficient of network complexity (CNC), intro- 
duced by Pascoe (1966) for activity-on-the-arc 
(AoA) networks, and simply defined as the ratio 
of the number of arcs over the number of nodes 
(different definitions have been used by Davies 
(1974) and Kaimann (1974, 1975)). The CNC has 
been adopted by Davis (1975) for the activity-on- 
the-node (AoN) representation and has been used 
in a number of studies since then (Kurtulus and 
Narula, 1985; Patterson, 1984; Talbot, 1982). As 
observed by Kolisch et al. (1992), in the AoN 
representation, 'complexity' has to be understood 
in the way that for a fixed number of activities 
(nodes), a higher complexity results in an increas- 
ing number of arcs and therefore in a greater 
connectedness of the network. A number of stud- 
ies in the literature (Alvarez-Valdes and Tamarit, 
1989; Kolisch et al., 1992) seem to confirm that 
problems become easier with increasing values of 
the CNC, which makes the term CNC somewhat 
confounding. Elmaghraby and Herroelen (1980) 
already questioned the use of the CNC as a 
measure of activity network complexity. The mea- 
sure totally relies on the count of activities and 
nodes in the network. Since it is easy to construct 
networks of equal number of arcs and nodes but 
varying degrees of difficulty in analysis, they failed 
to see how the CNC can discriminate among 
them. 

Recently Bein et al. (1992) introduced a new 
characterization of two-terminal acyclic networks 
which essentially measures how nearly series- 
parallel a network is. They define the reduction 
complexity as the minimum number of node re- 
ductions sufficient (along with series and parallel 
reductions) to reduce a two-terminal acyclic net- 
work to a single edge. We adopt the reduction 
complexity as our definition of the complexity 
index (CI) of an activity network. The objective of 
this paper is to investigate the potential use of 
the CI as a measure of activity network complex- 
ity. Elmaghraby and Herroelen (1980) argue that 
the measurement of network complexity - the 
measurement of the difficulty in analysis and 
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synthesis of a given network - cannot be accom- 
plished in a meaningful manner  unless the use of 
the measure,  i.e., the objective of analysis, is 
specified a priori. In addition, they argue that the 
measure  of complexity may be confounded by the 
algorithm employed. We want to investigate the 
use of  the CI as an explaining factor of the 
impact of network topology on algorithmic per- 
formance.  Two problems are chosen for our anal- 
ysis: the well-known resource-constrained project 
scheduling problem (RCPSP) and the discrete 
t ime /cos t  t rade-off  problem (DTCTP).  The  algo- 
ri thm used for solving the RCPSP is the branch- 
and-bound procedure  developed by Demeule-  
meester  and Herroe len  (1992). For  the D T C T P  
we use the optimal procedure  developed by De-  
meulemeester  et al. (1993b), which is based on 
the procedure  developed by Bein et al. (1992) for 
finding the minimum number  of node reductions 
necessary to t ransform a general network to a 
ser ies-paral le l  network. 

The  remainder  of the paper  is organized as 
follows. In Section 2, we give a formal definition 
of the complexity index (CI) and elaborate  on its 
anticipated use as a measure  of network complex- 
ity. In Section 3, we report  on the computat ional  
experiment  per formed on the RCPSP, which 
forces us to conclude that the CNC is not a very 
good measure  of network complexity, while the 
explanatory behaviour of the CI is more  signifi- 
cant. The higher the value of the CI, the easier it 
is to solve the RCPSP. Section 4 is then reserved 
for the experiment conducted on the DTCTP.  
While the correlation between required CPU time 
and CI observed for the RCPSP was negative, 
this is not the case for the DTCTP:  the higher the 
value of the CI, the harder  the problem. Now 
that we have established that the CI can be used 
as an indicator of the hardness of RCPSP and 
D T C T P  instances, Section 5 concentrates on the 
explanatory power of resource availability mea-  
sures for given values of the CI. Using the RCPSP 
as our vehicle of analysis, we confirm the conjec- 
ture made by Elmaghraby and Herroe len  (1980) 
that the relationship between the hardness of a 
problem (measured by the CPU time required for 
its solution) and resource scarcity (measured by 
the so-called resource strength and resource-con- 

strainedness) varies according to a bell-shaped 
curve. Section 6 is then reserved for our overall 
conclusions. 

2. The complexity index and its relation to prob- 
lem hardness 

2.1. The  complex i ty  index 

Let D = ( N , A )  be a two-terminal AoA net- 
work, where N =  1,2 . . . . .  n is the set of nodes 
representing the project events, and A is the set 
of arcs representing network activities. We as- 
sume, without loss of generality, that there is a 
single start node 1 and a single terminal node n, 
n = INI. Since D is acyclic, we assume that its 
nodes are topologically numbered,  i.e., i < j  
whenever there exists an arc joining i to j. The 
resulting graph will be referred to as a s t -dag.  

Bein et al. (1992) define complexity in terms of 
a sequence of node reductions of a st-dag. There  
are three types of reductions: parallel, series and 
node reductions. These reductions, when applied 
consecutively in the right order, can reduce any 
dag to one single arc. A paral le l  reduct ion at i, j 
replaces two or more arcs al ,  a 2 . . . .  , ak ,  all 
joining i to j, by a single arc a = ( i , j ) .  A series 
reduct ion at i is possible when a = ( i , j )  is the 
unique arc into j and b = ( j , k )  is the unique arc 
out of j: a and b are replaced by a single arc 
c = ( i , k ) .  Let [D] denote the network obtained by 
applying to D all ser ies-paral lel  arc reductions. 
If  D = [D] then D is said to be irreducible.  

Following Bein et al. (1992), we say that node j 
of an irreducible network is eligible for a node  
reduct ion when j has unit in-degree or out-de- 
gree, and j :~ 1,n. Let  a = ( i , j )  be the unique arc 
into j and b I = ( j ,  k l ) ,  . . . ,  b s = ( j , k  s) be the arcs 
out of j. Then the reduction of node j replaces a, 
b 1, . . . ,  bs by the arcs c 1 = ( i , k  1) . . . .  , c s = ( i , k s ) .  
The case where j has unit out-degree is symmet- 
ric. Note that in an irreducible network any node 
whose only predecessor is 1 or whose only succes- 
sor is n is eligible for reduction. Therefore,  every 
acyclic network can be reduced to the single arc 
(1, n) by a sequence of node reductions inter- 
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leaved with series and parallel reductions. The 
number of node reductions in such a sequence 
may differ. Bein et al. (1992) define the reduction 
complexity of D as the minimum number of node 
reductions sufficient (along with series and paral- 
lel reductions) to reduce D to a single arc. More 
formally, let D o j  denote the network obtained 
from reduction of node j in D. Then  the reduc- 
tion complexity is the smallest q for which there 
exists a sequence of nodes (Jl,J2 . . . . .  jq) such that 
[. . .  [[[D]ojl]oj2]... ojq] = (1,n). Such a sequence 
is called a reduction sequence. The length of a 
reduction sequence, i.e., the reduction complex- 
ity, is taken as our definition of the complexity 
index, CI, of D. Since all series-parallel  networks 
have a CI value equal to zero, the complexity 
index CI seems to be a good measure of how 
close the network is to being series-parallel.  Bein 
et al. (1992) have developed an algorithm for 
calculating the CI of a dag in polynomial time. 
For  ease of reference, Appendix A summarizes 
the fundamental concepts underlying the com- 
plexity index and illustrates these concepts using 
a small problem example. 

2.2. The complexity index and the RCPSP 

Essentially the CI measures how nearly 
series-parallel  a network is. One of the objectives 
of this paper  is to investigate its potential to 
measure the impact of network topology on the 
computational effort required by an algorithm to 
solve resource allocation problems in activity net- 
works. The first resource allocation problem ad- 
dressed in this paper is the multiple resource- 
constrained single-project scheduling problem 
(RCPSP), in which it is assumed that an activity is 
subject to technological precedence constraints 
(an activity can only be started if all its predeces- 
sor activities have been finished) and cannot be 
interrupted once begun (no job preemption al- 
lowed). Renewable resources are assumed to be 
available per period in constant amounts and are 
also demanded by an activity in constant amounts 
throughout the duration of the activity. The ob- 
jective is to schedule the activities subject to 
precedence and resource constraints in order  to 
minimize the total project duration. 

Conceptually, the RCPSP can be formulated 
as follows: 

m i n t  n (1) 

subject to 

t j - t i > P j ,  ( i , j )  ~ H ,  (2) 

E rik <-- ak, t = 1,2 . . . .  ,tn, k = 1 , 2 , . . . , K  
i ~ S  t 

(3) 

where t i is the finish time of activity i, i =  
1,2 . . . . .  n; H is the set of pairs of activities indi- 
cating precedence constraints; Pi is the fixed pro- 
cessing time of activity i; rik is the amount of 
resource type k required by activity i; S t is the 
set of activities in process in time interval ( t -  
1,t ] = {il t i - P i  < t < ti}; and a k is the total avail- 
ability of renewable resource type k. 

The precedence constraints given by Eq. (2) 
indicate that an activity j can only be started if all 
predecessor activities i are completed. The re- 
source constraints given in Eq. (3) indicate that 
for each time period ( t -  1, t] and for each re- 
source type k, the resource amounts required by 
the activities in progress cannot exceed the re- 
source availability. The objective function is given 
as Eq. (1). The project duration is minimized by 
minimizing the finish time of the unique dummy 
ending activity n. 

Demeulemeester  and Herroelen (1992) devel- 
oped a branch-and-bound procedure for solving 
the RCPSP which currently seems to be the most 
advanced exact procedure for solving makespan 
minimization problems. The procedure (subse- 
quently referred to as DH) has been programmed 
in Turbo C for use on a personal computer. D H  
is a depth-first branch-and-bound procedure 
based on an AoN representation of a project 
network, which makes use of a critical-path lower 
bound and some very powerful dominance rules 
(left-shift rule, cutset rule, minimal delaying al- 
ternatives rule and two other rules based on 
activities which cannot be scheduled simultane- 
ously with other activities). In Section 3, we inves- 
tigate whether the complexity index (CI) can be 
used as a measure of network complexity for the 
RCPSP, using the D H  procedure as our vehicle 
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of analysis. It will be shown that the CI is nega- 
tively correlated with the computational effort 
needed to solve the RCPSP, i.e., the higher the 
value of CI, the easier it is to solve the corre- 
sponding RCPSP. This result may seem to be 
counterintuitive. It implies that the more complex 
the network topology, the smaller the number of 
feasible parallel paths, which renders the RCPSP 
more tractable. 

2.3. The complexity index and the DTCTP 

The second resource allocation problem set- 
ting used in this paper is the discrete t ime/cos t  
trade-off  problem (DTCTP) in activity networks 
of the CPM type, using a single nonrenewable 
resource. Note that this problem, contrary to the 
RCPSP, is based on an AoA representation of a 
project network. We assume that the duration Ya 
of activity a ~ A is a discrete, nonincreasing func- 
tion Pa(Xa) of the amount of a single resource 
allocated to it, i.e., Ya =Pa(Xa )" The pair Ya, Xa 
shall be referred to as a 'mode', and shall be 
written a s :  Ya(Xa). Thus an activity that assumes 
four different durations according to four possi- 
ble resource allocations to it shall be said to 
possess four modes. Demeulemeester  et al. 
(1993b) consider three possible objectives for the 
DTCTP. These objectives are to be used sepa- 
rately, not simultaneously (not a multicriteria 
problem). For the first objective function they 
specify a limit R on the total availability of a 
single nonrenewable resource type. The problem 
is then to decide on the vector of activity dura- 
tions (Y l , ' ' ' ,Ym) ,  m =IAI, that completes the 
project as early as possible under  the limited 
availability of the single nonrenewable resource 
type. If we denote an activity a by its end nodes i 
and j and if we let t i denote the (earliest) realiza- 
tion time of node i, then the problem can be 
formulated as follows: 

min tn (4) 

subject to 

tl  = 0,  ( 5 )  

t i -k-pij(Xu) <_tj for all (ij)  ~ A ,  (6) 

~_, xij <_n. (7) 
(/j) ~A 

In the objective function (4) we minimize the 
realization time of the single terminal node n, 
where Eq. (5) indicates that the project is started 
at time 0. Constraint set (6) is used to satisfy the 
precedence constraints, while constraint set (7) 
indicates that the limit on the resource availabil- 
ity cannot be violated. 

A second objective function reverses this prob- 
lem formulation: now we specify a limit T on the 
project length and we try to minimize the re- 
source usage. Using the same notation as for the 
previous formulation, this problem may be stated 
as follows: 

min ~ x u (8) 
(ij)EA 

subject to 

t 1 = 0 ,  (9) 

t i +Pij(Xij) <_ t i for all (i j)  ~ A ,  (10) 

t n < T. (11) 

In this formulation constraints (9) and (10) are 
identical to constraints (5) and (6), but now con- 
straint (11) specifies that the maximal project 
length T cannot be violated. The objective func- 
tion (8) minimizes the sum of the resource usage 
over all the activities. 

For the third objective function we have to 
compute the complete t ime/cos t  trade-off  func- 
tion for the total project, i.e., in the case of the 
DTCTP all the efficient points (T, R) such that 
with a resource limit R a project length T can be 
obtained and such that no other point (T',  R') 
exists for which both T' and R' are smaller than 
or equal to T and R. It is this objective function 
which we consider in Section 4 in order to investi- 
gate the potential use of the CI as a measure of 
complexity for the DTCTP. 

The optimal procedure (Reduction Plan 1) de- 
veloped by Demeulemeester  et al. (1993b), will be 
used as our vehicle of analysis. The procedure is 
based on the method by Bein et al. (1992) for 
determining the minimum number of node reduc- 
tions necessary to transform a general acyclic 
network to a series-parallel network. The proce- 
dure (subsequently referred to as DEH)  has been 
coded in Turbo C for use on a personal com- 
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puter. D E H  is a depth-first branch-and-bound 
procedure based on an AoA representation of a 
project network, in which in each node of the 
branch-and-bound tree the duration of a certain 
activity which is eligible for reduction is fixed. 
When the duration of all activities which have to 
be reduced are fixed, the resulting project cost 
curve can be calculated using dynamic program- 
ming logic. Some lower bounds and dominance 
rules are added to improve efficiency. 

In Section 4, we investigate whether  the CI 
can be used as a measure of network complexity 
for the DTCTP using the D E H  procedure on a 
set of test problems. It will be shown that the CI 
has a positive correlation with the computational 
effort required to solve the DTCTP: the higher 
the value of the CI, the harder  the corresponding 
DTCTP. 

3. The RCPSP and network complexity 

In this section we investigate the potential use 
of both the coefficient of network complexity 
(CNC) and the complexity index (CI) as a mea- 
sure of network complexity for the RCPSP. A full 

factorial experiment would require the genera- 
tion of networks with prespecified values of CNC 
and CI. A procedure for creating networks which 
satisfy preset values of the CI, however, is not yet 
available. In addition, ProGen, which is the most 
powerful project generator available, generates 
AoN networks, while the CI has been defined for 
AoA networks. As a result, a full factorial experi- 
ment is out of order. When we generate networks 
(in AoN format), we can prespecify the CNC, but 
not the CI, which makes it cumbersome to set up 
an experiment with a full factorial design, in 
which all levels of the independent variables are 
crossed. Instead, we proceeded as follows. Using 
ProGen, the project network generator developed 
by Kolisch et al. (1992), we generated five sets of 
1000 RCPSP instances (AoN networks) each. 
Each network has a single start and end node. 
For each network, the number of activities is set 
to 25. The maximum number of predecessors, 
resp. successors is set to 25. Three resource types 
are assigned a constant availability of 6 units. The 
activity durations are drawn from the uniform 
distribution in the range [1, 10], while the re- 
source requirements for each of the three re- 
source types are drawn from the uniform distri- 
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bution in the range [1, 5]. Both the activity dura- 
tions and the resource requirements are kept 
constant over the 5000 instances. In each of the 
five sets, the CNC (arcs over nodes) is set at a 
different value, varying from 1.5 in the first set to 
2.5 in the fifth. 

Each AoN network is transformed to a corre- 
sponding AoA network with minimum CI value 
using the efficient polynomial procedure devel- 
oped by Kamburowski et al. (1992). For ease of 
reference, this algorithm is illustrated on a small 
problem example in Appendix B. In each of the 
five problem sets, the AoA networks obtained are 
assigned to different classes, depending on the CI 
values. We obtain five data sets, with the follow- 
ing characteristics: 

Set No. CNC CI 

1 1.50 4-10 
2 1.75 6-13 
3 2.00 8-15 
4 2.25 8-16 
5 2.50 9-16 

Each RCPSP instance is then solved using the 
D H  procedure on a personal computer IBM P S / 2  
Model 70 A21. The plots of the CPU time re- 
quired to solve the RCPSP instances to optimal- 
ity, versus the CI values, are given in Fig. 1. Bold 
lines indicate significant differences using the 
Wilcoxon test statistic (a non-parametric test 
statistic based on order  statistics). Only samples 
with more than 20 networks are connected by a 
line, because a smaller sample size does not allow 
for statistical inferencing. 

Clearly, the CI has an effect on the computa- 
tional effort required to solve the corresponding 
RCPSP. Moreover, the correlation is negative: 
the higher the CI of the network, the easier it is 
to solve the RCPSP. A loglinear regression per- 
formed on every set yielded the following equa- 
tion: 

CPU time = exp(a  + b- CI) 

o r  

In(CPU time) = a + b .  CI 

which resulted in the following: 

Set No. a b F R 2 

1 6.891 - 0.738 94.88 8.69% 
2 6.874 - 0.618 80.99 7.52% 
3 4.982 - 0.441 53.08 5.06% 
4 4.696 - 0.438 58.52 5.56% 
5 3.990 - 0.371 39.32 3.88% 

This result confirms our conjecture that the 
complexity is negatively correlated to the effort 
needed to solve the RCPSP (p  < 0.0001). How- 
ever, R 2 is only 6.1% on average, which means 
that only a small portion of the total variability 
can be explained by the CI. The variability in 
each set is quite high, especially for the problem 
set with CNC = 2.50 (which contains, on average, 
the easiest RCPSP instances). This is the main 
explaining factor for the irregularity observed in 
the plot of Fig. l(e) for the fifth data set. The 
slight irregularities in Fig. l(a) and Fig. l(f) ob- 
served at low CI values are due to the fact that 
we imposed a maximum CPU time limit of 3600 s 
for the D H  procedure. As a result, the highest 
CPU time values are somewhat deflated, because 
some of the RCPSP instances could not be solved 
to optimality within that time limit. 

The small R E values obtained indicate that it 
may not be very realistic to use the CI for making 
individual predictions of the computational effort 
required by an algorithm for solving RCPSP in- 
stances. Comparisons of alternative solution pro- 
cedures over a sufficient number of random net- 
works, however, are very well possible, since there 
is a clear trend in the average processing times. 

Fig. 2 shows the relationship between the aver- 
age CPU time required for solving the 5000 
RCPSP instances and the CNC. Bold lines indi- 
cate significant differences using the Wilcoxon 
test statistic. On first sight, the apparent negative 
correlation between the CNC and the required 
computational effort seems to confirm the results 
obtained by Kolisch et al. (1992) using the same 
algorithm. Similar results have been found by 
Alvarez-Valdes and Tamarit  (1989) in their vali- 
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dation experiment of heuristics for solving the 
RCPSP. 

It should be observed, however, that there is a 
positive correlation between the CNC and the CI. 
Fig. 3 again shows the results obtained on the 
same 5000 networks. The problems are now clas- 
sified in 13 different sets, however, where the CI 
is the same for each set. The only varying param- 

eter in each set is the CNC. Fig. 3 shows some of 
the corresponding plots of the relationship be- 
tween the CPU time and the CNC for constant 
CI values. Again, only samples with more than 20 
networks are connected by a line and bold lines 
indicate significant differences using the Wilcoxon 
test statistic. The negative correlation no longer 
shows. Apparently, the negative correlation effect 
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measured in Fig. 2 over all 5000 networks is 
caused by the variation in the CI and the positive 
correlation between the CI and the CNC. 

This result is quite interesting since it clearly 
shows that it is very ambiguous to attach all 
explanatory power to the CNC. Kolisch et al. 
(1992) attribute the observed negative correlation 
between the CNC and the solution times to the 
fact that adding more precedence relations to the 
network lowers the number of feasible schedules 
for a given bound on the project makespan. This 
reduces the enumeration tree and makes the 
problems more easy. In their experiment on 480 
randomly generated networks, they set the CNC 
at 1.5, 1.8 and 2.1 respectively. We computed the 
CI values for each of the networks and obtained 
the following: 

Set No. CNC CI 

1 1.5 9-11 
2 1.8 14-16 
3 2.1 19-21 

This clearly indicates that the explanatory power 
of the CNC is strongly confounded by its strong 
correlation with the CI. 

In order  to verify our conjecture that the CI is 
a bet ter  measure of network complexity than the 
CNC, we performed the following loglinear re- 
gression on all 5000 RCPSP instances: 

CPU time -- exp(a  + b.  CI + c .  CNC) 

or 

ln(CPU time) = a + b- CI + c- CNC. 

This led to the following: 

CPU time 

= exp(5.222 - 0.470. CI + 0.001 • CNC) 

with F = 389.53, R 2 = 13.57%, standard error of 
first coefficient (CI)=0 .025  (p  <0.0001), and 
standard error of second coefficient (CNC)=  
0.168 (p  > 0.99) =* insignificant 

The coefficient related to the CI is negative, 
which indicates a negative correlation between 

the CI and the hardness of the RCPSP. Not only 
is the coefficient relating to CNC insignificant, it 
is almost equal to zero. We can conclude that the 
CNC explains nothing extra above what is already 
explained by the CI. The reason for the strong 
explanatory power attributed to the CNC in pre- 
vious experiments performed in the literature is 
probably due to the fact that when the CNC was 
varied, other parameters (such as the CI) were 
varied also, which led to problems with significant 
differences in 'complexity'. 

We also performed an analysis of variance 
(using the ANOVA procedure of SAS; without 
prespecifying the exponential form of the rela- 
tionship), which resulted in CI being significant 
(p  < 0.0001) and CNC and CI .  CNC (the interac- 
tion effect between CI and CNC) being insignifi- 
cant (p  > 0.1 and p > 0.5 respectively). 

Our results should be interpreted with suffi- 
cient care and should not be understood as a 
credo for CI and a requiem for CNC. First of all, 
it should be realized that for problem instances 
generated by ProGen, the CNC determines the 
range of the CI. Moreover, as can be seen from 
Fig. 1, the impact of CI on required computer 
time seems to become smaller with ascending 
values of CNC. However, when we include the 
interaction variable C I - C N C  in our regression 
analysis, the interaction effect is insignificant (p  
> 0.25), which implies that we can ignore the 
correlation between the CI and the CNC in inter- 
preting the results. In this analysis, the coefficient 
of CI was still significant (19 < 0.025), whereas the 
coefficient of CNC was not (p  > 0.5). 

In addition, our experiments did not allow us 
to study the impact of both the CNC and the CI 
for extremely small CI values. CI will assume a 
value of zero for a series-parallel graph. It is to 
be expected that starting with a series graph and 
gradually altering it into a parallel graph, ceteris 
paribus, renders the problem to be more and 
more difficult. Our experiments did not allow to 
investigate this assertion. As already mentioned, 
the network generator used does not allow for 
the generation of networks with prespecified CI 
values. The probability that networks are gener- 
ated with CI = 0 and CNC varying from 1.5 to 2.5 
is extremely small. 
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The question remains whether the better  ex- 
planatory power of CI is worth the effort of 
transferring a (for known reasons more favourite) 
AoN network into an AoA network in order to 
compute the CI. Fortunately, both the algorithm 
to transform an AoN network into an AoA net- 
work with minimum CI, as the algorithm for 
computing the CI, are polynomial in time. This 
makes it fairly easy to compute the CI even if the 
original network is in AoN format. The issue 
remains, however, that a procedure for generat- 
ing networks with preset values of CI is not yet 
available. 

A total of 250 AoA networks are generated 
using the random network generator developed 
by Demeulemeester  et aL (1993a). The number of 
activities is set between 5 and 20, the number of 
precedence relationships is defined randomly and 
the number of activity modes is varied from 2 to 
4. Each problem is solved using the D E H  proce- 
dure (Demeulemeester  et al., 1993b). 

The following equation is estimated through 
loglinear regression. (rn being the number of 
nodes): 

CPU time = a " ( m ) (b'CI +c) 

4. The DTCTP and network complexity 

In this section we investigate the potential use 
of the CI as a measure of complexity for the 
DTCTP.  As mentioned above, we expect a posi- 
tive correlation to exist between the CI and the 
computational effort needed to solve the DTCTP. 

o r  

In(CPU time) = In a + (b -  CI + c) • In m, 

which results in 

CPU time = 0 . 0 0 1 1 7 "  (~11) (0"995"CI+0"3366) 

with R 2 = 95% 
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The graphs shown in Fig. 4 represent the aver- 
ages obtained over the different settings and the 
estimates based on the equation above. The re- 
suits are shown in three different graphs with the 
number of activity modes equal to 2, 3 and 4. 

It is clear from the results above that both the 
number of modes for each activity and the CI 
have a strong effect on the processing time needed 
to solve instances of the DTCTP.  The portion of 
the variability which can be explained by both 
factors is very high (95%). At this juncture, we 
should realize that this high explanatory power is 
partially due to the fact that the D E H  solution 
procedure is essentially based on the CI concept. 
This illustrates - as observed by Elmaghraby and 
Herroelen (1980) - that a measure of network 
complexity is indeed dependent  on the objective 
of analysis and is 'necessarily' confounded by the 
procedure of analysis. The solution algorithm 
used to solve a problem is inextricably entwined 
with whichever properties we isolate and incorpo- 
rate in a measure of network complexity under 
the 'current  state of technology'. We doubt, how- 
ever, that the explanatory power of the CI is 
ephemeral.  We are confident that the notion of 
complexity expressed by the CI lies at the very 
heart  of the DTCTP itself. 

5. The RCPSP and resource availability 

Our objective in the previous two sections was 
to study the potential use of the CI as a measure 
of network complexity for both the RCPSP and 
the DTCTP. In this section we keep the CI 
constant and try to isolate the impact of resource 
availability (or resource constrainedness) on the 
required solution effort for solving the RCPSP. 
Elmaghraby and Herroelen (1980) have made the 
conjecture that the relationship between the 
hardness of a problem (as measured by the CPU 
time required for its solution) and resource avail- 
ability (scarcity) varies according to a bell-shaped 
curve similar to the one depicted in Fig. 5. 

Indeed, if resources are only available in ex- 
tremely small amounts, there will be relatively 
little freedom in scheduling the activities (for 
instance, the activities may have to be placed in 
series and the resulting project duration will equal 
the sum of activity durations). Hence, the corre- 
sponding RCPSP instance should be quite easy to 
solve (point A in Fig. 5). If, on the other hand, 
resources are amply available, the activities can 
simply be scheduled in parallel and the resulting 
project duration will be equal to the critical path 
length. Hence, the required computational effort 
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Fig. 5. Presumed effect of resource availability on processing time for the RCPSP. 
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should be very small again (point B in Fig. 5). 
Elmaghraby and Herroelen (1980) argued that 
the main problem is to obtain the exact shape of 
the complexity curve in the region between these 
two extremes, and questioned the availability of a 
measure that is able to resolve this problem. 

Two of the best known parameters for describ- 
ing resource availability (scarcity) that have been 
proposed in the literature are the resource factor 
and the resource strength. The resource fac tor  
(RF) has been introduced by Pascoe (1966), and 
has been utilized later in studies by Cooper (1976), 
Alvarez-Valdes and Tamarit  (1989) and Kolisch 
et al. (1992). The RF can be calculated as follows: 

1 ~ K { 1 i f r / k > 0  
RF k = ~ ~'~ (12) 

i=1/,=1 0 otherwise 

where, according to our previous notation, n is 
the number of activities, K is the number of 
resource types, and rig is the amount of resource 
type k required by activity i. 

The RF reflects the average portion of re- 
sources requested per activity. It is a measure of 
the density of the array r~k. If we have RF = 1, 
then each activity requests all resources. RF = 0 
indicates that no activity requests any resource. 

Kolisch et al. (1992) conclude that an increase 
of the RF results in an increase of the solution 
times required to solve the RCPSP. This result 
contradicts the results of Alvarez-Valdes and 
Tamarit  (1989) who observed that problems with 
RF = 1 were easier to solve than problems with 
RF = 0.5. 

The resource strength (RS) was introduced by 
Cooper (1976) to express the relationship be- 
tween the resource requirements and the re- 
source availability, and used later by Alvarez- 
Valdes and Tamarit  (1989). Kolisch et al. (1992) 
criticize its use and propose the following new 
definition: 

r a in  
a k -- r k 

RS k = r ~  a~ _ r ~ n i  n (13) 

where a k is the total availability of renewable 
resource type k, r~ nin =max/=  1 . . . . .  n rik, and r~  a~ 
is the peak demand of resource type k in the 
precedence-preserving earliest start schedule 

With respect to one resource, the smallest 
resource availability is obtained for RS = 0. For 
RS---1, the problem is no longer resource-con- 
strained. Given the definition of r~  ~x, the RS as 
defined by Eq. (13) already incorporates informa- 
tion about the precedence structure of the net- 
work. 

In their experiments, Kolisch et al. (1992) con- 
d u d e  that the RS has the strongest impact on 
solution times: the average solution time continu- 
ously increases with decreasing RS. The hardest 
problems seem to be the ones where the minimal 
resource availability is provided. This is in contra- 
diction with the conclusion obtained by Alvarez- 
Valdes and Tamarit  (1989). In addition, the effect 
of RS on computational effort required is mono- 
tone decreasing, which deviates from the bell- 
shaped curve proposed by Elmaghraby and Her- 
roelen (1980). The Elmaghraby and Herroelen 
conjecture, on the other hand, has been con- 
firmed to exist for the DTCTP case by Demeule- 
meester et al. (1993b). 

Inspired by these contradictory findings we set 
up the following experiment. Using ProGen, nine 
sets of 500 RCPSP instances are generated. For 
each network, the number of activities is set to 25 
and one resource type is defined. The activity 
durations are drawn from the uniform distribu- 
tion in the range [1,10]. The minimum and maxi- 
mum resource requirements are set to 1 and 10 
respectively. The CNC is set to 2, while the RF is 
set to 1. Using increments of 0.125, the RS is set 
to 0 for the first set of 500 networks, 0.125 for the 
second, up to 1 for the last set. Each of the 4500 
networks is then transformed to a corresponding 
AoA network with minimum CI value using the 
procedure of Kamburowski et al. (1992). The CI 
values obtained varied from 7 to 17. The net- 
works are then grouped per CI value and solved 
using the D H  procedure (Demeulemeester  and 
Herroelen,  1992). 

For the nine groups of networks, the required 
CPU time varies in function of the RS according 
to a bell-shaped curve similar to the one pro- 
jected in Fig. 5. As an example, Fig. 6 plots the 
results for the group of networks with CI = 12 
(similar results are obtained for the other CI 
values). The values on the abcissa correspond to 
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the various classes of RCPSP instances with RS 
values ranging from 0 to 1. The required CPU 
times are the averages for each class of networks. 
When the difference between two averages is 
significantly different from zero (using the 
Wilcoxon test statistic), a ' < ' or ' > ' indication is 
drawn between two RS values. In contradiction 
with the findings of Kolisch et al. (1992), the 
results do not show a continuous increase of the 
required solution time with decreasing RS. We 
assume that the fact that Kolisch et al. (1992) did 
not find a bell-shaped curve relationship is due to 
the fact that the CI was not held constant in their 
experiment. 

Still another measure of resource availability 
has been introduced by Patterson (1976). He de- 
fines the so-called resource-constrainedness (RC) 
for each resource k, as follows: 

RC k = d k / a  ~ (14) 

where a k is the availability of resource k and d k 

is the average quantity of resource k demanded 
when required by an activity, d k = (~_,irik)/~,i{1 if 
rik > 0; 0 otherwise}. 

The arguments for using RC and not RS as a 
measure of resource availability can be summa- 

rized as follows. First, RC does not yet incorpo- 
rate information about the precedence structure 
of a network, and as such can be considered as a 
'pure '  measure of resource availability. Second, 
there are occasions where RS can no longer 
distinguish between easy and hard problem in- 
stances while RC continues to do so. A small 
example can be used to illustrate this point. For a 
network for which the resource requirement of a 
particular activity equals the maximum availabil- 
ity of a single resource, while the resource re- 
quirements for the other activities are smaller 
than the resource availability, the R S - - 0 ,  no 
matter what the latter resource requirements are. 
Depending on precisely these requirements, how- 
ever, the hardness of the resulting RCPSP may 
vary considerably. This variation in problem hard- 
ness can be captured by the RC. For an easy to 
solve problem with 50 activities, a = 20 and r i -- 20 
while r j = l  ( j = l  . . . . .  50; j~ : i ) ,  R S = 0  while 
RC = 0.069. When the rj = 20 (j  = 1 . . . . .  50; j ~ i), 
RS = 0 while RC = 1, and the problem is still 
easy to solve. When the r j =  10 ( j =  1 . . . .  ,50; 
j ~ i), RS = 0. However, RC = 0.51 and the prob- 
lem may be very hard to solve. 

The experiment on the 4500 networks is re- 
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Fig. 7. Average RCPSP processing time as a function of RC for CI = 12. 

peated, computing for each network the RC ac- 
cording to Eq. 14. For the nine groups of net- 
works, the required CPU time varies in function 
of the RC according to a bell-shaped curve simi- 
lar to the one projected in Fig. 5. As an example, 
Fig. 7 again plots the results for the group of 
networks with the midrange CI value, i.e. CI = 12. 
The values on the abcissa now correspond to the 
various classes of RCPSP instances with RC val- 
ues ranging from RC = 10% to RC = 65%. The 
required CPU times are the averages for each 
class of networks. Again, when the difference 
between two averages is significantly different 
from zero (using the Wilcoxon test statistic), a 
' < ' or ' > ' indication is drawn between two RC 
values. Evidently, the results do not show a con- 
tinuous increase of solution time with increasing 
resource constrainedness, as would be expected 
from the experimental results obtained by Kolisch 
et al. (1992). On the contrary, beyond a certain 
value of RC, the average CPU time required 
starts to decrease. 

It should be noted that a network for which 
the RS is small, will have a high value for the RC. 
This can be observed in Figs. 6 and 7. Fig. 6 
shows positive CPU times for the networks with 
RS = 0, indicating that problem instances with 

RS = 0 are not necessarily very easy to solve. On 
the other hand, the required CPU times for the 
networks with RS values approaching 1 are negli- 
gible. Fig. 7 shows negligible CPU times for the 
networks with low RC value, while the CPU 
times are positive for the networks with the RC 
in the range 60-65%. 

We also performed an analysis of variance 
(ANOVA) in order to assess the relative impor- 
tance of RS and RC in explaining the variance in 
processing times. We also included the CI in this 
analysis as a network complexity measure. The 
analysis revealed that the CI was significant (p  < 
0.0001), whereas RS and RC were only moder- 
ately significant (p  < 0.1). These results suggest 
that the network complexity measures explain 
more of the variance in processing times than the 
resource availability measures. 

6. Conclusions 

The need to differentiate between easy and 
hard instances of combinatorial problems mod- 
eled as activity networks and the interest in iso- 
lating the factors that determine the computing 
effort required by solution procedures, inspired a 
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number of researchers to develop so-called mea- 
sures of network complexity. The objective of this 
paper was to investigate the relation between the 
hardness of a problem instance and the logic of 
the underlying network. A series of experiments 
are performed on instances of the resource-con- 
strained project scheduling problem (RCPSP) 
solved by the branch-and-bound procedure devel- 
oped by Demeulemeester and Herroelen (1992). 
The results demonstrate that the previously pro- 
posed coefficient of network complexity (CNC), 
defined as the ratio arcs over nodes, is not a very 
good measure of complexity. The negative corre- 
lation which was presumed in the literature to 
exist between the CNC and problem complexity 
cannot be confirmed. In addition our experiments 
reveal a positive correlation between the CNC 
and the so-called complexity index (CI), essen- 
tially the minimum number of node reductions 
necessary to transform a general activity network 
to a series-parallel network. The results of a 
loglinear regression performed on five sets of 
1000 networks, indicate a negative correlation 
between problem hardness and the CI. The higher 
the value of CI, the easier it is to solve the 
corresponding RCPSP. This result, counterintu- 
itive at first sight, implies that the more complex 
the network topology, the smaller the number of 
feasible parallel paths, which seems to render the 
RCPSP more tractable. The small R 2 values ob- 
tained, however, indicate that it may not be wise 
to rely completely on the CI for making individ- 
ual predictions of the computational effort re- 
quired by an algorithm to solve RCPSP instances. 
It seems evident that the structure of the net- 
work, in whichever way it is measured, will not be 
sufficient to reflect the difficulty encountered in 
the resolution of such problems. 

A second set of experiments involved the solu- 
tion of a number of instances of the discrete 
t ime/cost trade-off problem (DTCTP) using the 
optimal procedure by Demeulemeester et al. 
(1993b) which is based on the method by Bein et 
al. (1992) for determining the minimum number 
of node reductions necessary to transform a gen- 
eral acyclic network to a series-parallel network. 
The results indicate that both the number of 
execution modes of each activity and the CI do 

have a strong effect on the processing time needed 
to solve instances of the DTCTP. The variability 
portion which can be explained by both factors is 
very high (95%). This was to be expected. The 
solution algorithm itself is built on the basic con- 
cepts which lie at the very heart of the CI. As 
such, our results confirm the conjecture previ- 
ously made by Elmaghraby and Herroelen (1980) 
that a measure of network complexity depends on 
the objective of analysis and may be confounded 
by the solution algorithm. 

A last set of experiments aimed at the investi- 
gation of the impact of resource availability on 
the solution effort required to solve instances of 
the RCPSP with constant CI values. Our results 
confirm the conjecture made by Elmaghraby and 
Herroelen (1980), that there is a bell-shaped rela- 
tionship between the CPU time required to solve 
RCPSP instances and the resource availability, 
measured in terms of both the resource strength 
RS and the resource constrainedness RC. 

The experiments performed in this paper suf- 
fered from the fact that a procedure for the 
generation of activity network instances which 
satisfy preset CI values, is not yet available. This 
makes it very cumbersome to use the CI as the 
controlling parameter in a full factorial experi- 
ment. The development of an algorithm for gen- 
erating activity networks which satisfy preset CI 
values constitutes a viable area of future re- 
search. 
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Appendix A. The complexity index 

Bein et al. (1992) show that the complexity 
index of a directed acyclic graph (dag) D = ( N , A )  



362 B. De Reyck, W. Herroelen ~European Journal of Operational Research 91 (1996) 347-366 

is equal to the number of nodes in a minimum 
node cover of its complexity graph C(D). The 
complexity graph, C(D), of a network D = ( N , A )  
is defined as follows: (i, j )  ~ C(D), i.e., (i, j )  is 
an arc of C(D), if there exists paths ~-(1,j), 
7r(i, n), "trl(i, j )  and -h-2(i , j )  such that zr(1, j )  N 
zrl(i, j )  = {j} and zr(i, n) n ~'z(i, j )  = {i}. Note that 
the paths zrl(i, j )  and 7r2(i,j) may be the same. 
The definition implies that neither 1 nor n ap- 
pears as a node in C(D). The same authors have 
developed an algorithm for constructing the com- 
plexity graph in time O(n2+ M(n)),  where M(n)  
is the time required for computing the transitive 
closure of a graph of n vertices (a recent upper  
bound for M(n)  is O(n 2'37) (Bein et al., 1992)). 
For ease of understanding, we revise the funda- 
mental concepts underlying the computation of 
the complexity graph and the complexity index. 
In doing so, our main concern is on clarity of 
exposition, rather than on issues of computa- 
tional efficiency. 

A.1. Constructing the dominator trees 

In constructing the complexity graph, the first 
step is to construct the dominator tree TI(D) and 
the reverse dominator tree T2(D). Consider a dag 
D = ( N , A )  with root (initial) node 1, i.e., there 
exists a path from 1 to every node in N. Node v 
is a dominator of node w if every path from node 
1 to w contains v. Every node is a dominator of 
itself, and node 1 dominates every node (Aho et 
al., 1975). Node v is a reverse dominator of node 
w if every path from w to the end node contains 
v. The set of dominators of a node w can be 
linearly ordered by their order  of occurrence on a 
shortest path from the root to w. The dominator 
of w closest to w (other than w itself) is called 
the immediate dominator of w. Since the domina- 
tors of  each node are linearly ordered, the rela- 
tion 'v dominates w' can be represented by a tree 
with root 1. This tree is called the dominator tree, 
T~(D), for D. The reverse dominator tree, T2(D) , 
is obtained by reversing all the arcs in D and 
constructing the dominator tree of the resulting 
graph. A dag is series-parallel reducible (s -p)  if 
and only if for every arc (i, j )  ei ther i dominates j 
or j reverse-dominates i. 

Aho et al. (1975) describe a polynomial proce- 
dure to compute the dominator tree for a rooted 
dag with m edges. Harel  (1985) presents a proce- 
dure for computing the dominator tree T(D)  in 
time O(m + n), where m is the number of edges 
in D. For our purposes, we rely on the procedure 
described below, which, though less efficient, can 
be easily incorporated in a computer code. In the 
description of the procedure we assume that each 
node w = 2 . . . .  ,n is considered in sequence and 
that on considering node w, the immediate domi- 
nator for any node v < w has already been deter- 
mined. The following observations (given here 
without proof) form the underlying basis of our 
computer code for transforming D into its domi- 
nator tree T(D).  

Observation 1. Let D = ( N, A )  be a dag. Let node 
w ~ Nhave  only one incoming arc (v, w). Then v is 
an immediate dominator of node w. 

Observation 2. Let D = (N, A )  be a dag. Let node 
w ~ N have more than one incoming arc and let v 
be the highest numbered immediate predecessor of  
w. Then replacing ( v, w) by arc (a, w), where a is 
the immediate dominator of  node v, does not 
change the dominators of  any node in D. 

Observation 3. Let D = (N, A)  be a dag. Let there 
be an arc (1, w). Then node 1 is the immediate 
dominator of  node w. 

The repeated use of these observations will 
transform D into its dominator tree T(D). The 
data structure which allows us to find efficiently 
the arcs to which to apply the observations uses 
the upper  diagonal part of the incidence matrix 
for the dag D. Rows 1 and n, as well as columns 
1 and n must not be considered (node 1 and n 
will not appear in the complexity graph). We 
check each node w = 3 , . . .  ,n - 1 for the number 
of incoming arcs. If node w has only one incom- 
ing arc (v, w), then v is its immediate dominator 
(Observation 1), and the (v ,w)  entry is left un- 
changed in the incidence matrix. If node w has 
more than one incoming arc, we consecutively 
replace (v, w), where v is the highest numbered 
predecessor node, by arc (a, w), where a is the 
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Fig. 8. Problem example. 
Fig. 10. Complexity graph for the problem example. 

immediate dominator  of node v (Observation 2). 
The corresponding entries in the incidence matrix 
are updated.  The construction of the reverse- 
dominator  tree is symmetric. 

Fig. 8 represents  a 9-node, 14-arc network. 
The dominator  tree and the reverse-dominator  
tree are represented in Fig. 9. 

A.2. Constructing the complexity graph. 

The data structure for the algorithm is the 
incidence matrix [aij] of  the dag D with aij = 1 if 
node i immediately or transitively precedes node 
j. So, first the incidence matrix has to be updated 
such that it also contains the transitive arcs. For 
every node w with immediate  dominator  b, set 
a~, w = 0, for all arcs (v, w), v < b. For every node 

Fig. 9. Dominator and reverse dominator tree for the problem 
example. 

v with immediate reverse-dominator  c, set all 
a~w = 0 for all arcs (v, w), w _> c. As already men- 
tioned above, it is shown by Bein et al. (1992) that 
the complexity graph can be computed in time 
O(n2"37). The complexity graph for our problem 
example is depicted in Fig. 10. 

A.3. The min imum node cover o f  C(D) 

Having constructed the complexity graph 
C(D),  the next step is to determine its minimum 
node cover N *. When C ( D )  is empty, the origi- 
nal dag is series-parallel .  Because C ( D )  is a 
transitive dag, N * can be computed by reducing 
the problem to finding the maximum matching in 
a bipartite graph, since the complement  of a 
minimum node cover is a maximum independent  
set, which in a transitive dag corresponds to a 
Dilworth chain decomposition (Ford and Fulker- 
son, 1962). Hopcrof t  and Karp (1973) offer an 
n 5/2  algorithm for maximum matchings in bipar- 
tite graphs. In the sequel, we follow the original 
arguments  of Ford and Fulkerson (1962) who 
offer a simple procedure that runs in time O(n2). 

Following Ford and Fulkerson's notation, let 
P be a finite partially ordered set with elements 
1, 2 . . . . .  n and order relation ' >  '. A chain in P 
is a set of one or more elements i 1, i 2 . . . . .  i k with 
i I > i 2 > • • • > i k. If  we associate a directed graph 
with P by taking nodes 1, 2 . . . . .  n and arcs (i, j )  
corresponding to i > j ,  this notion of a chain 
coincides with the notion of a chain in the graph, 
except that now we allow a single node to be a 
chain. A decomposition of P is a partition of P 
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into chains. Thus P always has the trivial decom- 
position into n 1-element chains. A decomposi- 
tion with the smallest number  of chains is mini- 
mal. 

Two distinct members i and j of P are unre- 
lated if neither i > j nor j > i. The maximal num- 
ber of mutually unrelated elements of P is less 
than or equal to the number of chains in a 
minimal decomposition of P, since two members 
of a set of mutually unrelated elements cannot 
belong to the same chain. Ford and Fulkerson 
(1962) establish the proof that the problem of 
constructing a minimal decomposition can be 
solved by their labeling algorithm for constructing 
a maximal independent  set of admissible cells in 
an array. In the context of the minimum node 
cover problem on hand, the array to be consid- 
ered is the (n x n) incidence matrix for the com- 
plexity graph C(D), in which a cell is admissible 
if the corresponding arc appears in C(D). 

For our problem example, a minimal node 
cover can be found consisting of unlabeled rows 3 
and 4, and labeled column 6. The nodes to be 
reduced in the network of Fig. 8 are nodes 3, 4 
and 6. Hence,  CI = 3. 

Appendix B. Transforming an AoN network into 
an AoA network with minimal CI 

Kamburowski et al. (1992, 1993) present two 
algorithms for generating an AoA network from a 
given AoN network. Of interest here is the poly- 
nomial time algorithm which generates an AoA 
network with minimal CI value and the minimum 
number of nodes from a given AoN network 
(Kamburowski et al., 1992). 

If G = (V,E) is the AoN representation of an 
activity network (with V denoting the vertices or 
activities and E the edges or precedence rela- 
tionships), then the problem consists of finding 
D = (N,A) (with N denoting the nodes or events 
and A the arcs or activities), which is an equiva- 
lent AoA representation of the activity network 
with minimum CI. Each activity v ~ V has to be 
represented in AoA format by an arc (s~, t~). 

In order  for the two formats to be equivalent, 
the following conditions should hold: 

P * ( s v ) = P * ( v ) a n d S * ( s v ) =  0 S*(u) ,  
u~P(v) 

(15) 

S * ( t ~ ) = S * ( v )  a n d P * ( t ~ ) =  n P . ( w ) ,  
w~S(v) 

(16) 

where P(v) is the set of immediate predecessors 
of activity v, S(v) is the set of immediate succes- 
sors of activity v, P * (v) is the set of predecessors 
of activity v, S*(v) is the set of successors of 
activity v, P*(s~) is the set of predecessors of 
node (event) sv, S * (s~) is the set of successors of 
node (event) sv, P * (t~) is the set of predecessors 
of node (event) t~, and S*(t~) is the set of 
successors of node (event) t~. 

The set of distinct pairs (P*(sv),S*(sv)) and 
(P*(t~),S*(t~)) represents the minimum set of 
nodes N. We have s~-- i  if P*(i)=P*(s~), and 
t~.--j if S*( j )= S*(t~), so that all activities (ex- 
cept the dummy activities) are defined. If there 
are precedence relationships in the AoN notation 
which are not yet represented in the AoA nota- 
tion (that is if t u ~ s v for (u, v ) E  E), a dummy 
path is introduced connecting t u and s~. 

So, R = {(i, j)[i ~ j  and 3(u, v) ~ E such that 
tu = i  and s~ =j} defines the set of node pairs 
that still have to be connected by a dummy path. 
A dummy arc (i,j) is feasible if i :#j and P *(i) c 
P*(j), or equivalently S*( j )cS*( i ) .  For each 
node pair (i, j )  ~ R for which the following condi- 
tion holds: 

{k [ (k , j )  ~ R  and ( i ,k)  is feasible) 

n (l[(i,l) ~ R and (l ,j)  is feasible} = 0 ,  

which is equivalent to: 

3! node k : ( i,k ) E R and ( k, j)  ~ R, 

a dummy arc (i, j )  is introduced into the AoA 
network. In this way, an equivalent AoA network 
with minimal complexity is obtained. Note that 
the resulting AoA network is based on the mini- 
mum number of nodes necessary to represent the 
AoN network in AoA format. So, adding extra 
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Fig. 11. Example AoN network. 

nodes  is not  allowed, a l though this might  lead to 
a lower CI. 

The  algori thm can now be illustrated on the 
small example given in Fig. 11. 

Using the condit ions (15) and (16), we deter-  
mine  for each activity v the values of  P*(so), 
S*(s~,), P*(t v) and S*(tv), which represent  the 
min imum n u m b e r  of  nodes,  where  s o and t o 
denote  the start ing and ending node  of  activity v, 
see Table 1. 

The  set o f  distinct pairs {(P * ( j) ,  S * (j))}j= 1 . . . . .  n 

of  the pairs ( P  *(so), S ~ (so)) and ( P  *(to), S *(to)) 
is: 

node  1: ( 0 ,  { A , B , C , D , E , F , G , H } )  
node  2: ({A, B, C}, {E}) 
node  3: ({B}, {E, F, G}) 
node  4: ({B, C}, {E, G}) 
node  5: ({D}, {G, H}) 
node  6: ({B, C, D}, {G}) 
node  7: ( { A , B , C , D , E , F , G , H } ,  ~3) 

Table 1 

v P*(S~) S*(S v) P*(t~) S*(L,) 

A ~ A B C D E F G H  A B C  E 
B ~ A B C D E F G H  B E F G  
C O A B C D E F G H  B C  E G  
D O A B C D E F G H  D G H  
E A B C  E A B C D E F G H  O 
F B E F G  A B C D E F G H  
G B C D  G A B C D E F G H  O 
H D G H  A B C D E F G H  O 

A E 

Fig. 12. Intermediate  AoA network. 

For  each activity, we now determine  the starting 
and ending node  or  event. I f  P*(i)=P*(so), 
then s o = i  and if S*(j)= S*(to) ,  then t~ = j :  

activity A: s A = node  1 t A = node  2 
activity B: SB = node  1 t B = node  3 
activity C: s c = node  1 t c -- node  4 
activity D: s o = node  1 t o = node  5 
activity E:  s E = node  2 t E = node  7 
activity F: s F = node  3 t F = node  7 
activity G: s G = node  6 t o = node  7 
activity H: s H = node  5 t H = node  7 

A E 

Fig. 13. AoA network with dummy arcs included. 
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This results in the AoA network given in Fig. 12. 
The precedence relationships between activi- 

ties (B, G), (B,E), (C,E), (C, G) and (D, G) are 
not yet represented. Therefore, R = {(3, 6), (3, 2), 
(4, 2), (4, 6), (5, 6)}. There does not exist a node k 
for which one of the following conditions is true: 

(3, k) ~ R and (k, 6) ~ R 
(3, k)  ~ R and (k, 2) ~ R 
(4, k)  ~ R and (k, 2) ~ R 
(4, k)  ~ R and (k, 6) e R 
(5, k)  ~ R and (k, 6) e R 

Therefore, we should add all five dummy arcs. 
The resulting A o A  network is given in Fig. 13. 
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