
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

6-1996

On the use of the complexity index as a measure of complexity in On the use of the complexity index as a measure of complexity in

activity networks activity networks

Bert DE REYCK
Singapore Management University, bdreyck@smu.edu.sg

Willy HERROELEN

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

 Part of the Business Administration, Management, and Operations Commons, Management

Information Systems Commons, and the OS and Networks Commons

Citation Citation
DE REYCK, Bert and HERROELEN, Willy. On the use of the complexity index as a measure of complexity in
activity networks. (1996). European Journal of Operational Research. 91, (2), 347-366.
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6738

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6738&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

E L S E V I E R European Journal of Operational Research 91 (1996) 347-366

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

T h e o r y a n d M e t h o d o l o g y

On the use of the complexity index as a measure of complexity in
activity networks

B e r t D e R e y c k , W i l l y H e r r o e l e n *

Department of Applied Economics, Katholieke Universiteit Leuven, Hogenheuvel College, Naamsestraat 69, B-3000 Leuven, Belgium,

Received 30 August 1994; revised 28 November 1994

Abstract

A large number of optimal and suboptimal procedures have been developed for solving combinatorial problems
modeled as activity networks. The need to differentiate between easy and hard problem instances and the interest in
isolating the fundamental factors that determine the computing effort required by these procedures, inspired a
number of researchers to develop various complexity measures. In this paper we investigate the relation between the
hardness of a problem instance and the topological structure of its underlying network, as measured by the
complexity index. We demonstrate through a series of experiments that the complexity index, defined as the
minimum number of node reductions necessary to transform a general activity network to a series-parallel network,
plays an important role in predicting the computing effort needed to solve easy and hard instances of the multiple
resource-constrained project scheduling problem and the discrete time/cost trade-off problem.

Keywords: Project planning; Network complexity measure; Complexity index; Network reduction

I. Introduction

A large number of optimal and suboptimal
procedures have been described for solving com-
binatorial problems modeled as activity networks.
Testing the accuracy and efficiency of these pro-
cedures requires the use of a set of benchmark
instances. Ideally, such a set should span the full
range of complexity, f rom very easy to very hard
instances. The generation of easy and hard prob-
lem instances, however, appears to be a very
difficult task which heavily depends on the possi-

* Corresponding author. E-mail: Willy.Herroelen@econ.
kuleuven.ac.be

bility to isolate the factors that precisely deter-
mine the computing effort required by the solu-
tion procedure used to solve a problem, and the
calibration of the scale that characterizes such
effort. It is not surprising then that only a few
commonly used benchmark instances are avail-
able in the field of activity networks. Patterson
(1984) has assembled 110 test problems for the
resource-constrained project scheduling problem
under the objective of minimizing the makespan.
These 110 test problems became a quasi standard
in the field, and have been adapted to accommo-
date additional problem parameters and objec-
tives (Demeulemees te r et al., 1994; Baroum and
Patterson, 1993). The problems, however, are a
collection from different sources and have not

0377-2217/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI 0377-2217(94)00344-0

348 B. De Reyck, W. Herroelen /European Journal of Operational Research 91 (1996) 347-366

been generated by using a controlled design of
specified problem parameters. In addition, recent
advances in the development of optimal proce-
dures for several classes of resource-constrained
project scheduling problems (Herroelen and De-
meulemeester, 1995) have demonstrated that the
Patterson set is solvable within very small average
CPU times on a personal computer, which in-
spired some researchers to question the true
benchmark nature of the set and to build an
activity network generator (Kolisch et al., 1992).
Kolisch et al. (1992) are correct in stating that the
Patterson set has misled a number of researchers
in believing that the resource-constrained project
scheduling problem has become quite tractable.
They have proven the opposite using 480 net-
works generated using their own network genera-
tor. The activity network generator originally de-
veloped by Caestecker and Herroelen (1979) and
subsequently refined by Demeulemeester et al.
(1993a), allows to generate dense and non-dense
network structures at random from the space of
all feasible networks. ProGen, the network gener-
ator developed by Kolisch et al. (1992), goes a
step further in that it allows for the generation of
activity network problem instances for a general
class of resource-constrained project scheduling
problems by using a controllable set of specified
problem parameters.

Since the mid-sixties, parameters for the char-
acterization of activity networks have been receiv-
ing attention from researchers who were inter-
ested in studying the effects of problem structure
on algorithm performance (Davis, 1975; Patter-
son, 1976) and the development of a reliable set
of measures of activity network 'complexity'. Evi-
dently, a choice between algorithms or the deter-
mination of the efficiency of a particular algo-
rithm, would be greatly facilitated if there exists a
measure of network complexity. This would elimi-
nate any possible bias in the conclusions regard-
ing the efficiency of a particular algorithm rela-
tive to others by ensuring that the algorithm is
evaluated at several points in the 'range of com-
plexity' (Elmaghraby and Herroelen, 1980).

Quite a number of activity network 'complex-
ity' measures have been proposed in the litera-
ture (Davis, 1975; Patterson, 1976). In this paper,

our interest is limited to measures which aim to
characterize the topological structure of an activ-
ity network, i.e., the network topology. The best
known measure for the network topology is the
coefficient of network complexity (CNC), intro-
duced by Pascoe (1966) for activity-on-the-arc
(AoA) networks, and simply defined as the ratio
of the number of arcs over the number of nodes
(different definitions have been used by Davies
(1974) and Kaimann (1974, 1975)). The CNC has
been adopted by Davis (1975) for the activity-on-
the-node (AoN) representation and has been used
in a number of studies since then (Kurtulus and
Narula, 1985; Patterson, 1984; Talbot, 1982). As
observed by Kolisch et al. (1992), in the AoN
representation, 'complexity' has to be understood
in the way that for a fixed number of activities
(nodes), a higher complexity results in an increas-
ing number of arcs and therefore in a greater
connectedness of the network. A number of stud-
ies in the literature (Alvarez-Valdes and Tamarit,
1989; Kolisch et al., 1992) seem to confirm that
problems become easier with increasing values of
the CNC, which makes the term CNC somewhat
confounding. Elmaghraby and Herroelen (1980)
already questioned the use of the CNC as a
measure of activity network complexity. The mea-
sure totally relies on the count of activities and
nodes in the network. Since it is easy to construct
networks of equal number of arcs and nodes but
varying degrees of difficulty in analysis, they failed
to see how the CNC can discriminate among
them.

Recently Bein et al. (1992) introduced a new
characterization of two-terminal acyclic networks
which essentially measures how nearly series-
parallel a network is. They define the reduction
complexity as the minimum number of node re-
ductions sufficient (along with series and parallel
reductions) to reduce a two-terminal acyclic net-
work to a single edge. We adopt the reduction
complexity as our definition of the complexity
index (CI) of an activity network. The objective of
this paper is to investigate the potential use of
the CI as a measure of activity network complex-
ity. Elmaghraby and Herroelen (1980) argue that
the measurement of network complexity - the
measurement of the difficulty in analysis and

B. De Reyck, W.. Herroelen / European Journal of Operational Research 91 (1996) 347-366 349

synthesis of a given network - cannot be accom-
plished in a meaningful manner unless the use of
the measure, i.e., the objective of analysis, is
specified a priori. In addition, they argue that the
measure of complexity may be confounded by the
algorithm employed. We want to investigate the
use of the CI as an explaining factor of the
impact of network topology on algorithmic per-
formance. Two problems are chosen for our anal-
ysis: the well-known resource-constrained project
scheduling problem (RCPSP) and the discrete
t ime /cos t t rade-off problem (DTCTP). The algo-
ri thm used for solving the RCPSP is the branch-
and-bound procedure developed by Demeule-
meester and Herroe len (1992). For the D T C T P
we use the optimal procedure developed by De-
meulemeester et al. (1993b), which is based on
the procedure developed by Bein et al. (1992) for
finding the minimum number of node reductions
necessary to t ransform a general network to a
ser ies-paral le l network.

The remainder of the paper is organized as
follows. In Section 2, we give a formal definition
of the complexity index (CI) and elaborate on its
anticipated use as a measure of network complex-
ity. In Section 3, we report on the computat ional
experiment per formed on the RCPSP, which
forces us to conclude that the CNC is not a very
good measure of network complexity, while the
explanatory behaviour of the CI is more signifi-
cant. The higher the value of the CI, the easier it
is to solve the RCPSP. Section 4 is then reserved
for the experiment conducted on the DTCTP.
While the correlation between required CPU time
and CI observed for the RCPSP was negative,
this is not the case for the DTCTP: the higher the
value of the CI, the harder the problem. Now
that we have established that the CI can be used
as an indicator of the hardness of RCPSP and
D T C T P instances, Section 5 concentrates on the
explanatory power of resource availability mea-
sures for given values of the CI. Using the RCPSP
as our vehicle of analysis, we confirm the conjec-
ture made by Elmaghraby and Herroe len (1980)
that the relationship between the hardness of a
problem (measured by the CPU time required for
its solution) and resource scarcity (measured by
the so-called resource strength and resource-con-

strainedness) varies according to a bell-shaped
curve. Section 6 is then reserved for our overall
conclusions.

2. The complexity index and its relation to prob-
lem hardness

2.1. The complex i ty index

Let D = (N , A) be a two-terminal AoA net-
work, where N = 1,2 n is the set of nodes
representing the project events, and A is the set
of arcs representing network activities. We as-
sume, without loss of generality, that there is a
single start node 1 and a single terminal node n,
n = INI. Since D is acyclic, we assume that its
nodes are topologically numbered, i.e., i < j
whenever there exists an arc joining i to j. The
resulting graph will be referred to as a s t -dag.

Bein et al. (1992) define complexity in terms of
a sequence of node reductions of a st-dag. There
are three types of reductions: parallel, series and
node reductions. These reductions, when applied
consecutively in the right order, can reduce any
dag to one single arc. A paral le l reduct ion at i, j
replaces two or more arcs al , a 2 , ak , all
joining i to j, by a single arc a = (i , j) . A series
reduct ion at i is possible when a = (i , j) is the
unique arc into j and b = (j , k) is the unique arc
out of j: a and b are replaced by a single arc
c = (i , k) . Let [D] denote the network obtained by
applying to D all ser ies-paral lel arc reductions.
If D = [D] then D is said to be irreducible.

Following Bein et al. (1992), we say that node j
of an irreducible network is eligible for a node
reduct ion when j has unit in-degree or out-de-
gree, and j :~ 1,n. Let a = (i , j) be the unique arc
into j and b I = (j , k l) , . . . , b s = (j , k s) be the arcs
out of j. Then the reduction of node j replaces a,
b 1, . . . , bs by the arcs c 1 = (i , k 1) , c s = (i , k s) .
The case where j has unit out-degree is symmet-
ric. Note that in an irreducible network any node
whose only predecessor is 1 or whose only succes-
sor is n is eligible for reduction. Therefore, every
acyclic network can be reduced to the single arc
(1, n) by a sequence of node reductions inter-

350 B. De Reyck, W. Herroelen / European Journal o f Operational Research 91 (1996) 347-366

leaved with series and parallel reductions. The
number of node reductions in such a sequence
may differ. Bein et al. (1992) define the reduction
complexity of D as the minimum number of node
reductions sufficient (along with series and paral-
lel reductions) to reduce D to a single arc. More
formally, let D o j denote the network obtained
from reduction of node j in D. Then the reduc-
tion complexity is the smallest q for which there
exists a sequence of nodes (Jl,J2 jq) such that
[. . . [[[D]ojl]oj2]... ojq] = (1,n). Such a sequence
is called a reduction sequence. The length of a
reduction sequence, i.e., the reduction complex-
ity, is taken as our definition of the complexity
index, CI, of D. Since all series-parallel networks
have a CI value equal to zero, the complexity
index CI seems to be a good measure of how
close the network is to being series-parallel. Bein
et al. (1992) have developed an algorithm for
calculating the CI of a dag in polynomial time.
For ease of reference, Appendix A summarizes
the fundamental concepts underlying the com-
plexity index and illustrates these concepts using
a small problem example.

2.2. The complexity index and the RCPSP

Essentially the CI measures how nearly
series-parallel a network is. One of the objectives
of this paper is to investigate its potential to
measure the impact of network topology on the
computational effort required by an algorithm to
solve resource allocation problems in activity net-
works. The first resource allocation problem ad-
dressed in this paper is the multiple resource-
constrained single-project scheduling problem
(RCPSP), in which it is assumed that an activity is
subject to technological precedence constraints
(an activity can only be started if all its predeces-
sor activities have been finished) and cannot be
interrupted once begun (no job preemption al-
lowed). Renewable resources are assumed to be
available per period in constant amounts and are
also demanded by an activity in constant amounts
throughout the duration of the activity. The ob-
jective is to schedule the activities subject to
precedence and resource constraints in order to
minimize the total project duration.

Conceptually, the RCPSP can be formulated
as follows:

m i n t n (1)

subject to

t j - t i > P j , (i , j) ~ H , (2)

E rik <-- ak, t = 1,2 ,tn, k = 1 , 2 , . . . , K
i ~ S t

(3)

where t i is the finish time of activity i, i =
1,2 n; H is the set of pairs of activities indi-
cating precedence constraints; Pi is the fixed pro-
cessing time of activity i; rik is the amount of
resource type k required by activity i; S t is the
set of activities in process in time interval (t -
1,t] = {il t i - P i < t < ti}; and a k is the total avail-
ability of renewable resource type k.

The precedence constraints given by Eq. (2)
indicate that an activity j can only be started if all
predecessor activities i are completed. The re-
source constraints given in Eq. (3) indicate that
for each time period (t - 1, t] and for each re-
source type k, the resource amounts required by
the activities in progress cannot exceed the re-
source availability. The objective function is given
as Eq. (1). The project duration is minimized by
minimizing the finish time of the unique dummy
ending activity n.

Demeulemeester and Herroelen (1992) devel-
oped a branch-and-bound procedure for solving
the RCPSP which currently seems to be the most
advanced exact procedure for solving makespan
minimization problems. The procedure (subse-
quently referred to as DH) has been programmed
in Turbo C for use on a personal computer. D H
is a depth-first branch-and-bound procedure
based on an AoN representation of a project
network, which makes use of a critical-path lower
bound and some very powerful dominance rules
(left-shift rule, cutset rule, minimal delaying al-
ternatives rule and two other rules based on
activities which cannot be scheduled simultane-
ously with other activities). In Section 3, we inves-
tigate whether the complexity index (CI) can be
used as a measure of network complexity for the
RCPSP, using the D H procedure as our vehicle

B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366 351

of analysis. It will be shown that the CI is nega-
tively correlated with the computational effort
needed to solve the RCPSP, i.e., the higher the
value of CI, the easier it is to solve the corre-
sponding RCPSP. This result may seem to be
counterintuitive. It implies that the more complex
the network topology, the smaller the number of
feasible parallel paths, which renders the RCPSP
more tractable.

2.3. The complexity index and the DTCTP

The second resource allocation problem set-
ting used in this paper is the discrete t ime/cos t
trade-off problem (DTCTP) in activity networks
of the CPM type, using a single nonrenewable
resource. Note that this problem, contrary to the
RCPSP, is based on an AoA representation of a
project network. We assume that the duration Ya
of activity a ~ A is a discrete, nonincreasing func-
tion Pa(Xa) of the amount of a single resource
allocated to it, i.e., Ya =Pa(Xa)" The pair Ya, Xa
shall be referred to as a 'mode', and shall be
written a s : Ya(Xa). Thus an activity that assumes
four different durations according to four possi-
ble resource allocations to it shall be said to
possess four modes. Demeulemeester et al.
(1993b) consider three possible objectives for the
DTCTP. These objectives are to be used sepa-
rately, not simultaneously (not a multicriteria
problem). For the first objective function they
specify a limit R on the total availability of a
single nonrenewable resource type. The problem
is then to decide on the vector of activity dura-
tions (Y l , ' ' ' ,Ym) , m =IAI, that completes the
project as early as possible under the limited
availability of the single nonrenewable resource
type. If we denote an activity a by its end nodes i
and j and if we let t i denote the (earliest) realiza-
tion time of node i, then the problem can be
formulated as follows:

min tn (4)

subject to

tl = 0, (5)

t i -k-pij(Xu) <_tj for all (ij) ~ A , (6)

~_, xij <_n. (7)
(/j) ~A

In the objective function (4) we minimize the
realization time of the single terminal node n,
where Eq. (5) indicates that the project is started
at time 0. Constraint set (6) is used to satisfy the
precedence constraints, while constraint set (7)
indicates that the limit on the resource availabil-
ity cannot be violated.

A second objective function reverses this prob-
lem formulation: now we specify a limit T on the
project length and we try to minimize the re-
source usage. Using the same notation as for the
previous formulation, this problem may be stated
as follows:

min ~ x u (8)
(ij)EA

subject to

t 1 = 0 , (9)

t i +Pij(Xij) <_ t i for all (i j) ~ A , (10)

t n < T. (11)

In this formulation constraints (9) and (10) are
identical to constraints (5) and (6), but now con-
straint (11) specifies that the maximal project
length T cannot be violated. The objective func-
tion (8) minimizes the sum of the resource usage
over all the activities.

For the third objective function we have to
compute the complete t ime/cos t trade-off func-
tion for the total project, i.e., in the case of the
DTCTP all the efficient points (T, R) such that
with a resource limit R a project length T can be
obtained and such that no other point (T', R')
exists for which both T' and R' are smaller than
or equal to T and R. It is this objective function
which we consider in Section 4 in order to investi-
gate the potential use of the CI as a measure of
complexity for the DTCTP.

The optimal procedure (Reduction Plan 1) de-
veloped by Demeulemeester et al. (1993b), will be
used as our vehicle of analysis. The procedure is
based on the method by Bein et al. (1992) for
determining the minimum number of node reduc-
tions necessary to transform a general acyclic
network to a series-parallel network. The proce-
dure (subsequently referred to as DEH) has been
coded in Turbo C for use on a personal com-

352 B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366

puter. D E H is a depth-first branch-and-bound
procedure based on an AoA representation of a
project network, in which in each node of the
branch-and-bound tree the duration of a certain
activity which is eligible for reduction is fixed.
When the duration of all activities which have to
be reduced are fixed, the resulting project cost
curve can be calculated using dynamic program-
ming logic. Some lower bounds and dominance
rules are added to improve efficiency.

In Section 4, we investigate whether the CI
can be used as a measure of network complexity
for the DTCTP using the D E H procedure on a
set of test problems. It will be shown that the CI
has a positive correlation with the computational
effort required to solve the DTCTP: the higher
the value of the CI, the harder the corresponding
DTCTP.

3. The RCPSP and network complexity

In this section we investigate the potential use
of both the coefficient of network complexity
(CNC) and the complexity index (CI) as a mea-
sure of network complexity for the RCPSP. A full

factorial experiment would require the genera-
tion of networks with prespecified values of CNC
and CI. A procedure for creating networks which
satisfy preset values of the CI, however, is not yet
available. In addition, ProGen, which is the most
powerful project generator available, generates
AoN networks, while the CI has been defined for
AoA networks. As a result, a full factorial experi-
ment is out of order. When we generate networks
(in AoN format), we can prespecify the CNC, but
not the CI, which makes it cumbersome to set up
an experiment with a full factorial design, in
which all levels of the independent variables are
crossed. Instead, we proceeded as follows. Using
ProGen, the project network generator developed
by Kolisch et al. (1992), we generated five sets of
1000 RCPSP instances (AoN networks) each.
Each network has a single start and end node.
For each network, the number of activities is set
to 25. The maximum number of predecessors,
resp. successors is set to 25. Three resource types
are assigned a constant availability of 6 units. The
activity durations are drawn from the uniform
distribution in the range [1, 10], while the re-
source requirements for each of the three re-
source types are drawn from the uniform distri-

500-

400-

300.

200-

100-

0

4

40.

3 0

20.

1(3

0

(: I~= LSO

400-

200-

1(]0-

0

5 6 7 8 9 10 6

Q'~U = 1.75

100-

80

60

40-

20-

o

7 8 9 10 11 12 13

CIqC = 2.00

9 I0 I I 12 13 14

CNC = 2.25

30-

20-

l~i:

10-

5-

9 10 I i 12 13 14 15 16

C~C = 2.50

10 I I 12 13 14 15

500-

400-

300-

200.

1110-

0

A~e ta~ for ~ h Ct-v'alue dass

5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1. Average processing time as a function of CI for constant CNC values.

B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366 353

bution in the range [1, 5]. Both the activity dura-
tions and the resource requirements are kept
constant over the 5000 instances. In each of the
five sets, the CNC (arcs over nodes) is set at a
different value, varying from 1.5 in the first set to
2.5 in the fifth.

Each AoN network is transformed to a corre-
sponding AoA network with minimum CI value
using the efficient polynomial procedure devel-
oped by Kamburowski et al. (1992). For ease of
reference, this algorithm is illustrated on a small
problem example in Appendix B. In each of the
five problem sets, the AoA networks obtained are
assigned to different classes, depending on the CI
values. We obtain five data sets, with the follow-
ing characteristics:

Set No. CNC CI

1 1.50 4-10
2 1.75 6-13
3 2.00 8-15
4 2.25 8-16
5 2.50 9-16

Each RCPSP instance is then solved using the
D H procedure on a personal computer IBM P S / 2
Model 70 A21. The plots of the CPU time re-
quired to solve the RCPSP instances to optimal-
ity, versus the CI values, are given in Fig. 1. Bold
lines indicate significant differences using the
Wilcoxon test statistic (a non-parametric test
statistic based on order statistics). Only samples
with more than 20 networks are connected by a
line, because a smaller sample size does not allow
for statistical inferencing.

Clearly, the CI has an effect on the computa-
tional effort required to solve the corresponding
RCPSP. Moreover, the correlation is negative:
the higher the CI of the network, the easier it is
to solve the RCPSP. A loglinear regression per-
formed on every set yielded the following equa-
tion:

CPU time = exp(a + b- CI)

o r

In(CPU time) = a + b . CI

which resulted in the following:

Set No. a b F R 2

1 6.891 - 0.738 94.88 8.69%
2 6.874 - 0.618 80.99 7.52%
3 4.982 - 0.441 53.08 5.06%
4 4.696 - 0.438 58.52 5.56%
5 3.990 - 0.371 39.32 3.88%

This result confirms our conjecture that the
complexity is negatively correlated to the effort
needed to solve the RCPSP (p < 0.0001). How-
ever, R 2 is only 6.1% on average, which means
that only a small portion of the total variability
can be explained by the CI. The variability in
each set is quite high, especially for the problem
set with CNC = 2.50 (which contains, on average,
the easiest RCPSP instances). This is the main
explaining factor for the irregularity observed in
the plot of Fig. l(e) for the fifth data set. The
slight irregularities in Fig. l(a) and Fig. l(f) ob-
served at low CI values are due to the fact that
we imposed a maximum CPU time limit of 3600 s
for the D H procedure. As a result, the highest
CPU time values are somewhat deflated, because
some of the RCPSP instances could not be solved
to optimality within that time limit.

The small R E values obtained indicate that it
may not be very realistic to use the CI for making
individual predictions of the computational effort
required by an algorithm for solving RCPSP in-
stances. Comparisons of alternative solution pro-
cedures over a sufficient number of random net-
works, however, are very well possible, since there
is a clear trend in the average processing times.

Fig. 2 shows the relationship between the aver-
age CPU time required for solving the 5000
RCPSP instances and the CNC. Bold lines indi-
cate significant differences using the Wilcoxon
test statistic. On first sight, the apparent negative
correlation between the CNC and the required
computational effort seems to confirm the results
obtained by Kolisch et al. (1992) using the same
algorithm. Similar results have been found by
Alvarez-Valdes and Tamarit (1989) in their vali-

354 B. De Reyck, W. Herroelen ~European Journal of Operational Research 91 (1996) 347-366

Averages for each CNC-value class

160

140

d 120

100

~ ao

~ 60
~ 40

20

J I

1,5 1,75 2

GNC

Fig. 2. Average processing time as a function of CNC for all 5000 RCPSP instances.

l

f 7
2,25 2,5

dation experiment of heuristics for solving the
RCPSP.

It should be observed, however, that there is a
positive correlation between the CNC and the CI.
Fig. 3 again shows the results obtained on the
same 5000 networks. The problems are now clas-
sified in 13 different sets, however, where the CI
is the same for each set. The only varying param-

eter in each set is the CNC. Fig. 3 shows some of
the corresponding plots of the relationship be-
tween the CPU time and the CNC for constant
CI values. Again, only samples with more than 20
networks are connected by a line and bold lines
indicate significant differences using the Wilcoxon
test statistic. The negative correlation no longer
shows. Apparently, the negative correlation effect

250-

200-

150-

100-

0
1,5

C3=8

i i

1,75 2
?

2,25

C~=9

120.

100.

80-

60.

40.

20.

2,5 1,5 1,75 2

40-

30-

20-

10-

I I 0 I

2,25 2,5 1,5 1,75

C~=IO

I I I

2 225 2,5

16

o
1,5

C I ~ l l

1,75 2 2,25 2,5

:I lO

o
1,6

CIffil2

1,75 2 2"25 2,5 1,5 1,75

Fig. 3. Average processing time as a function of CNC for constant CI values.

CI=13

2 2,25 2,5

B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366 355

measured in Fig. 2 over all 5000 networks is
caused by the variation in the CI and the positive
correlation between the CI and the CNC.

This result is quite interesting since it clearly
shows that it is very ambiguous to attach all
explanatory power to the CNC. Kolisch et al.
(1992) attribute the observed negative correlation
between the CNC and the solution times to the
fact that adding more precedence relations to the
network lowers the number of feasible schedules
for a given bound on the project makespan. This
reduces the enumeration tree and makes the
problems more easy. In their experiment on 480
randomly generated networks, they set the CNC
at 1.5, 1.8 and 2.1 respectively. We computed the
CI values for each of the networks and obtained
the following:

Set No. CNC CI

1 1.5 9-11
2 1.8 14-16
3 2.1 19-21

This clearly indicates that the explanatory power
of the CNC is strongly confounded by its strong
correlation with the CI.

In order to verify our conjecture that the CI is
a bet ter measure of network complexity than the
CNC, we performed the following loglinear re-
gression on all 5000 RCPSP instances:

CPU time -- exp(a + b. CI + c . CNC)

or

ln(CPU time) = a + b- CI + c- CNC.

This led to the following:

CPU time

= exp(5.222 - 0.470. CI + 0.001 • CNC)

with F = 389.53, R 2 = 13.57%, standard error of
first coefficient (CI)=0 .025 (p <0.0001), and
standard error of second coefficient (CNC)=
0.168 (p > 0.99) =* insignificant

The coefficient related to the CI is negative,
which indicates a negative correlation between

the CI and the hardness of the RCPSP. Not only
is the coefficient relating to CNC insignificant, it
is almost equal to zero. We can conclude that the
CNC explains nothing extra above what is already
explained by the CI. The reason for the strong
explanatory power attributed to the CNC in pre-
vious experiments performed in the literature is
probably due to the fact that when the CNC was
varied, other parameters (such as the CI) were
varied also, which led to problems with significant
differences in 'complexity'.

We also performed an analysis of variance
(using the ANOVA procedure of SAS; without
prespecifying the exponential form of the rela-
tionship), which resulted in CI being significant
(p < 0.0001) and CNC and CI . CNC (the interac-
tion effect between CI and CNC) being insignifi-
cant (p > 0.1 and p > 0.5 respectively).

Our results should be interpreted with suffi-
cient care and should not be understood as a
credo for CI and a requiem for CNC. First of all,
it should be realized that for problem instances
generated by ProGen, the CNC determines the
range of the CI. Moreover, as can be seen from
Fig. 1, the impact of CI on required computer
time seems to become smaller with ascending
values of CNC. However, when we include the
interaction variable C I - C N C in our regression
analysis, the interaction effect is insignificant (p
> 0.25), which implies that we can ignore the
correlation between the CI and the CNC in inter-
preting the results. In this analysis, the coefficient
of CI was still significant (19 < 0.025), whereas the
coefficient of CNC was not (p > 0.5).

In addition, our experiments did not allow us
to study the impact of both the CNC and the CI
for extremely small CI values. CI will assume a
value of zero for a series-parallel graph. It is to
be expected that starting with a series graph and
gradually altering it into a parallel graph, ceteris
paribus, renders the problem to be more and
more difficult. Our experiments did not allow to
investigate this assertion. As already mentioned,
the network generator used does not allow for
the generation of networks with prespecified CI
values. The probability that networks are gener-
ated with CI = 0 and CNC varying from 1.5 to 2.5
is extremely small.

3 5 6 B. De Reyck, W. Herroelen ~European Journal of Operational Research 91 (1996) 347-366

The question remains whether the better ex-
planatory power of CI is worth the effort of
transferring a (for known reasons more favourite)
AoN network into an AoA network in order to
compute the CI. Fortunately, both the algorithm
to transform an AoN network into an AoA net-
work with minimum CI, as the algorithm for
computing the CI, are polynomial in time. This
makes it fairly easy to compute the CI even if the
original network is in AoN format. The issue
remains, however, that a procedure for generat-
ing networks with preset values of CI is not yet
available.

A total of 250 AoA networks are generated
using the random network generator developed
by Demeulemeester et aL (1993a). The number of
activities is set between 5 and 20, the number of
precedence relationships is defined randomly and
the number of activity modes is varied from 2 to
4. Each problem is solved using the D E H proce-
dure (Demeulemeester et al., 1993b).

The following equation is estimated through
loglinear regression. (rn being the number of
nodes):

CPU time = a " (m) (b'CI +c)

4. The DTCTP and network complexity

In this section we investigate the potential use
of the CI as a measure of complexity for the
DTCTP. As mentioned above, we expect a posi-
tive correlation to exist between the CI and the
computational effort needed to solve the DTCTP.

o r

In(CPU time) = In a + (b - CI + c) • In m,

which results in

CPU time = 0 . 0 0 1 1 7 " (~11) (0"995"CI+0"3366)

with R 2 = 95%

MODES = 2

¢ * ¢ ~ 7 , ~ ' - " - ' ? " ~ , I 1 I 1 1

1 2 3 4 5 6 7 8 9 I0 11 12

MODES = 3

1200 •

I000 -

800-

600-

400 -

2 0 0 -

0 I 2 3 4 5 6 7 8 9 I0 11 12

MODES = 4

10000 •

8 0 0 0 .

6 0 0 0 ,

4000 •

2000 -

0 ,~ ¢ ¢ * ¢ ~ I

0 1 2 3 4 5 6 7 8 9 I0 I I 12

F i g . 4 . A v e r a g e p r o c e s s i n g t i m e a s a f u n c t i o n o f C I f o r t h e D T C T P i n s t a n c e s .

B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366 357

The graphs shown in Fig. 4 represent the aver-
ages obtained over the different settings and the
estimates based on the equation above. The re-
suits are shown in three different graphs with the
number of activity modes equal to 2, 3 and 4.

It is clear from the results above that both the
number of modes for each activity and the CI
have a strong effect on the processing time needed
to solve instances of the DTCTP. The portion of
the variability which can be explained by both
factors is very high (95%). At this juncture, we
should realize that this high explanatory power is
partially due to the fact that the D E H solution
procedure is essentially based on the CI concept.
This illustrates - as observed by Elmaghraby and
Herroelen (1980) - that a measure of network
complexity is indeed dependent on the objective
of analysis and is 'necessarily' confounded by the
procedure of analysis. The solution algorithm
used to solve a problem is inextricably entwined
with whichever properties we isolate and incorpo-
rate in a measure of network complexity under
the 'current state of technology'. We doubt, how-
ever, that the explanatory power of the CI is
ephemeral. We are confident that the notion of
complexity expressed by the CI lies at the very
heart of the DTCTP itself.

5. The RCPSP and resource availability

Our objective in the previous two sections was
to study the potential use of the CI as a measure
of network complexity for both the RCPSP and
the DTCTP. In this section we keep the CI
constant and try to isolate the impact of resource
availability (or resource constrainedness) on the
required solution effort for solving the RCPSP.
Elmaghraby and Herroelen (1980) have made the
conjecture that the relationship between the
hardness of a problem (as measured by the CPU
time required for its solution) and resource avail-
ability (scarcity) varies according to a bell-shaped
curve similar to the one depicted in Fig. 5.

Indeed, if resources are only available in ex-
tremely small amounts, there will be relatively
little freedom in scheduling the activities (for
instance, the activities may have to be placed in
series and the resulting project duration will equal
the sum of activity durations). Hence, the corre-
sponding RCPSP instance should be quite easy to
solve (point A in Fig. 5). If, on the other hand,
resources are amply available, the activities can
simply be scheduled in parallel and the resulting
project duration will be equal to the critical path
length. Hence, the required computational effort

351111

1000

3O00

"~ 2500

500

A

0 I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Resource Availability (from low to high)

Fig. 5. Presumed effect of resource availability on processing time for the RCPSP.

3 5 8 B. De R ock , W. Herroelen ~European Journal o f Operational Research 91 (1996) 347-366

should be very small again (point B in Fig. 5).
Elmaghraby and Herroelen (1980) argued that
the main problem is to obtain the exact shape of
the complexity curve in the region between these
two extremes, and questioned the availability of a
measure that is able to resolve this problem.

Two of the best known parameters for describ-
ing resource availability (scarcity) that have been
proposed in the literature are the resource factor
and the resource strength. The resource fac tor
(RF) has been introduced by Pascoe (1966), and
has been utilized later in studies by Cooper (1976),
Alvarez-Valdes and Tamarit (1989) and Kolisch
et al. (1992). The RF can be calculated as follows:

1 ~ K { 1 i f r / k > 0
RF k = ~ ~'~ (12)

i=1/,=1 0 otherwise

where, according to our previous notation, n is
the number of activities, K is the number of
resource types, and rig is the amount of resource
type k required by activity i.

The RF reflects the average portion of re-
sources requested per activity. It is a measure of
the density of the array r~k. If we have RF = 1,
then each activity requests all resources. RF = 0
indicates that no activity requests any resource.

Kolisch et al. (1992) conclude that an increase
of the RF results in an increase of the solution
times required to solve the RCPSP. This result
contradicts the results of Alvarez-Valdes and
Tamarit (1989) who observed that problems with
RF = 1 were easier to solve than problems with
RF = 0.5.

The resource strength (RS) was introduced by
Cooper (1976) to express the relationship be-
tween the resource requirements and the re-
source availability, and used later by Alvarez-
Valdes and Tamarit (1989). Kolisch et al. (1992)
criticize its use and propose the following new
definition:

r a in
a k -- r k

RS k = r ~ a~ _ r ~ n i n (13)

where a k is the total availability of renewable
resource type k, r~ nin =max/= 1 n rik, and r~ a~
is the peak demand of resource type k in the
precedence-preserving earliest start schedule

With respect to one resource, the smallest
resource availability is obtained for RS = 0. For
RS---1, the problem is no longer resource-con-
strained. Given the definition of r~ ~x, the RS as
defined by Eq. (13) already incorporates informa-
tion about the precedence structure of the net-
work.

In their experiments, Kolisch et al. (1992) con-
d u d e that the RS has the strongest impact on
solution times: the average solution time continu-
ously increases with decreasing RS. The hardest
problems seem to be the ones where the minimal
resource availability is provided. This is in contra-
diction with the conclusion obtained by Alvarez-
Valdes and Tamarit (1989). In addition, the effect
of RS on computational effort required is mono-
tone decreasing, which deviates from the bell-
shaped curve proposed by Elmaghraby and Her-
roelen (1980). The Elmaghraby and Herroelen
conjecture, on the other hand, has been con-
firmed to exist for the DTCTP case by Demeule-
meester et al. (1993b).

Inspired by these contradictory findings we set
up the following experiment. Using ProGen, nine
sets of 500 RCPSP instances are generated. For
each network, the number of activities is set to 25
and one resource type is defined. The activity
durations are drawn from the uniform distribu-
tion in the range [1,10]. The minimum and maxi-
mum resource requirements are set to 1 and 10
respectively. The CNC is set to 2, while the RF is
set to 1. Using increments of 0.125, the RS is set
to 0 for the first set of 500 networks, 0.125 for the
second, up to 1 for the last set. Each of the 4500
networks is then transformed to a corresponding
AoA network with minimum CI value using the
procedure of Kamburowski et al. (1992). The CI
values obtained varied from 7 to 17. The net-
works are then grouped per CI value and solved
using the D H procedure (Demeulemeester and
Herroelen, 1992).

For the nine groups of networks, the required
CPU time varies in function of the RS according
to a bell-shaped curve similar to the one pro-
jected in Fig. 5. As an example, Fig. 6 plots the
results for the group of networks with CI = 12
(similar results are obtained for the other CI
values). The values on the abcissa correspond to

B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366 359

the various classes of RCPSP instances with RS
values ranging from 0 to 1. The required CPU
times are the averages for each class of networks.
When the difference between two averages is
significantly different from zero (using the
Wilcoxon test statistic), a ' < ' or ' > ' indication is
drawn between two RS values. In contradiction
with the findings of Kolisch et al. (1992), the
results do not show a continuous increase of the
required solution time with decreasing RS. We
assume that the fact that Kolisch et al. (1992) did
not find a bell-shaped curve relationship is due to
the fact that the CI was not held constant in their
experiment.

Still another measure of resource availability
has been introduced by Patterson (1976). He de-
fines the so-called resource-constrainedness (RC)
for each resource k, as follows:

RC k = d k / a ~ (14)

where a k is the availability of resource k and d k

is the average quantity of resource k demanded
when required by an activity, d k = (~_,irik)/~,i{1 if
rik > 0; 0 otherwise}.

The arguments for using RC and not RS as a
measure of resource availability can be summa-

rized as follows. First, RC does not yet incorpo-
rate information about the precedence structure
of a network, and as such can be considered as a
'pure ' measure of resource availability. Second,
there are occasions where RS can no longer
distinguish between easy and hard problem in-
stances while RC continues to do so. A small
example can be used to illustrate this point. For a
network for which the resource requirement of a
particular activity equals the maximum availabil-
ity of a single resource, while the resource re-
quirements for the other activities are smaller
than the resource availability, the R S - - 0 , no
matter what the latter resource requirements are.
Depending on precisely these requirements, how-
ever, the hardness of the resulting RCPSP may
vary considerably. This variation in problem hard-
ness can be captured by the RC. For an easy to
solve problem with 50 activities, a = 20 and r i -- 20
while r j = l (j = l 50; j~ : i) , R S = 0 while
RC = 0.069. When the rj = 20 (j = 1 50; j ~ i),
RS = 0 while RC = 1, and the problem is still
easy to solve. When the r j = 10 (j = 1 ,50;
j ~ i), RS = 0. However, RC = 0.51 and the prob-
lem may be very hard to solve.

The experiment on the 4500 networks is re-

8OO

700 t

600 l

500 l

400 -

300 -

200 -

loo .

0

CI -- 12

0 ~ 0,125 • 0,25 ~ 0,375 • 0,5 • 0,625 • 0,75 • 0,875

RS
Fig. 6. Average RCPSP processing time as a function of RS for CI = 12.

360

800

700

600.

==
5 0 0

4 0 0

¢J~ 300.

200.

I00 -

B. De Reyck, W. Herroelen ~European Journal of Operational Research 91 (1996) 347-366

C I = 12

0.

10-15 15-20 < 20-25 < 25-30 < 30-35 < 35-40 < 40-45 > 45-50 > 50-55 > 55-60 > 60-65

RC (%)

Fig. 7. Average RCPSP processing time as a function of RC for CI = 12.

peated, computing for each network the RC ac-
cording to Eq. 14. For the nine groups of net-
works, the required CPU time varies in function
of the RC according to a bell-shaped curve simi-
lar to the one projected in Fig. 5. As an example,
Fig. 7 again plots the results for the group of
networks with the midrange CI value, i.e. CI = 12.
The values on the abcissa now correspond to the
various classes of RCPSP instances with RC val-
ues ranging from RC = 10% to RC = 65%. The
required CPU times are the averages for each
class of networks. Again, when the difference
between two averages is significantly different
from zero (using the Wilcoxon test statistic), a
' < ' or ' > ' indication is drawn between two RC
values. Evidently, the results do not show a con-
tinuous increase of solution time with increasing
resource constrainedness, as would be expected
from the experimental results obtained by Kolisch
et al. (1992). On the contrary, beyond a certain
value of RC, the average CPU time required
starts to decrease.

It should be noted that a network for which
the RS is small, will have a high value for the RC.
This can be observed in Figs. 6 and 7. Fig. 6
shows positive CPU times for the networks with
RS = 0, indicating that problem instances with

RS = 0 are not necessarily very easy to solve. On
the other hand, the required CPU times for the
networks with RS values approaching 1 are negli-
gible. Fig. 7 shows negligible CPU times for the
networks with low RC value, while the CPU
times are positive for the networks with the RC
in the range 60-65%.

We also performed an analysis of variance
(ANOVA) in order to assess the relative impor-
tance of RS and RC in explaining the variance in
processing times. We also included the CI in this
analysis as a network complexity measure. The
analysis revealed that the CI was significant (p <
0.0001), whereas RS and RC were only moder-
ately significant (p < 0.1). These results suggest
that the network complexity measures explain
more of the variance in processing times than the
resource availability measures.

6. Conclusions

The need to differentiate between easy and
hard instances of combinatorial problems mod-
eled as activity networks and the interest in iso-
lating the factors that determine the computing
effort required by solution procedures, inspired a

B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366 361

number of researchers to develop so-called mea-
sures of network complexity. The objective of this
paper was to investigate the relation between the
hardness of a problem instance and the logic of
the underlying network. A series of experiments
are performed on instances of the resource-con-
strained project scheduling problem (RCPSP)
solved by the branch-and-bound procedure devel-
oped by Demeulemeester and Herroelen (1992).
The results demonstrate that the previously pro-
posed coefficient of network complexity (CNC),
defined as the ratio arcs over nodes, is not a very
good measure of complexity. The negative corre-
lation which was presumed in the literature to
exist between the CNC and problem complexity
cannot be confirmed. In addition our experiments
reveal a positive correlation between the CNC
and the so-called complexity index (CI), essen-
tially the minimum number of node reductions
necessary to transform a general activity network
to a series-parallel network. The results of a
loglinear regression performed on five sets of
1000 networks, indicate a negative correlation
between problem hardness and the CI. The higher
the value of CI, the easier it is to solve the
corresponding RCPSP. This result, counterintu-
itive at first sight, implies that the more complex
the network topology, the smaller the number of
feasible parallel paths, which seems to render the
RCPSP more tractable. The small R 2 values ob-
tained, however, indicate that it may not be wise
to rely completely on the CI for making individ-
ual predictions of the computational effort re-
quired by an algorithm to solve RCPSP instances.
It seems evident that the structure of the net-
work, in whichever way it is measured, will not be
sufficient to reflect the difficulty encountered in
the resolution of such problems.

A second set of experiments involved the solu-
tion of a number of instances of the discrete
t ime/cost trade-off problem (DTCTP) using the
optimal procedure by Demeulemeester et al.
(1993b) which is based on the method by Bein et
al. (1992) for determining the minimum number
of node reductions necessary to transform a gen-
eral acyclic network to a series-parallel network.
The results indicate that both the number of
execution modes of each activity and the CI do

have a strong effect on the processing time needed
to solve instances of the DTCTP. The variability
portion which can be explained by both factors is
very high (95%). This was to be expected. The
solution algorithm itself is built on the basic con-
cepts which lie at the very heart of the CI. As
such, our results confirm the conjecture previ-
ously made by Elmaghraby and Herroelen (1980)
that a measure of network complexity depends on
the objective of analysis and may be confounded
by the solution algorithm.

A last set of experiments aimed at the investi-
gation of the impact of resource availability on
the solution effort required to solve instances of
the RCPSP with constant CI values. Our results
confirm the conjecture made by Elmaghraby and
Herroelen (1980), that there is a bell-shaped rela-
tionship between the CPU time required to solve
RCPSP instances and the resource availability,
measured in terms of both the resource strength
RS and the resource constrainedness RC.

The experiments performed in this paper suf-
fered from the fact that a procedure for the
generation of activity network instances which
satisfy preset CI values, is not yet available. This
makes it very cumbersome to use the CI as the
controlling parameter in a full factorial experi-
ment. The development of an algorithm for gen-
erating activity networks which satisfy preset CI
values constitutes a viable area of future re-
search.

Acknowledgements

We would like to thank Andreas Drexl, Rainer
Kolisch and Arno Sprecher, Institut fi~r Betrieb-
swirtschaftlehre, Christian-Albrechts-Universit~it
zu Kiel, F.R.G., for providing us with the project
generator ProGen. We also thank Erik Demeule-
meester, Department of Applied Economics,
Katholieke Universiteit Leuven, Belgium, for
providing us with the codes for solving the RCPSP
and the DTCTP.

Appendix A. The complexity index

Bein et al. (1992) show that the complexity
index of a directed acyclic graph (dag) D = (N , A)

362 B. De Reyck, W. Herroelen ~European Journal of Operational Research 91 (1996) 347-366

is equal to the number of nodes in a minimum
node cover of its complexity graph C(D). The
complexity graph, C(D), of a network D = (N , A)
is defined as follows: (i, j) ~ C(D), i.e., (i, j) is
an arc of C(D), if there exists paths ~-(1,j),
7r(i, n), "trl(i, j) and -h-2(i , j) such that zr(1, j) N
zrl(i, j) = {j} and zr(i, n) n ~'z(i, j) = {i}. Note that
the paths zrl(i, j) and 7r2(i,j) may be the same.
The definition implies that neither 1 nor n ap-
pears as a node in C(D). The same authors have
developed an algorithm for constructing the com-
plexity graph in time O(n2+ M(n)), where M(n)
is the time required for computing the transitive
closure of a graph of n vertices (a recent upper
bound for M(n) is O(n 2'37) (Bein et al., 1992)).
For ease of understanding, we revise the funda-
mental concepts underlying the computation of
the complexity graph and the complexity index.
In doing so, our main concern is on clarity of
exposition, rather than on issues of computa-
tional efficiency.

A.1. Constructing the dominator trees

In constructing the complexity graph, the first
step is to construct the dominator tree TI(D) and
the reverse dominator tree T2(D). Consider a dag
D = (N , A) with root (initial) node 1, i.e., there
exists a path from 1 to every node in N. Node v
is a dominator of node w if every path from node
1 to w contains v. Every node is a dominator of
itself, and node 1 dominates every node (Aho et
al., 1975). Node v is a reverse dominator of node
w if every path from w to the end node contains
v. The set of dominators of a node w can be
linearly ordered by their order of occurrence on a
shortest path from the root to w. The dominator
of w closest to w (other than w itself) is called
the immediate dominator of w. Since the domina-
tors of each node are linearly ordered, the rela-
tion 'v dominates w' can be represented by a tree
with root 1. This tree is called the dominator tree,
T~(D), for D. The reverse dominator tree, T2(D) ,
is obtained by reversing all the arcs in D and
constructing the dominator tree of the resulting
graph. A dag is series-parallel reducible (s -p) if
and only if for every arc (i, j) ei ther i dominates j
or j reverse-dominates i.

Aho et al. (1975) describe a polynomial proce-
dure to compute the dominator tree for a rooted
dag with m edges. Harel (1985) presents a proce-
dure for computing the dominator tree T(D) in
time O(m + n), where m is the number of edges
in D. For our purposes, we rely on the procedure
described below, which, though less efficient, can
be easily incorporated in a computer code. In the
description of the procedure we assume that each
node w = 2 ,n is considered in sequence and
that on considering node w, the immediate domi-
nator for any node v < w has already been deter-
mined. The following observations (given here
without proof) form the underlying basis of our
computer code for transforming D into its domi-
nator tree T(D).

Observation 1. Let D = (N, A) be a dag. Let node
w ~ Nhave only one incoming arc (v, w). Then v is
an immediate dominator of node w.

Observation 2. Let D = (N, A) be a dag. Let node
w ~ N have more than one incoming arc and let v
be the highest numbered immediate predecessor of
w. Then replacing (v, w) by arc (a, w), where a is
the immediate dominator of node v, does not
change the dominators of any node in D.

Observation 3. Let D = (N, A) be a dag. Let there
be an arc (1, w). Then node 1 is the immediate
dominator of node w.

The repeated use of these observations will
transform D into its dominator tree T(D). The
data structure which allows us to find efficiently
the arcs to which to apply the observations uses
the upper diagonal part of the incidence matrix
for the dag D. Rows 1 and n, as well as columns
1 and n must not be considered (node 1 and n
will not appear in the complexity graph). We
check each node w = 3 , . . . ,n - 1 for the number
of incoming arcs. If node w has only one incom-
ing arc (v, w), then v is its immediate dominator
(Observation 1), and the (v ,w) entry is left un-
changed in the incidence matrix. If node w has
more than one incoming arc, we consecutively
replace (v, w), where v is the highest numbered
predecessor node, by arc (a, w), where a is the

B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366 363

a4

Fig. 8. Problem example.
Fig. 10. Complexity graph for the problem example.

immediate dominator of node v (Observation 2).
The corresponding entries in the incidence matrix
are updated. The construction of the reverse-
dominator tree is symmetric.

Fig. 8 represents a 9-node, 14-arc network.
The dominator tree and the reverse-dominator
tree are represented in Fig. 9.

A.2. Constructing the complexity graph.

The data structure for the algorithm is the
incidence matrix [aij] of the dag D with aij = 1 if
node i immediately or transitively precedes node
j. So, first the incidence matrix has to be updated
such that it also contains the transitive arcs. For
every node w with immediate dominator b, set
a~, w = 0, for all arcs (v, w), v < b. For every node

Fig. 9. Dominator and reverse dominator tree for the problem
example.

v with immediate reverse-dominator c, set all
a~w = 0 for all arcs (v, w), w _> c. As already men-
tioned above, it is shown by Bein et al. (1992) that
the complexity graph can be computed in time
O(n2"37). The complexity graph for our problem
example is depicted in Fig. 10.

A.3. The min imum node cover o f C(D)

Having constructed the complexity graph
C(D), the next step is to determine its minimum
node cover N *. When C (D) is empty, the origi-
nal dag is series-parallel . Because C (D) is a
transitive dag, N * can be computed by reducing
the problem to finding the maximum matching in
a bipartite graph, since the complement of a
minimum node cover is a maximum independent
set, which in a transitive dag corresponds to a
Dilworth chain decomposition (Ford and Fulker-
son, 1962). Hopcrof t and Karp (1973) offer an
n 5/2 algorithm for maximum matchings in bipar-
tite graphs. In the sequel, we follow the original
arguments of Ford and Fulkerson (1962) who
offer a simple procedure that runs in time O(n2).

Following Ford and Fulkerson's notation, let
P be a finite partially ordered set with elements
1, 2 n and order relation ' > '. A chain in P
is a set of one or more elements i 1, i 2 i k with
i I > i 2 > • • • > i k. If we associate a directed graph
with P by taking nodes 1, 2 n and arcs (i, j)
corresponding to i > j , this notion of a chain
coincides with the notion of a chain in the graph,
except that now we allow a single node to be a
chain. A decomposition of P is a partition of P

364 B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366

into chains. Thus P always has the trivial decom-
position into n 1-element chains. A decomposi-
tion with the smallest number of chains is mini-
mal.

Two distinct members i and j of P are unre-
lated if neither i > j nor j > i. The maximal num-
ber of mutually unrelated elements of P is less
than or equal to the number of chains in a
minimal decomposition of P, since two members
of a set of mutually unrelated elements cannot
belong to the same chain. Ford and Fulkerson
(1962) establish the proof that the problem of
constructing a minimal decomposition can be
solved by their labeling algorithm for constructing
a maximal independent set of admissible cells in
an array. In the context of the minimum node
cover problem on hand, the array to be consid-
ered is the (n x n) incidence matrix for the com-
plexity graph C(D), in which a cell is admissible
if the corresponding arc appears in C(D).

For our problem example, a minimal node
cover can be found consisting of unlabeled rows 3
and 4, and labeled column 6. The nodes to be
reduced in the network of Fig. 8 are nodes 3, 4
and 6. Hence, CI = 3.

Appendix B. Transforming an AoN network into
an AoA network with minimal CI

Kamburowski et al. (1992, 1993) present two
algorithms for generating an AoA network from a
given AoN network. Of interest here is the poly-
nomial time algorithm which generates an AoA
network with minimal CI value and the minimum
number of nodes from a given AoN network
(Kamburowski et al., 1992).

If G = (V,E) is the AoN representation of an
activity network (with V denoting the vertices or
activities and E the edges or precedence rela-
tionships), then the problem consists of finding
D = (N,A) (with N denoting the nodes or events
and A the arcs or activities), which is an equiva-
lent AoA representation of the activity network
with minimum CI. Each activity v ~ V has to be
represented in AoA format by an arc (s~, t~).

In order for the two formats to be equivalent,
the following conditions should hold:

P * (s v) = P * (v) a n d S * (s v) = 0 S*(u) ,
u~P(v)

(15)

S * (t ~) = S * (v) a n d P * (t ~) = n P . (w) ,
w~S(v)

(16)

where P(v) is the set of immediate predecessors
of activity v, S(v) is the set of immediate succes-
sors of activity v, P * (v) is the set of predecessors
of activity v, S*(v) is the set of successors of
activity v, P*(s~) is the set of predecessors of
node (event) sv, S * (s~) is the set of successors of
node (event) sv, P * (t~) is the set of predecessors
of node (event) t~, and S*(t~) is the set of
successors of node (event) t~.

The set of distinct pairs (P*(sv),S*(sv)) and
(P*(t~),S*(t~)) represents the minimum set of
nodes N. We have s~-- i if P*(i)=P*(s~), and
t~.--j if S*(j)= S*(t~), so that all activities (ex-
cept the dummy activities) are defined. If there
are precedence relationships in the AoN notation
which are not yet represented in the AoA nota-
tion (that is if t u ~ s v for (u, v) E E), a dummy
path is introduced connecting t u and s~.

So, R = {(i, j)[i ~ j and 3(u, v) ~ E such that
tu = i and s~ =j} defines the set of node pairs
that still have to be connected by a dummy path.
A dummy arc (i,j) is feasible if i :#j and P *(i) c
P*(j), or equivalently S*(j)cS*(i) . For each
node pair (i, j) ~ R for which the following condi-
tion holds:

{k [(k , j) ~ R and (i ,k) is feasible)

n (l[(i,l) ~ R and (l ,j) is feasible} = 0 ,

which is equivalent to:

3! node k : (i,k) E R and (k, j) ~ R,

a dummy arc (i, j) is introduced into the AoA
network. In this way, an equivalent AoA network
with minimal complexity is obtained. Note that
the resulting AoA network is based on the mini-
mum number of nodes necessary to represent the
AoN network in AoA format. So, adding extra

B. De Reyck, W. Herroelen / European Journal of Operational Research 91 (1996) 347-366 365

r

Fig. 11. Example AoN network.

nodes is not allowed, a l though this might lead to
a lower CI.

The algori thm can now be illustrated on the
small example given in Fig. 11.

Using the condit ions (15) and (16), we deter-
mine for each activity v the values of P*(so),
S*(s~,), P*(t v) and S*(tv), which represent the
min imum n u m b e r of nodes, where s o and t o
denote the start ing and ending node of activity v,
see Table 1.

The set o f distinct pairs {(P * (j) , S * (j))}j= 1 n

of the pairs (P *(so), S ~ (so)) and (P *(to), S *(to))
is:

node 1: (0 , { A , B , C , D , E , F , G , H })
node 2: ({A, B, C}, {E})
node 3: ({B}, {E, F, G})
node 4: ({B, C}, {E, G})
node 5: ({D}, {G, H})
node 6: ({B, C, D}, {G})
node 7: ({ A , B , C , D , E , F , G , H } , ~3)

Table 1

v P*(S~) S*(S v) P*(t~) S*(L,)

A ~ A B C D E F G H A B C E
B ~ A B C D E F G H B E F G
C O A B C D E F G H B C E G
D O A B C D E F G H D G H
E A B C E A B C D E F G H O
F B E F G A B C D E F G H
G B C D G A B C D E F G H O
H D G H A B C D E F G H O

A E

Fig. 12. Intermediate AoA network.

For each activity, we now determine the starting
and ending node or event. I f P*(i)=P*(so),
then s o = i and if S*(j)= S*(to) , then t~ = j :

activity A: s A = node 1 t A = node 2
activity B: SB = node 1 t B = node 3
activity C: s c = node 1 t c -- node 4
activity D: s o = node 1 t o = node 5
activity E: s E = node 2 t E = node 7
activity F: s F = node 3 t F = node 7
activity G: s G = node 6 t o = node 7
activity H: s H = node 5 t H = node 7

A E

Fig. 13. AoA network with dummy arcs included.

366 B. De Reyck, W. Herroelen ~European Journal of Operational Research 91 (1996) 347-366

This results in the AoA network given in Fig. 12.
The precedence relationships between activi-

ties (B, G), (B,E), (C,E), (C, G) and (D, G) are
not yet represented. Therefore, R = {(3, 6), (3, 2),
(4, 2), (4, 6), (5, 6)}. There does not exist a node k
for which one of the following conditions is true:

(3, k) ~ R and (k, 6) ~ R
(3, k) ~ R and (k, 2) ~ R
(4, k) ~ R and (k, 2) ~ R
(4, k) ~ R and (k, 6) e R
(5, k) ~ R and (k, 6) e R

Therefore, we should add all five dummy arcs.
The resulting A o A network is given in Fig. 13.

References

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. (1975), The
Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA.

Alvarez-Valdes, R,, and Tamarit, J.M. (1989), "Heuristic al-
gorithms for resource-constrained project scheduling: A
review and empirical analysis", in: R. Slowinski and J.
Weglarz (eds.), Advances in Project Scheduling, Elsevier,
Amsterdam.

Baroum, S.M., and Patterson, J. (1993), "A comparative eval-
uation of cash flow weight heuristics for maximizing the
net present value of a project", Research paper, Indiana
University, Bloomington, IN.

Bein, W.W., Kamburowski, J., and Stallmann, M.F.M (1992),
"Optimal reduction of two-terminal directed acyclic
graphs", SIAM Journal on Computing 21, 1112-1129.

Caestecker, G., and Herroelen, W. (1979), "The generation of
random activity networks", Research Report No. 7906,
Department of Applied Economics, Katholieke Univer-
siteit Leuven, Belgium.

Cooper, D.F. (1976), "Heuristics for scheduling resource-con-
strained projects: An experimental comparison", Manage-
ment Science 22, 1186-1194.

Davis, E.W. (1975), "Project network summary measures and
constrained resource scheduling", liE Transactions 7,
132-142.

Davies, E.M. (1974), "An experimental investigation of re-
source allocation in multiactivity projects", Operational
Research Quarterly 24, 587-591.

Demeulemeester, E., and Herroelen, W. (1992), "A branch-
and-bound procedure for the multiple resource-con-
strained project scheduling problem", Management Sci-
ence 38, 1803-1818.

Demeulemeester, E., Dodin, B., and Herroelen, W. (1993a),
"A random activity network generator", Operations Re-
search 41 972-980.

Demeulemeester, E., Elmaghraby, S.E., and Herroelen, W.
(1993b), "Optimal procedures for the discrete time/cost
trade-off problem in project networks", Research report
No. 9337, Department of Applied Economics, Katholieke
Universiteit Leuven, Belgium.

Demeulemeester, E., Herroelen, W., Simpson, W.P., Baroum,
S., Patterson, J., and Yang, K. (1994), "On a paper by
Christofides et al. for solving the multiple-resource con-
strained, single project scheduling problem", European
Journal of Operational Research 76, 218-228.

Elmaghraby, S.E., and Herroelen, W. (1980), "On the mea-
surement of complexity in activity networks", European
Journal of Operational Research 5, 223-234.

Ford, L.R., and Fulkerson, D.R. (1962), Flows in Networks,
Princeton University Press, Princeton, NJ.

Harel, D. (1985), "A linear time algorithm for finding domi-
nators in flow graphs and related problems (extended
abstract)", Proceedings 17th Annual ACM Symposium on
Theory of Computing, Providence, RI, 185-194.

Herroelen, W.S., and Demeulemeester, E.L. (1995), "Recent
advances in branch-and-bound procedures for resource-
constrained project scheduling problems", in: P.
Chrrtienne et al. (eds.), Scheduling Theory and lts Applica-
tions, Wiley, New York.

Hopcroft, J.E., and Karp, M. (1973), "An n 5/2 algorithm for
maximum matchings in bipartite graphs", SIAM Journal on
Computing 2, 225-231.

Kaimann, R.A. (1974), "Coefficient of network complexity",
Management Science 21, 172-177.

Kaimann, R.A. (1975), "Coefficient of network complexity:
Erratum", Management Science 21, 1211-1212.

Kamburowski, J., Michael, D.J., and Stallmann, M. (1992),
"Optimal construction of project activity networks", Pro-
ceedings of the 1992 Annual Meeting of the Decision Sci-
ences Institute, San Francisco, CA, 1424-1426.

Kamburowski, J., Michael, D.J., and Stallmann, M. (1993),
"On the minimum dummy-arc problem", Revue Fran£aise
de Recherche Op~rationelle 27, 153-168,

Kolisch, R., Sprecher, A., and Drexl, A. (1992), "Charac-
terization and generation of a general class of resource-
constrained project scheduling problems: Easy and hard
instances", Research report No. 301, Institut fiir Betrieb-
swirtschaftslehre, Christian-Albrechts-Universit~it zu Kiel,
Germany.

Kurtulus, I.S., and Narula, S.C. (1985), "Multi-project
scheduling: Analysis of project performance", l iE Trans-
actions 17, 58-66.

Pascoe, T.L. (1966), "Allocation of resources - CPM", Revue
Fran~aise de Recherche Op~rationelle 38, 31-38.

Patterson, J.H. (1976), "Project scheduling: The effects of
problem structure on heuristic performance", Naval Re-
search Logistics 23, 95-123.

Patterson, J.H. (1984), "A comparison of exact procedures for
solving the multiple constrained resource project schedul-
ing problem", Management Science 30, 854-867.

Talbot, F.B. (1982), "Resource-constrained project scheduling
with time-resource tradeoffs: The nonpreemptive case",
Management Science 28, 1197-1210.

	On the use of the complexity index as a measure of complexity in activity networks
	Citation

	PII: 0377-2217(94)00344-0

