
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

7-1998

New computational results on the discrete time/cost trade-off New computational results on the discrete time/cost trade-off

problem in project networks problem in project networks

Erik DEMEULEMEESTER

Bert DE REYCK
Singapore Management University, bdreyck@smu.edu.sg

Bram FOUBERT

Willy HERROELEN

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

 Part of the Business Administration, Management, and Operations Commons, and the Management

Information Systems Commons

Citation Citation
DEMEULEMEESTER, Erik; DE REYCK, Bert; FOUBERT, Bram; and HERROELEN, Willy. New computational
results on the discrete time/cost trade-off problem in project networks. (1998). Journal of the Operational
Research Society. 49, (11), 1153-1163.
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6739

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6739&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Journal of the Operational Research Society (1998) 49, 1153±1163 #1998 Operational Research Society Ltd. All rights reserved. 0160-5682/98 $12.00

http://www.stockton-press.co.uk/jor

New computational results on the discrete time=cost
trade-off problem in project networks
E Demeulemeester1, B De Reyck2, B Foubert3, W Herroelen1 and M Vanhoucke1

1Katholieke Universiteit, Belgium,2Erasmus University, The Netherlands and 3University of Antwerp, Belgium

We describe a new exact procedure for the discrete time=cost trade-off problem in deterministic activity-on-the-arc
networks of the CPM type, where the duration of each activity is a discrete, nonincreasing function of the amount of a
singleresource(money)committed to it.Theobjective is toconstruct thecompleteandef®cient time=costpro®leover theset of
feasible project durations. The procedure uses a horizon-varying approach based on the iterative optimal solution of the
problem of minimising the sum of the resource use over all activities subject to the activity precedence constraints and a
project deadline. This optimal solution is derived using a branch-and-bound procedure which computes lower bounds by
making convex piecewise linear underestimations of the discrete time=cost trade-off curves of the activities to be used as
input for an adapted version of the Fulkerson labelling algorithm for the linear time=cost trade-off problem. Branching
involves the selection of an activity in order to partition its set of execution modes into two subsets which are used to
derive improved convex piecewise linear underestimations. The procedure has been programmed in Visual C�� under
Windows NT and has been validated using a factorial experiment on a large set of randomly generated problem instances.

Keywords: project management; CPM; time=cost trade-off; branch-and-bound

Introduction

The speci®c problem addressed in this paper is the discrete

time=cost trade-off problem in project networks of the

CPM type. The speci®cation of a project is assumed to

be given in activity-on-the-arc (AoA) notation by a directed

acyclic graph (dag) D � �N ;A� in which N is the set of

nodes, representing network `events', and A is the set of

arcs, representing network `activities'. We assume, without

loss of generality, that there is a single start node 1 and a

single terminal node n; n � jN j. The duration ya of activity

a 2 A is a discrete, nonincreasing function ga�xa� of the

amount of a single resource (money) allocated to it; namely,

ya � ga�xa�. The pair ya; xa shall be referred to as a `mode',

and shall be written as: �ya; xa�. Therefore an activity that

assumes four different durations according to four possible

resource allocations to it shall be said to possess four modes.

The early contributions to the basic time=cost trade-off

problem in CPM networks1 assumed ample resource avail-

ability and hence did not explicitly take resource decisions

into account. A direct activity cost function was used

instead, representing the direct activity costs as a function

of activity duration. Activity durations are bounded from

below by the crash duration (corresponding to a maximum

allocation of resources) and bounded from above by the

normal duration (corresponding to the most ef®cient

resource allocation). Essentially, the project costs corre-

spond to a requirement for a nonrenewable resource, the

total requirement of which is to be minimised. This

corresponds to minimising the (required) availability of

the resource.

Three possible objective functions have been studied in

the literature.2 For the ®rst objective function (referred to as

problem 1; T jcpm; disc;mujCmax in the classi®cation

scheme of Herroelen et al3) a limit R is speci®ed on the

total availability of a single nonrenewable resource type.

The problem is then to decide on the vector of activity

durations �y1; . . . ; ym�;m � jAj, that completes the project

as early as possible under the limited availability of the

single nonrenewable resource type. A second objective

function (referred to as problem 1; T jcpm; dn; disc;mujav�
reverses this problem formulation: now there is a limit dn on

the project length and we try to minimise the sum of the

resource use over all activities. For the third objective

function (referred to as problem 1; T jcpm; disc;mujcurve�
the complete time=cost trade-off function for the total

project is to be computed, that is, all the ef®cient points

�T ;R� such that with a resource limit R a project length T

can be obtained and such that no other point �T 0;R0� exists

for which both T 0 and R0 are smaller than or equal to T and

R.

When the activity cost functions are linear, the problem

is denoted as 1; T jcpm; dn; lin;mujav in the classi®cation

scheme of Herroelen et al.3 The problem can be solved

optimally by the well-known Fulkerson maximum ¯ow

algorithm.4 This method ®nds a ¯ow augmenting path in a

network and increases the ¯ow value along this path until at

least one such path remains in the network. Several other

Correspondence: Dr W Herroelen, Department of Applied Economics,
Katholieke Universiteit Leuven, Naamsestraat 69, B-3000, Leuven,
Belgium.
E-mail: willy.herroelen@econ.kuleuven.ac.be

ef®cient algorithms have been proposed, also for other types

of continuous time=cost functions. For an extensive review,

we refer the reader to Ahuja et al.5 While the problem has

been widely studied under the assumption of continuous

time=cost relationships,3 the literature on the discrete case

has been rather sparse. De et al6 have shown that the discrete

time=cost trade-off problem is NP-hard under the three

objectives mentioned above. De et al2 offer an excellent

review of the literature. Demeulemeester et al7 reported on

promising computational experience with two exact proce-

dures. The ®rst algorithm is based on a procedure for ®nding

the minimal number of reductions necessary to transform a

general network to a series-parallel network. The second

algorithm minimises the computational effort in enumerat-

ing alternative modes through a branch-and-bound search

tree.

The objective of this paper is to present and validate a

new optimal procedure for problem 1; T jcpm;
disc;mujcurve. The paper is organised as follows: In

Section 2 we clarify the solution methodology. Section 3

provides an illustrative problem example. Computational

experience is reported in Section 4. Overall conclusions are

offered in the last section.

An exact procedure

The solution procedure presented in this paper provides an

optimal solution to problem 1; T jcpm; disc;mujcurve using

a horizon-varying approach which involves the iterative

optimal solution of problem 1; T jcpm; dn; disc;mujav

(minimise the sum of the resource use over all activities

subject to a project deadline) over the feasible project

durations in the interval bounded from below by tn (the

project duration obtained with the activity crash modes)

and from above by �tn (the project duration obtained under

normal conditions).

The branch-and-bound algorithm

Problem 1; T jcpm; dn; disc;mujav is solved using a branch-

and-bound algorithm which is based on the following logic.

The algorithm starts by computing for each activity a

convex piecewise linear underestimation of its discrete

time=cost trade-off curve as shown in bold lines in Figure

1. An initial lower bound is obtained by solving the

resulting time=cost trade-off problem using a variant of

the well-known Fulkerson labelling algorithm.4 The algo-

rithm, which is described below, yields for each activity a

mode �x�; y��.
For each activity and associated mode �x�; y��, a vertical

distance vdij, is computed which measures the quality of the

convex underestimation. Two rules may be used to perform

this computation. Rule 1 computes vdij as the minimum of

the distances vd1 and vd2. vd1 is the distance between y�

and the cost of the nearest mode to the left of x� on the

convex piecewise linear underestimation (cost y2 in Figure

1). vd2 is the distance between y� and the cost of the nearest

mode to the right of x� on the convex piecewise linear

underestimation (cost y4 in Figure 1). Rule 2 computes the

vertical distance between y� and the linear interpolation

between the nearest mode to the left of x� and the nearest

mode to the right of x� (distance vd3 in Figure 1). Notice

that vd3 is equal to zero when the convex piecewise linear

underestimation connects the mode to the left of x� and the

Figure 1 Convex piecewise linear underestimation of an activity's discrete time=cost trade-off pro®le.

1154 Journal of the Operational Research Society Vol. 49, No. 11

mode to the right of x�. Therefore, Rule 2 uses Rule 1 as a

tie-breaker.

Branching is done by identifying the activity with the

largest vertical distance and partitioning its set of modes

into two subsets. The ®rst subset, set1, consists of the set of

modes with a duration greater than x� (modes �x3; y3�,
�x4; y4� and �x5; y5� in Figure 1). The second subset, set2,

consists of the set of modes with a duration smaller than or

equal to x� (modes �x1; y1� and �x2; y2� in Figure 1). These

subsets are used to obtain two new convex piecewise linear

underestimations for the activity. The ®rst descendant node

in the search tree replaces the current underestimation for

the activity by the one provided by set1 (Figure 2b), the

second descendant node replaces the current underestima-

tion by the one provided by set2 (Figure 2a). Notice that the

new underestimations may provide a closer ®t to the

original time=cost trade-off pro®le. For the example, this

is the case for set1 (Figure 2b). The solution of the two

corresponding problems using the adapted Fulkerson algo-

rithm yields the corresponding new lower bounds. Branch-

ing continues from the node with the smallest lower bound

(arbitrary tie-break).

Backtracking occurs when the lower bound exceeds (or

equals) the cost of an earlier found schedule or when no

feasible solution can be found for the modi®ed convex

piecewise linear underestimation using the modi®ed Fulk-

erson algorithm. The procedure stops when backtracking

leads to the source node of the search tree.

Computing the lower bound

In the original Fulkerson labelling algorithm4 for solving

problem 1; T jcpm; dn; lin;mujav, the ¯ow capacity of an

arc is associated with the negative slope of the correspond-

ing activity's (linear) direct cost curve. The algorithm is

adapted for convex piecewise trade-off curves as follows.

Each time the duration of an activity (arc) is reduced to a

value which coincides with a breakpoint in the piecewise

linear underestimating cost curve the arc's capacity is

updated. The way this is done is best illustrated using the

time=cost trade-off curve presented in Figure 3.

The breakpoints of the curve correspond to the modes

(20, 5), (16, 7), (13, 10) and (8, 17). Each time the activity's

duration switches between the intervals [8, 8],]8, 13],

]13, 16] and]16, 20], the corresponding arc capacity is

updated. At the start of the algorithm, the duration of the

activity is initialised to its normal value (20), while the arc

capacity is set equal to 0.5, the negative value of the slope

of the line segment connecting points (20, 5) and (16, 7).

Suppose the activity's duration is reduced to 16. It is clear

that the marginal cost value of 0.5 is no longer valid as a

further reduction in duration can only be obtained at a

marginal cost of 1, the (negative) value of the slope of the

line segment connecting points (16, 7) and (13, 10). There-

fore, the (residual) capacity is increased by 0.5 (the differ-

ence between 1 and 0.5). Suppose the activity's duration is

reduced to 8. Further reduction is impossible: the marginal

cost is ?, the negative slope of the line segment connecting

points (8, 17) and �8;1�. The arc capacity is set to ?, in a

similar way, an increase in an activity duration would lead to

a decrease in the corresponding (residual) arc capacity.

Assume the duration of the activity is extended from 13

(where the curve shows a breakpoint) to 15. The (residual)

capacity is now reduced by 0.4, the difference between 1.4

(the negative slope of the line segment connecting points

(13, 10) and (8, 17)) and 1 (the negative slope of the line

segment connecting points (16, 7) and (13, 10)).

The coded version of the adapted Fulkerson algorithm

exhibits worst-case complexity O�n2m�. Despite this

relatively high worst-case complexity, in practice the

Figure 2 Two convex piecewise linear underestimations for the selected activity.

E Demeulemeester et alÐThe discrete time/cost trade-off problem 1155

computational results reported below reveal very small

required computation times.

The horizon-varying algorithm

The horizon-varying algorithm computes a convex piece-

wise linear underestimation for the time=cost trade-off

pro®le using a set of durations MSij. The negative slopes

of the line segments of the convex underestimation are

saved in CCij, the convex set of marginal costs of activity

�i; j�. If activity �i; j� only has one mode, CCij � f g. The

activity durations which correspond to the modes lying on

the convex underestimating curve are saved in the set CDij,

the convex set of durations of activity �i; j�.

Step 0. Deadline computation

� Compute �tn, the critical path length with every activity

�i; j� at its normal duration.

� Compute tn, the critical path length with every activity

�i; j� at its crash duration.

� Set the current project deadline T � �tn.

Step 1. Initialisation

� Let ub�T � � 1, the upper bound of the project cost for

deadline T.

� Set p, the level of the search tree, equal to 0.

� Compute for every activity �i; j� the convex piecewise

linear underestimation with the set of durations

MSij � Mij;Mij being the original set of possible dura-

tions dij for activity �i; j�.
� Run the adapted Fulkerson labelling algorithm to

compute a lower bound lb and the corresponding activity

durations wij.

Step 2. Identify the activity with the maximal vertical distance

� Compute for each activity �i; j� its vertical distance vdij.

� Compute the maximal vertical distance vdmax �
max�i; j�2Afvdijg.
� If vdmax � 0, the schedule is complete and feasible.

Update ub�T � � lb and go to step 4.

� Update the level of the branch-and-bound tree: p � p� 1.

� Store the activity �u; v� with vduv � vdmax at level p (ties

are broken arbitrarily). Store the corresponding sets MSuv,

CCuv and CDuv.

Step 3. Separate and branch

� Generate two descendant nodes in the search tree. For the

®rst node, de®ne set1 � fduv 2 MSuvjduv > wuvg and

compute the convex piecewise linear underestimation

with MSuv � set1. Store durations wij and lower bound

lb1. For the second mode, de®ne set2 �
fduv 2 MSuvjduv 4wuvg and compute the convex piece-

wise linear underestimation with MSuv � set2. Store dura-

tions wij and lower bound lb2.

� Select the node with the smallest lower bound

lb � min�lb1; lb2� for branching. If lb5 ub�T �, go to

step 4.

� Store the information for the remaining node r. Go to

step 2.

Step 4. Backtracking

� If the branching level p � 0, then go to step 5.

� If both nodes at level p have been evaluated, set p � pÿ 1

and repeat step 4.

� Evaluate the remaining node r at this level: if

lbr 5 ub�T �, set p � pÿ 1 and repeat step 4.

� Go to step 2.

Step 5. Update project deadline

� Set T � T ÿ 1. If T < tn, stop; else, go to step 1.

In the worst case and for a given deadline, the algorithm

generates 2
Qm

i�1 ki ÿ 1 nodes in the search tree (ki being the

number of modes of activity i) yielding a worst-case

complexity of O�km�, where k denotes the maximum

number of modes over each of the m activities. For each

node in the search tree, a lower bound is computed using the

adapted Fulkerson algorithm, which is of worst case

complexity O�n2m�.

An illustrative example

Consider the AoA network shown in Figure 4. The cost=
duration pro®les and the ®rst convex piecewise linear

underestimation for activities (1, 2), (1, 3), (2, 4) and (3, 4)

are shown in Figure 5a through 5d. The original sets of

activity durations are M12 � f11; 5g, M13 � f10; 6; 3; 1g,

Figure 3 An underestimating convex piecewise linear time=cost
trade-off curve.

1156 Journal of the Operational Research Society Vol. 49, No. 11

M23 � f0g, M24 � f5g and M34 � f10; 8; 6; 4g. We illustrate

the branch-and-bound procedure for a deadline T � 14.

This will yield one point on the project's time=cost trade-

off pro®le. The resulting branch-and-bound search tree is

shown in Figure 6.

Step 1. Initialize ub�T � � 1 and p � 0. Compute the

convex piecewise linear under estimation with MSij � Mij.

This yields the convex set of durations CD12 � f11; 5g,
CD13 � f10; 3; 1g, CD23 � f0g, CD24 � f5g and CD34 �

Figure 4 Project network example.

Figure 5 Underestimations for the activities of the example network.

Figure 6 Branch-and-bound search tree for the problem example.

E Demeulemeester et alÐThe discrete time/cost trade-off problem 1157

f10; 6; 4g. The convex set of marginal costs is computed as

CC12 � f1:33g, CC13 � f0:71; 3:5g, CC23 � f g,
CC24 � f g, and CC34 � f1; 1g. The adapted Fulkerson

algorithm yields a lower bound lb � 28:4 and corresponding

activity durations w12 � 9, w13 � 9, w23 � 0, w24 � 5,

w34 � 5.

Step 2. Let us assume that the vertical distances are

computed according to Rule 1: vd12 � 2:67, vd13 � 0:71,

vd23 � 0, vd24 � 0; vd34 � 1. As an illustration, vd13 is

computed as follows. The duration w13 � 9 corresponds to a

cost on the piecewise linear underestimating curve of

3� 0:71� �10ÿ 9� � 3:71. Then vd13 � minf8ÿ 3:71;

3:71ÿ 3g � 0:71. The maximal distance is vd12 � 2:67.

Activity (1, 2) has the largest vertical distance. Store the

corresponding information: �u; v� � �1; 2�, MS12 � f11; 5g,
CC12 � f1:33g, CD12 � f11; 5g. Update the branching level:

p � 1.

It is interesting to observe that Rule 2 would have

computed the vertical distances as follows:

vd12 � 0; vd13 � 0:29 (that is, 47 3.71), vd23 � 0,

vd24 � 0, vd34 � 0. As a result, activity (1, 3) would be

identi®ed as the activity with the maximal vertical distance.

Step 3. Generate the two descendant nodes at level p � 1

of the search tree. set1 � f11g and set2 � f5g. Compute the

underestimation with MS12 � set1 � f11g; CC12 � f g and

CD12 � f11g. The adapted Fulkerson procedure yields

lb1 � 1. Compute the underestimation with MS12 �
set2 � f5g, CC12 � f g and CD12 � f5g. The adapted Fulk-

erson procedure yields lb2 � 32:6 and w12 � 5, w13 � 5;
w23 � 0, w24 � 5, w34 � 9. Select the second node for

branching.

Step 2. Compute the vertical distances: vd12 � 0,

vd13 � 1:43, vd23 � 0, vd24 � 0, vd34 � 1. The maximal

vertical distance is 1.43 for activity (1, 3). Increase the

branching level: p � 2. Store the corresponding informa-

tion: �u; v� � �1; 3�, MS13 � f10; 6; 3; 1g, CC13 �
f0:71; 3:5g and CD13 � f10; 3; 1g.

Step 3. Generate the two descendant nodes at level 2 of

the search tree: set1 � f10; 6g and set2 � f3; 1g. Compute

the underestimation with MS13 � f10; 6g, CC13 � f1g and

CD13 � f10; 6g. The adapted Fulkerson procedure yields

lb1 � 34 and w12 � 5, w13 � 6, w23 � 0, w24 � 5, w34 � 8.

Compute the underestimation for MS13 � f3; 1g,
CC13 � f3:5g and CD13 � f3; 1g and run the Fulkerson

procedure: lb2 � 34 and w12 � 5, w13 � 3, w23 � 0,

w24 � 5, w34 � 9. Select the ®rst node for branching with

lb � 34 (arbitrary tie-break).

Step 2. Compute the vertical distances: vd12 � 0,

vd13 � 0, vd23 � 0, vd24 � 0, vd34 � 2. Activity (3, 4) is

the current activity with the maximal vertical distance. Store

the corresponding information: �u; v� � �3; 4�, MS34 �
f10; 8; 6; 4g, CC34 � f1; 1g and CD34 � f10; 6; 4g. Update

the level of the search tree: p � 3.

Step 3. Generate the two descendant nodes at level p � 3:

set1 � f10g and set2 � f8; 6; 4g. Compute the underestima-

tion for MS34 � f10g, CC34 � f g and CD34 � f10g and use

the Fulkerson algorithm: lb1 � 1. Compute the under-

estimation for MS34 � f8; 6; 4g, CC34 � f0:5; 1g and

CD34 � f8; 6; 4g and use the Fulkerson routine to ®nd

lb2 � 34 and w12 � 5, w13 � 8, w23 � 0, w24 � 5,

w34 � 6. Select the second node for branching with lb � 34.

Step 2. Compute the vertical distances: vd12 � 0,

vd13 � 2, vd23 � 0, vd24 � 0, vd34 � 0. The maximal verti-

cal distance is 2 for activity (1, 3). Increase the branching

level: p � 4. Store the corresponding information:

MS13 � f10; 6g, CC13 � f1g and CD13 � f10; 6g.
Step 3. Generate the two descendant nodes at level

p � 4 : set1 � f10g and set2 � f6g. Underestimate for

MS13 � f10g : CC13 � f g and CD13 � f10g and use the

Fulkerson procedure to ®nd: lb1 � 34 and w12 � 5,

w13 � 10, w23 � 0, w24 � 5, w34 � 4. Underestimate for

MS13 � f6g, CC13 � f g and CD13 � f6g and run the Fulk-

erson routine to ®nd: lb2 � 35 and w12 � 5, w13 � 6,

w23 � 0, w24 � 5, w34 � 8. Select the ®rst node for branch-

ing.

Step 2. The maximal vertical distance is 0: update

ub � 34.

Step 4. Restore the second node at level p � 4:

lb � 355 ub. Backtrack to level p � 3.

Step 4. Restore the ®rst node at level p � 3:

lb � 15 ub. Backtrack to level p � 2.

Step 4. Restore the second node at level p � 2:

lb � 345 ub. Backtrack to level p � 1.

Step 4. Restore the ®rst node at level p � 1:

lb � 15 ub. Backtrack to level p � 0.

Step 4. p � 0; repeat this procedure with T � 13.

Computational results

The horizon-varying algorithm has been coded in Visual

C�� Version 4.0 under Windows NT 4.0. In order to

validate the algorithm we used the well-known problem

generator ProGen (Kolisch et al8) to generate 1800 test

instances in activity-on-the-node format using the parameter

settings in Table 1. ProGen uses the well-known coef®cient

of network complexity (CNC)Ðde®ned as the number of

precedence relations divided by the number of activities

(Pascoe9)Ðas a measure for characterising the topological

structure of a network. For an activity-on-the-node network

with a given number of nodes, a higher network `complex-

ity' results in an increasing number of arcs and therefore in a

greater connectedness of the network. Using ®ve settings for

the number of activities, six settings for the number of

execution modes, two settings for the problem scale (activity

duration and activity cost values), and three settings for

CNC, we obtained 180 problem classes, each consisting of

10 instances.

The 1800 activity-on-the-node instances were trans-

formed into activity-on-the-arc instances using the proce-

dure described in De Reyck and Herroelen.10 This

1158 Journal of the Operational Research Society Vol. 49, No. 11

procedure uses the methodology developed by Kambur-

owski et al11 to generate, from a given activity-on-the-

node network, an activity-on-the-arc network with minimum

number of nodes and minimum value of the complexity

index CI . CI essentially measures how nearly series-parallel

a network is. It is de®ned as the reduction complexity of a

network, that is the number of node reductions suf®cientÐ

along with series and parallel reductionsÐto reduce a two-

terminal directed acyclic network to a single edge.12 The

complexity index of a directed acyclic network is computed

as the number of nodes in a minimum node cover of its

complexity graph. The complexity graph C�D� of a

network D � �N ;A� is de®ned as follows: �i; j� is an arc

of C�D�, if there exists paths p�1; j�, p�i; n�, p1�i; j� and

p2�i; j� such that p�1; j� \ p1�i; j� � fjg and p�i; n�\
p2�i; j� � fig. For a detailed discussion of the algorithm

for computing CI, we refer the reader to De Reyck and

Herroelen.10 These authors observed a positive correlation

between the CPU time required to solve a discrete time=cost

trade-off problem and CI: the higher CI, the harder the

problem.

Each problem instance was solved using the horizon-

varying approach equipped with the ®rst rule (referred to as

P1) and the second rule (referred to as P2) for computing

the vertical distance. The results obtained using the exact

procedure based on ®nding the minimum number of node

reductions necessary to transform the network to a series-

parallel network (referred to as P3), developed by Demeu-

lemeester et al,7 are used as a benchmark. P3 is one of the

best procedures currently available. Moreover, preliminary

tests on several of the instances revealed that it outper-

formed the alternative procedure developed by Demeule-

meester et al,7 which is based on minimising the

computational effort in enumerating alternative modes

through a branch-and-bound tree. Each procedure was

allowed to run on a Dell personal computer equipped with

a Pentium 133 MHz processor for a maximum CPU time of

200 seconds.

Table 2 represents the average CPU time (in seconds),

the average number of nodes generated in the search tree

(only where relevant, P1 and P2), and the average percen-

tage of problems solved to optimality by each of the three

Table 1 Parameter settings

Number of activities 10; 20; 30; 40; 50
Number of modes Fixed at 2; 4; 6 or randomly chosen from the interval [1, 3]; [1, 7]; [1, 11]
Activity durations and costs Randomly selected from the interval [1, 20] or [1, 100]
CNC 1.5; 1.8; 2.1

Table 2 Average CPU time, nodes in the search tree and % problems solved to optimality

Average number
of nodes in the Average % of problems

Average CPU time (seconds) search tree solved optimally

P1 P2 P3 P1 P2 P1 P2 P3

All instances 62.09 65.80 104.13 30500 31008 78% 76% 51%
Number of activities

10 0.34 0.39 0.02 1359 1434 100% 100% 100%
20 19.17 22.95 70.01 18472 20249 99% 98% 73%
30 58.00 65.13 122.99 35813 37404 86% 83% 42%
40 105.40 110.44 151.73 48281 48290 61% 57% 28%
50 127.56 130.10 175.91 48575 47660 41% 40% 14%

Number of modes
2 3.77 4.72 49.21 2679 2679 100% 100% 79%
4 85.82 90.72 130.79 40390 40116 69% 68% 39%
6 122.20 123.44 151.91 62987 61165 49% 48% 25%
1 to 3 2.63 2.86 27.99 1719 1737 100% 100% 89%
1 to 7 63.30 71.60 118.46 29906 32631 81% 77% 46%
1 to 11 94.85 101.46 146.44 45319 47717 66% 61% 29%

CNC
1.5 53.55 57.32 77.73 33732 34107 82% 80% 65%
1.8 61.33 65.23 114.18 28402 29218 78% 76% 46%
2.1 71.40 74.86 120.49 29366 29698 73% 71% 43%

Scale
1 to 20 49.35 52.64 101.95 19594 19218 84% 82% 52%
1 to 100 74.84 78.96 106.31 41406 42660 71% 69% 51%

E Demeulemeester et alÐThe discrete time/cost trade-off problem 1159

procedures. The row labelled `All instances' gives the

average results over all 1800 problem instances. Both

horizon-varying procedures clearly outperform procedure

P3 for both performance measures. The best results are

obtained by procedure P1. The four remaining rows give

more detailed results. The results in the row labelled

`Number of activities' show that the three procedures

solve all the 10-activity problems very quickly. Procedures

P1 and P2 ®nd the optimal solution for almost all 20-

activity and most of the 30-activity problems. Clearly, the

higher the number of activities, the higher the average CPU

time required and the smaller the percentage of problems

solved.

The results in the row labelled `Number of modes' reveal

the negative effect of the number of modes on the ef®-

ciency and effectiveness of the three procedures: the higher

the number of modes, the more CPU time required and the

smaller the percentage of problems solved to optimality. P1

and P2 optimally solve all 2-mode problems in less than 5

seconds on the average. Moreover, the problems with a

®xed number of modes are more dif®cult to solve by any of

the three procedures than the instances where the number of

modes is randomly selected from the three corresponding

intervals.

The results in the row labelled `CNC' indicate the effect

of CNC on problem complexity: the higher CNC (that is the

higher the number of arcs (precedence relations) in the

original activity-on-the-node network), the more dif®cult

the problem. This effect must be interpreted with some

care. The higher CNC of the original activity-on-the-node

network, the higher the number of nodes and dummy

activities in the corresponding activity-on-the-arc network

generated by the Kamburowski et al11 procedure, and the

higher the resulting CI. As shown below, it is mainly the

resulting increase in CI which makes the problem harder to

solve.

The row labelled `Scale' shows the impact of the

problem scale (activity duration and activity cost values).

The more extended the scale, the more dif®cult to solve the

instances.

Tables 3, 4 and 5 show the interaction effects between

the number of activities and the number of modes for each

of the three procedures. The ®rst number in each cell

denotes the average required CPU time (in seconds) for

Table 3 Interaction between the number of activities and the number of modes for P1

Number of modes

Number of activities 2 4 6 1 to 3 1 to 7 1 to 11

10 0.01 0.24 1.13 0.01 0.20 0.46
100% 100% 100% 100% 100% 100%

20 0.33 10.73 60.67 0.11 7.60 35.60
100% 100% 95% 100% 100% 100%

30 1.61 71.39 156.44 0.29 47.55 70.74
100% 93% 40% 100% 98% 85%

40 5.32 153.46 192.75 2.00 104.89 173.96
100% 48% 10% 100% 73% 37%

50 11.56 193.27 200.00 10.76 156.24 193.50
100% 5% 0% 100% 35% 7%

Table 4 Interaction between the number of activities and the number of modes for P2

Number of modes

Number of activities 2 4 6 1 to 3 1 to 7 1 to 11

10 0.01 0.37 1.24 0.01 0.23 0.48
100% 100% 100% 100% 100% 100%

20 0.35 14.48 67.87 0.12 9.07 45.81
100% 100% 92% 100% 100% 95%

30 1.85 86.05 155.54 0.29 65.39 81.62
100% 87% 38% 100% 92% 83%

40 6.55 158.52 192.56 2.06 120.60 182.35
100% 47% 10% 100% 62% 25%

50 14.83 194.19 200.00 11.81 162.71 197.06
100% 5% 0% 100% 33% 3%

1160 Journal of the Operational Research Society Vol. 49, No. 11

solving the problems in the corresponding class, while the

second number denotes the average percentage of problems

solved optimally within the CPU time limit.

P1 solves all two-mode problems to optimality in

promising CPU times. On the average, slightly more than

5 seconds are needed to solve the 40-activity problems and

some 12 seconds are needed for the 50-activity problems

(Table 3). The effectiveness decreases when the number of

activities reaches 40 and the number of modes reaches 4 or

more. Most of the 50-activity problems with 4 or more

execution modes are, given the CPU time limit, beyond the

capabilities of procedure P1. P2 is a close runner-up (Table

4). P3, being very fast on the small 10-activity instances,

runs into trouble on the 50-activity, 2-mode problems

(slightly more than one third of the problems can be

solved to optimality, as shown in Table 5). Using P3,

problems with 4 modes become very dif®cult if not

impossible to solve within the speci®ed CPU limit, when

the number of activities exceeds 30.

It was already mentioned that the coef®cient of network

complexity, CNC seems to have an effect on the complexity

of a problem instance: the higher CNC, the more complex

the problem. As mentioned above, and as already observed

by De Reyck and Herroelen,10 this effect is mainly due to

the associated increase in CI.

Figure 7 shows the interaction effect of the complexity

index CI and the number of activities in terms of the average

CPU time required to solve the problems in each corre-

sponding class. The results reported here must be inter-

preted with suf®cient care. As mentioned earlier, the

problem generator ProGen does not allow for the generation

of networks satisfying pre-set values of CI. We generated the

networks in activity-on-the-node format and transformed

them into activity-on-the-arc instances with minimum

number of nodes and minimal CI-value using the methodol-

ogy described by Kamburowski et al.11 This explains the

somewhat fragmentary results. De Reyck and Herroelen10

encountered similar problems in generating suf®cient

problem instances over the full range of CI-values.

For a given number of activities, the three procedures

show an increasing required CPU time as the value of CI

goes up. This pattern is more pronounced for procedure P3.

This result, already con®rmed by De Reyck and Herroe-

len,10 is not a surprise as the CI-concept lies at the very heart

of the solution logic of procedure P3. Moreover, as can be

seen from the plots of jAj � 10 and jAj � 20, P3 seems to

outperform P1 and P2 on the instances with small CI. On

the instances with higher CI-values, the more robust proce-

dures P1 and P2 outperform P3.

Conclusions

This paper reports on a new exact solution procedure for

problem 1; T jcpm; disc;mujcurve, namely the discrete

time=cost trade-off problem in deterministic activity-on-

the-arc networks, where the activities are subject to ®nish-

start precedence relations and where the duration of each

activity is a discrete, nonincreasing function of the amount

of a single nonrenewable resource committed to it. The

objective is to construct the complete and ef®cient time=
cost pro®le over the set of feasible project durations. The

procedure uses a horizon-varying approach based on the

iterative optimal solution of problem 1;
T jcpm; dn; disc;mujav, that is the problem of minimising

the sum of the resource use over all activities subject to the

activity precedence constraints and a project deadline. This

optimal solution is derived using a branch-and-bound

procedure which computes lower bounds by making

convex piecewise linear underestimations of the discrete

time=cost trade-off curves of the activities to be used as

input for an adapted version of the Fulkerson labelling

algorithm for the linear time=cost trade-off problem.

Branching involves the selection of an activity in order to

partition its set of execution modes into two subsets which

are used to derive improved convex piecewise linear

underestimations. The procedure has been programmed in

Table 5 Interaction between the number of activities and the number of modes for P3

Number of modes

Number of activities 2 4 6 1 to 3 1 to 7 1 to 11

10 0.00 0.01 0.06 0.00 0.01 0.06
100% 100% 100% 100% 100% 100%

20 0.04 75.21 159.47 0.02 44.74 140.55
100% 82% 27% 100% 92% 37%

30 6.46 178.76 200.00 0.63 160.49 191.57
100% 15% 0% 100% 27% 8%

40 101.62 200.00 200.00 21.72 187.02 200.00
62% 0% 0% 98% 10% 0%

50 137.93 200.00 200.00 117.56 200.00 200.00
33% 0% 0% 48% 0% 0%

E Demeulemeester et alÐThe discrete time/cost trade-off problem 1161

Visual C�� under Windows NT for use on personal

computers and has been validated using a factorial experi-

ment on a large set of problem instances.

The results obtained are encouraging, both horizon-

varying procedures clearly outperform procedure P3 devel-

oped earlier by Demeulemeester et al7 in terms of the

average required CPU time and the average percentage of

problems solved optimally. The best results are obtained by

procedure P1. The three procedures optimally solve all the

10-activity problems at very small average CPU times.

Procedures P1 and P2 ®nd the optimal solution for almost

all 20-activity and most of the 30-activity problems in

acceptable time. Clearly, the number of activities and the

number of modes have a negative effect on both the

effectiveness and the ef®ciency of the procedures. On the

average, problems with more than ®fty activities and six or

more modes resist an optimal solution in ®fty or more

percent of the tested cases.

Figure 7 Interaction between CI and the number of activities.

1162 Journal of the Operational Research Society Vol. 49, No. 11

Although the rather fragmentary results on the impact of

the complexity index must be interpreted with suf®cient

care, it was found that, for a given number of activities, the

three procedures show an increasing overall pattern of

required CPU times as the value of CI goes up. This pattern

seems to be more pronounced for procedure P3. This result,

already con®rmed by Demeulemeester et al,7 is not a

surprise as the CI-concept lies at the very heart of the

solution logic of procedure P3.

AcknowledgementsÐThis research was supported by the National Science

Foundation under Research Contract FWO No. G.0131.96.

References

1 Moder JJ, Phillips CR and Davis EW (1983). Project Manage-
ment with CPM, PERT and Precedence Diagramming, 3rd ed.
Van Nostrand Reinhold: New York.

2 De P, Dunne EJ, Ghosh JB and Wells CE (1995). The discrete
time=cost trade-off problem revisited. Eur J Opl Res 81: 225±
238.

3 Herroelen W, Demeulemeester E and De Reyck B (1998). A
classi®cation scheme for project scheduling problems. In:
Weglarz J (ed). Handbook on Recent Developments in Project
Scheduling. Kluwer Academic Publishers, to appear.

4 Fulkerson DR (1961). A network ¯ow computation for project
cost curves. Mgmt Sci 7: 167±179.

5 Ahuja RK, Magnanti TL and Orlin JB (1989). Network ¯ows.
In: Nemhauser G et al (eds). Optimisation, Handbooks in
Operations Research and Management Science, Vol. 1.
North-Holland, Chapter 4, pp 211±369.

6 De P, Dunne EJ, Ghosh JB and Wells CE (1997). Complexity of
the discrete time=cost trade-off problem for project networks.
Ops Res 45: 302±306.

7 Demeulemeester EL, Herroelen WS and Elmaghraby SE
(1996). Optimal procedures for the discrete time=cost trade-
off problem in project networks. Eur J Opl Res 88: 50±68.

8 Kolisch R, Sprecher A and Drexl A (1995). Characterization
and generation of a general class of resource-constrained project
scheduling problems. Mgmt Sci 41: 1693±1703.

9 Pascoe TL (1966). Allocation of resourcesÐCPM. Rev fr Rech
opeÂr 38: 31±38.

10 De Reyck B and Herroelen W (1966). On the use of the
complexity index as a measure of complexity in activity
networks. Eur J Opl Res 91: 347±366.

11 Kamburowski J, Michael DJ and Stallmann MFM (1992).
Optimal construction of project activity networks. Proc 1992
Annual Meeting of the Decision Sciences Institute, Decision
Sciences Institute, USA pp 1424±1426.

12 Bein WW, Kamburowski J and Stallmann MFM (1992). Opti-
mal reduction of two-terminal directed acyclic grarphs. SIAM J
Computing 21: 1112±1129.

Received December 1997;

accepted July 1998 after one revision

E Demeulemeester et alÐThe discrete time/cost trade-off problem 1163

	New computational results on the discrete time/cost trade-off problem in project networks
	Citation

	tmp.1630417155.pdf.ScLnB

