
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection Lee Kong Chian School Of 
Business Lee Kong Chian School of Business 

4-1998 

Resource-constrained project scheduling: A survey of recent Resource-constrained project scheduling: A survey of recent 

developments developments 

Willy HERROELEN 

Bert DE REYCK 
Singapore Management University, bdreyck@smu.edu.sg 

Erik DEMEULEMEESTER 
Singapore Management University 

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research 

 Part of the Business Administration, Management, and Operations Commons, and the Management 

Information Systems Commons 

Citation Citation 
HERROELEN, Willy; DE REYCK, Bert; and DEMEULEMEESTER, Erik. Resource-constrained project 
scheduling: A survey of recent developments. (1998). Computers and Operations Research. 25, (4), 
279-302. 
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6740 

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at 
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research 
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6740&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Pergamon 
Computers Ops Res. Vol. 25, No. 4, pp. 279--302, 1998 

© 1998 Published by Elsevier Science Ltd. All fights reserved 
PII: S0305--0548(97)00055-5 Printed in Great Britain 

0305-0548/98 $19.00+0.00 

RESOURCE-CONSTRAINED PROJECT SCHEDULING: A SURVEY 
OF RECENT DEVELOPMENTS 

Willy Herroelen~':~, Bert De Reyck:~ and Erik Demeulemeester:I 
operations Management Group, Department of Applied Economics, Catholic University Leuven, Naamsestraat 

69, B-3000 Leuven, Belgium 

(Received October 1996," in revised form July 1997) 

Scope and Purpose---The resource-constrained project scheduling problem involves the scheduling of a project 
in order to minimize its duration, subject to zero-lag finish--start precedence constraints between the activities 
and constant availability constraints on the required set of renewable resources. Over the past few years, 
considerable progress has been made with the use of optimal solution procedures for this basic problem type and 
its important extensions. The objective of this paper is to provide a survey of what we believe are the important 
recent developments in the area. 

Abstract--We review recent advances in dealing with the resource-constrained project scheduling problem 
using an efficient depth-first branch-and-bound procedure, elaborating on the branching scheme, bounding 
calculations and dominance roles, and discuss the potential of using truncated branch-and-bound. We derive 
conclusions from the research on optimal solution procedures for the basic problem and subsequently illustrate 
extensions to a rich and realistic variety of related problems involving activity preemption, the use of ready times 
and deadlines, variable resource requirements and availabilities, generalized precedence relations, time/cost, 
time/resource and resource/resource trade-offs and non-regular objective functions. © 1998 Published by 
Elsevier Science Ltd. All rights reserved 

1. INTRODUCTION 

Scheduling and sequencing is concerned with the optimal allocation of  scarce resources over time. 
Scheduling deals with defining which activities are to be performed at a particular time. Sequencing 
concerns the ordering in which the activities have to be performed. The allocation o f  scarce resources 
over time has been the subject o f  extensive research since the early days o f  operations research in the mid 
1950s. 

Scheduling and sequencing theory, more than any other field in the area o f  operations management and 
operations research, is characterized by a virtually unlimited number of  problem types. The terminology 
arose in the processing and manufacturing industries and most research has traditionally been focused on 
deterministic maehine  scheduling (see the books by Muth and Thompson [1], Conway et al. [2], 
Ashour [3], Baker [4], Rinnooy Kan [5], French [6] Bellmann et al. [7], Herroelen [8], Blazewicz et al. 
[9], Morton and Pentieo [10], Tanaev et al. [11,12], Brucker [13] and Pinedo [14]). In this context the 
type o f  resource is traditionally considered to be a machine that can perform at most one activity at a 
time. Over the years, several (unrealistic) assumptions o f  the basic machine scheduling problems have 
been relaxed. A natural extension involves the presence o f  additional resources, where each resource has 
a limited size and each job requires the use of  a part o f  each resource during its execution (Gargeya and 
Deane [15]). This leads us to the area of  resource-constrained project scheduling which involves the 
scheduling o f  project activities subject to precedence and resource constraints. The field again covers a 
wide variety o f  problem types. 

This article provides a guided tour through what we believe to be important recent developments in the 
area o f  resource-constrained project scheduling. Our main focus will be on the recent progress made with 
optimal branch-and-bound procedures for the basic resource-constrained project scheduling problem 
(RCPSP) and its important extensions. 

The organization o f  this paper is as follows. Section 2 focuses on the classical resource-constrained 

f To whom all correspondence should be addressed (email: Willy.Herroelen@econ.kuleuven.ac.be). 
Willy Herroelen and Erik Demeulemeester are Professors of Operations Management in the Department of Applied Economics 

at the Katholieke Universiteit Leuven (Belgium). At the time this paper was written Bert De Reyck was completing his Ph.D. 
dissertation under their guidance. The current research interests of the authors include the construction of exact and heuristic 
solution procedures for various types of resource-constrained project scheduling problems. Related publications have appeared 
in Operations Research, Management Science, European Journal of Operational Research and Computers and Operations 
Research. 

279 



280 Willy Herroelen et al. 

project scheduling problem (RCPSP). Section 3 deals with the preemptive resource-constrained project 
scheduling problem (PRCPSP). Section 4 concentrates on the recent developments of models dealing 
with generalized precedence relations. Section 5 addresses the problem of maximizing the net present 
value of projects, as an illustration of the use of non-regular measures of performance. Section 6 is 
devoted to project scheduling problems with time/resource and resource/resource trade-offs. Section 7 is 
reserved for our overall conclusions. 

2. THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM(RCPSP) 

2.1. Notation and terminology 

We assume that a project is represented by an activity-on-the-node network G=(KE) in which V 
denotes the set of vertices (nodes) representing the activities and E is the set of edges (arcs) representing 
the finish-start precedence relationships with zero time-lag. The activities are numbered from 1 to n, 
where the dummy activities 1 and n mark the beginning and end of the project. The activities are to be 
performed without preemption. The fixed integer duration of an activity is denoted by di (l-</---n), its 
integer starting time by s~ ( l < / - n )  and its integer finishing time byfi  (1-i--n).  There are K renewable 
resource types with r~t (1 <-i<-n, 1 <-k<-K) the constant resource requirement of activity i for resource type 
k and a t the constant availability of resource type k. Conceptually, the RCPSP can be formulated as 
follows: 

Minf~ (1) 

subject to 

A =o, (2) 

fj - 4-->f~, V ( i j )  ~H ,  (3) 

~, r~<--a,,t=l,2...f,; k=l ,2 .... K, (4) 
iESt 

where H denotes the set of pairs of activities indicating precedence constraints and St denotes the set of 
activities in progress in time interval ] t -  1,t] : S,= {i I f , -  d~<t<-f] • (2) assigns a completion time of  0 to 
the dummy start activity 1. The precedence constraints given by (3) indicate that activity j can only be 
started ifaU predecessor activities i are completed. The resource constraints given in (4) indicate that for 
each time period I t -  1,t] and for each resource type k, the renewable resource amounts required by the 
activities in progress cannot exceed the resource availability. The objective function is given as (1). The 
project duration is minimized by minimizing the finishing time of the unique dummy ending activity n. 

A problem example is given in Fig. 1. The numbers above each node of  the project network denote 
the fixed activity durations. The numbers below each node denote the per period resource requirement for 
the single resource type involved in completing this project. The single resource required has a constant 
availability of  5 units per period. The unique optimal solution for this project is represented in Fig. 2 and 
has a duration of  7 periods. The minimal resource-constrained makespan for the project happens to equal 

1 1 5 

0 0 

2 2 

Fig. 1. RCPSP example. 



Resource-constrained project scheduling: a survey of recent developments 281 

R e s o u r c e  u s e  

5 

4 -  

3 -  

2 -  

1 - -  

2 

I I 

1 2 3 

3 8 

6 

5 4 

I I I 

4 5 6 

I " 

7 

8 T i m e  

Fig. 2. Resource  profile o f  the optimal solution. 

the length of the critical path. This is a mere coincidence. Most often, the addition of resource constraints 
will lead to an increase of the project duration beyond the critical path length. 

2,2. Optimal solution procedures and computational experience 

The RCPSP, which as a generalization of the job-shop scheduling problem is NP-hard in the strong 
sense [16], has been extensively studied in the literature. Previous research on optimal procedures 
basically involves the use of mathematical programming [ 17-26] and implicit enumeration; i.e. dynamic 
programming [27,28] and branch-and-bound [29-44]. For comprehensive reviews we refer the reader to 
Davis [45,46], Herroelen [47], Patterson [48], Icmeli et al. [49], Elmaghraby [50], Herroelen and 
Demeulemeester [51 ], and Ozdamar and Ulusoy [52]. Over the past decade, considerable progress in the 
use of optimal procedures for the RCPSP has been reported on two problem sets: the 110 problems 
assembled by Patterson [48] and the 480 test instances generated by Kolisch et al. [53]. 

2.2.1. The Patterson problem set. Patterson [48] assembled a set of 110 test problems (with 7 up to 
50 activities and 1 up to 3 renewable resource types) which over the years became a de facto standard 
for validating optimal and suboptimal procedures for the RCPSE The computational experiments have 
been conducted by different authors on a wide variety of computers, making direct comparisons rather 
difficult. Table 1 lists a number of results obtained on this set. 

Davis and Heidorn [32] presented an implicit enumeration scheme which exploits the relationship 
between the RCPSP and the assembly line balancing problem. Representing activity durations as a series 
of unit duration tasks, the original problem is reduced to one of finding the shortest path between the start 
and end nodes of a directed graph which is derived from the feasible subsets, i.e. sets, which, if they 
contain a certain task, also contain all predecessors of this task. Talbot and Patterson [34] developed an 
implicit enumeration scheme involving a systematic enumeration of all possible finish times for the 
activities. The algorithm uses the concept of a cut to eliminate from explicit consideration possible 

Table 1. Computational results on the Patterson problem set 

Authors Computer Computer Average Time Problems 
language configuration CPU-time (s) Limit solved to 

optimality 

Davis and Heidorn [32] Fortran V Amdahl 470/V8 14.02 300 96 
Talbot and Patterson [34] Fortran V Amdahl 470/V8 14.98 300 97 
Stinson et al. [33] Fortran V Amdahl 470/V8 0.82 300 110 
CAT revised (Christofides et al. [36]; Fortran V IBM 3090 56.82 No 110 

Demeulemeester et al. [54]) 
Bell and Park [38] Common Lisp Apple Macintosh Plus 340.57 No 110 
DH (Demeulemeester and Borland Turbo C - DOS 80386 25 MHz 0.21 No 110 

Herroelen [40]) 
Carlier and Neron [42] not reported Not reported 199.07 No 44 
DH1 (Demeulemeester and Microsoft Visual C ++ 2.0 - 80486 25 MHz 0.02 No 110 

Herroelen [41 ]) Windows NT 
DH2 Microsoft Visual C++ 2.0 - Pentium Pro 200 MHz 0.002 No 110 

Windows NT 

CAOR 25:4-8 



282 Willy Herroelen et al. 

inferior activity completion times. Stinson et aL [33] developed a best-first branch-and-bound procedure 
based on strong bounding criteria and dominance rules. The nodes of the branch-and-bound tree 
correspond to partial schedules based on the principle of starting activities as early as possible, satisfying 
both precedence and resource constraints. Patterson [48] found that among the three procedures, only the 
branch-and-bound of Stinson et aL was able to solve all 110 test problems within the time limit of 300 s 
on the mainframe mentioned in Table 1. 

Christofides et aL [36] have developed CAT, a depth-first branch-and-bound procedure that generates 
a branch-and-bound tree, whose nodes correspond to semi-active feasible partial schedules. The 
procedure only branches to resolve a resource conflict. It has been shown [54] that the CAT algorithm 
may occasionally miss the optimum. Moreover, computational results obtained by Demeulemeester et aL 
[54] cannot confirm the claim that the revised CAT algorithm is competitive with the Stinson et aL [33] 
procedure. 

Bell and Park [38] have developed an A* algorithm that is a best-first search algorithm, where each 
state in the search tree consists of a set of precedence constraints. Starting from an initial state network 
which contains only those precedence constraints expressed in the original problem, the goal state is the 
minimal makespan network that satisfies resource constraints as well as precedence constraints. State 
transitions are generated by adding arcs to the network. Computational experience is not convincing (8 
problems in the set could not be solved optimally within 1000 s). 

Carlier and Latapie [39] have presented a novel branch-and-bound procedure that extends earlier work 
on the job-shop scheduling problem. An execution interval is associated with each activity based on its 
computed ready time and due date. Branching consists in choosing a task and splitting its interval of 
execution into two intervals, whose union gives the original interval again. The authors only report on 
a selection of the test problems. The procedure failed to generate the optimal solution for some of the test 
problems (one problem could not be solved after 2 h of CPU-time on a VAX 8530). Carlier and Neron 
[42] use bounds based on m-machine problems which are generated at the root of the search tree. Their 
branching scheme is based on so-called left-tight schedules in which activities are either scheduled at the 
beginning of a schedule or at its end. Results obtained on a subset of the Patterson problems, reveal the 
rather high computational cost of the procedure, which is still in the development phase. 

The depth-first DH-procedure, developed by Demeulemeester and Herroelen [40], seems to use the 
most efficient solution logic. The incorporation of a new bounding argument, a new version of a 
dominance rule and the use of 32-bit programming led to the development of the more efficient DH1- 
procedure which runs on a Windows NT 3.50 platform [41]. This resulted in a speed boost by a factor 
of more than 10 on the 110 Patterson problems as compared to the code used for the 1992 paper. Recent 
efforts to improve and repolish the code (subsequently referred to as the DH2-procedure) further reduced 
the computational effort to a negligible level. 

2.2.2. The 480 KSD test problems. Recent research by Kolisch et al. [53] questioned the use of the 
110 problem set and led to the development of ProGen, a network generator which allows for the 
generation of RCPSP problem instances which satisfy pre-set problem parameters. Table 2 summarizes 
the computational results obtained on a set of 480 problem instances, generated on the basis of a full 
factorial design (30 activities, 4 renewable resource types). The DH-procedure could only find (and 
verify) the optimal solution for 428 problems within a 1 h time limit on a personal computer running at 
15 MHz. 

Mingozzi et al. [43] presented a new 0-1 linear programming formulation that requires an exponential 
number of variables, corresponding to all feasible subsets of activities that can be simultaneously 
executed without violating resource or precedence constraints. They present a tree search algorithm 

Table 2. Computational results on the ProGen problem set 

Authors Computer language Computer Average Time limit Problems 
configuration CPU-fime (s) solved to 

optimality 

DH (Demeulemeester and Bodand Turbo C - DOS 80386 25 MHz 79.91 3600 428 
Herroelen [40]) 

Mingozzi et al. [43] Fortran 77 80386 15 MHz not reported No 480 
DH1 (Demeulemeester and Microsoft Visual C ++ 2.0 - Windows NT 80486 25 MI-Iz 12.33 3600 479 

Henoelen [41]) 
DH2 Brucker et al. [44] Microsoft Visual C ++ 2 . 0 -  Windows NT Pentium Pro 200 MHz 0.37 No 480 

C-Solaris 2.5 + CPLEX Sun/Spare 20/801 17.88 3600 407 



Resource-constrained project scheduling: a survey of recent developments 283 

BBLB3 based on this formulation which can solve the 52 hard KSD instances that could not be solved 
by the DH-procedure, while it is reported to be, on the average, 5 times slower on the Patterson test 
problems. They conclude that BBLB3 is competitive with the DH-procedure on hard instances (an 
average of 1161.06 s on the 150 so-called hard instances), while it does not dominate DH on easier 
problems (an average of 88.375 s on 80 so-called easier instances). Brucker et al. [44] developed a 
branch-and-bound algorithm which performs a depth-first search on a binary search tree, the nodes of 
which correspond to so-called schedule schemes (sets of disjunctions, conjunctions, parallelity and 
flexibility relations). The authors develop various bounding and dominance rules and concepts of 
immediate selection. 

The DHl-procedure optimally solves the 480 instances, albeit that one of the problems needed 3 h of 
computation time. Moreover, a truncated version of the procedure yields excellent results. Running the 
DHl-procedure for small amounts of time yields solutions which are very close to the optimum. The 
DH2-procedure leads to a further gain in efficiency. These results constitute a new benchmark for the 
RCPSP. Moreover, the efficient and effective branching scheme, and many of the lower bound and 
dominance arguments have been extended to a wide and relevant variety of problem settings. They are 
elaborated on in the subsequent sections. 

2.3. The DH- and the new DH-procedures 

The DHl-procedure [41] is conceptually very similar to the DH-procedure described in Demeulemee- 
ster and Herroelen [40]. It generates a search tree, the nodes of which correspond to feasible partial 
schedules in which finish times temporarily have been assigned to a subset of the activities of the project. 
Partial schedules PSm are only considered at those time instants m which correspond to the completion 
time of one or more project activities. The partial schedules are constructed by starting activities as soon 
as possible within the precedence and resource constraints. A partial schedule PSm at time m thus consists 
of the set of temporarily scheduled activities. Scheduling decisions are temporary in the sense that 
temporarily scheduled activities may be delayed as a result of decisions made at later stages in the search 
process. Partial schedules are built up starting at time 0 and proceed systematically throughout the search 
process by adding at each decision point subsets of activities, including the empty set, until a complete 
feasible schedule is obtained. In this sense, a complete schedule is a continuation of a partial schedule. 

At every time instant m we define the eligible set E,~ as the set of activities which are not in the partial 
schedule and whose predecessor activities have finished. These eligible activities can start at time m if 
the resource constraints are not violated. Demeulemeester and Herroelen [40] have proven two theorems 
which allow the procedure, at decision point m, to decide on which eligible activities must be scheduled 
by themselves, and which pair of eligible activities must be scheduled concurrently. 

Theorem 1 .1 fa t  time m the partial schedule PSm has no activity in progress and an eligible activity i 
cannot be scheduled together with any other unscheduled activity at any time instant m'>-m without 
violating the precedence and resource constraints, then there exists an optimal continuation of the partial 
schedule with the eligible activity i put in progress (started) at time m. 

Theorem 2. 1fat time m the partial schedule PSm has no activity in progress, and if  there is an eligible 
activity i which can be scheduled concurrently with only one other unscheduled activity j at any time 
instant m'>-m without violating precedence or resource constraints, and if activity j is both eligible and 
not longer in duration than activity L then there exists an optimal continuation of the partial schedule in 
which both activities i andj are put in progress at time m. 

If it is impossible to schedule all activities at time m, a resource conflict occurs which will produce a 
new branching in the branch-and-bound tree. The branches describe ways to resolve the resource conflict 
by deciding on which combinations of activities are to be delayed. A delaying set D(p) consists of all 
subsets of activities Dq, either in progress or eligible, the delay of which would resolve the current 
resource conflict at level p of the search tree. A delaying alternative Dq is minimal if it does not contain 
other delaying alternatives Dv ~ D(p) as a subset. Demeulemeester and Herroelen [40] give the proof that 
in order to resolve a resource conflict, it is sufficient to consider only minimal delaying alternatives. 

One of the minimal delaying alternatives (nodes in the search tree) is arbitrarily chosen for branching. 
The delay of  a delaying alternative Dq is accomplished by adding a temporal constraint causing the 
corresponding activities to be delayed up to the delaying point, which is defined as the earliest completion 
of an activity in the set of activities in progress, that does not belong to the delaying alternative. 



284 Willy Herroelen et aL 

I°l 
x 8 

I I z < 4  

Fig. 3. Minimal delaying alternatives. 

The branching scheme can best be illustrated on a small problem example. Assume that the set of 
activities { 1,2,3,4} creates a resource conflict at decision point m and that the minimal delaying set is 
{{1},{2},{3,4}}. Assume that activity x is the earliest finishing activity among 2, 3 and 4, that activity 
y is the earliest finishing activity among the activities 1, 3 and 4 and that activity z is the earliest finishing 
activity among the activities 1 and 2. The resulting delaying alternatives are represented in Fig. 3. The 
operator " < "  denotes a temporal constraint, i.e. a delay up to the earliest finishing time of an activity in 
progress that does not belong to the delaying alternative, 

The delayed activities are removed from the partial schedule and the set of activities in progress, and 
the algorithm continues by computing a new decision point. The search process continues until the 
dummy end activity has been scheduled. Every time such a complete schedule has been found, 
backtracking occurs: a new delaying alternative is arbitrarily chosen from the set of delaying alternatives 
D(p) at the highest level p of the search tree that still has some unexplored delaying alternatives left, and 
branching continues from that node. When level zero is reached in the search tree, the search process is 
completed. 

Two dominance rules are used to prune the search tree. The first one is a variation of the well-known 
leR-shift dominance rule, and can be stated as follows: 

Theorem 3. I f  the delay o f  the delaying alternative at the previous level o f  the branch-and-bound tree 
forced an activity i to become eligible at time m, i f  the current decision is to start activity i at time m and 
i f  activity i can be left-shifted without violating the precedence or resource constraints (because activities 
in progress were delayed), then the corresponding partial schedule is dominated. 

The second dominance rule is based on the concept of a cutset. At every time instant m a cutset C m is 
defined as the set of unscheduled activities for which all predecessor activities belong to the partial 
schedule PSm. 

Theorem 4. Consider a cutset C m at time m which contains the same activities as a cutset Ck, which was 
previously saved during the search o f  another path in the search tree. l f  time k was not greater than time 
m and i f  all activities in progress at time k did notfinish later than the maximum ofm and thefinish time 
o f  the corresponding activities in PSm, then the current partial schedule PSm is dominated. 

As indicated in Table 3, the original DH-procedure has been tested with three lower bounding rules. 
The well-known remaining critical path length bound LBO and critical sequence lower bound LBS [33] 

Table 3. Basic differences between DH procedures 

DH DHI DH2 

Critical path-based lower bound LBO t /  t~ t~ 
Critical sequence lower bound LBS ¢' 
Extended critical sequence lower bound LBS "~' */ 
Node packing-based lower bound LB3 
Resource-based lower bound LBR 
Theorem 1 I /  
Theorem 2 t /  t /  
Inunediate scheduling ¢' 
Theorem 3 t /  t /  ¢ '  
Theorem 4 ~ t /  
Theorem 4 - New t /  
Preprocessing t /  



Resource-constrained project scheduling: a survey of recent developments 285 

are supplemented by an extended critical sequence lower bound LBS °xt which is computed by repetitively 
looking at a path of unscheduled, non-critical activities in combination with a critical path. The LBS e't 
calculation starts by calculating the Stinson critical sequence lower bound. This allows the procedure to 
determine which activities cannot be scheduled within their slack time. Subsequently, all paths consisting 
of at least two unscheduled, non-critical activities, which start and finish with an activity that cannot be 
scheduled within its slack time, are constructed. A simple type of dynamic programming then allows for 
the calculation of the extended critical sequence bound for every non-critical path. Subsequent research 
revealed that the use of the cutset dominance rule combined with a bounding argument based solely on 
LBO leads to an improved performance. As a result, both LBS and LBS ext have been removed from the 
procedure. 

Recently, Mingozzi et al. [43] developed five new lower bounds (LB1, LB2, LBP, LBX and LB3), 
derived from different relaxations of a new mathematical programming formulation for the RCPSP. 
Bounds LB1, LB2, LBXand LB3 dominate LBO and all prove to be tighter than LBS on the 110 RCPSP 
instances assembled by Patterson [48] and the 480 KSD instances. The most promising lower bound, 
LB3, is implemented by using a heuristic for solving a set packing problem. Demeulemeester and 
Herroelen [41] have incorporated their own version of LB3 in the new DH-procedure based on the 
following heuristic. For each activity i ~ they determine its possible companions, i.e., the activities with 
which it can be scheduled in parallel, respecting both the precedence and resource constraints. All 
unscheduled activities i with a non-zero duration are then entered in a list L in non-decreasing order of 
the number of companions (non-increasing duration as a tie-breaker). The following procedure then 
yields a lower bound, LB3, for the partial schedule under consideration: 

LB3: =the earliest completion time of the activities in progress 
while list L not empty do 

Take activityj on top of list L 
LB3:=LB3 + d: 
Remove activityj and its companions from list L 

enddo 

It is clear that other (more computationally intensive) heuristics can be used to calculate the lower bound 
LB3. The procedure described here is very fast and offers an excellent trade-off between tightness of the 
bound and the required computational effort. It generally improves the critical path lower bound, LBO, 
if there are pairs of activities that can be scheduled in parallel taking into consideration the precedence 
constraints only, but cannot be scheduled in this manner if resource constraints are taken into 
consideration. 

As indicated in Table 3, the logic of the DH2-procedure differs from the logic used by DH1 in the 
additional use of a new resource-based lower bound LBR, and an improved immediate scheduling rule 
for putting eligible activities in progress, which replaces the rules described in Theorem 1 and 2. Other 
differences boil down to the use of 64 Mb of addressable memory, a new version of the cutset dominance 
rule (based on a more effective way of storing only efficient cutsets), some preprocessing and additional 
code polishing. 

2.4. Problem complexity and the prediction of the computational requirements 

As mentioned earlier, extensive computational experience with the optimal solution procedures for the 
RCPSP has been gained on different test sets of problem instances: the 110 Patterson problem set and the 
480 KSD problem set. Ideally such a set should span the full range of complexity, from very easy to very 
hard problem instances. The generation of easy and hard problem instances, however, appears to be a 
very difficult task which heavily depends on the possibility to isolate the factors that precisely determine 
the computing effort required by the solution procedure used to solve a problem, and the calibration of 
the scale that characterizes such effort. The 110 test problems, assembled by Patterson [48], are a 
collection from different sources and have not been generated by using a controlled design of specified 
problem parameters. The 480 KSD instances used by Kolisch et al. [53] have been generated using the 
problem generator ProGen through the use of a controllable set of specified problem parameters. 
Recently, ProGen has been used to generate thousands of additional test instances [56], which have made 
it possible to gain additional important insight in the factors that seem to determine the complexity (in 
terms of the required computation time) of an RCPSP instance. 



286 Willy Herroelen et al. 

2.4.1. The relation between problem hardness and topological network structure. Using ProGen, De 
Reyck and Herroelen [57] generated five sets of 1000 RCPSP instances, each with 25 activities and 3 
resource types. In each of the five sets, the coefficient of  network complexity, CNC, is set at a different 
value, varying from 1.5 in the first set to 2.5 in the fifth. Each RCPSP instance was then solved using the 
DH-procedure. 

The CNC is undoubtedly one of the most popular "measures of network complexity". Introduced by 
Pascoe [58] for activity-on-the-arc networks, and simply defined as the ratio of the number of ares over 
the number of nodes, the measure has been adopted in a number of studies since then [59,60,48,61,53]. 
As observed by Kolisch et aL [53], in the activity-on-the-node representation, "complexity" has to be 
understood in the way that for a fixed number of activities (nodes), a higher complexity results in an 
increasing number of arcs and therefore in a greater connectedness of the network. A number of studies 
in the literature [62,53] seem to confirm that problems become easier with increasing values of the CNC, 
which makes the use of the CNC somewhat confounding (Elmaghraby and Herroelen [63] already 
questioned the use of the CNC). Both Alvarez-Valdes and Tamarit [62] and Kolisch et al. [53] observe 
a negative correlation between the CNC and the required solution time for solving an RCPSP instance. 
De Reyck and Herroelen [57] reach the conclusion that it is very ambiguous to attach all explanatory 
power of problem complexity to the CNC. They observed a positive correlation between the CNC and 
the so-called complexity index, C1. The complexity index, CI, is defined as the reduction complexity [64]; 
i.e. the minimum number of node reductions sufficient (along with series and parallel reductions) to 
reduce a two-terminal acyclic network to a single edge. Bein et al. [64] found that the CI plays an 
important role in predicting the required computing effort for solving an RCPSP instance (the higher the 
CI, the easier the RCPSP instance) and that the CI outperforms the CNC as a measure of network 
complexity (the CNC explains nothing extra above what is already explained by the CNC). The reason 
for the strong explanatory power attributed to the CNC in previous experiments performed in the 
literature is probably due to the fact that when the CNC was varied, other parameters (such as the CO 
were varied also, which led to problems with significant differences in "complexity". 

In a subsequent experiment, De Reyck [65] again found the CI to have a strong impact on the required 
processing time whereas the CNC had no impact at all. In addition, it was shown that an estimator for 
the so-called restrictiveness of a project network, namely RT, is a good network complexity measure for 
resource-constrained project scheduling problems. De Reyck [65] has shown that RT is actually identical 
to the order strength, OS, one of the best complexity measures for generating and evaluating assembly 
line balancing problems (see De Reyck and Herroelen [66]). OS is defined as the number of precedence 
relations, including the transitive ones, divided by n(n - 1)/2, where n denotes the number of activities 
[67]. It is sometimes referred to as the density [68] and actually equal to 1 minus the flexibility ratio, 
defined by Dar-E1 [69] as the number of zero entries in the precedence matrix divided by the total number 
of matrix entries. De Reyck [65] reached the conclusion that OS absorbed the explanatory power of both 
the CNC and the CI, and that OS outperforms both measures. 

2.4.2. The RCPSP and resource availability. De Reyck and Herroelen [57] have also tried to isolate 
the impact of the resource availability (or resource-constrainedness) on the required solution effort for 
solving the RCPSP. Elmaghraby and Herroelen [63] conjectured that the relationship between the 
hardness of a problem (as measured by the CPU-time required for its solution) and resource availability 
(scarcity) varies according to a bell-shaped curve. If resources are only available in extremely small 
amounts, there will be relatively little freedom in scheduling the activities. Hence, the corresponding 
RCPSP instance should be quite easy to solve. If, on the other hand, resources are amply available, the 
activities can be simply scheduled in parallel and the resulting project duration will be equal to the critical 
path length, leading again to a small computational effort. 

Two of the best known parameters for describing resource availability (scarcity) that have been 
proposed in the literature are the resource factor and the resource strength. The resource factor, RF 
[58,62,70,53] reflects the average portion of resources requested per activity. If  we have RF = 1, then each 
activity requests all resources. RF=0 indicates that no activity requests any resource. The resource 
strength, RS [70] is redefined by Kolisch et al. [53] as (ak--r~m)/(r~-  r~n), where ak is the total 
availability of renewable resource type k, r~'D=maxi=~ ...... r,.k, and r ~  x is the peak demand of resource type 
k in the precedence-based earliest start schedule. Hence, with respect to one resource the smallest 
resource availability is obtained for RS = 0. For RS = 1, the problem is no longer resource-constrained. In 
their experiments, Kolisch et al. [53] conclude (in contradiction with Alvarez-Valdes and Tamarit [62]) 



Resource-constrained project scheduling: a survey of recent developments 287 

that RS has the strongest impact on solution times: the average solution time continuously increases with 
decreasing RS. De Reyck and Herroelen [57], however, could not confirm the continuous increase of the 
required solution time with decreasing RS but found a bell-shaped relationship, in accordance with the 
conjecture of Elmaghraby and Herroelen [63]. 

Patterson [71] defines the resource-constrainedness, RC, for each resource k as pk/ak, where ak is the 
availability of resource type k and Pk is the average quantity of resource k demanded when required by 
an activity. The arguments for using RC and not RS as a measure of network complexity are that (a) RC 
is a "pure" measure of resource availability in that it does not yet incorporate information about the 
precedence structure of a network, and (b) there are occasions where RS can no longer distinguish 
between easy and hard instances while RC continues to do so (for details, we refer to De Reyck and 
Herroelen [57]). Again, De Reyck and Herroelen [57] are able to confirm a bell-shaped relationship 
between the CPU-time and RC. 

2.5. Branch-and-bound procedures for solving the RCPSP: conclusions 

The fundamental conclusions which can be drawn from the reviewed research on branch-and-bound 
schemes for the RCPSP can be summarized as follows: 

(a) A depth-first branch-and-bound search strategy based on resolving resource conflicts by delaying 
minimal subsets of activities is a clear favourite for optimally solving RCPSP instances; 
(b) The cutset dominance rule ranks amongst the most effective dominance pruning rules, especially 
if a sufficient amount of memory can be used for storing the outsets; 
(c) The use of easy to compute and effective lower bounds (e.g. LB3 and its possible variations; the 
new resource-based bound LBR incorporated in DH2) has a strong impact on the computational cost; 
(d) It is extremely important to exploit the trade-off between the strength of the bounds or dominance 
rules used and the time required for their computation; 
(e) Truncated depth-first branch-and-bound procedures provide a suitable alternative to priority based 
heuristics; near-optimal solutions can be obtained even if the truncated procedure is only allowed to 
run for a small amount of time; 
(f) Sufficient attention should be devoted to efficient coding of the solution procedures used. Exploiting 
the full potential of 32-bit programming provided by recent compilers running on personal computer 
platforms such as Windows NT and OS/2 may add considerably to the efficiency of the computer code 
used (e.g. increased available memory allows for the storage of larger amounts of cutset dominance 
information; the use of 32-bit integers allows for computational speedups by combining for instance 
four resource types into one 32-bit integer when using 8 bits for every resource type); 
(g) Reproducible optimal benchmark results are available on the 110 Patterson problems and the 480 
KSD problems. In order to avoid computational bias and to guarantee that procedures are validated on 
a relevant spectrum of problem complexity (the complexity of a problem instance is entwined to the 
procedure used to solve it), computational experience should be reported on the complete problem sets 
and should not be limited to selected problem subsets assumed to be "hard" or "easy". 

The above listed conclusions (a)--(f) reveal a number of (desirable) attributes of an efficient optimal 
solution procedure for the RCPSP. They constitute the spine of the solution logic used by the DH- 
procedure and its extensions and lie at the very basis of their computational efficiency. Moreover, the 
DH-solution logic can be extended to important related problem types which are summarized in Table 4. 
The table indicates how each of the problems mentioned in the table heading differ in the objective 
function used, the type of precedence relationships, the type, availability and requirements of the 
resources, the use of activity preemption, and the assumed trade-offs. Table 4 serves as a reference for 
our subsequent discussion. 

3. THE PREEMPTIVE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM (PRCPSP) 

In the RCPSP it is assumed that an activity once started, must be continuously processed until 
completion. In practice, however, it may be the case that the processing of an activity may be interrupted 
and resumed at a later time. When resource availability is limited, activity preemption may result in a 
shorter project duration. The introduction of activity preemption increases the number of possible 



288 Willy Herroelen et al. 

Table 4. Extensions to the basic RCPSP model 

RCPSP PRCPSP GRCPSP RCPSP-GPR DTRTP MRCPSP MAX-NPV PSP RCPSP-DC RCPSPDC-GPR 

Objective makespan makespan makespan regular 
Precedence relations FS(0) FS(0) P GPR 
Resources R R R R 
Resource availability constant variable variable variable 
Resource requirements constant constant constant variable 
Preemption no yes no no 
Time/resource trade-offs no no no no 
Resource/resource trade-offs no no no no 

makespan regular NPV NPV NPV 
FS(0) FS(0) GPR FS(0) GPR 

R R,N,D none R R 
constant variable - constant variable 
constant constant - constant variable 

no no no no no 
yes yes no no no 
no yes no no no 

Key: 
FS(0)=finish-start precedence relations with zero time lag; 
P =precedence diagramming=SS, SF, FS, FF precedence relations with minimal time lag; 
GPR=generalized p~,eedence relations= SS, SF, FS, FF precedence relations with minimal and/or maximal time lag; 
R = renewable resource types; 
N--nonrenewable resource types; 
D =doubly-constrained resource types. 

solutions and consequently the computational complexity of the resource-conswained project scheduling 
problem. 

The PRCPSP allows activities to be preempted at integer points in time; i.e., the fixed integer duration 
d~ of an activity may be split in j =  1,2 .... ,di duration units. Each duration unit j of activity i is then 
assigned an integer finish timefq. The variable f,.,0 denotes the earliest time that an activity i can be started. 
As only finish--start relations with a time lag of zero are allowed, f~,0 equals the latest finish time of all 
the predecessors of activity i. An activity i belongs to the set S t of activities in progress in period ] t -  1,t] 
if one of its duration units j = l , 2  .... ,d~ finishes at time t (i.e., i ffq=t) .  The PRCPSP can now be 
formulated as follows [72]: 

Minf,,0 (5) 

subject to 

fl,o'~- 0~ 

~,o>-f.a,, V(ij) c a ,  

f/j_l+l-<f/,j, i=1,2 ..... n ; j= l , 2  .... di, 

Y~ rt~<-a k, t=l,2...~f,,0; k=l ,2 .... K. 

(6) 

(7) 

(8) 

(9) 

The objective function (5) minimizes the makespan by minimizing the earliest start time of the dummy 
end activity which by assumption has a duration of 0. Activity 1 is assigned an earliest start time of 0 
through (6). (7) assure that all precedence relations are satisfied: the earliest start time of an activity j 
cannot be smaller than the finish time of the last unit of duration of its predecessor i. (8) specify that the 
finish time for every unit of duration of an activity has to be at least one time unit larger than the finish 
time for the previous unit of duration, while (9) stipulate the resource constraints. 

Slowinski [73] and Weglarz [74] presented optimal solution procedures for the case of continuous 
processing times for the different activities. Davis and Heidorn [32] developed an implicit enumeration 
scheme based on the splitting of activities in unit duration tasks. Kaplan [75,76] presented a dynamic 
programming formulation and suggests a solution by a reaching procedure. 

The DH-proeedure has been extended to the PRCPSP [77]. In order to do so, a distinction is made 
between activities and subactivities. At the start the procedure creates a new project network in which all 
activities are replaced by one or more subactivities. All activities are split into subaetivities, their number 
being equal to the duration of the original activity, each having a duration of 1 and resource requirements 
that are equal to those of the original activity. Demeulemeester and Herroelen [77] prove that in order to 
solve the PRCPSP, it is sufficient to construct partial schedules by semi-active timetabling at the level of 
the subaetivities. Theorems 1, 2, 3 and 4 stated above for the RCPSP can be extended for the PRCPSP. 
The authors also show that it is sufficient to consider only minimal delaying alternatives in order to 
resolve resource conflicts. In addition, they have shown that all three lower bounds discussed earlier 
(LBO, LBS  and LBS  ext) remain applicable, at the wade-off of increased computational requirements. 
Therefore, they only included LBO in the code. LB3, which is extendible to the PRCPSP but was only 
developed very recently, could not be included at the time the code was written. 



Resource-constrained project scheduling: a survey of recent developments 289 

The literature on the PRCPSP is almost void and very little computational experience is available. 
Demeulemeester and Herroelen [77] have programmed their procedure in Turbo C Version 2.0 for a 
personal computer IBM PS/2 Model 70. On the same 41 Patterson test problems used by Kaplan [75,76] 
and using a similar PC running at 16 MHz, it finds the optimal solution in an average CPU-time of 4.99 s, 
while the Kaplan code requires an average of 425 s. Using a personal computer IBM PS/2 running at 25 
MHz, they have tested their algorithm on all 110 Patterson test problems. All problems could be solved 
within 5 min of CPU-time, requiring an average of 6.90 s. 

Demeulemeester [72] has extended the code for the PRCPSP with variable resource availabilities. In 
that case, the adapted versions of Theorems 1 and 2 no longer apply. A total of 107 out of the 110 
Patterson test problems, modified by Simpson and Patterson [78] to incorporate variable resource 
availabilities, could be solved with an average computation time of 12.63 s. 

4. PROJECT SCHEDULING UNDER GENERALIZED PRECEDENCE RELATIONS 

A lot of  research efforts have been directed towards relaxing the strict precedence assumption of CPM/ 
PERT. The resulting types of precedence relations are often referred to as MPM (Metra Potential Method) 
precedence constraints [79,80], precedence diagramming [81], time windows [37], minimal and maximal 
time lags [82-87], and generalized precedence constraints [88]. In accordance with Elmaghraby and 
Kamburowski [89], we denote them as generalized precedence relations (GPRs) and distinguish between 
start-start (SS), start-finish (SF), finish-start (FS) and finish--finish (FF). 

GPRs can specify a minimal or maximal time lag between any pair of activities. A minimal time lag 
specifies that an activity can only start (finish) when the predecessor activity has already started (finished) 
for a certain time period. A maximal time lag specifies that an activity should be started (finished) at the 
latest a certain number of  time periods beyond the start (finish) of another activity. Many practical 
situations can be modelled using GPRs, such as activity ready times and deadlines, permissible and 
mandatory activity overlaps, time-varying resource requirements and availabilities, overlapping 
production activities and set-up times. 

4.1. The generalized resource-constrained project scheduling problem (GRCPSP) 

Demeulemeester and Herroelen [90] have extended the DH-procedure to the case of minimal time lags, 
activity release dates and deadlines and variable resource availabilities. The resulting problem, denoted 
as the GRCPSP in Table 4, can be conceptually formulated as follows: 

subject to 

Minf. (10) 

f,=o, (11) 

fj- 4>_f,- d,+SS,j, V(ij) ell,, (12) 

fj>-f, - d,+SF U, V(ij) E~, (13) 

fj - 4>-f + FS,j, V(i j )  EH 3, (14) 

fj>-f+FFq, V(ij) EH4, (15) 

f i -  d,>-g,, i= 1,2 .... n, (16) 

fi<-hi, i= 1,2 .... n, (17) 

Y. rik<--ak,, t= 1,2 .... f,; k= 1,2 .... K, (18) 
i~S, 

where H,,//2, H3,/-/4 are sets of pairs of activities indicating precedence relations of the type SSg, SF o, 
FS~, and FF U, respectively; g~ is the ready time of activity i, h i is the deadline of activity i, and a~ is the 
availability of resource type k during period I t -  1,t]. 

The objective function (10) is to minimize the project duration by minimizing the finish time of the 
unique dummy end activity n. (11)(12)(13)(14) ensure that the various types of precedence constraints are 
satisfied. (15) assigns the dummy start activity 1 a completion time of 0. (16) guarantee that the ready 
times are respected, while (17) guarantee that no deadlines are violated. (18) specify that the resource 
utilization during any time interval ] t -  1,t] does not exceed the resource availability levels during that 



290 Willy Herroelen et al. 

time interval for any of the resource types. 
In order to extend the DH-procedure to the GRCPSP, all precedence constraints are converted to 

finish--start precedence relations using the following conversion formula: 

FSo'=max{ SSu- d ~, SFij- d~- dj, FS o, FFo-  dj}. (19) 

The ready time g~ of an activity i can easily be transformed into a finish-start relation between the dummy 
start activity 1, which starts and finishes at time 0, and activity i itself: 

FSl/'=max{gi, FSI/ }. (20) 

Coping with deadlines h~ is somewhat more involved. For every activityj a latest allowable start time 
lsj has to be computed such that whenever this activity j is delayed to start later than lsj, the deadline of 
this activity or of one of its direct or indirect successors is exceeded even if all subsequent activities were 
scheduled as soon as possible without considering the resource constraints. Consequently, if during the 
branch-and-bound procedure an activityj is assigned an early start time sj that exceeds its latest allowable 
start time lsj, backtracking can occur as no feasible solution can be found by continuing the search from 
this partial schedule. 

Demeulemeester and Herroelen [90] prove that the partial schedules may be constructed by semi- 
active timetabling. In addition, they show that it is sufficient to consider only minimal delaying 
alternatives in order to resolve a resource conflict. Last but not least, they extend the left-shift and outset 
dominance rules (Theorems 3 and 4). They also show that the critical sequence bound LBS and the 
extended critical sequence bound LBS °xt cannot be extended, leaving the remaining critical path length 
LBO as a possible lower bound (again LB3 can be extended to the GRCPSP but was not yet known when 
writing the code). 

The literature on the GRCPSP is very limited and a standard set of test problems has not yet been 
established. Demeulemeester and Herroelen [90] have coded the GDH-procedure in Turbo C Version 2.0 
for IBM PS/2 computers with 80486 processor operating at 25 MHz (or compatibles). The procedure was 
then tested on the 110 Patterson test problems as modified by Simpson and Patterson [78] to incorporate 
variable resource availabilities. The GDH-procedure could find the optimal solution for all 110 problems 
with constant resource availabilities in an average of 0.14 s. For the problems with variable resource 
availabilities, the GDH-procedure, when given a time limit of 10 min, could optimally solve 109 out of 
the 110 problems to optimality in an average CPU-time of 8.11 s (vis-/t-vis 100.85 s required on average 
by Simpson's serial procedure to solve 97 problems and 96.63 s required on average by Simpson's 
parallel procedure to solve 98 problems). When the code is allowed to run to completion, all problems 
are solved in an average of 60.16 s. As such, the GDH-procedure seems to be a very efficient and 
effective exact solution procedure for the GRCPSP. In addition, the computational experience obtained 
indicates that moderate changes in the ready times or in the resource availabilities do not have a 
significant impact on the computation times. The inlroduction of deadlines significantly reduces the 
solution time required. Allowing activity overlaps (negative FSu values) causes a strong increase in the 
required computation time. 

In the next section it is shown that a modification of the delaying scheme allows the DH-procedure to 
be extended to the case of resource-constrained project scheduling with minimal and maximal time 
lags. 

4.2. The resource-constrained project scheduling problem with generalized precedence relations 
(RCPSP-GPR) 

The resource-constrained project scheduling problem with generalized precedence relations (problem 
RCPSP-GPR in Table 4) allows for start-start, finish--start, start-finish and finish-finish constraints with 
minimal and maximal time lags. The minimal and maximal time lags between two activities i andj  have 
the form: 

min~: max. s i . l .SS i  j _sj<<si..[.SSij , rain< < max. si+SFiy <--fj--si+SF 0 , 
rain<: < max. r a in<  < max ,+FS s +FS , +FF +FF f ,  ,J - J<-f  ,J ,J <- fJ<- f ,  o • 

The different types of GPRs can be represented in a standardized form by reducing them to just one type, 
e.g. the minimal start-start precedence relations, using the following transformation rules [37]: 



Resource-constrained project scheduling: a survey of recent developments 291 

s +SS~"<-s,~s~+li,<.s, 
J J g 

si + SS~j X>-sj=sj + lji<--si 

r n i n ~  ~ < :  si+SF o <-fj si+l~j_sj 

s~ + SVTX>-fj=sj + 6i<-s~ 

fi + FS~i~<--sj~si + liSzsj 

f~ + FS~>-s j~s j  + 6,<-si 
rnin f i+FF 0 <-fj~si+lij<sj 

f + FF~>-f j~s j+lTzs i  

with li.=SS~i"; 
J 

with lji = - SSi~X; 

' min with lq=SF 0 - dj; 

with lji=dj - S F ~ ;  

with lij=di + FS~in; 

with lji= - dj+ F S ~ ;  
' _ ~ rain. wRh lij-di dj+FFij , 

with lji=dj - di + FF~ ~. 

Conceptually, the RCPSP-GPR can then be formulated as follows: 

Minimize s, 

Subject to 

(21) 

si + Iv<-s j, V(ij) e E, (22) 

Y. rik<-au, k= 1,2 ..... m; t= 1,2 ..... T, (23) 
i e S ( t )  

sl=0, (24) 

siEN, i= 1,2 ..... n. (25) 

The objective function given in (21) minimizes the project duration, given by the starting time (or 
finishing time: d,=0) of the dummy activity n. The precedence constraints are denoted in standardized 
form by (22). (23) represent the resource constraints. The resource requirements are assumed to be 
constant over time, although this assumption can be relaxed using GPRs without having to change the 
solution procedures. (24) forces the dummy start activity to begin at time zero and (25) ensure that the 
activity starting times assume nonnegative integer values. Once started, activities run to completion. 

The RCPSP-GPR is known to be strongly NP-hard, and even the feasibility problem, i.e. the problem 
of testing whether an RCPSP-GPR instance has a feasible solution, is NP-complete [37]. To the best of 
our knowledge, the only optimal solution procedures for the RCPSP-GPR are the branch-and-bound 
algorithm of Bartusch et al. [37] and De Reyck and Herroelen [92]. The computational experience 
obtained with the procedure of Bartusch et al. [37] is limited to a single bridge construction project and 
the computer code is no longer available [91]. The procedure is a depth-first type branch-and-bound 
procedure which is based on the concept of a forbidden set, i.e. a set of activities which may never be 
scheduled in parallel because a violation of the resource constraints would result. Such a set is called 
minimal if no subset of that set constitutes a forbidden set in itself. Moreover, a minimal forbidden set 
is labelled a reduced forbidden set if the activities belonging to that set can be scheduled in parallel 
without violating the (generalized) precedence constraints between them. The procedure starts with 
computing the earliest start schedule and consequently adds new precedence relations between activities 
in order to eliminate the reduced forbidden sets until no such set is scheduled in parallel in the earliest 
start schedule. 

The procedure of De Reyck and Herroelen [92] is a branch-and-bound procedure based on the concepts 
of minimal delaying alternatives as developed by Demeulemeester and Herroelen [40] for the RCPSP. 
The nodes in the search tree represent the initial project network, described by a matrix D=[do] , where 
d,j represents the longest path length between activities i and j,  extended with extra (zero-lag finish-start) 
precedence relations to resolve a resource conflict present in the parent node, which results in an extended 
matrix D'. Nodes which represent time-feasible but resource-infeasible project networks and which are 
not fathomed by any node fathoming rules described below lead to a new branching. Therefore, each 
(undominated) node represents a time-feasible, but not necessarily resource-feasible project network. 
Resource conflicts are resolved using the concept of minimal delaying alternatives [40]. For the RCPSP- 
GPR, the concept of a minimal delaying alternative is extended to the concept of a minimal delaying 
mode as follows. Each of the minimal delaying alternatives is delayed (enforced by extra zero-lag fmish- 
start precedence relations i<j, implying si+d~<-sj) by each of the remaining activities also belonging to 
the conflict set S,., the set of activities in progress in period ]t" - 1,t'] (the period of thefirst resource 
conflict). In this way, each delaying alternative can give rise to several delaying modes. In general, the 



292 Willy Herroelen et al. 

delaying set D, i.e. the set of all minimal delaying alternatives, is equal to: 

D= { D a l D d C S( t*) and V res°urce type k : ~ ~Y's(:) r~ 

-- ~, rik<<-akandVDd, ED\{Dd} :Dd,(~Dd~. 
i e D  d 3 

The set of mirtimal delaying modes equals: M= {M m I Mm = {k<Dd}, kES(t*)X~Dd, DdeD}. Activity k is 
called the delaying activity: k<D d implies that k<l for all l~D d. For the example described in Section 
2.2 (see Fig. 3), the 8 resulting delaying modes are depicted in Fig. 4. Now, the operator "<"  does not 
represent a temporal constraint as in the DH-procedure, but denotes a zero-lag finish-start precedence 
constraint (which is an important distinction because in the RCPSP-GPR, contrary to the RCPSP, the 
delaying activity can again be delayed later on). 

Each minimal delaying mode is examined for time-feasibility and, if feasible, evaluated by computing 
the critical path based lower bound LBO. Each time-feasible minimal delaying mode with a lower bound 
LBO< T is then considered for further branching, which occurs from the node with smallest LBO. If the 
node represents a project network in which a resource conflict occurs, a new branching occurs. The 
procedure is of the depth-first type, i.e. branching occurs until at a certain level in the tree, there are no 
delaying modes left to branch from. Then, the procedure backtracks to the previous level in the search 
tree and reconsiders the other delaying modes (not yet branched from) at that level. The procedure stops 
when it backtracks to level 0. Nodes are fathomed when they represent a time-infeasible network or when 
LB0 exceeds or equals T. The following two dominance rules rely on the identification of redundant 
delaying alternatives and redundant delaying modes: 

Theorem 5. I f  there exists a minimal delaying alternative D d with activity i ~ Dd but its successor j ~ D d 
(d0.-0), D d can be extended with activity j. f f  the resulting delaying alternative becomes non-minimal as 
a result of  this operation it may be eliminated from further consideration. 

Theorem 6. When a minimal delaying alternative D d gives rise to two delaying modes with delaying 
activities i and j, the latter mode is dominated by the former iff d~ + dj>-di. 

In addition, the following precedence subset dominance rule is incorporated in the procedure: 

Theorem 7. I f  the set of  added precedence constraints which leads to the project network (in the form 
of an extended distance matrix) in node x contains as a subset another set of precedence constraints 
leading to the project network (extended distance matrix) in a previously examined node y in another 

1 2 ~ 4 5 

2 < 1  3 < 1  4 < 1  1 < 2  3 < 2  

delaying alternative 1 

6 7 8 

4 < 2  1 < 3  2 < 3  
1 < 4  2 < 4  

delaying alternative 2 delaying a l t e ~  

8 delaying modes 

Fig. 4. The concept of minimal delaying modes. 



Resource-constrained project scheduling: a survey of recent developments 293 

branch o f  the search tree, node x can be fathomed. 

Before initiating the branch-and-bound procedure, the solution space can be reduced by the following 
preprocessing rule: 

Theorem 8. I f  3 i j  e V and resource type k for  which rik + rjk > a ~ and - dj < do < d i, we can set lij = d i without 
changing the optimal solution o f  the RCPSP-GPR. 

The bounding argument involves the use of a lower bound LB3 g which is computed using an extended 
version of the procedure of Demeulemeester and Herroelen [41] for computing the lower bound LB3. 

The procedure has been programmed in Microsoft Visual C++ 2.0 under Windows NT for use on a 
Pentium 60 MHz personal computer with 16 Mb of internal memory. It has been validated on 550 
RCPSP-GPR instances, generated from the problem set for the RCPSP assembled by Patterson [48]. A 
detailed analysis reveals that the percentage of maximal precedence relations, their tightness and the 
percentage of precedence relations that allow for activity overlaps have a significant impact on the 
computational effort. The higher the number of maximal time lags and the higher the number of minimal 
time lags that allow for activity overlaps, the more efficient the procedure. In order to test the 
performance of a truncated version of the procedure, an experiment was performed in which the 
procedure was run until (a) the first feasible solution was found, (b) for 1 s, and (c) for 10 s. The average 
deviation from the optimum for these three cases was 4.6%, 0.8% and 0.1%, respectively. When many 
(tight) maximal time lags are present and the minimal time lags allow for activity overlaps, the average 
deviation decreases to 3.75%, 0% and 0%, respectively. 

De Reyck and Herroelen [92] also report computational experience on three different problem sets 
generated using the problem generator ProGen/max developed by Schwindt [85]. The first set consists of 
1080 instances involving 100 activities and 5 resource types, satisfying a variety of pre-set parameters. 
The second set of 100 activity problems consists of 1440 instances with up to 8 resource types generated 
by Franck and Neumann [86]. De Reyck and Herroelen [92] use a third set of 7200 instances ranging in 
problem size from 10 up to 100 activities with a requirement for 5 resource types. They show that a 
tnmcated version of the procedure outperforms a combination of the best heuristic procedures available 
[82,83,86,87]. 

5. MAXIMIZING THE NET PRESENT VALUE IN PROJECT NETWORKS 

Originally, the focus of most project scheduling problems was on minimizing the project makespan. 
Minimizing the project duration is an example of a regular objective function. A regular objective 
function is a nondecreasing function of the activity completion times, i.e. when the activity completion 
times increase, the objective function value increases (or remains the same). Other regular objective 
functions include the minimization of total project costs including tardiness penalties with respect to 
activity and project due dates. This objective function is often used to model the multi-project scheduling 
problem, in which multiple projects are to be scheduled simultaneously. In recent years, researchers have 
concentrated on non-regular objective functions for which the condition above does not hold. This 
implies that delaying activities may improve the performance of the schedule, even if such a delay is not 
imposed by resource or other (temporal or precedence) constraints. Non-regular objective functions 
include minimizing the weighted earliness-tardiness of the activities (project) relative to activity (project) 
due dates, and maximizing the net present value (NPV) of the project. Especially the latter objective has 
become increasingly popular for coping with financial considerations in project scheduling. 

The majority of the NPV-contributions assume a completely deterministic project setting, in which all 
relevant problem data, including the various cash flows, are assumed known from the outset. Research 
efforts have led to optimal procedures for the unconstrained project scheduling problem, where activities 
are only subject to precedence constraints (problem MAX-NPV in Table 4). In addition, numerous efforts 
aim at providing optimal or suboptimal solutions to the project scheduling problem under various types 
of resource constraints (among them problems RCPSP-DC and RCPSPDC-GPR mentioned in Table 4), 
using a rich variety of often confusing assumptions with respect to network representation (activity-on- 
the-node versus activity-on-the-arc), cash flow patterns (positive and/or negative, event-oriented or 
activity-based), and resource constraints (capital, constrained, different resource types, materials 
considerations, time/cost trade-offs). A number of efforts focus on the simultaneous determination of 
both the amount and timing of payments. Last, a modest start has been taken in tackling the stochastic 



294 Willy Herroelen et al. 

aspects of the scheduling problem involved. For a recent review of the vast literature and a categorization 
of the solution procedures, we refer the reader to Herroelen et aL [93]. 

5.1. The MAX-NPV problem 

The deterministic unconstrained MAX-NPV problem, which is sometimes denoted as the payment 
scheduling problem (hence the notation MAX-NPV, PSP in Table 4), can be described as follows. The 
project is represented in activity-on-the-node format by a network G=(V,E) where the set of nodes, V, 
represents activities and the set of arcs, E, represents finish--start precedence constraints with a time lag 
of zero. We assume, without loss of generality, that there is a single dummy start node 1 and a single 
dummy end node n = [1,]. The problem is unconstrained in that no constraints are imposed on the use of 
resources. The activities have a fixed duration, d,. (i= 1,2,...,n), and the performance of each activity 
involves a series of cash flow payments and receipts throughout the activity duration. A terminal value 
of each activity upon completion can be calculated by compounding the associated cash flows to the end 
of the activity as follows: 

C,= ~ Vi,e °~a'-°, (26) 
t=l  

where C; denotes the terminal value of cash flows in activity i at its completion, Fi, represents the cash 
flows for activity i in period t, t= 1,2 ..... dr and a is the discount rate. 

A conceptual formulation of the deterministic unconstrained MAX-NPVproblem may now look as 
follows: 

Max E qi, C~ (27) 
i=1 

subject to 

f,<-fj- 4. v( i j )  EH, (28) 

f.<-r, (29) 

where q, denotes the factor for discounting over t periods to period zero; i.e., q,=exp( - at) and T is the 
project deadline. 

The objective (27) is to maximize the net present value of the project. The constraint set given in (28) 
maintains the finish-start precedence relations among the activities. The final constraint (29) limits the 
project duration to a negotiated project deadline. 

Several procedures have been presented for solving the MAX-NPV problem. Russell [94] proposed a 
successive approximation approach using the first term of a Taylor series expansion of the objective 
function and a dual formulation that he showed to be a transshipment problem. Grinold [95] transformed 
tiffs problem into a linear problem and developed two solution procedures which exploit the solution 
logic of a weighted distribution problem. Elmaghraby and Herroelen [96] and Herroelen and Gallens [97] 
describe a solution procedure based on the intuitive argument that positive cash flows should be 
scheduled as early as possible and negative cash flows as late as possible. 

The most efficient algorithm is due to Demeulemeester et al. [98]. The algorithm starts by computing 
the earliest completion time for the activities based on traditional forward pass critical path calculations 
and determines the corresponding early tree in the network which spans all activities (nodes) scheduled 
at their earliest completion times and which corresponds to a feasible solution with a project duration 
equal to the critical path length (the arcs of the early tree denote the binding precedence relations). The 
algorithm then builds the current tree by delaying, in reverse order, all nodes with a negative cash flow 
as much as possible within the early tree; i.e., by linking them to their earliest starting successor. Using 
the dummy node 1 as the search base, the algorithm will enter a recursive search of the current tree to 
identify partial trees that might be shifted forwards (away from time zero) in order to increase the NPV 
of the project. Due to the structure of the recursive search it can never happen that a backward shift 
(towards time zero) of a partial tree can lead to an increase in the NPVof the  project: any partial tree that 
is not scheduled at its earliest starting point has a negative NPV and should be scheduled as late as 
possible. When a partial tree is the subject of a forward shift, the algorithm computes its minimal 
displacement interval and updates the current tree. Upon a shift, the algorithm repeats the recursive 
search on the current tree associated with the new feasible solution. During the seareh, it is possible that 



Resource-constrained project scheduling: a survey of recent developments 295 

the current tree disconnects into two parts, one part being shifted forward till it hits the deadline. If this 
happens, repetitively performing the recursion will only further optimize the tree connected to node 1, 
since the tree connected to node n is already optimal. The algorithm stops when no partial trees can be 
shifted that increase the NPV of the project. 

The procedure has been programmed in Microsoft ® Visual C++ 2.0 under Windows NT for use on a 
Digital Venturis Pentiurn 60 MHz personal computer. Computational tests on two data sets (98 test 
problems adapted from the 110 Patterson problem set [48] and 1980 networks adapted from the De Reyck 
and Herroelen set of ALB test problems [66]) reveal that the recursive search algorithm is very efficient. 
It finds the optimal solution in an average of 0.43 ms for the Patterson set and 0.42 ms for the ALB 
problem set. It outperforms Grinold's procedure in that it is on the average 2.5 times faster on the 
Patterson set and 2.6 times faster on the ALB set at a much smaller CPU-time variance. 

De Reyck and Herroelen [99] recently extended the Demeulemeester et al. [98] procedure to cope with 
the above discussed generalized precedence relations, which introduce arbitrary minimal and maximal 
time lags between the start and completion of activities. For the set of 7200 problem instances generated 
for the RCPSP-GPR [92] by ignoring the resource requirements and using uniformly generated cash 
flows in the interval [ -  500,+500], the required CPU-times are very small (average computation times 
are smaller than 1 s, even for the 100-activity projects, with a maximum of 1.6 s). The number of 
activities has a strong impact on the required computation time. Moreover, there is a positive correlation 
between the order strength (OS) and the required CPU-time: when OS increases, the problem becomes 
harder. 

5.2. The RCPSP with discounted cash flows (RCPSP-DC) 

Adding renewable resource constraints to the model of (27)(28)(29) yields the NP-hard [100] resource- 
constrained project scheduling problem with discounted cashflows. Icmeli and Ereng0~ [ 101 ] present the 
only branch-and-bound procedure for the resource-constrained MAX-NPV problem currently available. 
The project due date T is obtained as T=s*D, where D is the project duration obtained from a heuristic 
solution procedure, and s is a constant greater than 1. The branch-and-bound procedure is to be 
considered an extension of the DH-procedure [40] for solving the RCPSE At each node of the search tree 
a complete schedule (which may be resource infeasible) is obtained. At the initial node of the tree, an 
optimal solution to the corresponding unconstrained MAX-NPV problem is obtained using the fixed 
deadline algorithm of Grinold [95], yielding an upper bound. If this solution is resource feasible the 
procedure terminates. If not, branching is done using the modified version of the delaying scheme used 
by Demeulemeester and Herroelen [40] to resolve resource conflicts, as described in the previous section. 
This modification is necessary because semi-active timetabling which starts activities as early as possible 
within the given constraints is inappropriate under the non-regular NPV-objective. 

The subproblems generated by the branching process are solved using Grinold [95]. A node is 
fathomed either if the optimal unconstrained solution has a project duration exceeding the due date, or 
if it is less than or equal to that of the incumbent solution. The node with the greatest objective function 
value is selected for further branching. 

The algorithm is written in Fortran and run on an IBM3090 computer with vector processing. The code 
was validated on a problem set derived from some of the Patterson [48] problems and some of the 
problems generated by Kolisch et aL [53]. The algorithm was shown to outperform the integer 
programming procedure developed by Yang et al. [ 102]. It is to be expected that computational gains can 
be obtained from solving the subproblems using the optimal recursive search algorithm of 
Demeulemeester et al. [98] for solving the MAX-NPV problem instead of Grinold's procedure. 

Recently, De Reyck and Herroelen [103] presented an optimal solution procedure for the resource- 
constrained project scheduling problem with discounted cash flows and generalized precedence relations 
(problem RCPSPDC-GPR in Table 4). This depth-first branch-and-bound algorithm, the only optimal 
procedure currently available, uses the MAX-NPV procedure of De Reyck and Herroelen [92] for the 
computation of upper and lower bounds. Extensive computational experience indicates that a truncated 
version of the procedure yields very promising results. 

6. DISCRETETRADE-OFFS IN PROJECT SCHEDULING 

Various types of trade-offs occur in project scheduling practice and have been studied in the context 
of project scheduling. In this section we focus on discrete time/resource and resource/resource trade- 
offs. 



296 Willy Herroelen et aL 

6.1. The discrete time~resource trade-off problem (DTRTP) 

In the RCPSP, each activity has a single execution mode: both the activity duration and its 
requirements for a set of renewable resources are assumed to be fixed. Herroelen [104] and Elmaghraby 
[105] were the first authors to deal with discrete time/resource trade-offs and, correspondingly, multiple 
ways for executing the project activities. In many real-life construction and software development 
projects, it often occurs that only one renewable bottleneck resource is available (e.g. labor) in constant 
amount throughout the project. During the project planning phase, project management traditionally 
relies on the work breakdown structure to specify work packages and to estimate the work content (e.g. 
amount of man-days) for each individual activity. In practice, several scenarios are available for the 
execution of the individual activities, Given the estimated work content for an activity, a set of allowable 
execution modes can be specified for its execution, each characterized by a fixed duration (e.g. days) and 
a constant resource requirement (e.g. units/day), the product of which is at least equal to the activity's 
specified work content. 

The problem that arises in such project scheduling environments is referred to as the discrete time/ 
resource trade-offproblem (problem DTRTP in Table 4). In the DTRTP, the duration of an activity is 
assumed to be a discrete, non-increasing function of the amount of a single renewable resource 
committed to it. Given the specified work content W~ for activity i (1-</-n), all M, efficient execution 
modes for its execution are determined based on time/resource trade-offs. Activity i when performed in 
mode m (1--<m<M~) has a duration d~,, and requires a constant amount r~ of the renewable resource 
during each period it is in progress, such that rimd~m is at least equal to W,.. A mode is called efficient if 
there is no other mode with equal or smaller duration and smaller resource requirement or equal resource 
requirement and smaller duration. Without loss of generality, we assume that the modes of each activity 
are sorted in the order of non-decreasing duration. The single renewable resource has a constant per 
period availability a. We assume that the dummy start node 1 and the dummy end node n have a single 
execution mode with zero duration and zero resource requirement. The objective is to schedule each 
activity in one of its modes, subject to the finish--start precedence and the renewable resource constraint, 
under the objective of minimizing the project makespan. Introducing the decision variables 

1, if activity i is performed in mode m and started at time t, 
X i m  t 0, otherwise, 

the DTRTP can be formulated as follows: 

Min ~ tx~, (30) 
/ m e  n 

subject to 

~ x,m, = 1, i = 1,2 ..... n, (31) 
m = l  t=e i 

~ (t+d,m)X,,, <- ~ ~ tx,,~, (ij)EH, (32) 
ra~|  t=e i m=l  t=ej 

rim ~ Xims~a, t= 1,2 ..... T, (33) 
i=l mffil s=rnax{t-dir~,el} 

xim,~ {0,1 }, i= 1,2 ..... n; m= 1,2,..,Mi; t=O,1 .... T, (34) 

where ei (l~) is the critical path based earliest (latest) start time of activity i based on the modes with the 
smallest duration, T is the upper bound on the project duration, and H is the set of precedence related 
activities. 

The objective function (30) minimizes the makespan of the project. Constraint set (31) ensures that 
each activity is assigned exactly one mode and exactly one start time. Constraints (32) denote the 
precedence constraints. Constraints (33) secure that the per period availability of the renewable resource 
is met. Finally, constraints (34) force the decision variables to assume 0-1 values. 

The DTRTP is a subproblem of the multi-mode resource-constrained project scheduling problem 
(MRCPSP), which includes, next to time/resource trade-offs, time/cost and resource/resource trade-offs. 
The MRCPSP also allows for multiple renewable, nonrenewable and doubly-constrained resources 
(limited on a per period basis and a total project basis) and a variety of objective functions [55]. As a 



Resource-constrained project scheduling: a survey of recent developments 297 

generalization of the RCPSP, the DTRTP is NP-hard. 
Demeulemeester et al. [106] present a branch-and-bound procedure for the DTRTP based on the 

concept of maximal activity-mode combinations, i.e. subsets of activities executed in a specific mode. At 
each decision point t (corresponding to the completion time of one or more activities), the branch-and- 
bound procedure evaluates the feasible partial schedules PSt (which correspond to nodes in the search 
tree) obtained by enumerating all feasible maximal (i.e. subset-maximal) activity-mode combinations. 
Activity-mode combinations are feasible if the activities can be executed in parallel in the specified mode 
without resulting in a resource constraint violation. They are maximal when no other activity can be 
added in one of its modes without causing a resource conflict. 

Each partial schedule is evaluated using a precedence-based and a resource-based lower bound. The 
node with the smallest lower bound is selected for further branching at the next decision point t'. At time 
t' again all feasible maximal activity-mode combinations are enumerated under the assumption that 
earlier scheduled activities can be removed from the partial schedule. If they are not removed from the 
partial schedule, another mode can be selected provided that they are restarted at time t' and terminate 
earlier than in their previous mode. Backtracking occurs when a schedule is completed or when a branch 
is fathomed by one of the proposed dominance rules. The procedure stops with the optimal solution upon 
backtracking to level 0 in the search tree. The procedure uses several dominance rules, including a single- 
mode left-shift rule, a multi-mode left-shift rule and a outset dominance rule which are extensions of 
similar rules originally developed for the RCPSP. 

The procedure has been programmed in Microsoft ® Visual C++ 4.0 under Windows NT for use on a 
Pentium Pro 200 MHz personal computer. Computational experimentation using a full factorial 
experiment on a randomly generated problem set consisting of 5250 instances reveals that the procedure 
is capable of solving relatively large problem instances to optimality. A mmcated version of the 
procedure is also validated against several local search procedures developed by De Reyck et al. [107], 
including a full-fledged tabu search procedure. The results show the truncated branch-and-bound 
procedure to outperform the set of local search methods, making it a viable alternative for solving 
relatively large instances of the DTRTP. 

6.2. The multi-mode case 

As mentioned above, the multi-mode resource-constrained project scheduling problem (problem 
MRCPSP in Table 4) includes time/cost, time/resource and resource/resource trade-offs, multiple 
renewable (limited on a per period basis), nonrenewable (limited for the entire project) and doubly- 
constrained resources (limited on both a per period and a total project basis) and a variety of objective 
functions. In the basic problem setting, activities have to be scheduled in one of their possible execution 
modes subject to renewable and nonrenewable resource constraints in order to minimize the project 
duration. Doubly-constrained resources can easily be taken into account by enlarging the sets of 
renewable and nonrenewable resources. 

Sprecher et al. [108] have extended the DH-procedure to the multi-mode case under the minimum 
makespan objective. They borrowed the notion of tight schedules from Speranza and Vercellis [109] and 
introduce the notion of mode-minimal schedules. A schedule is tight if there does not exist an activity the 
finish time of which can be reduced without violating the constraints or changing the finish time or mode 
of any of the remaining activities in progress. They show that if there is an optimal schedule for a given 
instance, then there is an optimal schedule which is both tight and mode-minimal. Sprecher et al. [108] 
use a branching scheme which fixes the mode of eligible activities before putting them in progress. 
Resource conflicts are then resolved through the logic of the DH-procedure; i.e., by delaying minimal 
delaying alternatives. The algorithm has been coded in Borland C for an IBM-compatible 386DX 
personal computer with 40 MHz clockpulse, and has been tested on 536 instances generated using 
ProGen. Each instance consists of 10 activities, three possible execution modes for each activity with a 
duration varying between 1 and 10 periods, two renewable and two nonrenewable resources. The 
problems are solved in an average CPU-time of 0.53 s. As such it outperforms previously developed 
procedures by Sprecher [110] and Speranza and Vercellis [109]. Moreover, it has been shown by 
Hartmann and Sprecher [ 111 ] that the procedure of Speranza and Vercellis, by excluding from the search 
non-tight partial schedules, may miss the optimal solution. 

Sprecher and Drexl [55] have subsequently developed a branch-and-bound procedure which relies on 
an enumeration scheme based on the precedence tree concept introduced by Patterson et al. [112,113] and 
already used by Sprecher [ 110]. In the precedence tree, an activity is considered to become eligible (and 

CA04 25:4-6* 



298 Willy Herroelen et al. 

to become a descendant of a parent node in the search tree) if all its predecessors are scheduled but not 
necessarily finished. The basic scheme is enhanced by different static and dynamic search tree reduction 
schemes, preprocessing and bounding rules. The procedure has been coded in GNU C and runs under OS/ 
2 on a personal computer (80486DX processor, 66MHz clockpulse, 16 Mb memory). More than ten 
thousand problem instances have been generated using ProGen to evaluate the algorithm's performance. 
The number of activities in the test instances ranges from 10 to 20, from 1 up to 5 execution modes, 1 
up to 5 renewable and 1 up to 3 nonrenewable resources. For the basic problem subset used to evaluate 
ProGen [53]; i.e. 536 ten-activity problems, 3 modes, 2 renewable and 2 nonrenewable resources, the 
authors report an average CPU-time of 0.14 s (standard deviation of 0.21 s, with a maximum of 2.31 s). 
Over the complete set of instances, CPU-times seem to increase exponentially with the number of jobs 
and modes and seem to decrease with an increasing complexity (measured by the above mentioned 
CNC). The number of renewable resources seems to influence the CPU-times linearly. The number of 
nonrenewable resources has a strong (positive correlation) impact on CPU-times. The higher the resource 
factor RF, and the lower the resource strength RS, the higher the CPU-time required. Encouraging results 
are reported using a truncated version of the algorithm. The Sprecher and Drexl [55] procedure clearly 
constitutes a benchmark for the MRCPSP. 

Recently, the MRCPSP logic was extended through the incorporation of partially (non)renewable 
resources, in which resources are introduced which are nonrenewable for a certain time period rather than 
for the entire project duration, i.e. they can be renewed in certain time periods [114-116]. These partially 
renewable resources can be viewed as a generalization of both renewable and nonrenewable resources. 
In addition, recent research efforts have been directed towards the incorporation of mode identity 
constraints, a special case of the MRCPSP in which activities are grouped into sets for which one single 
execution mode has to be chosen [ 117,118]. 

7. CONCLUSIONS 

Over the past decade, and especially over the past five years, considerable progress has been made in 
designing optimal solution procedures for the resource-constrained project scheduling problem (RCPSP). 
While at the time of the first extensive performance evaluation of optimal enumeration procedures [48], 
only one procedure [33] was capable of solving all the 110 Patterson test problems on a mainframe, we 
now witness the situation that all problems can be solved optimally by the DH2 procedure in an average 
CPU-time of 0.002 s on a Pentium Pro processor with 200 MHz clock pulse. These remarkable results 
indicate that the Patterson 110 problem set, an assembled set of test problems which do not satisfy pre-set 
values of problem parameters and which for many years has served as the de facto standard test set, can 
no longer uniquely serve as the benchmark test set for the RCPSE 

New oFtimal (and suboptimal) procedures should be validated on a wider set of test instances, 
generated to satisfy precept values of relevant problem parameters. ProGen, the problem generator 
developed by Kolisch e t  al. [53], has been used to generate a set of 480 RCPSP test instances which 
currently serves as the benchmark test set. The DH2 procedure has recently optimally solved all problems 
in this set in an average CPU-time of 0.37 s (with a maximum of 50.97 s) on a 200 MHz Pentium Pro 
personal computer. 

Clearly, the state of the art is such that properly designed depth-first branch-and-bound procedures 
offer the best potential for solving the RCPSE The solution logic which relies on a branching strategy 
based on resolving resource conflicts by delaying minimal subsets of activities in combination with an 
effective cutset dominance rule and easy to compute and effective lower bounds, lies at the very heart of 
the efficient DH-procedure [40] and its extensions DH1 [41] and DH2. The logic has a wide field of 
application as witnessed by the possible extensions into a number of important derived resource- 
constrained scheduling problems (see Table 5). 

Computational experience gained on a wide variety of test instances confirms the rich potential of 
truncated branch-and-bound procedures. Often, optimal solutions can be found within short amounts of 
computation time. Often also, the quality of the solutions obtained by truncated branch-and-bound 
procedures outperforms the solution quality of many heuristics. Truncated exact procedures are 
promising tools for solving real problems (of sufficiently large size) within an acceptable computational 
burden and with acceptable solution quality. 

Most computational experience has been gained on the 110 Patterson problem set and the test problems 
generated using ProGen (a project scheduling problem library has been made available on an ftp-site by 
Kolisch and Sprecher [56]). Results confirm that the 110 test problems no longer serve as the de facto 



Resource-constrained project scheduling: a survey of recent developments 

Table 5. Extensions of DH solution concepts 

299 

RCPSP PRCPSP GRCPSP RCPSP-GPR DTRTP MRCPSP RCPSP-DC RCPSPDC-GPR 

Semi-active timetabling yes yes yes no yes yes no no 
Min delaying alternatives(max scheduling alternatives) yes yes yes yes yes yes yes yes 

Min delaying modes no no no yes no no yes yes 
LBO yes yes yes yes yes yes no no 
LBS yes yes no no yes yes no no 

LBS "x~ yes yes no no yes yes no no 
LB3 yes yes yes yes yes yes no no 

Theorem 1 yes yes yes" no yes yes no no 
Theorem 2 yes yes yes a no yes yes no no 
Theorem 3 yes yes yes no yes yes no no 
Theorem 4 yes yes yes no yes yes no no 

Theorem 7 (subset dominance) yes yes yes yes yes yes yes yes 

~Not if resource availabilities are allowed to vary over time. 

standard. Gaining computational experience on a set of test problems which satisfy pre-set values of 
relevant problem parameters and which span the full range of complexity is crucial. This warrants further 
research on the issue of establishing additional relevant factors which explain the real complexity of a 
problem instance. Efforts to incorporate such parameters in the existing problem generators, or removing 
others with no explanatory power, should make it possible to establish workable problem test sets as a 
base for full factorial experiments which can be used for validating optimal and suboptimal procedures 
for solving the RCPSP and its important, realistic problem derivatives. 

Acknowledgements---We would like to thank two anonymous referees for their comments and helpful suggestions for improving 
the structure and readability of this paper. 

R E F E R E N C E S  

1. Muth, J. F. and Thompson, G. L., Industrial Scheduling. Prentice Hall, Englewood Cliffs, N.J., 1963. 
2. Conway, R. W., Maxwell, W. L. and Miller L. W., Theory of Scheduling. Addison-Wesley Publishing Company, 1967. 
3. Ashour, S., Sequencing Theory. Springer-Verlag, Berlin, 1972. 
4. Baker, K. R., Introduction to Sequencing and Scheduling. John Wiley, New York, 1974. 
5. Rinnooy Kan, A. H. G., Machine Scheduling Problems--Classification, Complexity and Computations. M. Nijhoff, The 

Netherlands, 1976. 
6. French, S., Sequencing and Scheduling---An Introduction to the Mathematics of the Job Shop. John Wiley, New York, 1982. 
7. Bellmann, R., Esogbue, A. O. and Nabeshima, I., Mathematical Aspects of Scheduling and Applications. Pergamon Press, 

Oxford, U.K., 1982. 
8. Herroelen, W., Operationele Produktieplanning. Acco, Leuven, 1991. 
9. Blazewicz, J., Ecker, K., Schmidt, G. and Weglarz, J., Scheduling in Computer and Manufacturing Systems. Springer-Verlag, 

Berlin, 1993. 
10. Morton, Th. E. and Pentico, D. W., Heuristic Scheduling Systems--With Applications to Production Systems and Project 

Management. Wiley Interscience, New York, 1993. 
11. Tanaev, V. S., Gordon, V. S. and Shafransky, Y. M., Scheduling Theory: Single-Stage Systems. Kluwer Academic Publishers, 

Dordrecht, 1994. 
12. Tanaev, V. S., Sotskov, Y. N. and Strusevich, V. A., Scheduling Theory: Multi-Stage Systems. Kluwer Academic Publishers, 

Dordrecht, 1994. 
13. Brucker, P., Scheduling Algorithms. Springer-Verlag, Berlin, 1995. 
14. Pinedo, M., Scheduling--Theory, Algorithms and Systems. Prentice-Hall, Englewood Cliffs, New Jersey, 1995. 
15. Gargeya, V. B. and Deane, R. H., Scheduling research in multiple resource constrained job shops: A review and critique. 

International Journal of Production Research, 1996, 34, 2077-2097. 
16. Blazewicz, J., Lenstra, J. K. and Rinnooy Kan, A. H. G., Scheduling projects to resource constraints: Classification and 

complexity. Discrete Applied Mathematics, 1983, 5, 11-24. 
17. Bowman, E. H., The schedule-sequencing problem. Operations Research, 1959, 7, 621-624. 
18. Brand, J. D., Meyer, W. L. and Shaffer, L. R., The resource scheduling problem in construction, Civil Engineering Studies, 

Report 5, Department of Civil Engineering, University of Illinois, Urbana, 1964. 
19. Wiest, J. D., Some properties of schedules for large projects with limited resources. Operations Research, 1964, 12, 

395-418. 
20. Moodie, C. L. and Mandeville, D. E., Project resource balancing by assembly line balancing techniques. Journal of Industrial 

Engineering, 1966, 17, 377-383. 
21. Elmaghraby, S. E., The sequencing of  n jobs on m parallel processors. Unpublished paper, North Carolina State University 

at Raleigh, Raleigh, U.S.A., 1967. 
22. Pritsker, A. B., Watters, L. J. and Wolfe, P. M., Multiproject scheduling with limited resources: A zero-one programming 

approach. Management Science, 1969, 16, 93-108. 
23. Patterson, J. H. and Huber, W. D., A horizon-varying zero-one approach to project scheduling. Management Science, 1974, 

20, 990--998. 
24. Patterson, J. H. and Roth, G., Scheduling a project under multiple resource constraints: A zero-one programming approach. 

AIlE Transactions, 1976, g, 449-456. 
25. Deekro, R. F., Winkofsky, E. P., Hebert, J. E. and Gagnon, R., A decomposition approach to multi-project scheduling. 

European Journal of  Operational Research, 1991, 51, 110--118. 



300 Willy Herroelen et aL 

26. Icmeli, O. and Rom, W. O., Solving the resource-consa'ained project scheduling problem with optimization subroutine library. 
Computers and Operations Research, 1996, 23, 801-817. 

27. Carruthers, J. A. and Battersby, A., Advances in critical path methods. Operational Research Quarterly, 1966, 17, 359-380. 
28. Petrovi~, R., Optimisation of resource allocation in project planning. Operations Research, 1968, 16, 559-586. 
29. Johnson, T. J. R., An algorithm for the resource constrained project scheduling problem. Ph.D. Dissertation, MIT, 1967 
30. Balas, E., Project Scheduling with Resource Constraints. In Applications of Mathematical Programming, ed E. M. L. Beale. 

The English University Press, London, 197 l, pp. 187-200. 
3 I. Schrage, L., Solving resource-constrained network problems by implicit enumeration---Nonpreemptive case. Operations 

Research, 1970, 10, 263-278. 
32. Davis, E. W. and Heidorn, G. E., An algorithm for optimal project scheduling under multiple resource constraints. 

Management Science, 1971, 27, B803-B816. 
33. Stinson, J. E, Davis, E. W. and Khumawala, B. M., Multiple resource-constrained scheduling using branch-and-bound. AIIE 

Transactions, 1978, 10, 252-259. 
34. Talbot, B. and Patterson, J. H., An efficient integer programming algorithm with network cuts for solving resource-constrained 

scheduling problems. Management Science, 1978, 24, 1163-1174. 
35. Radermacher, F. J., Scheduling of project networks. Annals of Operations Research, 1985, 4, 227-252. 
36. Christofides, N., Alvarez-Valdes, R. and Tamarit, J. M., Project scheduling with resource constraints: A branch and bound 

approach. European Journal of Operational Research, 1987, 29, 262-273. 
37. Bartusch, M., MShring, R. H. and Radermacher, E J., Scheduling project networks with resource constraints and time 

windows. Annals of Operations Research, 1988, 16, 201-240. 
38. Bell, C. A. and Park, K., Solving resource-constrained project scheduling problems by A" search. Naval Research Logistics, 

1990, 37, 61-84. 
39. Carlier, J. and Latapie, B., Une m~thode arborescente pour les probl~mes cumulatifs. R.A.I.R.O., 1991, 25, 311-340. 
40. Demeulemeester, E. and Herroelen, W., A branch-and-bound procedure for the multiple resource-constrained project 

scheduling problem. Management Science, 1992, 38, 1803-1818. 
41. Demeulemeester, E. and Herroelen, W., New benchmark results for the resource-constrained project scheduling problem. 

Management Science, 1997, 43, 1485--1492. 
42. Carlier, J. and Neron, E., A new branch and bound method for solving the resource constrained project scheduling problem. 

Proceedings of the Fifth International Workshop on Project Management and Scheduling, Poznan, April 11-13, 1996, pp. 
61-65. 

43. Mingozzi, A., Maniezzo, V., Ricciardelli, S. and Bianco, L., An exact algorithm for project scheduling with resource 
constraints based on a new mathematical formulation. Management Science, 1998, to appear. 

44. Brucker, P., Schoo, A. and Thiele, O., A branch-and-bound algorithm for the resource-constrained project scheduling problem. 
European Journal of Operational Research, 1998, to appear. 

45. Davis, E. W., Resource allocation in project network models---A survey. Journal of Industrial Engineering, 1966, 17, 
177-188. 

46. Davis, E. W., Project scheduling under resource constraints: Historical review and categorization of procedures. AIIE 
Transactions, 1973, 5, 297-313. 

47. Herroelen, W., Resource-constrained project scheduling---The state of the art. Operational Research Quarterly, 1972, 23, 
261-275. 

48. Patterson, J. H., A comparison of exact procedures for solving the multiple constrained resource project scheduling problem. 
Management Science, 1984, 30, 854--867. 

49. Icmeli, O., ErengOq, S. S. and Zappe, J. C., Project scheduling problems: A survey. International Journal of Production and 
Operations Management, 1993, 13, 80-91. 

50. Elmaghraby, S. E., Activity nets: A guided tour through some recent developments. European Journal of Operational 
Research, 1995, 82, 383-408. 

51. Herroelen, W. and Demeulemeester, E., Recent advances in branch-and-bound procedures for resource-constrained project 
scheduling problems. In Scheduling Theory and Its Applications, eds Ph. Chr~tienne, E. G. Coffmann Jr., J. K. Lenstra and 
Z. Liu. John Wiley and Sons, 1995, pp. 259-276. 

52. Ozdamar, L. and Ulusoy, G., A Survey on the resource-constrained project scheduling problem, liE Transactions, 1995, 27, 
574-586. 

53. Kolisch, R., Sprecher, A. and Drexl, A., Characterization and generation of a general class of resource-constrained project 
scheduling problems. Management Science, 1995, 41, 1693-1703. 

54. Demeulemeester, E., Herroelen, W., Simpson, W. P., Baroum, S., Patterson, J. H. and Yang, K.-K., On a paper by Christofides 
et al. for solving the multiple-resource constrained single project scheduling problem: European Journal of Operational 
Research, 1994, 76, 218--228. 

55. Sprecher, A. and Drexl, A., Solving multi-mode resource-constrained project scheduling problems by a simple, general and 
powerful sequencing algorithm. European Journal of Operational Research, 1998, to appear. 

56. Kolisch, R. and Spreeher, A., PSPLIB---A project scheduling problem library. European Journal of Operational Research, 
1997, 96, 205--216. 

57. De Reyck, B. and Herroelen, W., On the use of the complexity index as a measure of complexity in activity networks. 
European Journal of Operational Research, 1996, 91,347-366. 

58. Pascoe, T. L., Allocation of r~sourees----CPM. Revue Fran#aise de Recherche Opgrationelle, 1966, 38, 31-38. 
59. Davis, E. W., Project netwo¢lc summary measures and constrained resource scheduling, lie Transactions, 1975, 7, 132-142. 
60. Talbot, F. B., Resource-constrained project scheduling with time-resource trade-offs: The nonpreemptive case. Management 

Science, 1982, 28, 1197-1210. 
61. Kurtulus, I. S. and Narula, S. C., Multi-project scheduling: Analysis of project performance, liE Transactions, 1985, 17, 

58-66. 
62. Alvarez-Valdes, R. and Tamarit, J. M. Heuristic algorithms for resource-constrained project scheduling: A review and 

empirical analysis. In Advances in Project Scheduling, ed R. Slowinski and J. Weglarz. Elsevier, Amsterdam, 1989. 
63. Elmaghraby, S. E. and Herroelen, W., On the measurement of complexity in activity networks. European Journal of 

Operational Research, 1980, 5, 223-234. 
64. Bein, W, W., Kamburowski, J. and Stallmann, M. F. M., Optimal reduction of two-terminal directed aeyclic graphs. SlAM 

Journal on Computing, 1992, 21, 1112-1129. 



Resource-constrained project scheduling: a survey of recent developments 301 

65. De Reyck, B., On the use of the restrictiveness as a measure of complexity for resource-constrained project scheduling, 
Research Report 9535, Department of Applied Economics, K.U. Leuven., 1995. 

66. De Reyck, B. and Herroelen, W., Assembly line balancing by resource-constrained project scheduling techniques--A critical 
appraisal. Foundations of Computing and Decision Sciences, 1997, 99, 143-- 167. 

67. Mastor, A. A., An experimental and comparative evaluation of production line balancing techniques. Management Science, 
1970, 16, 728-746. 

68. Kao, E. P. C. and Queyranne, M., On dynamic programming methods for assembly line balancing. Operations Research, 
1992, 30, 375-390. 

69. Dar-El, E. M., MALB---A heuristic technique for balancing large single-model assembly lines. AIlE Transactions, 1973, 5, 
343-356. 

70. Cooper, D. F., Heuristics for scheduling resource-constrained projects: An experimental comparison. Management Science, 
1976, 22, 1186--1194. 

7l. Patterson, J. H., Project scheduling: The effects of problem structure on heuristic performance. Naval Research Logistics, 
1976, 23, 95-123. 

72. Demeulemeester, E., Optimal algorithms for various classes of multiple resource-constrained project scheduling problems. 
Ph.D. Thesis, Department of Applied Economic Sciences, Katholieke Universiteit Leuven, 1992. 

73. Slowinski, R., Two approaches to problems of resource allocation among project activities--A comparative study. Journal of 
the Operational Research Society, 1980, 31, 711-723. 

74. Weglarz, J., Project scheduling with contim,ously-divisible doubly-constrained resources. Management Science, 1981, 27, 
1040-1053. 

75. Kaplan, L., Resource-constrained project scheduling with preemption of jobs. Ph.D. Dissertation, University of Michigan, 
1988. 

76. Kaplan, L., Resource-constrained project scheduling with setup times, Unpublished paper, Department of Management, 
University of Tenessee, Knoxville, 1991. 

77. Demeulemeester, E. and Herroelen, W., An efficient optimal solution procedure for the preemptive resource-constrained 
project scheduling problem. European Journal of Operational Research, 1996, 90, 334--348. 

78. Simpson III, W. P. and Patterson, J. H., A multiple-tree search procedure for the resource-constrained project scheduling 
problem. European Journal of Operational Research, 1996, 89, 525--542. 

79. Kerbosch, J. A. G. M. and Schell, H. J., Network planning by the extended METRA potential method, Report KS-I.I, 
University of Technology Eindhoven, Department of Industrial Engineering, 1975. 

80. Zahn, J., Heuristics for scheduling resource-constrained projects in MPM networks. European Journal of Operational 
Research, 1994, 76, 192-205. 

81. Moder, J. J., Phillips, C. R. and Davis, E. W., Project Management with CPM, PERT and Precedence Diagramming. Van 
Nostrand Reinhold, 1983. 

82. Brinkmann, K. and Neumann, K., Heuristic procedures for resource-constrained project scheduling with minimal and 
maximal time lags: The minimum project duration and resource levelling problem, Technical Report WIOR-443, Institut fOr 
Wirtsehaftstheorie und Operations Research, Universitit Karlsruhe, 1994. 

83. Neumann, K. and Zahn, J., Heuristics for the minimum project-duration problem with minimal and maximal time lags under 
fixed resource constraints. Journal oflntelligent Manufacturing, 1995, 6, 145-154. 

84. Neumann, K. and Schwindt, C., Projects with minimal and maximal time lags: Construction of activity-on-node networks and 
applications, Technical Report WIOR-447, Institut for Wirtschat~stheorie und Operations Research, Universit~it Karlsruhe, 
1995. 

85. Schwindt, C., Generation of resource-constrained project scheduling problems with minimal and maximal time lags, 
Technical Report WIOR-489, Institut for Wirtschaftstheorie nnd Operations Research, Universit~t Karlsruhe, 1996. 

86. Franck, B. and Neumann, K., Priority-rule methods for the resource-constrained project scheduling problem with minimal and 
maximal time lags--An empirical analysis. Proceedings of the Fifth International Workshop on Project Management and 
Scheduling, April 11-13, Poznan, 1996, pp. 88-91. 

87. Schwindt, C. and Neumann, K., A new branch-and-bound-based heuristic for resource-constrained project scheduling with 
minimal and maximal time lags. Proceedings of the Fifth International Workshop on Project Management and Scheduling, 
April 11-13, Poznan, pp. 212-215, 1996. 

88. Wikum, E. D., Donna, C. L. and Nemhauser, G. L., One-machine generalized precedence constrained scheduling problems. 
Operations Research Letters, 1994, 16, 87-99. 

89. Elmaghraby, S. E. and Kamburowski, J., The analysis of activity networks under generalized precedence relations. 
Management Science, 1992, 38, 1245-1263. 

90. Demeulemeester, E. and Herroelen, W., A branch-and-bound procedure for the generalized resource-constrained project 
scheduling problem. Operations Research, 1997, 45, 201-212. 

91. M6hring, R. H., Private communication, 1996. 
92. De Reyck, B. and Herroelen, W., A branch-and-bound procedure for the resource-constrained project scheduling problem with 

generalized precedence constraints. European Journal of Operational Research, 1997, to appear. 
93. Herroelen, W., Van Dommelen, P. and Demeulemeester, E, Project network models with discounted cash flows---A guided 

tour through recent developments. European Journal of Operational Research, 1997, 100, 97-121. 
94. Russell, A. H., Cash flows in networks. Management Science, 1970, 16, 357-373. 
95. Grinold, R. C., The payment scheduling problem. Naval Research Logistics Quarterly, 1972, 19, 123-136. 
96. Elmaghraby, S. E. and Herroelen, W., The scheduling of activities to maximize the net present value of projects. European 

Journal of Operational Research, 1990, 49, 35-49. 
97. Herroelen, W, and Gallens, E., Computational experience with an optimal procedure for the scheduling of activities to 

maximize the net present value of projects. European Journal of Operational Research, 1993, 65, 274-277. 
98. Demeulemeester, E., Herroelen, W. and Van Dommelan, P., An optimal recursive search procedure for the deterministic 

unconstrained MAX-NPV scheduling problem, Research Report 9603, Department of Applied Economics, K.U. Leuven, 
1996. 

99. De Reyck, B. and Herroelen, W., An optimal procedure for the unconstrained MAX-NPV project scheduling problem with 
generalized precedence relations, Research Report 9642, Department of Applied Economics, K.U. Leuven, 1996. 

100. Baroum, S. M., An exact solution procedure for maximizing the net present value of resource-constrained projects. 
Unpublished Ph.D. Dissertation, Indiana University, 1992. 



302 Willy Herroelen et aL 

101. Icmeli, O. and Erengu¢, S., A branch-and-bound procedure for the resource-constrained project scheduling problem with 
discounted cash flows. Management Science, 1996, 42, 1395-1408. 

102. Yang, K. K., Talbot, F. B. and Patterson, J. H., Scheduling a project to maximize its net present value: An integer programming 
approach. European Journal of Operational Research, 1992, 64, 188-198. 

103. De Reyck, B. and Herroelen, W., An optimal procedure for the resource-constrained project scheduling problem with 
discounted cash flows and generalized precedence relations. Computers and Operations Research, 1998, 25, 1-17. 

104. l-Ierroelen, W., Een probleem van "resource allocation": Het toewijzen van netwerkactiviteiten aan ingenieurs. Comm. Eng. 
Thesis, Department of Applied Economics, K.U. Leuven, 1968. 

105. Elmaghraby, S. E., Activity Networks: Project Planning and Control by Network Models. John Wiley and Sons, New York, 
1977. 

106. Demeulemeester, E., De Reyck, B. and Herroelen, W., The discrete time/resource trade-offproblem in project networks---A 
branch-and-bound approach, Research Report 9717, Department of Applied Economics, K.U. Leuven, 1997. 

107. De Reyck, B., Demeulemeester, E. and Herroelen, W., Local search methods for the discrete time/resource trade-offproblem 
in project networks, Research Report 9710, Department of Applied Economics, K.U. Leuven, 1997. 

108. Sprecher, A., Hartmann, S. and Drexl, A., An exact algorithm for project scheduling with multiple modes. OR Spektrum, 1997, 
19, 195-203. 

109. Speranza, M. G. and Vercellis, C., Hierarchical models for multi-project planning and scheduling. European Journal of 
Operational Research, 1993, 64, 312-325. 

110. Sprecher, A., Resource-constrained project scheduling: Exact methods for the multi-mode case. In Lecture Notes in 
Economics and Mathematical Systems, Vol. 409, Springer-Verlag, Berlin, 1994. 

111. Hartmann, S. and Sprecher, A., A note on "Hierarchical models for multi-project planning and scheduling". European Journal 
of Operational Research, 1996, 94, 377-383. 

112. Patterson, J. H., Slowinski, R., Talbot, F. B. and Weglarz, J., An algorithm for a general class of precedence and resource 
constrained scheduling problems. In Advances in Project Scheduling, ed R. Slowinski and J. Weglarz. Elsevier, Amsterdam, 
1989. 

113. Patterson, J. H., Slowinski, R., Talbot, F. B. and Weglarz, J., Computational experience with a backtracking algorithm for 
solving a general class of precedence and resource-constrained scheduling problems. European Journal of Operational 
Research, 1990, 49, 68-79. 

114. B6ttcher, J., Drexl, A. and Kolisch, R., A branch-and-bound procedure for project scheduling with partially renewable 
resource constraints. Proceedings of the Fifth International Workshop on Project Management and Scheduling, Poznan, April 
11-13, 1996, pp. 48-51. 

115. Drexl, A., Local search methods for project scheduling under partially renewable resource constraints. INFORMS San Diego 
Meeting, May 4--7, 1997. 

116. Sehirmer, A. and Drexl, A., Partially renewable resources---A generalization of resource-constrained project scheduling. 
IFORS 14th Triennal Conference, Vancouver, B.C., July 8--12, 1996. 

117. Salewski, F. and Lieberam-Schmidt, S., Greedy look ahead methods for project scheduling under resource and mode identity 
constraints. Proceedings of the Fifth International Workshop on Project Management and Scheduling, Poznan, April 11-13, 
1996, pp. 207-211. 

118. Salewski, F., Tabu search algorithms for project scheduling under resource and mode identity constraints. IFORS 14th 
Triennal Conference, Vancouver, B.C., July 8-12, 1996. 


	Resource-constrained project scheduling: A survey of recent developments
	Citation

	PII: S0305-0548(97)00055-5

