
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

11-1998

A branch-and-bound procedure for the resource-constrained A branch-and-bound procedure for the resource-constrained

project scheduling problem with generalized precedence relations project scheduling problem with generalized precedence relations

Bert DE REYCK
Singapore Management University, bdreyck@smu.edu.sg

Willy HERROELEN

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

 Part of the Business Administration, Management, and Operations Commons, and the Management

Information Systems Commons

Citation Citation
DE REYCK, Bert and HERROELEN, Willy. A branch-and-bound procedure for the resource-constrained
project scheduling problem with generalized precedence relations. (1998). European Journal of
Operational Research. 111, (1), 152-174.
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6742

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6742&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

European Journal of Operational Research I 1 I (1998) 1522174

Theory and Methodology

A branch-and-bound procedure for the resource-constrained
project scheduling problem with generalized precedence relations

Bert De Reyck, Willy Herroelen *
Department of Applied Economics. Kutholieke Univrrsitrit Lrucen, Nuumsestruut 69, 3000 Leuven, Belgium

Received 1 October 1996: accepted 1 July 1997

Abstract

We present an optimal solution procedure for the resource-constrained project scheduling problem (RCPSP) with
generalized precedence relations (RCPSP-GPR) with the objective of minimizing the project makespan. The RCPSP-
GPR extends the RCPSP to arbitrary minimal and maximal time lags between the starting and completion times of
activities. The proposed procedure is suited for solving a general class of project scheduling problems and allows for
arbitrary precedence constraints, activity ready times and deadlines, multiple renewable resource constraints with
time-varying resource requirements and availabilities, several types of permissible and mandatory activity overlaps
and multiple projects. It can be extended to other regular and non-regular measures of performance. Essentially, the
procedure is a depth-first branch-and-bound algorithm in which the nodes in the search tree represent the original pro-
ject network extended with extra precedence relations to resolve a number of resource conflicts. These conflicts are re-
solved using the concept of minimal delaying modes, which is an extension of the notion of minimal delaying
alternatives for the RCPSP. Several bounds and dominance rules are used to fathom large portions of the search tree.
Extensive computational experience is reported. 0 1998 Elsevier Science B.V. All rights reserved.

Keywords: Project management; Critical path methods; Branch-and-bound; Generalized precedence relations

1. introduction

The Critical Path Method (CPM) (Kelley and
Walker, 1959) and Program Evaluation and Re-
view Technique (PERT) (Malcolm et al., 1959)
are devoted to minimizing the makespan of a pro-
ject under the assumption that required resources

*Corresponding author. Fax: +32 16 326 732; e-mail:
willy.herroelen@econ.kuleuven.ac.be.

are available in sufficient amounts and that the
technological precedence relations between any
pair of activities i and j imply that activity i must
be completed before activity j can be initiated.
Over the years, the assumption of sufficiently
available resources has been relaxed and many re-
search efforts have been directed towards project
scheduling with explicit consideration of resource
requirements and constraints. More recent re-
search has been directed at relaxing the strict pre-
cedence assumption of CPM/PERT. In accordance

0377-2217/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved
f’IISO377-2217(97)00305-6

B. De Reyck, W. Herroelen I European Journal of Operational Research 111 (1998) 152-174 153

with Elmaghraby and Kamburowski (1992), we
will refer to the resulting types of precedence rela-
tions as generalized precedence relations (GPRs).
We distinguish between four types of GPRs:
start-start (SS), start-finish (SF), finish-start
(FS) and finish-finish (FF). The resulting types
of precedence relations are also often referred to
as Metra Potential Method (MPM) precedence
constraints (Kerbosh and Schell, 1975; Zhan,
1994) precedence diagramming relations (Moder
et al., 1983) time windows (Bartusch et al.,
1988), minimal and maximal time lags (Neumann
and Schwindt, 1997; Neumann and Zhan, 1995;
Brinkmann and Neumann, 1996; Schwindt,
1996a), and generalized precedence constraints
(Wikum et al., 1994).

GPRs can specify a minimal or a maximal time
lag between a pair of activities. A minimal time lag
specifies that an activity can only start (finish)
when the predecessor activity has already started
(finished) for a certain time period. A maximal
time lag specifies that an activity should be started
(finished) at the latest a certain number of time pe-
riods beyond the start (finish) of another activity.
GPRs can be used to model a wide variety of spe-
cific problem characteristics, including (Bartusch
et al., 1988; De Reyck, 1995; Neumann and
Schwindt, 1997) activity ready times and dead-
lines, activities that have to start or terminate si-
multaneously, non-delay execution of activities,
several types of mandatory activity overlaps, fixed
activity starting times, time-varying resource re-
quirements and availabilities, time-windows for re-
sources, inventory restrictions, set-up times,
overlapping production activities (process batches,
transfer batches) and assembly line zoning con-
straints. The first treatment of GPRs is due to Ker-
bosh and Schell (1975) based on the pioneering
work of Roy (1962). Other studies include Cran-
da11 (1973) Elmaghraby (1977), Wiest (1981)
Moder et al. (1983) Bartusch et al. (1988) El-
maghraby and Kamburowski (1992) Zhan
(1994) De Reyck (1995) Neumann and Schwindt
(1997) Neumann and Zhan (1995) Schwindt
(1996a), Brinkmann and Neumann (1996) De
Reyck and Herroelen (1996a, b), Schwindt and
Neumann (1996) and Franck and Neumann
(1996).

In this paper, we present an optimal solution
procedure for the resource-constrained project
scheduling problem with generalized precedence
relations (further denoted as RCPSP-GPR). To
the best of our knowledge, the only optimal solu-
tion procedure presented in the literature for the
RCPSP-GPR is the branch-and-bound algorithm
of Bartusch et al. (1988). Heuristics have been pre-
sented by Zhan (1994) Neumann and Zhan
(1995) Brinkmann and Neumann (1996) Franck
and Neumann (1996) and Schwindt and Neumann
(1996).

The remainder of this paper is organized as fol-
lows. Section 2 elaborates on the concept of GPRs
and clarifies the terminology and the project repre-
sentation used. Section 3 continues with the tem-
poral analysis of activity networks with GPRs.
In Section 4, which discusses the resource analysis
of such networks, a branch-and-bound procedure
for the RCPSP-GPR is presented. Computational
results are given in Section 5. Section 6 is reserved
for our overall conclusions.

2. Generalized precedence relations

Assume a project represented in activity-on-
the-node format by a directed graph G = { V, E}
in which V is the set of vertices or activities,
and E is the set of edges or GPRs. The non-pre-
emptable activities are numbered from 1 to n,
where the dummy activities 1 and n mark the be-
ginning and the end of the project. The duration
of an activity is given by d, (1 < i < n), its start-
ing time by s,(1 d i d n) and its finishing time
by fi(1 < i < n). There are m renewable resource
types, with ~.,b(1 < i < n, 1 < k < m, 1 < x < di)
the resource requirements of activity i with res-
pect to resource type k in the xth period it is
in progress and ak,(l < k < m; 1 < t < T) the
availability of resource type k in time period
]t - 1, t] (T is an upper bound on the project
length). If the resource requirements and avail-
abilities are not time dependent, they are rep-
resented by Yik(l 6 id II, 1 <k d m) and
ak(1 d k d m) respectively. The minimal and
maximal time lags between two activities i and j
have the form:

154 B. De Reyck. W. Herroelen I European Journal of Operational Research 111 (1998) 152-I 74

Si + SSti" < Sj < Si + SS:ax,

s;+SFF <fi&si+SFF,

f;+FS;‘” &sj<f;+FSr,

,f,+FF+f,dJ;+FFT>

where S!$” represents a minimal time lag between
the start time of activity i and the start time of ac-
tivity j (similar definitions apply for SSY’,
FS;‘“, . . .). The various time lags can be represent-
ed in a standardizedform by transforming them to,
for instance, minimal SS precedence relations,
using the following transformation rules (Bartusch
et al., 1988):

Si + SST < Sj * Si + 1, 6 Sj

with 1, = SSF”,

s; + ssr 3 Sj * S,j + lji < S,

with lji = -SST,

S; + SF:‘” 6 f, + si + 1, < ~,i

with 1, = SF? - di,

s, + SF;“” 3 ,fi * Si + Iii < Sj

with lji = 4, - SFT,

fi + FSY’” 6 Sj + Si f 1, < Sj

with iii = di + FSG’“,

J; f FSF > S/ + Si f l,ii < Si

with lj; = -di - FST,

J; + FF$‘” <f, + Sr + 1, < S,

with 1, = di - d/ + FFZ’“.

A + FFT > f, + sj + l,il < si

with lji = dj - di - FFY.

In this way, all GPRs are consolidated in the
expression si + 1, < sj, where 111 denotes a minimal
SS time lag. If there is more than one time lag Ii/
between two activities i and j, only the maximum
time lag is retained. The interval [si + lij, si - lji]
is called the time window of sj relative to s, (a sim-
ilar definition can be found in Bartusch et al.,
1988). Applying these transformation rules to an
activity network with GPRs results in a so-called

constraint digraph, which is short for digraph of
temporal constraints.

A path (is, ik, i,, . . , it) is called a cycle if s = t.
With ‘path’ we mean a directed path, and with ‘cy-
cle’ we mean a directed cycle. The length of a path
(cycle) is defined as the sum of the lags associated
with the arcs belonging to that path (cycle). To en-
sure that the dummy start and finish activities cor-
respond to the beginning and the completion of
the project, we assume that there exists at least
one path with non-negative length from node 1
to every other node and at least one path from ev-
ery node i to node n which is equal to or larger
than di. If there are no such paths, we can insert
arcs (1,i) or (i,n) with weight zero or dj respective-
ly. P(i) = {j / (j, i) E E} is the set of all immediate
predecessors of node i, Q(i) = {j 1 (i, j) E E} is the
set of all its immediate successors. If there exists a
path from i to j, then we call i a predecessor of j
and j a successor of i. P*(i) and g(i) denote the
set of (not necessarily immediate) predecessors
and successors of node i respectively. If the length
of the longest path from i to j is non-negative, i is
called a real predecessor of j, and j is called a real
successor of i. Otherwise it is a jictitious one.
(These definitions differ slightly from the ones
used by Zhan (1994) and Neumann and Zhan
(1995).)

3. Temporal analysis

A schedule S= (~1, ~2, ,sn) is called time j&u-
sible, if the activity starting times satisfy all GPRs,
i.e. if they satisfy the following conditions:

Si>O YiEV, (1)

S, + l,i d sj v(il_i) E E, (2)

where Eq. (I) ensures that no activity starts before
the current time (time zero), and Eq. (2) denotes
the GPRs in standardized form. The minimum
starting times (~1, ~2,. . ,s,) satisfying both
Eqs. (1) and (2) form the early start schedule
ESS=(esl,es2,..., es,) associated with the tempo-
ral constraints. The calculation of an ESS can be
related to the test for existence of a time-feasible
schedule. The earliest start of an activity i can be

B. De Reyck, W. Herroelen I European Journal of Operational Research Ill (1998) 152-174 155

calculated by finding the longest path from node 1
to node i. We also know that there exists a time-
feasible schedule for G iff G has no cycle of positive
length (Bartusch et al., 1988). Such cycles would
unable us to compute activity starting times which
satisfy Eqs. (1) and (2). Therefore if we calculate
the matrix D = [dij], where dij denotes the longest
path length from node i to node j, a positive path
length from any node i to itself indicates the exis-
tence of a cycle of positive length and, consequent-
ly, the non-existence of a time-feasible schedule. In
the literature (Bartusch et al., 1988) the matrix D
is often referred to as the distance matrix, with dij
the maximal distance between activities i andj. We
prefer the term longest path instead of distance, al-
though the same notation D and dij is used. The
calculation of D can be done by standard graph al-
gorithms for longest paths in networks, for in-
stance by the Floyd-Warshall algorithm (see
Lawler, 1976). If we start with the matrix
DC’) = [d:!‘] with

1

0 if i = j,
d!‘) =

I/ l<j Yi,j) E E,

-cc otherwise,

we can compute D = DC”+‘) according to the up-
dating formula dt’ = max{d$-I), d,(f;-‘) + dt-’ }
(i, j, 1=1,2,. . . , n).Ifdii=Oforalli=1,2 ,..., n.
there exists a time-feasible schedule. The ESS is
given by the numbers in the upper row of D:
ESS=(dtr, dlz ,..., dl,). Computing D takes
0(n3) time.

4. Resource analysis

The RCPSP-GPR can be conceptually formu-
lated as follows:

minimize s, (3)

subject to si + 1, < ~,i V(i, j) E E, (4)

c r& dak, k= 1,2,...,m,
&(t)

t=1,2)..., T, (9

s1 = 0, (6)

s, E N, i= 1,2 ,..., n, (7)

where N denotes the set of natural numbers, S(t) is
the set of activities in progress in time period
]t - 1, t] and T is an upper bound on the pro-
ject duration, for instance T = CiEV max{di,
maxjcQ(i) { /ii)>.

Note that it is not always possible to derive a
feasible solution. The upper bound T indicates
the maximal value for the project makespan if a
feasible solution exists. The objective function giv-
en in Eq. (3) minimizes the project duration, given
by the starting time (or completion time, since
d,, = 0) of the dummy activity n. The GPRs are de-
noted in standardized form by Eq. (4). Eq. (5) rep-
resents the resource constraints. The resource
requirements and availabilities are assumed to be
constant over time, although this assumption can
easily be relaxed using GPRs without having to
change the solution procedures. Time-varying re-
source requirements can be modelled by splitting
up the activities in a number of subactivities with
a different constant resource requirement for each
of the resource types. The subactivities should then
be connected with minimal and maximal zero-lag
FS precedence relations which ensure a non-delay
execution of all the subactivities of each activity.
Time-varying resource availabilities can be han-
dled by creating dummy activities which absorb a
certain amount of each resource type for which a
constant availability (equal to the maximum avail-
ability over time of that resource type) can then be
assumed. These dummy activities should then be
assigned a fixed starting time using a minimal
and maximal time lag between dummy activity 1
and the dummy activity in question. Naturally, al-
lowing for time-varying resource requirements and
availabilities will undoubtedly lead to an increase
in the complexity of the RCPSP-GPR. Eq. (6)
forces the dummy start activity to begin at time ze-
ro and Eq. (7) ensures that the activities starting
time assume non-negative integer values. Once
started, activities run to completion. However, this
non-preemption condition can easily be relaxed
by splitting up the activities in unit-duration subac-
tivities (Demeulemeester and Herroelen, 1996)

156 B. De Reyck. PV Herroelen I European Journal of Operational Research 111 (1998) 152-I 74

connected with minimal zero-lag FS precedence re-
lations. Again, allowing for activity preemption
will substantially complicate the RCPSP-GPR.

The RCPSP-GPR is known to be strongly NP-
hard, and even the decision problem of testing
whether an RCPSP-GPR instance has a feasible
solution is NP-complete (Bartusch et al., 1988).
To the best of our knowledge, the only optimal so-
lution procedure presented in the literature for the
RCPSP-GPR is the branch-and-bound algorithm
of Bartusch et al. (1988). However, the computa-
tional experience obtained with this procedure is
limited to a single bridge construction project
and the computer code is no longer available
(Miihring, 1996). Neumann and Zhan (1995) de-
veloped a priority-rule-based heuristic which al-
lows us to solve RCPSP-GPR instances using a
parallel search scheme (see also Zhan, 1994).
Brinkmann and Neumann (1996) developed a seri-
al heuristic for the RCPSP-GPR (called DIRECT)
and a heuristic based on the (serial) scheduling of
cycle structures (strongly connected components
of a project network with GPRs) and the subse-
quent (serial) scheduling of the (acyclic) contracted
project network (called CONTRACT). Franck
and Neumann (1996) further enhanced the ap-
proach of Neumann and Zhan (1995) and validat-
ed the performance of the heuristic procedures.
Schwindt and Neumann (1996) report computa-
tional experience with a branch-and-bound-based
heuristic which first schedules all cycle structures
in an RCPSP-GPR instance using the procedure
described in this paper and subsequently solves
the contracted acyclic project network using an ex-
tended version of the RCPSP procedure of De-
meulemeester and Herroelen, (1992, 1997a). In
the following section, we discuss the fundamentals
of the new branch-and-bound procedure for the
RCPSP-GPR.

4.1. The search tree

The nodes in the search tree represent the initial
project network, described by the matrix D = [dii],
extended with extra zero-lag FS precedence rela-
tions to resolve a number of resource conflicts,
which results in an extended matrix D’= [d’g].

Nodes which represent time-feasible but re-
source-infeasible project networks and which are
not fathomed by any of the node fathoming rules
described below lead to a new branching. There-
fore each (undominated) node represents a time-
feasible, but not necessarily resource-feasible pro-
ject network. Resource conflicts are resolved using
the concept of minimal delaying alternatives, i.e.
minimal sets of activities which, when delayed, re-
lease enough resources to resolve the resource con-
flict and which do not contain any other delaying
alternative as a subset. Each of these minimal de-
laying alternatives is delayed (enforced by extra ze-
ro-lag FS precedence relations i + j, implying
si + d, < sj) by each of the remaining activities also
belonging to the conflict set S(t*), the set of activ-
ities in progress in period It’ - 1, t’] (the period of
the jirst resource conflict). Therefore, each mini-
mal delaying alternative can give rise to several
minimal delaying modes.

A similar delaying strategy was used by Demeu-
lemeester and Herroelen (1992) for the RCPSP. As
the RCPSP can be solved using semi-active timeta-
bling (i.e. schedule activities as early as possible
within the precedence and resource constraints)
to construct partial schedules, activities belonging
to the minimal delaying alternative can be delayed
by the activity in S(t*) which terminates at the ear-
liest time instant after the current decision point
(further denoted as the delaying activity). In the
RCPSP-GPR, this delaying strategy cannot be
used because of the GPRs, which make it impossi-
ble to determine which activity in S(t*) should be
used as the delaying activity, because we cannot
predict in advance which activity in S(t*) will ter-
minate the earliest in the feasible schedules that
will be obtained by branching from the current
project network. Demeulemeester and Herroelen
(1997b) devised an adaptation of their RCPSP so-
lution strategy to cope with problems in which
only minimal time lags (iii 2 0, Vi, j E V) are pres-
ent. When minimal and maximal time lags are al-
lowed, however, even the constructs used by
these authors can no longer be used. A similar sit-
uation occurs when maximizing the net present
value of a resource-constrained project network
(Icmeli and Erengtic, 1996). In the RCPSP-GPR,
we have to consider several possible delaying

B. De Reyck. W. Herroelen I European Journal qf‘ Operational Reseurch 111 (1998) 152-l 74 151

modes for each delaying alternative, possibly one
for each activity in s(t*) which is not an element
of the delaying alternative.

Assume, for example, that in a certain period
It’ - 1, t”], four activities are in progress and cause
a resource conflict: s(t*) = { 1,2,3,4}. Suppose
that the minimal delaying alternatives are {l},
(2) and (3, 4}, i.e. delaying activity 1, activity 2
or activities 3 and 4 simultaneously releases en-
ough resources to resolve the resource conflict.
For the RCPSP, the procedure of Demeulemeester
and Herroelen (1992) would create three new
nodes. In the first node, activity 1 is delayed by
the earliest finishing activity (x) among activities
2, 3 and 4 (x + 1). In the second node, activity 2
is delayed by the earliest finishing activity b)
among activities 1, 3 and 4 (v + 2). Finally, activ-
ities 3 and 4 are delayed by activity 1 or 2 (z), de-
pending on which activity finishes the earliest
(z + 3 and z -X 4). This results in three new nodes,
as illustrated in Fig. 1.

For the RCPSP-GPR, the delay of activity 1 is
established by adding a precedence relation be-
tween activities 2, 3 and 4 and activity 1. We there-
fore create three new nodes (instead of one), one
with the precedence relation 2 4 1, one with the
precedence relation 3 -X 1 and one with the prece-
dence relation 4 4 1. Delaying activity 2 is accom-
plished by creating three new nodes with the extra
precedence relations 1 4 2, 3 3 2 and 4 + 2. De-
laying activities 3 and 4 is accomplished by creat-
ing two new nodes with the extra precedence
relations 1 + 3 and 1 + 4, and 2 4 3 and 2 4 4

lol

Fig. 1. Delaying strategy for the RCPSP of Demeulemeester
and Herroelen (1992).

respectively. In total, eight new nodes (minimal de-
laying modes) are created, as illustrated in Fig. 2.

In general, the delaying set DS, i.e. the set of all
minimal delaying alternatives, is equal to
DS = {&IL& c s(t*) and V resource type k:

c rcs(r*) rlk -Cito$k d ak and V D,j E DS \{&}:
D,t $ Dd}. The set of minimal delaying modes
equals: M = {M, / M,,, = {k + Dd}, k E S(t*)\ Dd,
Dd E DS}. Activity k is called the delaying activity:
k -x Dd implies that k + 1 for all I E Dd.

Theorem 1. The delaying strutegy which consists of
delaying all minimal delaying alternatives Dd by
each activity k E S(t*) \ Dd will lead to the optimal
solution of the RCPSP-GPR in a finite number of
steps.

Proof. See Appendix A.

Each minimal delaying mode is then examined
for time-feasibility and evaluated by computing
the critical path-based lower bound lb” (equal to
the makespan of the ESS). Each time-feasible min-
imal delaying mode with a lower bound lb0 < T is
then considered for further branching, which oc-
curs from the node with smallest lbo. If the node
represents a project network in which a resource
conflict occurs, a new branching occurs. If it repre-
sents a feasible schedule, the upper bound T is up-
dated and the procedure backtracks to the
previous level in the search tree. Therefore, we
have a depth-first search procedure, in which
branching occurs until at a certain level in the tree,
there are no delaying modes left to branch from.
Then, the procedure backtracks to the previous
level in the search tree and reconsiders the other
delaying modes (not yet branched from) at that
level. The procedure stops when it backtracks to
level 0.

4.2. Node j&homing rules

Nodes are fathomed when they represent a
time-infeasible project network or when lb” ex-
ceeds (or equals) T. Nodes which are not fathomed
and still represent an infeasible project network are

158 B. De Reyck, W Herroelen I European Journal of Operational Research III (1998) 152-174

delaying alternative 1 delaying alternative 2

8 delaying modes

Fig. 2. Delaying strategy for the RCPSP-GPR

considered for further branching. Four additional
node fathoming rules (three dominance rules and a
new lower bound) and a procedure which reduces
the solution space and which can be executed as a
preprocessing rule are added.

4.2.1. Redundant delaying alternatives
Because activity overlaps are allowed (dii < di),

it is possible that in period]t* - 1, t*] (the period
of the first resource conflict), the set of activities
in progress (the conflict set ,S(t*)) contains an ac-
tivity i together with a real successorj of activity
i (dLj > 0). Then, delaying activity i will also delay
activityj. Consequently, the following theorem ap-
plies.

Theorem 2. If there exists a minimal delaying
alternative Dd with activity i E D,-J but its real
successor j q! Dd (dij 2 0), we can extend Dd with
activity j. If the resulting delaying alternative
becomes non-minimal as a result of this operation,
it may be eliminated from further consideration.

Proof. Obvious.

4.2.2. Redundant delaying modes
Because of activity overlaps, it is possible that a

certain minimal delaying alternative Dd giVtX rise

to two delaying modes IV,,,, and MmZ, in which
the delaying activities i (i + Dd) and j (j 3 Dd)
are precedence related. Then, the following theo-
rem applies.

Theorem 3. When a minimal delaying alternative Dd
gives rise to two delaying modes M,,,, and IV,,,? with
deluying activities i and j respectively, mode IV,,,, is
dominated by mode IV,,,, iffdij + dj > di.

Proof. Obvious.

4.2.3. A time- and resource-based lower bound
Recently, Mingozzi et al. (1997) have developed

five new lower bounds, lb,, Ibz, lb,, lb, and lbj, de-
rived from different relaxations of a new mathe-
matical formulation for the RCPSP. Bounds lb,,
lbz, lb,Y and lb3 dominate the critical path-based
lower bound lb0 and all prove to be tighter than
the critical sequence lower bound lb, of Stinson
et al. (1978) on the 110 RCPSP instances assem-
bled by Patterson (1984) and the 480 randomly
generated RCPSP instances of Kolisch et al.
(1995). Mingozzi et al. (1997) compute lb3 using
a heuristic for the weighted node packing problem.
Demeulemeester and Herroelen (1997a) have in-
corporated another version of lb3 (further denoted
as lb’,) in their procedure for the RCPSP. lb5

B. De Reyck, W. Herroelen I European Journal of Operational Research 111 (1998) 152-I 74 159

proved to be more powerful than lbs (when used in
combination with lbo), mainly because of its ease
of computation. For each activity i E V, its possi-
ble companions, i.e. the activities with which it can
be scheduled in parallel, respecting both the prece-
dence and resource constraints, are determined.
All (unscheduled) activities i are then entered in
a list L in non-decreasing order of the number of
companions (non-increasing duration as tie-break-
er). The following procedure then yields a lower
bound, lbj’ (for the partial schedule under consid-
eration):

lb; = 0 (or the earliest completion time of the
activities in progress if a partial schedule is al-
ready determined)
while L not empty do

take the first activity (activity i) in L
lb; = lb’, + d,
remove activity i and its companions from L

enddo

Computational results obtained by Demeule-
meester and Herroelen (1997a) indicate that lb’,
indeed outperforms lb0 and that incorporating
lb’, in their branch-and-bound procedure reduces
the computational effort to solve the 110 prob-
lems of Patterson (1984) and the 480 problems
of Kolisch et al. (1995). The procedure of Demeu-
lemeester and Herroelen (1997a) for computing
lb\ can be extended to the RCPSP-GPR, by
changing the calculation of the companions of
the activities. In the RCPSP-GPR, activities i
and j are companions if the resource requirements
of both activities do not exceed the resource avail-
ability for any resource type, and if both dij < d,
and dji < dj.

In our implementation of lbs, we have also
adapted the (weighted node packing) heuristic. In-
stead of removing an activityj from the list L when
a companion i is taken from the list, we only re-
move part of activity j from the list. The logic be-
hind this reasoning relies on both a duration and
time lag argument. The duration argument goes as
follows: When an activity i is scheduled, a com-
panion j can be scheduled in parallel with i. How-
ever, if di < dj, only a part of activity j can be
scheduled in parallel with i. Therefore, a part of

activity j (with remaining duration dj = dj - di)
can be left in L. Initially, all dJ are equal to dj.
The time lag argument goes as follows. We adjust
the part of activityj which has to be removed when
a companion i is taken from the list, by incorporat-
ing the precedence relations between i andj. Sever-
al different situations have to be considered when
deciding how much to remove from an activity
in L.

Table 1 shows the appropriate action (namely
how much to remove from activity j when activity
i is taken from L) depending on the longest path
lengths between activities i and j. When we want
to remove x units from activity j whereas only y
(y < X) units are left, activity j is to be removed
completely from L.

Because in the procedure for the RCPSP-GPR,
time-infeasibilities will be detected before lb3 is cal-
culated, the calculation of lb3 for the RCPSP-GPR
(lb!) can be summarized as follows:

lb; = 0
Set all d; equal to di
while L not empty do

take the first activity (activity i) in L and re-
move it from L
lb; = lb; + d,’
for every companion j of i do

if di, > 0 then dj’ = dj’ - (di - di.1)
else if dji > 0 then dj =

dJ - min{dj - <ii, di}
else dJ’ = dJ - d,
endif

if dJ d 0, remove activity j from L
enddo

enddo

Theorem 4. lb; is a valid lower bound for the
RCPSP-GPR.

Proof. See Appendix A.

lb! is used to fathom nodes for which lb: 2 T.
However, whereas lb0 is calculated immediately
upon the creation of a node, the calculation of
lb: is deferred until a decision has been made to
actually branch from that node. The rationale be-
hind this is that (a) lb; is more difficult to compute

160 B. De Reyck, W Herroelen I European Journal of’ Operational Research 111 (1998) 152-174

Table 1
The calculation of d;

d, < d,,
0 < d,, < d,
-d, < d,, G 0
d,z < - 4

d, G 4, 0 < d,, < d,

Infeasible Infeasible
Infeasible Infeasible
Infeasible 4’ = 4’ - (d, - d,,)
No companions 4’ = 4’ - (d, - d,,)

-d, < d,, < 0

Infeasible
d; = dJ - min{d, - d,,.d,}
4’ = d; - d,
4’ = d; - d,

d,,i -d,

No companions
d: = dJ - min{d, ~ d,,,d,}
d; = d; - d,
d; = d; - d,

than lbs, and that (b) calculating lb! implies calcu-
lating the entire matrix D. Supported by extensive
computational tests, we defer the calculation of lb!
and D until the node is actually selected for
branching. As a result, only lb0 is used as a
branching criterion.

4.2.4. A subset dominance rule
Each node in the search tree represents the initial

project network extended with a set of (strict) pre-
cedence constraints to resolve resource conflicts.
Therefore, it is possible that a certain node repre-
sents a project network which has been examined
earlier at another node in the search tree. One way
of checking whether two nodes represent the same
project network is to check the added precedence
constraints. Identical sets of precedence constraints
lead to identical project networks. Moreover, the
following theorem can then be applied.

Theorem 5. If the set of added precedence con-
straints which leads to the project network (in the
form of an extended matrix D) in node x contains as
a subset another set of precedence constraints
leading to the project network (extended matrix
D’) in a previously examined node y in another
branch of the search tree, node x can be fathomed.

Proof. See Appendix A.

This rule only applies when a node is com-
pared to a previously examined node in another
path of the search tree. This can be enforced by
saving the information required during back-
tracking. The question remains which nodes have
to be saved in order to test this rule. When a
node x is dominated by a node y, it will also be
dominated by a parent node z of y, unless node

z is on the same path of the search tree as node
x. Therefore, to check whether node x is domi-
nated, we have to save the set of added prece-
dence constraints of the nodes for which the
parent node is on the same path as node x (but
which themselves are not on the same path as
node x).

4.2.5. Reducing the solution space using
preprocessing

Before initiating the branch-and-bound proce-
dure, the solution space can be reduced by simul-
taneously examining the GPRs and the resource
requirements. If on the one hand, two activities i
and j can never overlap due to the resource con-
straints, while on the other hand, the GPRs allow
for an overlap, then the precedence relations can
be tightened to avoid the overlap. This allows us
to state the following theorem, which can be exe-
cuted as a preprocessing rule.

Theorem 6. [f 3, j E V und resource type k ,for
which rik + rjk > ak and -dj < dil < di, we can set
I, = di without changing the optimal solution of the
RCPSP-GPR.

Proof. See Appendix A

4.3. The brunch-and-bound algorithm

The detailed algorithmic steps of the proposed
branch-and-bound algorithm are described below.
The longest path length between two activities i
and j is given by d b] [i] b], where p denotes the level
in the search tree. For each such level, a matrix
db] will have to be stored.

B. De Reyck, W. Herroelen / European Journal of Operational Research 111 (1998) 152-l 74 161

Step 1: Initialisation
Let T= 9999 be an upper bound on the project duration.
Set the level of the branch-and-bound tree p = 0.
Compute the constraint digraph cd (using the rules discussed in Section 2; O(IE])).
Compute 401 at level 0 using the Floyd-Warshall algorithm (O(rz3)).
If the project is not time feasible (i.e. 3i E V: d[O] [i] [i] > 0), STOP.
Preprocessing: reduce the solution space by adjusting d[O] (O(n*m)):

v(i,j)li,j E V and 3 resource type k: rik + Yjk > ak and -dj < d[O][i]b] > di, set 1, = di.
Recompute d[O] using the Floyd-Warshall algorithm (O(n3)).
If the project is not time feasible (i.e. 3i E V: d[O][i][i] > 0), STOP.
Compute the critical path-based lower bound lbs = d[O][l][n] and go to Step 3.

Step 2: Temporal analysis
Compute d[p], the extended matrix with longest paths at level p as follows (O(@dl)):

vi, j E V: d[p][i]Ij] = d[p - l][i]Ij]. V’i, j E V, I E Dd:d[p][i]b] = maxi&l [iI lil: d[p - 11 [il M +
dk + d [p - l] [I] b]}, k being the delaying activity.

If T < 9999, compute lb!.
If lb; 3 T, erase the delaying mode and go to Step 6.

Step 3: Resource analysis
Determine theJirst period]t* - 1, t’] in which a resource conflict occurs, i.e. for which

C&s@*) rik > ak for some resource type k. S(t*), the set of activities in progress in period
It*-1, t*], is called the conflict set.
If there is no conflict, let T = dip] [l] [n , erase all remaining delaying modes at level p]
and go to Step 7.
Store &I.

Step 4: Determine minimal delaying alternatives and minimal delaying modes
Increase the branch level of the search tree: p = p + 1.
Determine the minimal delaying set, i.e. the set of minimal delaying alternatives:

DS = &(& C S(t*) and V resource type k: c r,k -c rik < ak and v Ddj E DS \ {&}:Ddf @ &
IES(t’) itDd

Extend all minimal delaying alternatives using Theorem 2 and eliminate all non-minimal delaying al-
ternatives. Determine the set of minimal delaying modes:

hi = {bf,Ihf, = {k 4 Dd}, k E S(t*), k $ D,j, Dd E DS}.

Eliminate all delaying modes satisfying Theorem 3.

Step 5: Evaluate delaying modes
For all delaying modes A4,
{If the precedence constraints cannot be added, i.e. 31 E &: k + 1 is infeasible, i.e.

dk > -d[p - l][l][k] (k being the delaying activity), continue with the next delaying mode M,,,.
Compute lb0 as follows: Set lb0 = d[p - l] [l] [n]. Vl E Dd and delaying activity k:

lb0 = max{lbo, d[p - l][l][k] + dk + d[p - l][l][n] 1 j E Dd}.

If lb0 3 T, continue with next delaying mode M,.

162 B. De Reyck, W. Herroelen I European Journal qf Operational Research 11 I (1998) 152-174

If the set of added precedence constraints of a previously examined node is a subset of the
corresponding set of the current node, continue with the next delaying mode A4,.
Set lb = lb”.
Temporarily store the delaying mode and its lower bound lb.

Step 6: Branching
If no delaying modes are left to branch from at level p, go to Step 7.
Select the delaying mode M, with the smallest lower bound lb (arbitrary tie-break).
If lb 2 T, erase all remaining delaying modes at level p and go to STEP 7.
Go to Step 2.

Step 7: Backtracking
Decrease the branch level of the search tree: p = p - 1.
If p < 0, STOP with the optimal solution with a makespan of T

(if T=9999, then there exists no feasible solution).
Delete from the stack the information which has been previously saved on level p + 1 for

dominance testing.
Save the necessary information for node dominance testing on the stack, i.e. the list of added
precedence constraints of the node reached upon backtracking.
Erase d[p] and go to Step 6.

5. Computational experience

The procedure has been programmed in Micro-
soft Visual C++ 2.0 under Windows NT for use on
a Digital Venturis Pentium-60 personal computer
with 16 Mb of internal memory. The code itself re-
quires 109 Kb of memory, whereas 10 Mb are re-
served for the storage of the search tree.
Benchmark tests on 550 problems generated from
the 110 RCPSP test instances assembled by Patter-
son (1984) are analyzed in De Reyck and Herroe-
len (1996a). Based on a full factorial experiment,
they reveal that each of the proposed dominance
rules and lower bounds leads to an increased per-
formance of the procedure, both in terms of
CPU-time as in terms of nodes in the search tree
required to solve the problem instances to optimal-
ity. Furthermore, the results show that the per-
centage of maximal precedence relations, their
tightness and the percentage of precedence rela-
tions that allow for activity overlaps have a signi-
ficant impact on the computational effort. The
higher the number of maximal time lags, the tight-
er they are and the higher the number of minimal
time lags that allow for activity overlaps, the more
effective the procedure.

Several tests have been performed on three dif-
ferent problem sets in order to validate the proce-
dure against the serial and parallel heuristics
developed by Franck and Neumann (1996). These
heuristics improve upon the procedures developed
by Neumann and Zhan (1995), Zhan (1994) and
Brinkmann and Neumann (1996) and rank as the
best currently available. All three data sets have
been generated using the random problem genera-
tor ProGen/max developed by Schwindt (1996a)
based on the problem generator ProGen for the
RCPSP developed by Kolisch et al. (1995). Pro-
Gen/max uses two generating methods: DIRECT,
which directly generates entire projects, and CON-
TRACT, which first generates cycle structures, up-
on which the (acyclic) contracted project network is
generated. Several control parameters can be spec-
ified. The first problem set (Schwindt, 1996b) con-
sists of 1080 instances, 540 generated using the
DIRECT method and 540 using the CONTRACT
method. The second set (Franck and Neumann,
1996) consists of 1440 problem instances generated
using the DIRECT method. We used the DIRECT
method to generate a third set of 7200 problem in-
stances which allows for a more extensive testing of
the impact of several control parameters.

B. De Reyck, W. Herroelen I European Journal of’ Operational Research 1 I I (1998) 152-l 74 163

Table 2
The parameter settings of the three problem sets

Control parameter Set I Set II Set III

Number of activities 100
Activity durations 15,151
Number of resource types
Mimmax number resources used per activity
Activity resource demand
Resource factor, RF (Pascoe, 1966)
Resource strength, RS (Kolisch et al., 1995)
Number of initial and terminal activities
Max number of initial/terminal activities a
Max number of predecessors/successors

5
l/5

]1>31
0.50; 0.75; 1 .oo
0.20; 0.50; 0.70

[3>71
212
515

Max number of predecessors/successors a 313
Order strength, OS (Mastor, 1970) 0.35; 0.50; 0.65
Order strength, OS a 0.50
% Maximal time lags [5%,15%]
Number of cycle structures
(Brinkmann and Neumann, 1996) [2,5]; [6,91
Min/max number of nodes per cycle structure 2115
Coefficient of cycle structure density (Schwindt, 1996a) 0.3
Cycle structure tightness (Schwindt, 1996b) 0.5

B For the cycle structures (only for the CONTRACT method).

100

[5,151
F5.81
l/8

[I>31
0.25; 0.50; 0.75; 1.00
0.20; 0.50; 0.75

13.71

515

0.35; 0.50; 0.65

[5%, 15%]; [15%,25%]

[2,7]; f8.131
2115
0.3
0.5

10; 20; 30; 50; 100

LIOI
[I,51
115

U,IOl
0.25; 0.50; 0.75; 1.00
0.25; 0.50; 0.75

[2,41

515

0.25; 0.50; 0.75

0%; 10%; 200/u; 30%

LO,101
2/100
0.3
0.5

The parameters used to generate the three prob-
lem sets are given in Table 2. The indication [x,y]
means that the corresponding value is randomly
generated in the interval [x,y], whereas x; y; z
means that three settings for that parameter were
used in a full factorial experiment. For each com-
bination of parameter values, 10 instances have
been generated. It should be observed that the pa-
rameter settings for the three data sets do not al-
low for the generation of problem instances
which are not resource constrained, a characteris-
tic which is not shared by the 480 RCPSP instances
generated by Kolisch et al. (1995). 120 out of those
480 problem instances have a resource strength

(Kolisch et al., 1995) equal to 1, and can therefore
be solved by simply calculating the ESS.

5.1. Problem set I

Table 3 shows the computational results on
problem set I. The branch-and-bound procedure
is truncated after a specific amount of running
time (1, 10 and 100 s). The results include the num-
ber of problems solved to optimality (for which the
optimum was found and verified), the number of
problems for which the optimal solution is ob-
tained (but not necessarily verzjied), the number

Table 3
The results on problem set 1

F&N IS 10 s 100 s

Problems solved to optimality
Problems for which optimal solution is found
Problems for which best known solution is found
Unsolved problems
Average deviation from Ib
Average deviation from best known solution

196 (> 18%) 543 (> 50%) 592 (> 54%) 609 (> 56%)
220 (> 20%) 578 (> 53%) 596 (> 55%) 609 (> 56%)
378 (35%) 606 (> 56%) 652 (> 60%) 682 (> 63%)
21 (<2%1) 205 (< 19%) 86 (< 8%) 68 (<7%)
17.02% 5.99%) 9.77% 10.00%
7.20% 2.20% 2.54% 2.31%

164 B. De Reyck. W. Herroelen I European Journal of Operational Research 111 (1998) 152-174

of problems for which the best known solution is
obtained, the number of unsolved problems (for
which a feasible solution could not be determined
and neither infeasibility of the instance could be
proven), the average deviation from a lower bound
and the average deviation from the best known so-
lution. For heuristics, verification of optimality is
only possible when the obtained solution is equal
to a lower bound. Therefore in Table 3, also the
number of times the optimal solution is obtained,
but not necessarily verified, is given.

The lower bound lb used to compute the devia-
tions, is the maximum of the critical path-based
lower bound lbe, the resource-based lower bound
lb, = max;==, { [CyZl drrrk/ukl} and lb! (computed
in the root node of the search tree after preprocess-
ing). The column labelled F&N in Table 3 con-
tains the results obtained by Franck and
Neumann (1996), which are obtained by running
a collection of 44 different heuristics which rank
among the best currently available. The best
known solution referred to in Table 3 is the best
of the solutions obtained with various versions of
the branch-and-bound algorithm running for up
to 1 h per problem and with the heuristic (F&N)
solutions, and can therefore be considered as
near-optimal.

From Table 3 we can see that, despite the prob-
lem size and complexity, the branch-and-bound
procedure manages to solve more than 50% of
the problems to optimality within 1 s of computa-
tion time. However, increasing the allowed compu-
tation time from 1 to 100 s leads to an increase of
only 12% in the problem instances solved to opti-
mality (from 543 to 606). The average deviation
from the best known solution (lower bound) never
exceeds 2.54% (lO.OO%), whereas the F&N heuris-
tics result in an average deviation of 7.20%
(17.02%). The increasing average deviation from
lb of the solutions obtained with the branch-and-
bound algorithm when the time limit is increased
is due to the fact that an increasing number of
problems is solved. Hence, the results obtained
when the algorithm is allowed to run for 1 s in-
clude solutions for less hard problems than those
obtained with a limit of 10 and 100 s.

Less reassuring, however, is that, especially for
small time limits, a relatively large number of

problems remain unsolved. The F&N heuristics
do a better job on this issue. This inspired us to de-
velop another approach which is based on finding
a feasible solution first, rather than going immedi-
ately for the optimal solution. In the original pro-
cedure, nodes are branched from in non-
decreasing order of a lower bound. The rationale
behind this (common) branching criterion is that
nodes which entail a high chance of finding a very
good solution are chosen first, in the hope that
other nodes will be dominated by the obtained up-
per bound. However, when solving the RCPSP-
GPR, each node in the search tree does not only
contain information on the effect of the added pre-
cedence constraints on the best solution that can
ever be obtained by branching from that node,
but also on the effect of the added precedence con-
straints on the probability that a feusible solution
can be obtained by branching from that node.
We developed a new branching rule that also in-
corporates the latter information.

In the branch-and-bound procedure, a node
(with a corresponding delaying activity k and de-
laying alternative Dd) is eliminated (because it
can never lead to a feasible solution) if
31 E Dd : k + 1 is infeasible, i.e. if dk > -d/k for
some 1 E Dd. Thus, if dk + dlk 6 0 for each
1 E Dd (no positive cycle in the project network),
the delaying mode is considered for further
branching, and the selection of the delaying mode
to branch from is derived from the lower bound.
Consider two delaying modes MI and Mz, each
with one activity in the corresponding delaying al-
ternative, with dk, + d,,k, = -1 for Ml and
dkz + dlzkl = -20 for A42. Even if the lower bound
of Mi is smaller than the lower bound of A42,
branching from M2 may be the smartest thing to
do since there is a high probability that branching
from Mi will not lead to any feasible solution. The
fact that dk, + dllk, = -I means that activity kl,
which was delayed by activity 11, only has 1 time
unit of slack within its time window with respect
to activity Ii. Thus, when activity kl has to be de-
layed later on in the project, a positive cycle will
probably result, leading to time-infeasibility of
the corresponding project network. Therefore, if
we want to find a feasible solution, it may be better
to branch from the node for which the delayed

B. De Reyck, W. Herroelen I Europeun Journul of’ Operational Research 111 (1998) 152-l 74 165

activities have a relatively high ‘slack’ in the time
windows in which they can be scheduled. This
leads to a new branching strategy, namely branch-
ing from the node with the highest slack with res-
pect to the maximal time lags, i.e. in which the
cycles created by delaying activities, if any, are as
negative as possible. This slack value will be re-
ferred to as time window duck (TWS). If multiple
activities are delayed, the minimal TWS value over
all the delayed activities is used as the slack of the
node, since this is probably the cycle that is going
to create feasibility problems if additional activi-
ties are to be delayed.

We used this new branching rule in a new ver-
sion of our algorithm (further denoted as the
TWS branching scheme). When no feasible solu-
tion has been found yet, the procedure branches
from the node with the highest TWS value. Upon
finding a feasible solution, the branching criterion
switches to the lower bound criterion as before.
Using this approach, the number of unsolved
problems decreases to 27 (<3%), 8 (~1%) and 6
(~1%) for the three time limit settings. Even when
using the TWS branching scheme for an extended
amount of time (10,000 s), no feasible solution can
be obtained for the six remaining problem instanc-
es. Actually, for two out of those six instances, in-
feasibility of the problem can be proven.
Therefore, we conjecture that the other four in-
stances are also infeasible. Also the F&N heuristics
cannot provide a feasible solution for those prob-
lems. The number of problems solved to optimal-
ity using the TWS branching scheme does not
significantly differ from the original approach (it
is even slightly higher). The average deviation
from the best known solution (lower bound) in-
creases somewhat, but never exceeds 4.5% (14%)
thereby still outperforming the heuristics.

Table 4
The results on problem set 11

5.2. Problem set II

The results on problem set II are similar to the
ones obtained for problem set I. Franck and Neu-
mann (1996) report that, using the CONTRACT
approach, a feasible solution was obtained for
1401 of the 1440 problem instances. The average
deviation from the lower bound equals 14.3%.
The average deviation from the lower bound ob-
tained with the single best heuristic rule equals
16.6%. The authors state that better results can
be obtained with the DIRECT approach, however,
at the expense of increased computation times due
to a possibly large amount of rescheduling steps
needed to resolve time-infeasibilities. Table 4 indi-
cates the results obtained with the truncated ver-
sion of the branch-and-bound procedure. Again,
with a time limit of only 1 s, more than 53% of
the problem instances can be solved to optimality.
The average deviation from the lower bound never
exceeds 8.52%. Again, the best known solutions
are obtained using different versions of the
branch-and-bound algorithm running for up to
1 h per problem. The TWS branching scheme re-
ferred to above reduces the number of unsolved
problems to 39 (~3%) 15 (+l%) and 15 (51%) res-
pectively. When running the TWS procedure for
10,000 s, a feasible solution could be obtained
for 3 of the 15 remaining instances. For one addi-
tional instance, infeasibility could be proven.

5.3. Problem set III

The results obtained on problem set III are giv-
en in Table 5. From Table 5, we can observe that
more than 77% of the problems can be solved to
optimality within 1 s of computation time. If

Is IO s 100 s

Problems solved to optimality 766 (> 53%) 891 (>61%) 910 (>63’%1)
Unsolved problems 267 (< 19%) 66 (< 5%) 43 (< 3%)
Average deviation from lb 4.61% 8.52% 8. SO’%1
Average deviation from best known solution 1.29% I .35% 1.06%

166 B. De Rryck, W. Herroelen ! European Journal of Operational Research 111 11998) 152-I 74

Table 5
The results on problem set III

IS IO s 100 s

Problems solved to optimality 5602 (> 77%) 60 I7 (> 83%) 6210 (> 86%)
Unsolved problems 141 (< 2’%1) 66 (< 1%) 55 (< 1%)
Average deviation from lb 4.69% 4.57% 4.39%
Avg. deviation from best known solution 0.71% o.59U%l 0.33%

100 s of CPU-time are allowed, this percentage in-
creases to 86%. However, as Fig. 3 clearly displays,
the number of problems solved to optimality heav-
ily depends on the problem size. For 1 s of compu-
tation time, the percentage of problems solved to
optimality decreases from 100% for the lo-activity
problem instances to 58% for the lOO-activity
problem instances. Nevertheless, the relatively
high number of problems solved to optimality
(even for the lOO-activity set) seems very promis-
ing, and indicates that, even for large problem in-
stances, the use of truncated branch-and-bound
procedures should not be discarded. The average

1400 --

1200 --

$ 1000 --

i
3
%
S 800 --

%
h
P

j 600 --

P
o*
a 400 --

1440

1 second 10 seconds 100 seconds

1440

deviation from the best known solution (lower
bound) never exceeds 0.71% (4.69%). Equipped
with the TWS branching rule, only 3 (~0.1%) in-
stances remain unsolved within 100 s. Using a time
limit of 10,000 s, a feasible solution for one addi-
tional problem instance could be obtained.

We used problem set III in an experiment to
test the impact of several problem characteristics
on the RCPSP-GPR complexity. Among the mea-
sures of the topological structure of an activity net-
work, the order strength (OS), was found to be
the most powerful measure for explaining the
variations in the CPU-time required by the

1 1290

Time limit

1440

1366 -h 1229

Fig. 3. The effect of problem size on the number of problems solved to optimality.

B. De Reyck, W. Herroelen I Europeun Journal of Operational Research II I (1998) 152-l 74 167

branch-and-bound procedure for solving different
RCPSP-GPR instances. OS is defined as the num-
ber of precedence relations, including the transitive
ones, divided by the theoretical maximum of such
precedence relations, namely n(n-1)/2 (Mastor,
1970). In the case of GPRs, OS is defined for the
acyclic network including the minimal time lags
only (Schwindt, 1996a). OS has a negative impact
on the computational complexity of the RCPSP-
GPR. When OS increases, the number of problems
solved to optimality generally increases, the num-
ber of unsolved problems decreases and the aver-
age deviations from the best known solutions
also decrease. The effect of the percentage of max-
imal time lags is not monotonically increasing or
decreasing. On the contrary, a bell-shaped curve
seems to result. When maximal time lags are intro-
duced, the number of problems solved to optimal-
ity increases, up to a certain point, beyond which
the number of problems solved to optimality again
decreases. Similarly, there is a non-linear effect of
the percentage of maximal time lags on the num-
ber of unsolved problems.

We also tested the impact of two of the best
known parameters for describing resource scarcity
that have been proposed in the literature. The re-
source factor RF (Pascoe, 1966) reflects the aver-
age portion of resources requested per activity. If
RF = 1, then each activity requests all resources.
RF = 0 indicates that no activity requests any re-
source. The resource strength, RS, is defined by
Kolisch et al. (1995) as (uk - F”)/(y - $““),
where ak is the total availability of renewable re-
source type k, P$,?’ maxi,l....;n rrk (the maximum re-
source requirement for each resource type), and
v is the peak demand for resource type k in
the ESS. Hence, with respect to one resource the
smallest feasible resource availability is obtained
for RS = 0. For RS = 1, the problem is no longer
resource constrained.

The higher the RF, the harder the correspond-
ing RCPSP-GPR. The number of problems solved
to optimality decreases significantly, the number of
unsolved problems increases substantially as does
the average deviation from the best known solu-
tion. An opposite effect can be observed for RS.
When RS increases, the number of problems
solved to optimality increases dramatically. More-

over, RS seems to have a stronger impact on the
computational complexity of the RCPSP-GPR
than does RF. More details of the analysis of the
impact of problem characteristics on the RCPSP-
GPR complexity can be found in De Reyck and
Herroelen (1996b).

6. Conclusions

This paper deals with the RCPSP-GPR with the
objective of minimizing the project makespan. The
RCPSP-GPR extends the RCPSP to arbitrary
minimal and maximal time lags between the activ-
ities. This allows us to model a very general class
of project scheduling problems including arbitrary
precedence constraints, activity ready times and
deadlines, multiple resource constraints with
time-varying resource requirements and availabili-
ties, activity and resource time windows and sever-
al types of mandatory activity overlaps. We
presented a depth-first branch-and-bound proce-
dure in which the nodes in the search tree represent
the original project network extended with extra
precedence relations which resolve a number of re-
source conflicts. Resource conflicts are resolved
using the concept of minimal delaying modes. Sev-
eral lower bounds and dominance rules are used to
fathom large portions of the search tree.

Extensive computational experience obtained
on several data sets indicates that all the proposed
node fathoming rules lead to a significant reduc-
tion in the computation time and the number of
nodes in the search tree. The procedure is capable
of solving relatively large problem instances with
up to 100 activities to optimality in a reasonable
amount of time. The use of a truncated version
of the procedure outperforms a set of the best heu-
ristics available for the RCPSP-GPR. The proce-
dure can be extended to various regular and non-
regular objective functions. A regular objective
function (which is to be minimized) is a non-de-
creasing function of the activity completion times.
Consequently, when it is not impeded by prece-
dence or resource constraints, it will not be advan-
tageous to delay activities in order to improve the
performance of the schedule. For a non-regular
objective function, the condition above does not

168 B. Dr Reyck, W. Herroelen I European Journal of’ Operational Research I1 I (I 998) 152-I 74

hold. This implies that delaying activities may im-
prove the performance of the schedule.

In the procedure, a precedence-based lower
bound lb0 for the project networks in each node
of the search tree is calculated by computing the
longest path length between the dummy start and
the dummy end activity (equal to the makespan
of the ESS). If such a node is chosen to branch
from and the associated ESS turns out to be feasi-
ble, the obtained upper bound is equal to the lower
bound lba. If we were to optimize any other regulur
measure of performance, we can simply replace the
calculation of Ibe by the regular performance mea-
sure under consideration. In other words, we can
also use the ESS to compute the objective function
value and use it as a lower and/or upper bound.
Therefore, only two slight modifications are need-
ed to extend the procedure to other regular mea-
sures of performance. First, we need to replace
Ibe by the new measure and use the resulting value
as a lower bound and, if applicable, as an upper
bound. Second, lb! can no longer be used as a
node fathoming rule, since it is based on minimiz-
ing the project makespan.

Practical applications of regular measures of
performance often take the form of a cost function
based on the activity completion times. Such cost
functions may take the following form:
?? Minimizing total project costs, where the pro-

ject costs are determined by a weighted function
of the tardiness of the activities with respect to
pre-set due dates.

?? Maximizing the net present value of the project,
in which all activities are assigned a positive cash
flow (a popular assumption under cost-plus
contracts; see Herroelen et al., 1997).

?? Minimizing the weighted sum of the completion
times of several activities, where these activities
represent the end of s&projects. In fact, we then
have a multi-project scheduling problem for
which the different projects have been combined
to one single superproject.
If we would optimize a non-regular measure of

performance, we cannot use the ESS to compute
the objective function value. Instead, the project
network in each node of the search tree should
be optimized using the non-regular objective func-
tion, while discarding the resource constraints. A

well-known non-regular measure of performance
which is gaining more popularity is the maximiza-
tion of the net present value of the project, in
which positive andlor negative cash flows are asso-
ciated with each activity. In this case, the net pres-
ent value of the project networks in each node
should be maximized without taking the resource
constraints into account. Algorithms for the un-
constrained max-npv project scheduling problem
can be found in Russell (1970), Grinold (1972), El-
maghraby and Herroelen (1990), Herroelen and
Gallens (1993) and Herroelen et al. (1996). How-
ever, these algorithms allow only for zero-lag FS
precedence constraints. Their extension to GPRs
constitutes a viable area of future research.

Acknowledgements

We would like to express our gratitude towards
Klaus Neumann and Christoph Schwindt from the
University of Karlsruhe for providing us with the
project generator ProGen/max and with the com-
putational results for the heuristics that allowed
for a comparative analysis. We would also like to
thank three anonymous referees for their construc-
tive comments.

Appendix A. Proofs

A.l. Proof of Theorem 1

We prove that (a) the delaying strategy based
on (not necessarily minimal) delaying modes leads
to the optimal solution, (b) it is sufficient to con-
sider only minimal delaying modes, and (c) the
procedure finds the optimal solution in a finite
number of steps.

Lemma A.l. The delaying strategy bused on delay-
ing modes leads to the optimal solution

Proof. Consider the original project network
associated with the root node (node 0) of the
search tree. If this network is time infeasible, no
feasible solution can be obtained. If the ESS for

B. De Rewk. W. Herroelen I European Journal of‘ Operational Research III (1998) 152-174 169

this network has no resource conflict, it is optimal.
Therefore, we assume that the project network in
the root node of the search tree is time feasible
but resource infeasible. Suppose that s(t*) =
(ii, iz,. . . , ix) is the conflict set of activities in
progress in period]t* - 1% t’], the period in which
the first resource conflict occurs. We can now use
the following lemma.

Lemma A.2. In each feasible solution that may
result from resolving a resource conflict created by
the conflict set S(P), the precedence relation ik 4 ii
must be satisfied jtir at least one pair qf activities
(k, 1) E S(t*).

Proof. See Lemma 3.6 in Bartusch et al. (1988).

Therefore, resolving a resource conflict at node
0 by branching into x(x - 1) nodes, each of which
adds a different precedence constraint ik 4 il(k, 1
E S(t*)), guarantees that Qo = u”,‘:,” Qk, in which
Rk represents the set of feasible solutions that can
be obtained when branching from node k. Repeat-
ing this branching strategy throughout the search
tree leads to the optimal solution.

Our delaying strategy, however, is based on de-
laying alternatives and delaying modes. Each de-
laying mode M,,, for which the delaying
alternative Dd consists of a single activity, corre-
sponds to a precedence relation as specified in
Lemma A. 1. It remains to be shown that a prece-
dence constraint {ik 4 il} imposed by Lemma A.l,
which would not be identified by our procedure as
a possible delaying mode, is dominated and can be
omitted. The reason for our procedure not to gen-
erate the delaying mode {ik + it} can only be that
conflict activity ii does not release enough resourc-
es to resolve the resource conflict in period
]t* - 1, t”]. In other words, adding a constraint
{ik 4 i,} at level 1 of the search tree is not enough
to resolve the resource conflict in node 0, and,
using Lemma A. 1, it would be necessary to delay
another activity i, # ir E S(t*) by another activity
i, +Z {i,, in}: {i, 4 in} at a higher level of the search
tree. Suppose, without loss of generality, that at
the second node of the search tree, the decision is
made to delay activity i, # il E S(t*) by activity
i, 6 {il.&}: {i, -x in}.

Case 1: delaying activity i,, releases enough re-
sources by itself to resolve the resource conflict.

In this case, our procedure would identify the
constraint {i, + in} as a delaying mode at the first
level of the search tree. Therefore, the set of feasi-
ble solutions that can be obtained by branching
from the node on the second level of the search
tree is a subset of the set of feasible solutions that
can be obtained by our procedure when branching
from the node {i, 4 in} at level 1 of the search
tree.

Case 2: delaying activity i,, does not release en-
ough resources by itself to resolve the conflict.

Case 2.1: i, # ik.
In this case, we delay i, by ik and i, by i,,, (if # i,

and il, # i,).
Case 2.1.1: the resource conflict is resolved.
If the resource conflict is resolved by adding the

delaying modes {ik + il} and {i, + in} to the pro-
ject network, the corresponding feasible solution
will also be obtained by the delaying mode
{ ik + il, ik + in} or by delaying mode {i, + il,
i, 4 i,,}. Suppose that in the feasible solution ac-
tivity ik finishes before activity i, (or at the same
time). Then this feasible solution will not be elim-
inated by relaxing the constraint {i, + in} by
{ik 4 in}. If, on the other hand, activity i, finishes
before activity ik. then relaxing the constraint
{ik 4 i,} by {i, % il} Will not eliminate this feasi-
ble solution. Moreover, the two relaxed problems
consisting of delaying modes { &. + il, ik + in}
and {i, + il, i, + in} will be identified by our pro-
cedure, since {il, in} is a valid delaying alternative.
Therefore, all the delaying modes {ik + il. i, + in}
imposed by Lemma A.1 are dominated by the two
delaying modes { ik 4 i,, ik + in} and {i, -x i,,
i, + in} in our search procedure.

Case 2.1.2: the resource conflict is not resolved.
As the resource conflict is not resolved by the

delaying modes {ik + il} and {i, 4 i,}, new delay-
ing modes have to be added. Eventually, at a cer-
tain level of the search tree, a feasible solution will
be obtained which was reached by adding a set
of extra precedence relations {{ik, 4 iI1 1,

{ikz 4 iIz}: , { ikq 4 ir,}}, for which the delaying
activities are not one and the same activity (at least
two have to be different, since at level one and two
of the search tree, the delaying activities were

170 B. De Reyck, W. Herroelen I European Journal of Operational Research I1 I (1998) 152-I 74

different from one another: i, # ik). Then relaxing
the constraints {ik, + i,,} by {in 4 il$ }, in which iK
is the earliest finishing delaying activity in the fea-
sible solution, will not eliminate the feasible solu-
tion attained. The corresponding delaying mode
{{iK + i/,>, {& 4 i12}, . . . , {in + iI,>) will also be
identified by our procedure on the first level of
the search tree, since {ill, il?,. . . , i/,} constitutes a
valid delaying alternative. Therefore, the delaying
modes {{ik, 4 il,}, {ikz 4 k}, . . ({ix, + i,,}} im-
posed by Lemma A.1 are dominated by our delay-
ing modes {{iK 4 ir,}, {iK 4 i,?}, . , {in + il,}}
on the first level of the search tree.

Cuse 2.2: i, = ik.
In this case, we would have delayed i, and i, by

& (il # i,,). If the corresponding ESS is feasible, the
corresponding delaying modes will be identified by
our procedure, since {i,, in} then constitutes a valid
delaying alternative and ik a valid delaying activi-
ty. If, however, the ESS would still not be time fea-
sible, other precedence constraints would have to
be added. Now we would run into Case 2.1 or
2.2, depending on the delaying activity, but now
one level down in the search tree. As we have
shown in both cases, the corresponding delaying
modes will either also be identified by our proce-
dure, or be dominated by a generated delaying
mode. Repeating a similar argument for any node
created in the search tree, leads to the proof of
Lemma A.1.

Lemma A.3. In order to resolve a resource conflict,
it is sujicient to consider minimal delaying modes.

Proof. According to Lemma A.l, a branching
strategy based on delaying modes leads to the
optimal solution. Lemma A.1 does not exclude
non-minimal delaying modes, i.e. with a corre-
sponding delaying alternative Dd that contains
other delaying alternatives D,J as a subset. These
non-minimal delaying alternatives Dd (and corre-
sponding non-minimal delaying modes), however,
need not be examined, since the set of feasible
solutions we can obtain by branching from a node
with a corresponding non-minimal delaying mode
will be a proper subset of the set of feasible
solutions obtained when branching from a node
with a delaying mode in which Dd is replaced by

D,!. The project network created by the delaying
mode corresponding to Dd is identical to the one
created by the delaying mode corresponding to
D,!, except that one or more extra precedence
relations are added. Therefore, the set of feasible
solutions that can be obtained from the node
corresponding to Dd is a proper subset of the set of
feasible solutions that can be obtained from the
node corresponding to Ddf. Therefore, delaying
alternative Dd (and all corresponding delaying
modes) can be eliminated.

Lemma A.4 The delaying strategy based on Lemma
A.3 leads to the optimal solution in a jinite number
of steps.

Proof. At each branch of the search tree, we create
a number of nodes equal to the number of minimal
delaying modes. Clearly, the maximal number of
activities in ,S(t*) is equal to n. Then, it can be
shown that the maximal number of minimal
delaying modes is equal to n!. Indeed, if the
number of activities in each delaying alternative is
equal to 1, the number of delaying alternatives is
equal to n and the number of delaying modes equal
to n(n - 1) because there are n - 1 possible delay-
ing activities for each delaying alternative. If the
number of activities per delaying alternative is
equal to 2, the maximal number of delaying modes
would be equal to n(n - l)(n - 2)/2, because there
are n!/(n - 2)!2! delaying alternatives and n - 2
possible delaying activities. In general, x activities
per delaying alternative would give rise to maxi-
mally n!/(n -x - l)!x! delaying modes. Clearly,
the maximal number of minimal delaying modes is
always smaller than n!, even if the number of
activities varies among the delaying alternatives.
Thus, the maximal number of nodes generated
during each branching step equals n!. We know
that the maximal number of zero-lag FS prece-
dence relations that can be added to a project
network (without affecting time-feasibility) equals
n(n - 1)/2. Therefore, the maximal number of
levels in the search tree equals n(n - 1)/2. Conse-
quently, the maximal number of nodes generated
in the search tree equals C$“‘2(n!)‘, the max-
imal number of leaf nodes being equal to

n(n-I)/2 (n!)

B. De Revck. Pi! Herroelen I European Journal qf Operational Researrh 111 (1998) 152-l 74 171

According to Lemma A.3, one of these nodes is
bound to contain the optimal solution. Since the
number of nodes in the search tree is finite, the op-
timal solution can be found in a finite number of
steps. 0

A.2. Proqf qf Theorem 4

If we split up each activity i of an RCPSP-GPR
instance into unit-duration subactivities
(i,, iz, . . , ip), connected with zero-lag minimal
FS time lags, we obtain the preemptive version
of the RCPSP-GPR (see also Demeulemeester
and Herroelen, 1996 for the preemptive RCPSP),
provided that the precedence relations between
the activities are connected to the correct subactiv-
ity. However, if we also add zero-lag maximal FS
time lags, we again obtain the original problem,
since all the subactivities of a given activity have
to be performed consecutively. If the project net-
work is represented in its standardized form (as a
constraint digraph), all precedence relations are
of the SS type which can be represented in the
unit-duration RCPSP-GPR by precedence rela-
tions between the first subactivities of each activity
only (i 4 j =+ sil + di d .s],). The zero-lag mini-
mal and maximal FS precedence relations between
the subactivities are then represented by two min-
imal SS relations equal to 1 and -1 respectively
for each consecutive pair of subactivities
(sii + 1 d s,,~, and Sik+, - 1 < sik).

Since the two problems are identical, a lower
bound for the unit-duration problem will also
be a valid lower bound for the original problem.
Now, we show that the exact value of lb! is ob-
tained by calculating lb\ (Demeulemeester and
Herroelen, 1997a) for the unit-duration problem,
with the additional assumptions that (a) the or-
der in which the subactivities are placed in the
list L is determined by looking at the original
problem (i.e. the number of companions is calcu-
lated by looking at the original activities, not the
subactivities) and (b) (which logically follows
from (a)) if a subactivity ik of activity i is re-
moved from L, so are all the other subactivities
il(I # k) of activity i (which can never be com-
panions of ik).

Since all the time lags between the subactivities
of one and the same activity are equal to 1 (from ik
to ik+l) and -1 (from ik+l to ik), we know that
ik(1 d k < p) is a companion of

j/(l<I<q) ifbothdij-(k-l)+(I-I)<0

and dji + (k - 1) - (1- 1) < 0 (A.11

i.e. the longest path length between ik andj, or be-
tween j, and ik may never exceed zero, otherwise
they can never be scheduled in parallel.

Assume we compute lb’, for the unit-duration
RCPSP-GPR. When we remove subactivity ik
from L, we also have to remove its companions
from L, i.e. each j, for which condition (A.l) ap-
plies. By simplifying Eq. (A.l), we obtain

removejl if k + dji 6 1 < k - d,, (A.21

(note that k + dji < k - dq because otherwise:
k + dj, > k - d,, + di, + dji > 0 + dii > 0, which
would result in a time-infeasibility). Consequently,
when we remove all the subactivities ik from L, we
have to remove each subactivity jl for which con-
dition (A.2) applies for any subactivity ik. The
smallest value 1 for which (A.2) is true is equal to
max{ 1,l + dii}, whereas the largest value for 1
equals min{d,, di - dij}. Therefore, the number of
subactivities from activity j to be removed equals:
min{dj, di - dij} - max{ 1,l + dji} + 1. However,
the maximal number of subactivities of activity j
to be removed can never exceed di. Therefore,
the number of subactivities jl to be removed from
L if all subactivities ik are removed from L equals

min{min{d,,di-dq}-max{l.l+dii}+ l,d;}.

(A.3)

We will now examine each of the combinations
given in Table 1 which represent time-feasible pro-
ject networks and in which activities i and j are
companions.

Case 1: dil 6 0 and 0 < dii < dj (row 2 and col-
umns 3, 4 in Table 1).

Using Case 1, Eq. (A.3) can be simplified to:
min{min{dj,d,-di,}-l-~~i+l,di}=min{min{dj,
di-d/i}- dji, di} = min{min{dj - dji, di - dij -djl},
d,} = min{dj - dji, di - dij - dj,, di}. We know that
di < d, - d!, - dji, because otherwise we would get

172 B. De Reyck. W. Herroelen I Europeun Journal oJ’ Operational Research I I I (I 998) 152-l 74

dlj + dji > 0 which leads to time-infeasibility.
Therefore, the number of subactivities of activity
j to be removed equals min{dj - dji, di}, which is
equivalent to a reduction of the remaining dura-
tion of activityj with the same amount. This value
corresponds to the values of cells (2,3) and (2,4) in
Table 1. Because dji < dj this value can never be-
come negative.

CUX 2: 0 < dij < di and dji < 0 (column 2 and
rows 3, 4 in Table 1).

Using Case 2, Eq. (A.3) can be simplified to:
min{min{$,, di - dij} - 1 + 1, d;} = min{min{dj,
di-d;j},di} =min{dj,d,-dij,d,} = min{dj,d;-d;j},
which is the value for cells (3,2) and (4,2) in Ta-
ble 1. Again, this value can never become negative.
Notice also that the value given in Table 1
(di - d,j) is slightly different, because there is no
need to check whether the remaining duration of
activity j becomes negative (if dj d 0, it is com-
pletely removed from L).

Case 3: dij < 0 and dji < 0 (rows 3, 4 and COG-
umns 3, 4 in Table 1).

Using Case 3, Eq. (A.3) can be simplified to:
min{min{dj, d, - dij} - 1 + 1, di} = min{min{dj,
di - {ii}, di} = min{dj, d, - dij, di} = min{dj, di},
which is the value for cells (3,3), (3,4), (4,3) and
(4,4) in Table 1. Notice again the slight difference
because of the non-negativity constraint of the re-
maining duration of activity j, which is not needed
in our procedure.

For the sake of completeness, we will extend the
proof to the time lag combinations which prohibit
activities i and j to be companions (cells (4,l) and
(1,4) in Table 1). A similar reasoning can be given
for the time lag combinations which are not time
feasible (cells (l,l), (1,2), (2,1), (2,2), (3,l) and
(1,3) in Table 1).

Case 4: dlj < - d/- and dji > dj (row 1, column 4
in Table 1).

Using Case 4. Eq. (A.3) can be simplified to:
min{min{dj, dt-d;j} - 1 - dji+ 1, di} = min{min{dj,
di - d,j} - dj;, di} = min{dj - dii, d, - di, - dj;, d;}.
Because dji > dj, we know that dj - dj, d 0. There-
fore, the minimum will be smaller than zero, which
is a logical result because then activities i and j will
not be companions at all (as is given in cell (1,4) in
Table 1). Subsequently, no subactivities j, have to
be removed from L, or, in the original problem,

the remaining duration of activity j in L need not
be reduced.

Case 5: dij 3 - di and dji < - d, (row 1, COG-
umn 4 in Table 1).

Similar argument as for Case 4. 0

Prooj’of Theorem 5

If the set of added precedence constraints which
leads to the project network in node x contains as a
subset the set of added precedence constraints lead-
ing to the project network in a previously examined
node y, the project network obtained in node x
consists of the project network obtained in node
y, extended with zero or more extra zero-lag fin-
ish-start precedence relations. Therefore, since the
problem in node x is more constrained than the
problem in node y, the set of feasible solutions
which can be obtained when branching from node
x is a subset of the set of feasible solutions which
can be obtained when branching from node
y (Q c Q,,). Therefore, the best possible solution
that can be obtained when branching from node
x can never be superior to the best possible solution
that can be obtained when branching from node y.

We know that node y is already examined and
that it stems from another part of the search tree
than node x. Therefore, when we reach node x, be-
cause of the nature of the depth-first search proce-
dure, node y is also backtracked upon. Therefore,
we know that the best possible solution that can be
obtained by branching from node y is already de-
termined. Therefore, node x can be fathomed since
no superior solution can be obtained by branching
from it. 0

Proof' of Theorem 6

We know that 3 i, j E V and a resource type k
for which:

T& + [jk_ > ax3 (A.4)

-dj < dij < dl. (W

Suppose that there exists a feasible solution for the
RCPSP-GPR. In each feasible solution (therefore

B. De Rryk. W. Herroelen I European Journul of’ Operaiionul Reseurch 111 (1998) 152-I 74 173

also in the optimal solution), Eq. (A.4) guarantees
that either i + j or j + i. Suppose that

j+i + s;+dj<s,. (A.61
We can derive from Eq. (A.5) that

dij > -dj. (A.7)

Combining the general expression si + dlj < “1
with Eq. (A.7). we get

s, - d, < s., (A.81
Substituting (A.6) into (A.8) yields:
.~j + dl - d, < .~.i + Sj < sj, which is impossible.
Therefore, in each feasible solution: i + j +
s, + di < .ri. Consequently, we can set 1, = di.

Now suppose that there does not exist a feasible
solution for the RCPSP-GPR. Then, adding the
constraint 1, = d, will not change the fact that
no feasible solution is obtained, since its addition
further constrains the problem, leading to a set
of feasible solutions which is a subset of the origi-
nal set. Since the original set was empty, so will the
new set of feasible solutions. 0

References

Bartusch, M.. Mohring. R.H.. Radermacher, F.J.. 1988.
Scheduling project networks with resource constraints and
time windows. Ann. Oper. Res. 16, 201-240.

Brinkmann, K., Neumann. K., 1996. Heuristic procedures for
resource-constrained project scheduling with minimal and
maximal time lags: The minimum project-duration and
resource-levelling problem. J. Dec. Syst. 5, 1299156.

Crandali, K.C.. 1973. Project planning with precedence lead/lag
factors. Proj. Mgmt. Quart. 4. 18-27.

Demeulemeester, E., Herroelen. W.. 1992. A branch-and-bound
procedure for the multiple resource-constrained project
scheduling problem. Management Sci. 38, 180331818.

Demeulemeester. E., Herroelen, W., 1996. A branch-and-bound
procedure for the preemptive resource-constrained project
scheduling problem. Eur. J. Oper. Res. 90, 334.348.

Demeulemeester, E.. Herroelen. W., 1997a. New benchmark
results for the resource-constrained project scheduling
problem. Management Sci. 43 (to appear).

Demeulemeester. E., Herroelen, W., 1997b. A branch-and-
bound procedure for the generalized resource-constrained
project scheduling problem. Oper. Res. 45. 201~212.

De Reyck. B.. 1995. Project scheduling under generalized
precedence relations a review: Parts I and 2. Research
Reports 9517 and 9518, Department of Applied Economics.
Katholieke Universiteit Leuven.

De Reyck, B., Herroelen. W., 1996a. A branch-and-bound
procedure for the resource-constrained project scheduling
problem with generalized precedence relations. Research
Report 9613, Department of Applied Economics. Katholi-
eke Universiteit Leuven.

De Reyck, B.. Herroelen, W.. 1996b. Computational experience
with a branch-and-bound procedure for the resource-
constrained project scheduling problem with generalized
precedence relations. Research Report 9628, Department of
Applied Economics, Katholieke Universiteit Leuven.

Elmaghraby, S.E., 1977. Activity Networks: Project Planning
and Control by Network Models. Wiley, New York.

Elmaghrdby, S.E., Herroelen. W., 1990. The scheduling of
activities to maximize the net present value of projects. Eur.
J. Oper. Res. 49, 3549.

Elmaghraby, S.E., Kamburowski, J., 1992. The analysis of
activity networks under generalized precedence relations.
Management Sci. 38. 124551263.

Franck. B., Neumann, K., 1996. Priority-rule methods for the
resource-constrained project scheduling problem with min-
imal and maximal time lags - an emprica) analysis. In: Fifth
International Workshop on Project Management and
Scheduling. 11 13 April, Poznan, pp. 88891.

Grinold, R.C., 1972. The payment scheduling problem. Naval
Res. Logist. Quart. 19, 1233136.

Herroelen. W.. Gallens, E., 1993. Computational experience
with an optimal procedure for the scheduling of activities to
maximize the net present value of projects. Eur. J. Oper.
Res. 65. 274-277.

Herroelen. W., Demeulemeester. E., Van Dommelen. P., 1997.
Project network models with discounted cash flows: A
guided tour through recent developments. Eur. J. Oper. Res.
100.97 121.

Herroelen. W.. Demeulemeester. E.. Van Dommelen. P., 1996.
An optimal recursive search procedure for the deterministic
unconstrained max-npv project scheduling problem. Re-
search Report 9603, Department of Applied Economics.
Katholieke Universiteit Leuven.

Icmeli, 0.. Erengiic, S.S., 1996. A branch-and-bound procedure
for the resource-constrained project scheduling problem
with discounted cash flows. Management Sci. 42. 1395-
1408.

Kelley Jr.. J.E., Walker. M.R.. 1959. Critical path planning and
schedulmg. Eastern Joint Computing Conference 16. 160-
172.

Kerbosh, J.A.G.M., Schell, H.J., 1975. Network planning by
the Extended METRA Potential Method. Report KS-1.1.
University of Technology Eindhoven, Department of In-
dustrial Engineering.

Kolisch. R.. Sprecher, A., Drexl, A.. 1995. Characterization and
generation of a general class of resource-constrained project
scheduling problems. Management Sci. 41. 169331703.

Lawler. E.L.. 1976. Combinatorial Optimization: Networks
and Matroids. Holt, Rinehart & Winston, New York.

Malcolm. D.G.. Roseboom, J.H., Clark, C.E., Fazar. W., 1959.
Applications of a technique for R&D program evaluation
(PERT). Oper. Res. 7. 646669.

174 B. De Reyck, W. Herroelen I European Journal qf Operational Research III (1998) 152-174

Mastor, A.A., 1970. An experimental and comparative evah-
ation of production line balancing techniques, Management
Sci. 16, 128746.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco. L., 1997.
An exact algorithm for project scheduling with resource
constraints based on a new mathematical programming
formulation. Management Sci. (to appear).

Moder, J.J., Phillips, C.R., Davis, E.W., 1983. Project Man-
agement with CPM, PERT and Precedence Diagramming,
3rd ed. Van Nostrand Reinhold, New York.

Mohring, R.H., 1996 (private communication).
Neumann, K., Schwindt, C., 1997. Activity-on-node networks

with minimal and maximal time lags and their application to
make-to-order production. OR Spektrum 19, 2055217.

Neumann, K., Zhan, J.. 1995. Heuristics for the minimum
project-duration problem with minimal and maximal time
lags under fixed resource constraints. J. Intell. Manuf. 6.
145-154.

Pascoe, T.L., 1966. Allocation of resources CPM. Revue
Franpaise de Recherche Operationelle 38. 3 I-38.

Patterson, J.H., 1984. A comparison of exact procedures for
solving the multiple resource-constrained project scheduling
problem. Management Sci. 30, 854867.

Roy, B., 1962. Graphes et ordonnancement. Revue Franqaise
de Recherche Operationelle, 323-333.

Russell, A.H., 1970. Cash flows in networks. Management Sci.
16, 3517373.

Schwindt, C.. 1996a. Generation of resource-constrained pro-
ject scheduling problems with minimal and maximal time
lags. Technical Report WIOR-489. lnstitut fur Wirtschafts-
theorie und Operations Research. Universitat Karlsruhe.

Schwindt, C., 1996b (private communication).
Schwindt, C.. Neumann, K., 1996. A new branch-and-bound-

based heuristic for resource-constrained project scheduling
with minimal and maximal time lags. In: Fifth International
Workshop on Project Management and Scheduling. I I-13
April, Poznan, pp. 212-215.

Stinson, J.P., Davis, E.W., Khumawala, B.M., 1978. Multiple
resource-constrained scheduling using branch-and-bound.
AIIE Transactions 10, 252-259.

Wiest. J.D.. 1981. Precedence diagramming methods: Some
unusual characteristics and their implications for project
managers. J. Oper. Mgmt. I, 121~130.

Wikum. E.D.. Donna. C.L., Nemhauser. G.L., 1994. One-
machine generalized precedence constrained scheduling
problems. Oper. Res. Lett. 16, 87-99.

Zhan, J.. 1994. Heuristics for scheduling resource-constrained
projects in MPM networks. Eur. J. Oper. Res. 76. 1922205.

	A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations
	Citation

	PII: S0377-2217(97)00305-6

