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Abstract 

We present an optimal solution procedure for the resource-constrained project scheduling problem (RCPSP) with 
generalized precedence relations (RCPSP-GPR) with the objective of minimizing the project makespan. The RCPSP- 
GPR extends the RCPSP to arbitrary minimal and maximal time lags between the starting and completion times of 
activities. The proposed procedure is suited for solving a general class of project scheduling problems and allows for 
arbitrary precedence constraints, activity ready times and deadlines, multiple renewable resource constraints with 
time-varying resource requirements and availabilities, several types of permissible and mandatory activity overlaps 
and multiple projects. It can be extended to other regular and non-regular measures of performance. Essentially, the 
procedure is a depth-first branch-and-bound algorithm in which the nodes in the search tree represent the original pro- 
ject network extended with extra precedence relations to resolve a number of resource conflicts. These conflicts are re- 
solved using the concept of minimal delaying modes, which is an extension of the notion of minimal delaying 
alternatives for the RCPSP. Several bounds and dominance rules are used to fathom large portions of the search tree. 
Extensive computational experience is reported. 0 1998 Elsevier Science B.V. All rights reserved. 

Keywords: Project management; Critical path methods; Branch-and-bound; Generalized precedence relations 

1. introduction 

The Critical Path Method (CPM) (Kelley and 
Walker, 1959) and Program Evaluation and Re- 
view Technique (PERT) (Malcolm et al., 1959) 
are devoted to minimizing the makespan of a pro- 
ject under the assumption that required resources 

*Corresponding author. Fax: +32 16 326 732; e-mail: 
willy.herroelen@econ.kuleuven.ac.be. 

are available in sufficient amounts and that the 
technological precedence relations between any 
pair of activities i and j imply that activity i must 
be completed before activity j can be initiated. 
Over the years, the assumption of sufficiently 
available resources has been relaxed and many re- 
search efforts have been directed towards project 
scheduling with explicit consideration of resource 
requirements and constraints. More recent re- 
search has been directed at relaxing the strict pre- 
cedence assumption of CPM/PERT. In accordance 
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with Elmaghraby and Kamburowski (1992), we 
will refer to the resulting types of precedence rela- 
tions as generalized precedence relations (GPRs). 
We distinguish between four types of GPRs: 
start-start (SS), start-finish (SF), finish-start 
(FS) and finish-finish (FF). The resulting types 
of precedence relations are also often referred to 
as Metra Potential Method (MPM) precedence 
constraints (Kerbosh and Schell, 1975; Zhan, 
1994) precedence diagramming relations (Moder 
et al., 1983) time windows (Bartusch et al., 
1988), minimal and maximal time lags (Neumann 
and Schwindt, 1997; Neumann and Zhan, 1995; 
Brinkmann and Neumann, 1996; Schwindt, 
1996a), and generalized precedence constraints 
(Wikum et al., 1994). 

GPRs can specify a minimal or a maximal time 
lag between a pair of activities. A minimal time lag 
specifies that an activity can only start (finish) 
when the predecessor activity has already started 
(finished) for a certain time period. A maximal 
time lag specifies that an activity should be started 
(finished) at the latest a certain number of time pe- 
riods beyond the start (finish) of another activity. 
GPRs can be used to model a wide variety of spe- 
cific problem characteristics, including (Bartusch 
et al., 1988; De Reyck, 1995; Neumann and 
Schwindt, 1997) activity ready times and dead- 
lines, activities that have to start or terminate si- 
multaneously, non-delay execution of activities, 
several types of mandatory activity overlaps, fixed 
activity starting times, time-varying resource re- 
quirements and availabilities, time-windows for re- 
sources, inventory restrictions, set-up times, 
overlapping production activities (process batches, 
transfer batches) and assembly line zoning con- 
straints. The first treatment of GPRs is due to Ker- 
bosh and Schell (1975) based on the pioneering 
work of Roy (1962). Other studies include Cran- 
da11 (1973) Elmaghraby (1977), Wiest (1981) 
Moder et al. (1983) Bartusch et al. (1988) El- 
maghraby and Kamburowski (1992) Zhan 
(1994) De Reyck (1995) Neumann and Schwindt 
(1997) Neumann and Zhan (1995) Schwindt 
(1996a), Brinkmann and Neumann (1996) De 
Reyck and Herroelen (1996a, b), Schwindt and 
Neumann (1996) and Franck and Neumann 
(1996). 

In this paper, we present an optimal solution 
procedure for the resource-constrained project 
scheduling problem with generalized precedence 
relations (further denoted as RCPSP-GPR). To 
the best of our knowledge, the only optimal solu- 
tion procedure presented in the literature for the 
RCPSP-GPR is the branch-and-bound algorithm 
of Bartusch et al. (1988). Heuristics have been pre- 
sented by Zhan (1994) Neumann and Zhan 
(1995) Brinkmann and Neumann (1996) Franck 
and Neumann (1996) and Schwindt and Neumann 
(1996). 

The remainder of this paper is organized as fol- 
lows. Section 2 elaborates on the concept of GPRs 
and clarifies the terminology and the project repre- 
sentation used. Section 3 continues with the tem- 
poral analysis of activity networks with GPRs. 
In Section 4, which discusses the resource analysis 
of such networks, a branch-and-bound procedure 
for the RCPSP-GPR is presented. Computational 
results are given in Section 5. Section 6 is reserved 
for our overall conclusions. 

2. Generalized precedence relations 

Assume a project represented in activity-on- 
the-node format by a directed graph G = { V, E} 
in which V is the set of vertices or activities, 
and E is the set of edges or GPRs. The non-pre- 
emptable activities are numbered from 1 to n, 
where the dummy activities 1 and n mark the be- 
ginning and the end of the project. The duration 
of an activity is given by d, (1 < i < n), its start- 
ing time by s,( 1 d i d n) and its finishing time 
by fi( 1 < i < n). There are m renewable resource 
types, with ~.,b( 1 < i < n, 1 < k < m, 1 < x < di) 
the resource requirements of activity i with res- 
pect to resource type k in the xth period it is 
in progress and ak,(l < k < m; 1 < t < T) the 
availability of resource type k in time period 
]t - 1, t] (T is an upper bound on the project 
length). If the resource requirements and avail- 
abilities are not time dependent, they are rep- 
resented by Yik(l 6 id II, 1 <k d m) and 
ak( 1 d k d m) respectively. The minimal and 
maximal time lags between two activities i and j 
have the form: 
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Si + SSti" < Sj < Si + SS:ax, 

s;+SFF <fi&si+SFF, 

f;+FS;‘” &sj<f;+FSr, 

,f,+FF+f,dJ;+FFT> 

where S!$” represents a minimal time lag between 
the start time of activity i and the start time of ac- 
tivity j (similar definitions apply for SSY’, 
FS;‘“, . . .). The various time lags can be represent- 
ed in a standardizedform by transforming them to, 
for instance, minimal SS precedence relations, 
using the following transformation rules (Bartusch 
et al., 1988): 

Si + SST < Sj * Si + 1, 6 Sj 

with 1, = SSF”, 

s; + ssr 3 Sj * S,j + lji < S, 

with lji = -SST, 

S; + SF:‘” 6 f, + si + 1, < ~,i 

with 1, = SF? - di, 

s, + SF;“” 3 ,fi * Si + Iii < Sj 

with lji = 4, - SFT, 

fi + FSY’” 6 Sj + Si f 1, < Sj 

with iii = di + FSG’“, 

J; f FSF > S/ + Si f l,ii < Si 

with lj; = -di - FST, 

J; + FF$‘” <f, + Sr + 1, < S, 

with 1, = di - d/ + FFZ’“. 

A + FFT > f, + sj + l,il < si 

with lji = dj - di - FFY. 

In this way, all GPRs are consolidated in the 
expression si + 1, < sj, where 111 denotes a minimal 
SS time lag. If there is more than one time lag Ii/ 
between two activities i and j, only the maximum 
time lag is retained. The interval [si + lij, si - lji] 
is called the time window of sj relative to s, (a sim- 
ilar definition can be found in Bartusch et al., 
1988). Applying these transformation rules to an 
activity network with GPRs results in a so-called 

constraint digraph, which is short for digraph of 
temporal constraints. 

A path (is, ik, i,, . . , it) is called a cycle if s = t. 
With ‘path’ we mean a directed path, and with ‘cy- 
cle’ we mean a directed cycle. The length of a path 
(cycle) is defined as the sum of the lags associated 
with the arcs belonging to that path (cycle). To en- 
sure that the dummy start and finish activities cor- 
respond to the beginning and the completion of 
the project, we assume that there exists at least 
one path with non-negative length from node 1 
to every other node and at least one path from ev- 
ery node i to node n which is equal to or larger 
than di. If there are no such paths, we can insert 
arcs (1,i) or (i,n) with weight zero or dj respective- 
ly. P(i) = {j / (j, i) E E} is the set of all immediate 
predecessors of node i, Q(i) = {j 1 (i, j) E E} is the 
set of all its immediate successors. If there exists a 
path from i to j, then we call i a predecessor of j 
and j a successor of i. P*(i) and g(i) denote the 
set of (not necessarily immediate) predecessors 
and successors of node i respectively. If the length 
of the longest path from i to j is non-negative, i is 
called a real predecessor of j, and j is called a real 
successor of i. Otherwise it is a jictitious one. 
(These definitions differ slightly from the ones 
used by Zhan (1994) and Neumann and Zhan 
(1995).) 

3. Temporal analysis 

A schedule S= (~1, ~2, ,sn) is called time j&u- 
sible, if the activity starting times satisfy all GPRs, 
i.e. if they satisfy the following conditions: 

Si>O YiEV, (1) 

S, + l,i d sj v(il_i) E E, (2) 

where Eq. (I) ensures that no activity starts before 
the current time (time zero), and Eq. (2) denotes 
the GPRs in standardized form. The minimum 
starting times (~1, ~2,. . ,s,) satisfying both 
Eqs. (1) and (2) form the early start schedule 
ESS=(esl,es2,..., es,) associated with the tempo- 
ral constraints. The calculation of an ESS can be 
related to the test for existence of a time-feasible 
schedule. The earliest start of an activity i can be 
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calculated by finding the longest path from node 1 
to node i. We also know that there exists a time- 
feasible schedule for G iff G has no cycle of positive 
length (Bartusch et al., 1988). Such cycles would 
unable us to compute activity starting times which 
satisfy Eqs. (1) and (2). Therefore if we calculate 
the matrix D = [dij], where dij denotes the longest 
path length from node i to node j, a positive path 
length from any node i to itself indicates the exis- 
tence of a cycle of positive length and, consequent- 
ly, the non-existence of a time-feasible schedule. In 
the literature (Bartusch et al., 1988) the matrix D 
is often referred to as the distance matrix, with dij 
the maximal distance between activities i andj. We 
prefer the term longest path instead of distance, al- 
though the same notation D and dij is used. The 
calculation of D can be done by standard graph al- 
gorithms for longest paths in networks, for in- 
stance by the Floyd-Warshall algorithm (see 
Lawler, 1976). If we start with the matrix 
DC’) = [d:!‘] with 

1 

0 if i = j, 
d!‘) = 

I/ l<j Yi,j) E E, 

-cc otherwise, 

we can compute D = DC”+‘) according to the up- 
dating formula dt’ = max{d$-I), d,(f;-‘) + dt-’ } 
(i, j, 1=1,2,. . . , n).Ifdii=Oforalli=1,2 ,..., n. 
there exists a time-feasible schedule. The ESS is 
given by the numbers in the upper row of D: 
ESS=(dtr, dlz ,..., dl,). Computing D takes 
0(n3) time. 

4. Resource analysis 

The RCPSP-GPR can be conceptually formu- 
lated as follows: 

minimize s, (3) 

subject to si + 1, < ~,i V(i, j) E E, (4) 

c r& dak, k= 1,2,...,m, 
&(t) 

t=1,2 )..., T, (9 

s1 = 0, (6) 

s, E N, i= 1,2 ,..., n, (7) 

where N denotes the set of natural numbers, S(t) is 
the set of activities in progress in time period 
]t - 1, t] and T is an upper bound on the pro- 
ject duration, for instance T = CiEV max{di, 
maxjcQ(i) { /ii)>. 

Note that it is not always possible to derive a 
feasible solution. The upper bound T indicates 
the maximal value for the project makespan if a 
feasible solution exists. The objective function giv- 
en in Eq. (3) minimizes the project duration, given 
by the starting time (or completion time, since 
d,, = 0) of the dummy activity n. The GPRs are de- 
noted in standardized form by Eq. (4). Eq. (5) rep- 
resents the resource constraints. The resource 
requirements and availabilities are assumed to be 
constant over time, although this assumption can 
easily be relaxed using GPRs without having to 
change the solution procedures. Time-varying re- 
source requirements can be modelled by splitting 
up the activities in a number of subactivities with 
a different constant resource requirement for each 
of the resource types. The subactivities should then 
be connected with minimal and maximal zero-lag 
FS precedence relations which ensure a non-delay 
execution of all the subactivities of each activity. 
Time-varying resource availabilities can be han- 
dled by creating dummy activities which absorb a 
certain amount of each resource type for which a 
constant availability (equal to the maximum avail- 
ability over time of that resource type) can then be 
assumed. These dummy activities should then be 
assigned a fixed starting time using a minimal 
and maximal time lag between dummy activity 1 
and the dummy activity in question. Naturally, al- 
lowing for time-varying resource requirements and 
availabilities will undoubtedly lead to an increase 
in the complexity of the RCPSP-GPR. Eq. (6) 
forces the dummy start activity to begin at time ze- 
ro and Eq. (7) ensures that the activities starting 
time assume non-negative integer values. Once 
started, activities run to completion. However, this 
non-preemption condition can easily be relaxed 
by splitting up the activities in unit-duration subac- 
tivities (Demeulemeester and Herroelen, 1996) 
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connected with minimal zero-lag FS precedence re- 
lations. Again, allowing for activity preemption 
will substantially complicate the RCPSP-GPR. 

The RCPSP-GPR is known to be strongly NP- 
hard, and even the decision problem of testing 
whether an RCPSP-GPR instance has a feasible 
solution is NP-complete (Bartusch et al., 1988). 
To the best of our knowledge, the only optimal so- 
lution procedure presented in the literature for the 
RCPSP-GPR is the branch-and-bound algorithm 
of Bartusch et al. (1988). However, the computa- 
tional experience obtained with this procedure is 
limited to a single bridge construction project 
and the computer code is no longer available 
(Miihring, 1996). Neumann and Zhan (1995) de- 
veloped a priority-rule-based heuristic which al- 
lows us to solve RCPSP-GPR instances using a 
parallel search scheme (see also Zhan, 1994). 
Brinkmann and Neumann (1996) developed a seri- 
al heuristic for the RCPSP-GPR (called DIRECT) 
and a heuristic based on the (serial) scheduling of 
cycle structures (strongly connected components 
of a project network with GPRs) and the subse- 
quent (serial) scheduling of the (acyclic) contracted 
project network (called CONTRACT). Franck 
and Neumann (1996) further enhanced the ap- 
proach of Neumann and Zhan (1995) and validat- 
ed the performance of the heuristic procedures. 
Schwindt and Neumann (1996) report computa- 
tional experience with a branch-and-bound-based 
heuristic which first schedules all cycle structures 
in an RCPSP-GPR instance using the procedure 
described in this paper and subsequently solves 
the contracted acyclic project network using an ex- 
tended version of the RCPSP procedure of De- 
meulemeester and Herroelen, (1992, 1997a). In 
the following section, we discuss the fundamentals 
of the new branch-and-bound procedure for the 
RCPSP-GPR. 

4.1. The search tree 

The nodes in the search tree represent the initial 
project network, described by the matrix D = [dii], 
extended with extra zero-lag FS precedence rela- 
tions to resolve a number of resource conflicts, 
which results in an extended matrix D’= [d’g]. 

Nodes which represent time-feasible but re- 
source-infeasible project networks and which are 
not fathomed by any of the node fathoming rules 
described below lead to a new branching. There- 
fore each (undominated) node represents a time- 
feasible, but not necessarily resource-feasible pro- 
ject network. Resource conflicts are resolved using 
the concept of minimal delaying alternatives, i.e. 
minimal sets of activities which, when delayed, re- 
lease enough resources to resolve the resource con- 
flict and which do not contain any other delaying 
alternative as a subset. Each of these minimal de- 
laying alternatives is delayed (enforced by extra ze- 
ro-lag FS precedence relations i + j, implying 
si + d, < sj) by each of the remaining activities also 
belonging to the conflict set S(t*), the set of activ- 
ities in progress in period It’ - 1, t’] (the period of 
the jirst resource conflict). Therefore, each mini- 
mal delaying alternative can give rise to several 
minimal delaying modes. 

A similar delaying strategy was used by Demeu- 
lemeester and Herroelen (1992) for the RCPSP. As 
the RCPSP can be solved using semi-active timeta- 
bling (i.e. schedule activities as early as possible 
within the precedence and resource constraints) 
to construct partial schedules, activities belonging 
to the minimal delaying alternative can be delayed 
by the activity in S(t*) which terminates at the ear- 
liest time instant after the current decision point 
(further denoted as the delaying activity). In the 
RCPSP-GPR, this delaying strategy cannot be 
used because of the GPRs, which make it impossi- 
ble to determine which activity in S(t*) should be 
used as the delaying activity, because we cannot 
predict in advance which activity in S(t*) will ter- 
minate the earliest in the feasible schedules that 
will be obtained by branching from the current 
project network. Demeulemeester and Herroelen 
(1997b) devised an adaptation of their RCPSP so- 
lution strategy to cope with problems in which 
only minimal time lags (iii 2 0, Vi, j E V) are pres- 
ent. When minimal and maximal time lags are al- 
lowed, however, even the constructs used by 
these authors can no longer be used. A similar sit- 
uation occurs when maximizing the net present 
value of a resource-constrained project network 
(Icmeli and Erengtic, 1996). In the RCPSP-GPR, 
we have to consider several possible delaying 
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modes for each delaying alternative, possibly one 
for each activity in s(t*) which is not an element 
of the delaying alternative. 

Assume, for example, that in a certain period 
It’ - 1, t”], four activities are in progress and cause 
a resource conflict: s(t*) = { 1,2,3,4}. Suppose 
that the minimal delaying alternatives are {l}, 
(2) and (3, 4}, i.e. delaying activity 1, activity 2 
or activities 3 and 4 simultaneously releases en- 
ough resources to resolve the resource conflict. 
For the RCPSP, the procedure of Demeulemeester 
and Herroelen (1992) would create three new 
nodes. In the first node, activity 1 is delayed by 
the earliest finishing activity (x) among activities 
2, 3 and 4 (x + 1). In the second node, activity 2 
is delayed by the earliest finishing activity b) 
among activities 1, 3 and 4 (v + 2). Finally, activ- 
ities 3 and 4 are delayed by activity 1 or 2 (z), de- 
pending on which activity finishes the earliest 
(z + 3 and z -X 4). This results in three new nodes, 
as illustrated in Fig. 1. 

For the RCPSP-GPR, the delay of activity 1 is 
established by adding a precedence relation be- 
tween activities 2, 3 and 4 and activity 1. We there- 
fore create three new nodes (instead of one), one 
with the precedence relation 2 4 1, one with the 
precedence relation 3 -X 1 and one with the prece- 
dence relation 4 4 1. Delaying activity 2 is accom- 
plished by creating three new nodes with the extra 
precedence relations 1 4 2, 3 3 2 and 4 + 2. De- 
laying activities 3 and 4 is accomplished by creat- 
ing two new nodes with the extra precedence 
relations 1 + 3 and 1 + 4, and 2 4 3 and 2 4 4 

lol 

Fig. 1. Delaying strategy for the RCPSP of Demeulemeester 
and Herroelen (1992). 

respectively. In total, eight new nodes (minimal de- 
laying modes) are created, as illustrated in Fig. 2. 

In general, the delaying set DS, i.e. the set of all 
minimal delaying alternatives, is equal to 
DS = {&IL& c s(t*) and V resource type k: 

c rcs(r*) rlk -Cito$k d ak and V D,j E DS \{&}: 
D,t $ Dd}. The set of minimal delaying modes 
equals: M = {M, / M,,, = {k + Dd}, k E S(t*)\ Dd, 
Dd E DS}. Activity k is called the delaying activity: 
k -x Dd implies that k + 1 for all I E Dd. 

Theorem 1. The delaying strutegy which consists of 
delaying all minimal delaying alternatives Dd by 
each activity k E S(t*) \ Dd will lead to the optimal 
solution of the RCPSP-GPR in a finite number of 
steps. 

Proof. See Appendix A. 

Each minimal delaying mode is then examined 
for time-feasibility and evaluated by computing 
the critical path-based lower bound lb” (equal to 
the makespan of the ESS). Each time-feasible min- 
imal delaying mode with a lower bound lb0 < T is 
then considered for further branching, which oc- 
curs from the node with smallest lbo. If the node 
represents a project network in which a resource 
conflict occurs, a new branching occurs. If it repre- 
sents a feasible schedule, the upper bound T is up- 
dated and the procedure backtracks to the 
previous level in the search tree. Therefore, we 
have a depth-first search procedure, in which 
branching occurs until at a certain level in the tree, 
there are no delaying modes left to branch from. 
Then, the procedure backtracks to the previous 
level in the search tree and reconsiders the other 
delaying modes (not yet branched from) at that 
level. The procedure stops when it backtracks to 
level 0. 

4.2. Node j&homing rules 

Nodes are fathomed when they represent a 
time-infeasible project network or when lb” ex- 
ceeds (or equals) T. Nodes which are not fathomed 
and still represent an infeasible project network are 



158 B. De Reyck, W Herroelen I European Journal of Operational Research III (1998) 152-174 

delaying alternative 1 delaying alternative 2 

8 delaying modes 

Fig. 2. Delaying strategy for the RCPSP-GPR 

considered for further branching. Four additional 
node fathoming rules (three dominance rules and a 
new lower bound) and a procedure which reduces 
the solution space and which can be executed as a 
preprocessing rule are added. 

4.2.1. Redundant delaying alternatives 
Because activity overlaps are allowed (dii < di), 

it is possible that in period ]t* - 1, t*] (the period 
of the first resource conflict), the set of activities 
in progress (the conflict set ,S(t*)) contains an ac- 
tivity i together with a real successorj of activity 
i (dLj > 0). Then, delaying activity i will also delay 
activityj. Consequently, the following theorem ap- 
plies. 

Theorem 2. If there exists a minimal delaying 
alternative Dd with activity i E D,-J but its real 
successor j q! Dd (dij 2 0), we can extend Dd with 
activity j. If the resulting delaying alternative 
becomes non-minimal as a result of this operation, 
it may be eliminated from further consideration. 

Proof. Obvious. 

4.2.2. Redundant delaying modes 
Because of activity overlaps, it is possible that a 

certain minimal delaying alternative Dd giVtX rise 

to two delaying modes IV,,,, and MmZ, in which 
the delaying activities i (i + Dd) and j (j 3 Dd) 
are precedence related. Then, the following theo- 
rem applies. 

Theorem 3. When a minimal delaying alternative Dd 
gives rise to two delaying modes M,,,, and IV,,,? with 
deluying activities i and j respectively, mode IV,,,, is 
dominated by mode IV,,,, iffdij + dj > di. 

Proof. Obvious. 

4.2.3. A time- and resource-based lower bound 
Recently, Mingozzi et al. (1997) have developed 

five new lower bounds, lb,, Ibz, lb,, lb, and lbj, de- 
rived from different relaxations of a new mathe- 
matical formulation for the RCPSP. Bounds lb,, 
lbz, lb,Y and lb3 dominate the critical path-based 
lower bound lb0 and all prove to be tighter than 
the critical sequence lower bound lb, of Stinson 
et al. (1978) on the 110 RCPSP instances assem- 
bled by Patterson (1984) and the 480 randomly 
generated RCPSP instances of Kolisch et al. 
(1995). Mingozzi et al. (1997) compute lb3 using 
a heuristic for the weighted node packing problem. 
Demeulemeester and Herroelen (1997a) have in- 
corporated another version of lb3 (further denoted 
as lb’,) in their procedure for the RCPSP. lb5 
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proved to be more powerful than lbs (when used in 
combination with lbo), mainly because of its ease 
of computation. For each activity i E V, its possi- 
ble companions, i.e. the activities with which it can 
be scheduled in parallel, respecting both the prece- 
dence and resource constraints, are determined. 
All (unscheduled) activities i are then entered in 
a list L in non-decreasing order of the number of 
companions (non-increasing duration as tie-break- 
er). The following procedure then yields a lower 
bound, lbj’ (for the partial schedule under consid- 
eration): 

lb; = 0 (or the earliest completion time of the 
activities in progress if a partial schedule is al- 
ready determined) 
while L not empty do 

take the first activity (activity i) in L 
lb; = lb’, + d, 
remove activity i and its companions from L 

enddo 

Computational results obtained by Demeule- 
meester and Herroelen (1997a) indicate that lb’, 
indeed outperforms lb0 and that incorporating 
lb’, in their branch-and-bound procedure reduces 
the computational effort to solve the 110 prob- 
lems of Patterson (1984) and the 480 problems 
of Kolisch et al. (1995). The procedure of Demeu- 
lemeester and Herroelen (1997a) for computing 
lb\ can be extended to the RCPSP-GPR, by 
changing the calculation of the companions of 
the activities. In the RCPSP-GPR, activities i 
and j are companions if the resource requirements 
of both activities do not exceed the resource avail- 
ability for any resource type, and if both dij < d, 
and dji < dj. 

In our implementation of lbs, we have also 
adapted the (weighted node packing) heuristic. In- 
stead of removing an activityj from the list L when 
a companion i is taken from the list, we only re- 
move part of activity j from the list. The logic be- 
hind this reasoning relies on both a duration and 
time lag argument. The duration argument goes as 
follows: When an activity i is scheduled, a com- 
panion j can be scheduled in parallel with i. How- 
ever, if di < dj, only a part of activity j can be 
scheduled in parallel with i. Therefore, a part of 

activity j (with remaining duration dj = dj - di) 
can be left in L. Initially, all dJ are equal to dj. 
The time lag argument goes as follows. We adjust 
the part of activityj which has to be removed when 
a companion i is taken from the list, by incorporat- 
ing the precedence relations between i andj. Sever- 
al different situations have to be considered when 
deciding how much to remove from an activity 
in L. 

Table 1 shows the appropriate action (namely 
how much to remove from activity j when activity 
i is taken from L) depending on the longest path 
lengths between activities i and j. When we want 
to remove x units from activity j whereas only y 
(y < X) units are left, activity j is to be removed 
completely from L. 

Because in the procedure for the RCPSP-GPR, 
time-infeasibilities will be detected before lb3 is cal- 
culated, the calculation of lb3 for the RCPSP-GPR 
(lb!) can be summarized as follows: 

lb; = 0 
Set all d; equal to di 
while L not empty do 

take the first activity (activity i) in L and re- 
move it from L 
lb; = lb; + d,’ 
for every companion j of i do 

if di, > 0 then dj’ = dj’ - (di - di.1) 
else if dji > 0 then dj = 

dJ - min{dj - <ii, di} 
else dJ’ = dJ - d, 
endif 

if dJ d 0, remove activity j from L 
enddo 

enddo 

Theorem 4. lb; is a valid lower bound for the 
RCPSP-GPR. 

Proof. See Appendix A. 

lb! is used to fathom nodes for which lb: 2 T. 
However, whereas lb0 is calculated immediately 
upon the creation of a node, the calculation of 
lb: is deferred until a decision has been made to 
actually branch from that node. The rationale be- 
hind this is that (a) lb; is more difficult to compute 
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Table 1 
The calculation of d; 

d, < d,, 
0 < d,, < d, 
-d, < d,, G 0 
d,z < - 4 

d, G 4, 0 < d,, < d, 

Infeasible Infeasible 
Infeasible Infeasible 
Infeasible 4’ = 4’ - (d, - d,,) 
No companions 4’ = 4’ - (d, - d,,) 

-d, < d,, < 0 

Infeasible 
d; = dJ - min{d, - d,,.d,} 
4’ = d; - d, 
4’ = d; - d, 

d,,i -d, 

No companions 
d: = dJ - min{d, ~ d,,,d,} 
d; = d; - d, 
d; = d; - d, 

than lbs, and that (b) calculating lb! implies calcu- 
lating the entire matrix D. Supported by extensive 
computational tests, we defer the calculation of lb! 
and D until the node is actually selected for 
branching. As a result, only lb0 is used as a 
branching criterion. 

4.2.4. A subset dominance rule 
Each node in the search tree represents the initial 

project network extended with a set of (strict) pre- 
cedence constraints to resolve resource conflicts. 
Therefore, it is possible that a certain node repre- 
sents a project network which has been examined 
earlier at another node in the search tree. One way 
of checking whether two nodes represent the same 
project network is to check the added precedence 
constraints. Identical sets of precedence constraints 
lead to identical project networks. Moreover, the 
following theorem can then be applied. 

Theorem 5. If the set of added precedence con- 
straints which leads to the project network (in the 
form of an extended matrix D) in node x contains as 
a subset another set of precedence constraints 
leading to the project network (extended matrix 
D’) in a previously examined node y in another 
branch of the search tree, node x can be fathomed. 

Proof. See Appendix A. 

This rule only applies when a node is com- 
pared to a previously examined node in another 
path of the search tree. This can be enforced by 
saving the information required during back- 
tracking. The question remains which nodes have 
to be saved in order to test this rule. When a 
node x is dominated by a node y, it will also be 
dominated by a parent node z of y, unless node 

z is on the same path of the search tree as node 
x. Therefore, to check whether node x is domi- 
nated, we have to save the set of added prece- 
dence constraints of the nodes for which the 
parent node is on the same path as node x (but 
which themselves are not on the same path as 
node x). 

4.2.5. Reducing the solution space using 
preprocessing 

Before initiating the branch-and-bound proce- 
dure, the solution space can be reduced by simul- 
taneously examining the GPRs and the resource 
requirements. If on the one hand, two activities i 
and j can never overlap due to the resource con- 
straints, while on the other hand, the GPRs allow 
for an overlap, then the precedence relations can 
be tightened to avoid the overlap. This allows us 
to state the following theorem, which can be exe- 
cuted as a preprocessing rule. 

Theorem 6. [f 3, j E V und resource type k ,for 
which rik + rjk > ak and -dj < dil < di, we can set 
I, = di without changing the optimal solution of the 
RCPSP-GPR. 

Proof. See Appendix A 

4.3. The brunch-and-bound algorithm 

The detailed algorithmic steps of the proposed 
branch-and-bound algorithm are described below. 
The longest path length between two activities i 
and j is given by d b] [i] b], where p denotes the level 
in the search tree. For each such level, a matrix 
db] will have to be stored. 
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Step 1: Initialisation 
Let T= 9999 be an upper bound on the project duration. 
Set the level of the branch-and-bound tree p = 0. 
Compute the constraint digraph cd (using the rules discussed in Section 2; O(IE])). 
Compute 401 at level 0 using the Floyd-Warshall algorithm (O(rz3)). 
If the project is not time feasible (i.e. 3i E V: d[O] [i] [i] > 0), STOP. 
Preprocessing: reduce the solution space by adjusting d[O] (O(n*m)): 

v(i,j)li,j E V and 3 resource type k: rik + Yjk > ak and -dj < d[O][i]b] > di, set 1, = di. 
Recompute d[O] using the Floyd-Warshall algorithm (O(n3)). 
If the project is not time feasible (i.e. 3i E V: d[O][i][i] > 0), STOP. 
Compute the critical path-based lower bound lbs = d[O][l][n] and go to Step 3. 

Step 2: Temporal analysis 
Compute d[p], the extended matrix with longest paths at level p as follows (O(@dl)): 

vi, j E V: d[p][i]Ij] = d[p - l][i]Ij]. V’i, j E V, I E Dd:d[p][i]b] = maxi&l [iI lil: d[p - 11 [il M + 
dk + d [p - l] [I] b]}, k being the delaying activity. 

If T < 9999, compute lb!. 
If lb; 3 T, erase the delaying mode and go to Step 6. 

Step 3: Resource analysis 
Determine theJirst period ]t* - 1, t’] in which a resource conflict occurs, i.e. for which 

C&s@*) rik > ak for some resource type k. S(t*), the set of activities in progress in period 
It*-1, t*], is called the conflict set. 
If there is no conflict, let T = dip] [ l] [ n , erase all remaining delaying modes at level p ] 
and go to Step 7. 
Store &I. 

Step 4: Determine minimal delaying alternatives and minimal delaying modes 
Increase the branch level of the search tree: p = p + 1. 
Determine the minimal delaying set, i.e. the set of minimal delaying alternatives: 

DS = &(& C S(t*) and V resource type k: c r,k -c rik < ak and v Ddj E DS \ {&}:Ddf @ & 
IES(t’) itDd 

Extend all minimal delaying alternatives using Theorem 2 and eliminate all non-minimal delaying al- 
ternatives. Determine the set of minimal delaying modes: 

hi = {bf,Ihf, = {k 4 Dd}, k E S(t*), k $ D,j, Dd E DS}. 

Eliminate all delaying modes satisfying Theorem 3. 

Step 5: Evaluate delaying modes 
For all delaying modes A4, 
{If the precedence constraints cannot be added, i.e. 31 E &: k + 1 is infeasible, i.e. 

dk > -d[p - l][l][k] (k being the delaying activity), continue with the next delaying mode M,,,. 
Compute lb0 as follows: Set lb0 = d[p - l] [ l] [n]. Vl E Dd and delaying activity k: 

lb0 = max{lbo, d[p - l][l][k] + dk + d[p - l][l][n] 1 j E Dd}. 

If lb0 3 T, continue with next delaying mode M,. 
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If the set of added precedence constraints of a previously examined node is a subset of the 
corresponding set of the current node, continue with the next delaying mode A4,. 
Set lb = lb”. 
Temporarily store the delaying mode and its lower bound lb. 

Step 6: Branching 
If no delaying modes are left to branch from at level p, go to Step 7. 
Select the delaying mode M, with the smallest lower bound lb (arbitrary tie-break). 
If lb 2 T, erase all remaining delaying modes at level p and go to STEP 7. 
Go to Step 2. 

Step 7: Backtracking 
Decrease the branch level of the search tree: p = p - 1. 
If p < 0, STOP with the optimal solution with a makespan of T 

(if T=9999, then there exists no feasible solution). 
Delete from the stack the information which has been previously saved on level p + 1 for 

dominance testing. 
Save the necessary information for node dominance testing on the stack, i.e. the list of added 
precedence constraints of the node reached upon backtracking. 
Erase d[p] and go to Step 6. 

5. Computational experience 

The procedure has been programmed in Micro- 
soft Visual C++ 2.0 under Windows NT for use on 
a Digital Venturis Pentium-60 personal computer 
with 16 Mb of internal memory. The code itself re- 
quires 109 Kb of memory, whereas 10 Mb are re- 
served for the storage of the search tree. 
Benchmark tests on 550 problems generated from 
the 110 RCPSP test instances assembled by Patter- 
son (1984) are analyzed in De Reyck and Herroe- 
len (1996a). Based on a full factorial experiment, 
they reveal that each of the proposed dominance 
rules and lower bounds leads to an increased per- 
formance of the procedure, both in terms of 
CPU-time as in terms of nodes in the search tree 
required to solve the problem instances to optimal- 
ity. Furthermore, the results show that the per- 
centage of maximal precedence relations, their 
tightness and the percentage of precedence rela- 
tions that allow for activity overlaps have a signi- 
ficant impact on the computational effort. The 
higher the number of maximal time lags, the tight- 
er they are and the higher the number of minimal 
time lags that allow for activity overlaps, the more 
effective the procedure. 

Several tests have been performed on three dif- 
ferent problem sets in order to validate the proce- 
dure against the serial and parallel heuristics 
developed by Franck and Neumann (1996). These 
heuristics improve upon the procedures developed 
by Neumann and Zhan (1995), Zhan (1994) and 
Brinkmann and Neumann (1996) and rank as the 
best currently available. All three data sets have 
been generated using the random problem genera- 
tor ProGen/max developed by Schwindt (1996a) 
based on the problem generator ProGen for the 
RCPSP developed by Kolisch et al. (1995). Pro- 
Gen/max uses two generating methods: DIRECT, 
which directly generates entire projects, and CON- 
TRACT, which first generates cycle structures, up- 
on which the (acyclic) contracted project network is 
generated. Several control parameters can be spec- 
ified. The first problem set (Schwindt, 1996b) con- 
sists of 1080 instances, 540 generated using the 
DIRECT method and 540 using the CONTRACT 
method. The second set (Franck and Neumann, 
1996) consists of 1440 problem instances generated 
using the DIRECT method. We used the DIRECT 
method to generate a third set of 7200 problem in- 
stances which allows for a more extensive testing of 
the impact of several control parameters. 
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Table 2 
The parameter settings of the three problem sets 

Control parameter Set I Set II Set III 

Number of activities 100 
Activity durations 15,151 
Number of resource types 
Mimmax number resources used per activity 
Activity resource demand 
Resource factor, RF (Pascoe, 1966) 
Resource strength, RS (Kolisch et al., 1995) 
Number of initial and terminal activities 
Max number of initial/terminal activities a 
Max number of predecessors/successors 

5 
l/5 

]1>31 
0.50; 0.75; 1 .oo 
0.20; 0.50; 0.70 

[3>71 
212 
515 

Max number of predecessors/successors a 313 
Order strength, OS (Mastor, 1970) 0.35; 0.50; 0.65 
Order strength, OS a 0.50 
% Maximal time lags [5%,15%] 
Number of cycle structures 
(Brinkmann and Neumann, 1996) [2,5]; [6,91 
Min/max number of nodes per cycle structure 2115 
Coefficient of cycle structure density (Schwindt, 1996a) 0.3 
Cycle structure tightness (Schwindt, 1996b) 0.5 

B For the cycle structures (only for the CONTRACT method). 

100 

[5,151 
F5.81 
l/8 

[I>31 
0.25; 0.50; 0.75; 1.00 
0.20; 0.50; 0.75 

13.71 

515 

0.35; 0.50; 0.65 

[5%, 15%]; [ 15%,25%] 

[2,7]; f8.131 
2115 
0.3 
0.5 

10; 20; 30; 50; 100 

LIOI 
[I,51 
115 

U,IOl 
0.25; 0.50; 0.75; 1.00 
0.25; 0.50; 0.75 

[2,41 

515 

0.25; 0.50; 0.75 

0%; 10%; 200/u; 30% 

LO,101 
2/100 
0.3 
0.5 

The parameters used to generate the three prob- 
lem sets are given in Table 2. The indication [x,y] 
means that the corresponding value is randomly 
generated in the interval [x,y], whereas x; y; z 
means that three settings for that parameter were 
used in a full factorial experiment. For each com- 
bination of parameter values, 10 instances have 
been generated. It should be observed that the pa- 
rameter settings for the three data sets do not al- 
low for the generation of problem instances 
which are not resource constrained, a characteris- 
tic which is not shared by the 480 RCPSP instances 
generated by Kolisch et al. (1995). 120 out of those 
480 problem instances have a resource strength 

(Kolisch et al., 1995) equal to 1, and can therefore 
be solved by simply calculating the ESS. 

5.1. Problem set I 

Table 3 shows the computational results on 
problem set I. The branch-and-bound procedure 
is truncated after a specific amount of running 
time (1, 10 and 100 s). The results include the num- 
ber of problems solved to optimality (for which the 
optimum was found and verified), the number of 
problems for which the optimal solution is ob- 
tained (but not necessarily verzjied), the number 

Table 3 
The results on problem set 1 

F&N IS 10 s 100 s 

Problems solved to optimality 
Problems for which optimal solution is found 
Problems for which best known solution is found 
Unsolved problems 
Average deviation from Ib 
Average deviation from best known solution 

196 (> 18%) 543 (> 50%) 592 (> 54%) 609 (> 56%) 
220 (> 20%) 578 (> 53%) 596 (> 55%) 609 (> 56%) 
378 (35%) 606 (> 56%) 652 (> 60%) 682 (> 63%) 
21 (<2%1) 205 (< 19%) 86 (< 8%) 68 (<7%) 
17.02% 5.99%) 9.77% 10.00% 
7.20% 2.20% 2.54% 2.31% 
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of problems for which the best known solution is 
obtained, the number of unsolved problems (for 
which a feasible solution could not be determined 
and neither infeasibility of the instance could be 
proven), the average deviation from a lower bound 
and the average deviation from the best known so- 
lution. For heuristics, verification of optimality is 
only possible when the obtained solution is equal 
to a lower bound. Therefore in Table 3, also the 
number of times the optimal solution is obtained, 
but not necessarily verified, is given. 

The lower bound lb used to compute the devia- 
tions, is the maximum of the critical path-based 
lower bound lbe, the resource-based lower bound 
lb, = max;==, { [CyZl drrrk/ukl} and lb! (computed 
in the root node of the search tree after preprocess- 
ing). The column labelled F&N in Table 3 con- 
tains the results obtained by Franck and 
Neumann (1996), which are obtained by running 
a collection of 44 different heuristics which rank 
among the best currently available. The best 
known solution referred to in Table 3 is the best 
of the solutions obtained with various versions of 
the branch-and-bound algorithm running for up 
to 1 h per problem and with the heuristic (F&N) 
solutions, and can therefore be considered as 
near-optimal. 

From Table 3 we can see that, despite the prob- 
lem size and complexity, the branch-and-bound 
procedure manages to solve more than 50% of 
the problems to optimality within 1 s of computa- 
tion time. However, increasing the allowed compu- 
tation time from 1 to 100 s leads to an increase of 
only 12% in the problem instances solved to opti- 
mality (from 543 to 606). The average deviation 
from the best known solution (lower bound) never 
exceeds 2.54% (lO.OO%), whereas the F&N heuris- 
tics result in an average deviation of 7.20% 
(17.02%). The increasing average deviation from 
lb of the solutions obtained with the branch-and- 
bound algorithm when the time limit is increased 
is due to the fact that an increasing number of 
problems is solved. Hence, the results obtained 
when the algorithm is allowed to run for 1 s in- 
clude solutions for less hard problems than those 
obtained with a limit of 10 and 100 s. 

Less reassuring, however, is that, especially for 
small time limits, a relatively large number of 

problems remain unsolved. The F&N heuristics 
do a better job on this issue. This inspired us to de- 
velop another approach which is based on finding 
a feasible solution first, rather than going immedi- 
ately for the optimal solution. In the original pro- 
cedure, nodes are branched from in non- 
decreasing order of a lower bound. The rationale 
behind this (common) branching criterion is that 
nodes which entail a high chance of finding a very 
good solution are chosen first, in the hope that 
other nodes will be dominated by the obtained up- 
per bound. However, when solving the RCPSP- 
GPR, each node in the search tree does not only 
contain information on the effect of the added pre- 
cedence constraints on the best solution that can 
ever be obtained by branching from that node, 
but also on the effect of the added precedence con- 
straints on the probability that a feusible solution 
can be obtained by branching from that node. 
We developed a new branching rule that also in- 
corporates the latter information. 

In the branch-and-bound procedure, a node 
(with a corresponding delaying activity k and de- 
laying alternative Dd) is eliminated (because it 
can never lead to a feasible solution) if 
31 E Dd : k + 1 is infeasible, i.e. if dk > -d/k for 
some 1 E Dd. Thus, if dk + dlk 6 0 for each 
1 E Dd (no positive cycle in the project network), 
the delaying mode is considered for further 
branching, and the selection of the delaying mode 
to branch from is derived from the lower bound. 
Consider two delaying modes MI and Mz, each 
with one activity in the corresponding delaying al- 
ternative, with dk, + d,,k, = -1 for Ml and 
dkz + dlzkl = -20 for A42. Even if the lower bound 
of Mi is smaller than the lower bound of A42, 
branching from M2 may be the smartest thing to 
do since there is a high probability that branching 
from Mi will not lead to any feasible solution. The 
fact that dk, + dllk, = -I means that activity kl, 
which was delayed by activity 11, only has 1 time 
unit of slack within its time window with respect 
to activity Ii. Thus, when activity kl has to be de- 
layed later on in the project, a positive cycle will 
probably result, leading to time-infeasibility of 
the corresponding project network. Therefore, if 
we want to find a feasible solution, it may be better 
to branch from the node for which the delayed 
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activities have a relatively high ‘slack’ in the time 
windows in which they can be scheduled. This 
leads to a new branching strategy, namely branch- 
ing from the node with the highest slack with res- 
pect to the maximal time lags, i.e. in which the 
cycles created by delaying activities, if any, are as 
negative as possible. This slack value will be re- 
ferred to as time window duck (TWS). If multiple 
activities are delayed, the minimal TWS value over 
all the delayed activities is used as the slack of the 
node, since this is probably the cycle that is going 
to create feasibility problems if additional activi- 
ties are to be delayed. 

We used this new branching rule in a new ver- 
sion of our algorithm (further denoted as the 
TWS branching scheme). When no feasible solu- 
tion has been found yet, the procedure branches 
from the node with the highest TWS value. Upon 
finding a feasible solution, the branching criterion 
switches to the lower bound criterion as before. 
Using this approach, the number of unsolved 
problems decreases to 27 (<3%), 8 (~1%) and 6 
(~1%) for the three time limit settings. Even when 
using the TWS branching scheme for an extended 
amount of time (10,000 s), no feasible solution can 
be obtained for the six remaining problem instanc- 
es. Actually, for two out of those six instances, in- 
feasibility of the problem can be proven. 
Therefore, we conjecture that the other four in- 
stances are also infeasible. Also the F&N heuristics 
cannot provide a feasible solution for those prob- 
lems. The number of problems solved to optimal- 
ity using the TWS branching scheme does not 
significantly differ from the original approach (it 
is even slightly higher). The average deviation 
from the best known solution (lower bound) in- 
creases somewhat, but never exceeds 4.5% (14%) 
thereby still outperforming the heuristics. 

Table 4 
The results on problem set 11 

5.2. Problem set II 

The results on problem set II are similar to the 
ones obtained for problem set I. Franck and Neu- 
mann (1996) report that, using the CONTRACT 
approach, a feasible solution was obtained for 
1401 of the 1440 problem instances. The average 
deviation from the lower bound equals 14.3%. 
The average deviation from the lower bound ob- 
tained with the single best heuristic rule equals 
16.6%. The authors state that better results can 
be obtained with the DIRECT approach, however, 
at the expense of increased computation times due 
to a possibly large amount of rescheduling steps 
needed to resolve time-infeasibilities. Table 4 indi- 
cates the results obtained with the truncated ver- 
sion of the branch-and-bound procedure. Again, 
with a time limit of only 1 s, more than 53% of 
the problem instances can be solved to optimality. 
The average deviation from the lower bound never 
exceeds 8.52%. Again, the best known solutions 
are obtained using different versions of the 
branch-and-bound algorithm running for up to 
1 h per problem. The TWS branching scheme re- 
ferred to above reduces the number of unsolved 
problems to 39 (~3%) 15 (+l%) and 15 (51%) res- 
pectively. When running the TWS procedure for 
10,000 s, a feasible solution could be obtained 
for 3 of the 15 remaining instances. For one addi- 
tional instance, infeasibility could be proven. 

5.3. Problem set III 

The results obtained on problem set III are giv- 
en in Table 5. From Table 5, we can observe that 
more than 77% of the problems can be solved to 
optimality within 1 s of computation time. If 

Is IO s 100 s 

Problems solved to optimality 766 (> 53%) 891 (>61%) 910 (>63’%1) 
Unsolved problems 267 (< 19%) 66 (< 5%) 43 (< 3%) 
Average deviation from lb 4.61% 8.52% 8. SO’%1 
Average deviation from best known solution 1.29% I .35% 1.06% 
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Table 5 
The results on problem set III 

IS IO s 100 s 

Problems solved to optimality 5602 (> 77%) 60 I7 ( > 83%) 6210 (> 86%) 
Unsolved problems 141 (< 2’%1) 66 (< 1%) 55 (< 1%) 
Average deviation from lb 4.69% 4.57% 4.39% 
Avg. deviation from best known solution 0.71% o.59U%l 0.33% 

100 s of CPU-time are allowed, this percentage in- 
creases to 86%. However, as Fig. 3 clearly displays, 
the number of problems solved to optimality heav- 
ily depends on the problem size. For 1 s of compu- 
tation time, the percentage of problems solved to 
optimality decreases from 100% for the lo-activity 
problem instances to 58% for the lOO-activity 
problem instances. Nevertheless, the relatively 
high number of problems solved to optimality 
(even for the lOO-activity set) seems very promis- 
ing, and indicates that, even for large problem in- 
stances, the use of truncated branch-and-bound 
procedures should not be discarded. The average 
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deviation from the best known solution (lower 
bound) never exceeds 0.71% (4.69%). Equipped 
with the TWS branching rule, only 3 (~0.1%) in- 
stances remain unsolved within 100 s. Using a time 
limit of 10,000 s, a feasible solution for one addi- 
tional problem instance could be obtained. 

We used problem set III in an experiment to 
test the impact of several problem characteristics 
on the RCPSP-GPR complexity. Among the mea- 
sures of the topological structure of an activity net- 
work, the order strength (OS), was found to be 
the most powerful measure for explaining the 
variations in the CPU-time required by the 
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Fig. 3. The effect of problem size on the number of problems solved to optimality. 
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branch-and-bound procedure for solving different 
RCPSP-GPR instances. OS is defined as the num- 
ber of precedence relations, including the transitive 
ones, divided by the theoretical maximum of such 
precedence relations, namely n(n-1)/2 (Mastor, 
1970). In the case of GPRs, OS is defined for the 
acyclic network including the minimal time lags 
only (Schwindt, 1996a). OS has a negative impact 
on the computational complexity of the RCPSP- 
GPR. When OS increases, the number of problems 
solved to optimality generally increases, the num- 
ber of unsolved problems decreases and the aver- 
age deviations from the best known solutions 
also decrease. The effect of the percentage of max- 
imal time lags is not monotonically increasing or 
decreasing. On the contrary, a bell-shaped curve 
seems to result. When maximal time lags are intro- 
duced, the number of problems solved to optimal- 
ity increases, up to a certain point, beyond which 
the number of problems solved to optimality again 
decreases. Similarly, there is a non-linear effect of 
the percentage of maximal time lags on the num- 
ber of unsolved problems. 

We also tested the impact of two of the best 
known parameters for describing resource scarcity 
that have been proposed in the literature. The re- 
source factor RF (Pascoe, 1966) reflects the aver- 
age portion of resources requested per activity. If 
RF = 1, then each activity requests all resources. 
RF = 0 indicates that no activity requests any re- 
source. The resource strength, RS, is defined by 
Kolisch et al. (1995) as (uk - F”)/(y - $““), 
where ak is the total availability of renewable re- 
source type k, P$,?’ maxi,l....;n rrk (the maximum re- 
source requirement for each resource type), and 
v is the peak demand for resource type k in 
the ESS. Hence, with respect to one resource the 
smallest feasible resource availability is obtained 
for RS = 0. For RS = 1, the problem is no longer 
resource constrained. 

The higher the RF, the harder the correspond- 
ing RCPSP-GPR. The number of problems solved 
to optimality decreases significantly, the number of 
unsolved problems increases substantially as does 
the average deviation from the best known solu- 
tion. An opposite effect can be observed for RS. 
When RS increases, the number of problems 
solved to optimality increases dramatically. More- 

over, RS seems to have a stronger impact on the 
computational complexity of the RCPSP-GPR 
than does RF. More details of the analysis of the 
impact of problem characteristics on the RCPSP- 
GPR complexity can be found in De Reyck and 
Herroelen (1996b). 

6. Conclusions 

This paper deals with the RCPSP-GPR with the 
objective of minimizing the project makespan. The 
RCPSP-GPR extends the RCPSP to arbitrary 
minimal and maximal time lags between the activ- 
ities. This allows us to model a very general class 
of project scheduling problems including arbitrary 
precedence constraints, activity ready times and 
deadlines, multiple resource constraints with 
time-varying resource requirements and availabili- 
ties, activity and resource time windows and sever- 
al types of mandatory activity overlaps. We 
presented a depth-first branch-and-bound proce- 
dure in which the nodes in the search tree represent 
the original project network extended with extra 
precedence relations which resolve a number of re- 
source conflicts. Resource conflicts are resolved 
using the concept of minimal delaying modes. Sev- 
eral lower bounds and dominance rules are used to 
fathom large portions of the search tree. 

Extensive computational experience obtained 
on several data sets indicates that all the proposed 
node fathoming rules lead to a significant reduc- 
tion in the computation time and the number of 
nodes in the search tree. The procedure is capable 
of solving relatively large problem instances with 
up to 100 activities to optimality in a reasonable 
amount of time. The use of a truncated version 
of the procedure outperforms a set of the best heu- 
ristics available for the RCPSP-GPR. The proce- 
dure can be extended to various regular and non- 
regular objective functions. A regular objective 
function (which is to be minimized) is a non-de- 
creasing function of the activity completion times. 
Consequently, when it is not impeded by prece- 
dence or resource constraints, it will not be advan- 
tageous to delay activities in order to improve the 
performance of the schedule. For a non-regular 
objective function, the condition above does not 
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hold. This implies that delaying activities may im- 
prove the performance of the schedule. 

In the procedure, a precedence-based lower 
bound lb0 for the project networks in each node 
of the search tree is calculated by computing the 
longest path length between the dummy start and 
the dummy end activity (equal to the makespan 
of the ESS). If such a node is chosen to branch 
from and the associated ESS turns out to be feasi- 
ble, the obtained upper bound is equal to the lower 
bound lba. If we were to optimize any other regulur 
measure of performance, we can simply replace the 
calculation of Ibe by the regular performance mea- 
sure under consideration. In other words, we can 
also use the ESS to compute the objective function 
value and use it as a lower and/or upper bound. 
Therefore, only two slight modifications are need- 
ed to extend the procedure to other regular mea- 
sures of performance. First, we need to replace 
Ibe by the new measure and use the resulting value 
as a lower bound and, if applicable, as an upper 
bound. Second, lb! can no longer be used as a 
node fathoming rule, since it is based on minimiz- 
ing the project makespan. 

Practical applications of regular measures of 
performance often take the form of a cost function 
based on the activity completion times. Such cost 
functions may take the following form: 
?? Minimizing total project costs, where the pro- 

ject costs are determined by a weighted function 
of the tardiness of the activities with respect to 
pre-set due dates. 

?? Maximizing the net present value of the project, 
in which all activities are assigned a positive cash 
flow (a popular assumption under cost-plus 
contracts; see Herroelen et al., 1997). 

?? Minimizing the weighted sum of the completion 
times of several activities, where these activities 
represent the end of s&projects. In fact, we then 
have a multi-project scheduling problem for 
which the different projects have been combined 
to one single superproject. 
If we would optimize a non-regular measure of 

performance, we cannot use the ESS to compute 
the objective function value. Instead, the project 
network in each node of the search tree should 
be optimized using the non-regular objective func- 
tion, while discarding the resource constraints. A 

well-known non-regular measure of performance 
which is gaining more popularity is the maximiza- 
tion of the net present value of the project, in 
which positive andlor negative cash flows are asso- 
ciated with each activity. In this case, the net pres- 
ent value of the project networks in each node 
should be maximized without taking the resource 
constraints into account. Algorithms for the un- 
constrained max-npv project scheduling problem 
can be found in Russell (1970), Grinold (1972), El- 
maghraby and Herroelen (1990), Herroelen and 
Gallens (1993) and Herroelen et al. (1996). How- 
ever, these algorithms allow only for zero-lag FS 
precedence constraints. Their extension to GPRs 
constitutes a viable area of future research. 
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Appendix A. Proofs 

A.l. Proof of Theorem 1 

We prove that (a) the delaying strategy based 
on (not necessarily minimal) delaying modes leads 
to the optimal solution, (b) it is sufficient to con- 
sider only minimal delaying modes, and (c) the 
procedure finds the optimal solution in a finite 
number of steps. 

Lemma A.l. The delaying strategy bused on delay- 
ing modes leads to the optimal solution 

Proof. Consider the original project network 
associated with the root node (node 0) of the 
search tree. If this network is time infeasible, no 
feasible solution can be obtained. If the ESS for 
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this network has no resource conflict, it is optimal. 
Therefore, we assume that the project network in 
the root node of the search tree is time feasible 
but resource infeasible. Suppose that s(t*) = 
(ii, iz,. . . , ix) is the conflict set of activities in 
progress in period ]t* - 1% t’], the period in which 
the first resource conflict occurs. We can now use 
the following lemma. 

Lemma A.2. In each feasible solution that may 
result from resolving a resource conflict created by 
the conflict set S(P), the precedence relation ik 4 ii 
must be satisfied jtir at least one pair qf activities 
(k, 1) E S(t*). 

Proof. See Lemma 3.6 in Bartusch et al. (1988). 

Therefore, resolving a resource conflict at node 
0 by branching into x(x - 1) nodes, each of which 
adds a different precedence constraint ik 4 il(k, 1 
E S(t*)), guarantees that Qo = u”,‘:,” Qk, in which 
Rk represents the set of feasible solutions that can 
be obtained when branching from node k. Repeat- 
ing this branching strategy throughout the search 
tree leads to the optimal solution. 

Our delaying strategy, however, is based on de- 
laying alternatives and delaying modes. Each de- 
laying mode M,,, for which the delaying 
alternative Dd consists of a single activity, corre- 
sponds to a precedence relation as specified in 
Lemma A. 1. It remains to be shown that a prece- 
dence constraint {ik 4 il} imposed by Lemma A.l, 
which would not be identified by our procedure as 
a possible delaying mode, is dominated and can be 
omitted. The reason for our procedure not to gen- 
erate the delaying mode {ik + it} can only be that 
conflict activity ii does not release enough resourc- 
es to resolve the resource conflict in period 
]t* - 1, t”]. In other words, adding a constraint 
{ik 4 i,} at level 1 of the search tree is not enough 
to resolve the resource conflict in node 0, and, 
using Lemma A. 1, it would be necessary to delay 
another activity i, # ir E S(t*) by another activity 
i, +Z {i,, in}: {i, 4 in} at a higher level of the search 
tree. Suppose, without loss of generality, that at 
the second node of the search tree, the decision is 
made to delay activity i, # il E S(t*) by activity 
i, 6 {il.&}: {i, -x in}. 

Case 1: delaying activity i,, releases enough re- 
sources by itself to resolve the resource conflict. 

In this case, our procedure would identify the 
constraint {i, + in} as a delaying mode at the first 
level of the search tree. Therefore, the set of feasi- 
ble solutions that can be obtained by branching 
from the node on the second level of the search 
tree is a subset of the set of feasible solutions that 
can be obtained by our procedure when branching 
from the node {i, 4 in} at level 1 of the search 
tree. 

Case 2: delaying activity i,, does not release en- 
ough resources by itself to resolve the conflict. 

Case 2.1: i, # ik. 
In this case, we delay i, by ik and i, by i,,, (if # i, 

and il, # i,). 
Case 2.1.1: the resource conflict is resolved. 
If the resource conflict is resolved by adding the 

delaying modes {ik + il} and {i, + in} to the pro- 
ject network, the corresponding feasible solution 
will also be obtained by the delaying mode 
{ ik + il, ik + in} or by delaying mode {i, + il, 
i, 4 i,,}. Suppose that in the feasible solution ac- 
tivity ik finishes before activity i, (or at the same 
time). Then this feasible solution will not be elim- 
inated by relaxing the constraint {i, + in} by 
{ik 4 in}. If, on the other hand, activity i, finishes 
before activity ik. then relaxing the constraint 
{ik 4 i,} by {i, % il} Will not eliminate this feasi- 
ble solution. Moreover, the two relaxed problems 
consisting of delaying modes { &. + il, ik + in} 
and {i, + il, i, + in} will be identified by our pro- 
cedure, since {il, in} is a valid delaying alternative. 
Therefore, all the delaying modes {ik + il. i, + in} 
imposed by Lemma A.1 are dominated by the two 
delaying modes { ik 4 i,, ik + in} and {i, -x i,, 
i, + in} in our search procedure. 

Case 2.1.2: the resource conflict is not resolved. 
As the resource conflict is not resolved by the 

delaying modes {ik + il} and {i, 4 i,}, new delay- 
ing modes have to be added. Eventually, at a cer- 
tain level of the search tree, a feasible solution will 
be obtained which was reached by adding a set 
of extra precedence relations {{ik, 4 iI1 1, 

{ikz 4 iIz}: , { ikq 4 ir,}}, for which the delaying 
activities are not one and the same activity (at least 
two have to be different, since at level one and two 
of the search tree, the delaying activities were 
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different from one another: i, # ik). Then relaxing 
the constraints {ik, + i,,} by {in 4 il$ }, in which iK 
is the earliest finishing delaying activity in the fea- 
sible solution, will not eliminate the feasible solu- 
tion attained. The corresponding delaying mode 
{{iK + i/,>, {& 4 i12}, . . . , {in + iI,>) will also be 
identified by our procedure on the first level of 
the search tree, since {ill, il?,. . . , i/,} constitutes a 
valid delaying alternative. Therefore, the delaying 
modes {{ik, 4 il,}, {ikz 4 k}, . . ({ix, + i,,}} im- 
posed by Lemma A.1 are dominated by our delay- 
ing modes {{iK 4 ir,}, {iK 4 i,?}, . , {in + il,}} 
on the first level of the search tree. 

Cuse 2.2: i, = ik. 
In this case, we would have delayed i, and i, by 

& (il # i,,). If the corresponding ESS is feasible, the 
corresponding delaying modes will be identified by 
our procedure, since {i,, in} then constitutes a valid 
delaying alternative and ik a valid delaying activi- 
ty. If, however, the ESS would still not be time fea- 
sible, other precedence constraints would have to 
be added. Now we would run into Case 2.1 or 
2.2, depending on the delaying activity, but now 
one level down in the search tree. As we have 
shown in both cases, the corresponding delaying 
modes will either also be identified by our proce- 
dure, or be dominated by a generated delaying 
mode. Repeating a similar argument for any node 
created in the search tree, leads to the proof of 
Lemma A.1. 

Lemma A.3. In order to resolve a resource conflict, 
it is sujicient to consider minimal delaying modes. 

Proof. According to Lemma A.l, a branching 
strategy based on delaying modes leads to the 
optimal solution. Lemma A.1 does not exclude 
non-minimal delaying modes, i.e. with a corre- 
sponding delaying alternative Dd that contains 
other delaying alternatives D,J as a subset. These 
non-minimal delaying alternatives Dd (and corre- 
sponding non-minimal delaying modes), however, 
need not be examined, since the set of feasible 
solutions we can obtain by branching from a node 
with a corresponding non-minimal delaying mode 
will be a proper subset of the set of feasible 
solutions obtained when branching from a node 
with a delaying mode in which Dd is replaced by 

D,!. The project network created by the delaying 
mode corresponding to Dd is identical to the one 
created by the delaying mode corresponding to 
D,!, except that one or more extra precedence 
relations are added. Therefore, the set of feasible 
solutions that can be obtained from the node 
corresponding to Dd is a proper subset of the set of 
feasible solutions that can be obtained from the 
node corresponding to Ddf. Therefore, delaying 
alternative Dd (and all corresponding delaying 
modes) can be eliminated. 

Lemma A.4 The delaying strategy based on Lemma 
A.3 leads to the optimal solution in a jinite number 
of steps. 

Proof. At each branch of the search tree, we create 
a number of nodes equal to the number of minimal 
delaying modes. Clearly, the maximal number of 
activities in ,S(t*) is equal to n. Then, it can be 
shown that the maximal number of minimal 
delaying modes is equal to n!. Indeed, if the 
number of activities in each delaying alternative is 
equal to 1, the number of delaying alternatives is 
equal to n and the number of delaying modes equal 
to n(n - 1) because there are n - 1 possible delay- 
ing activities for each delaying alternative. If the 
number of activities per delaying alternative is 
equal to 2, the maximal number of delaying modes 
would be equal to n(n - l)(n - 2)/2, because there 
are n!/(n - 2)!2! delaying alternatives and n - 2 
possible delaying activities. In general, x activities 
per delaying alternative would give rise to maxi- 
mally n!/(n -x - l)!x! delaying modes. Clearly, 
the maximal number of minimal delaying modes is 
always smaller than n!, even if the number of 
activities varies among the delaying alternatives. 
Thus, the maximal number of nodes generated 
during each branching step equals n!. We know 
that the maximal number of zero-lag FS prece- 
dence relations that can be added to a project 
network (without affecting time-feasibility) equals 
n(n - 1)/2. Therefore, the maximal number of 
levels in the search tree equals n(n - 1)/2. Conse- 
quently, the maximal number of nodes generated 
in the search tree equals C$“‘2(n!)‘, the max- 
imal number of leaf nodes being equal to 

n(n-I)/2 (n!) 
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According to Lemma A.3, one of these nodes is 
bound to contain the optimal solution. Since the 
number of nodes in the search tree is finite, the op- 
timal solution can be found in a finite number of 
steps. 0 

A.2. Proqf qf Theorem 4 

If we split up each activity i of an RCPSP-GPR 
instance into unit-duration subactivities 
(i,, iz, . . , ip), connected with zero-lag minimal 
FS time lags, we obtain the preemptive version 
of the RCPSP-GPR (see also Demeulemeester 
and Herroelen, 1996 for the preemptive RCPSP), 
provided that the precedence relations between 
the activities are connected to the correct subactiv- 
ity. However, if we also add zero-lag maximal FS 
time lags, we again obtain the original problem, 
since all the subactivities of a given activity have 
to be performed consecutively. If the project net- 
work is represented in its standardized form (as a 
constraint digraph), all precedence relations are 
of the SS type which can be represented in the 
unit-duration RCPSP-GPR by precedence rela- 
tions between the first subactivities of each activity 
only (i 4 j =+ sil + di d .s], ). The zero-lag mini- 
mal and maximal FS precedence relations between 
the subactivities are then represented by two min- 
imal SS relations equal to 1 and -1 respectively 
for each consecutive pair of subactivities 
(sii + 1 d s,,~, and Sik+, - 1 < sik). 

Since the two problems are identical, a lower 
bound for the unit-duration problem will also 
be a valid lower bound for the original problem. 
Now, we show that the exact value of lb! is ob- 
tained by calculating lb\ (Demeulemeester and 
Herroelen, 1997a) for the unit-duration problem, 
with the additional assumptions that (a) the or- 
der in which the subactivities are placed in the 
list L is determined by looking at the original 
problem (i.e. the number of companions is calcu- 
lated by looking at the original activities, not the 
subactivities) and (b) (which logically follows 
from (a)) if a subactivity ik of activity i is re- 
moved from L, so are all the other subactivities 
il( I # k) of activity i (which can never be com- 
panions of ik). 

Since all the time lags between the subactivities 
of one and the same activity are equal to 1 (from ik 
to ik+l) and -1 (from ik+l to ik), we know that 
ik( 1 d k < p) is a companion of 

j/(l<I<q) ifbothdij-(k-l)+(I-I)<0 

and dji + (k - 1) - (1- 1) < 0 (A.11 

i.e. the longest path length between ik andj, or be- 
tween j, and ik may never exceed zero, otherwise 
they can never be scheduled in parallel. 

Assume we compute lb’, for the unit-duration 
RCPSP-GPR. When we remove subactivity ik 
from L, we also have to remove its companions 
from L, i.e. each j, for which condition (A.l) ap- 
plies. By simplifying Eq. (A.l), we obtain 

removejl if k + dji 6 1 < k - d,, (A.21 

(note that k + dji < k - dq because otherwise: 
k + dj, > k - d,, + di, + dji > 0 + dii > 0, which 
would result in a time-infeasibility). Consequently, 
when we remove all the subactivities ik from L, we 
have to remove each subactivity jl for which con- 
dition (A.2) applies for any subactivity ik. The 
smallest value 1 for which (A.2) is true is equal to 
max{ 1,l + dii}, whereas the largest value for 1 
equals min{d,, di - dij}. Therefore, the number of 
subactivities from activity j to be removed equals: 
min{dj, di - dij} - max{ 1,l + dji} + 1. However, 
the maximal number of subactivities of activity j 
to be removed can never exceed di. Therefore, 
the number of subactivities jl to be removed from 
L if all subactivities ik are removed from L equals 

min{min{d,,di-dq}-max{l.l+dii}+ l,d;}. 

(A.3) 

We will now examine each of the combinations 
given in Table 1 which represent time-feasible pro- 
ject networks and in which activities i and j are 
companions. 

Case 1: dil 6 0 and 0 < dii < dj (row 2 and col- 
umns 3, 4 in Table 1). 

Using Case 1, Eq. (A.3) can be simplified to: 
min{min{dj,d,-di,}-l-~~i+l,di}=min{min{dj, 
di-d/i}- dji, di} = min{min{dj - dji, di - dij -djl}, 
d,} = min{dj - dji, di - dij - dj,, di}. We know that 
di < d, - d!, - dji, because otherwise we would get 
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dlj + dji > 0 which leads to time-infeasibility. 
Therefore, the number of subactivities of activity 
j to be removed equals min{dj - dji, di}, which is 
equivalent to a reduction of the remaining dura- 
tion of activityj with the same amount. This value 
corresponds to the values of cells (2,3) and (2,4) in 
Table 1. Because dji < dj this value can never be- 
come negative. 

CUX 2: 0 < dij < di and dji < 0 (column 2 and 
rows 3, 4 in Table 1). 

Using Case 2, Eq. (A.3) can be simplified to: 
min{min{$,, di - dij} - 1 + 1, d;} = min{min{dj, 
di-d;j},di} =min{dj,d,-dij,d,} = min{dj,d;-d;j}, 
which is the value for cells (3,2) and (4,2) in Ta- 
ble 1. Again, this value can never become negative. 
Notice also that the value given in Table 1 
(di - d,j) is slightly different, because there is no 
need to check whether the remaining duration of 
activity j becomes negative (if dj d 0, it is com- 
pletely removed from L). 

Case 3: dij < 0 and dji < 0 (rows 3, 4 and COG- 
umns 3, 4 in Table 1). 

Using Case 3, Eq. (A.3) can be simplified to: 
min{min{dj, d, - dij} - 1 + 1, di} = min{min{dj, 
di - {ii}, di} = min{dj, d, - dij, di} = min{dj, di}, 
which is the value for cells (3,3), (3,4), (4,3) and 
(4,4) in Table 1. Notice again the slight difference 
because of the non-negativity constraint of the re- 
maining duration of activity j, which is not needed 
in our procedure. 

For the sake of completeness, we will extend the 
proof to the time lag combinations which prohibit 
activities i and j to be companions (cells (4,l) and 
(1,4) in Table 1). A similar reasoning can be given 
for the time lag combinations which are not time 
feasible (cells (l,l), (1,2), (2,1), (2,2), (3,l) and 
(1,3) in Table 1). 

Case 4: dlj < - d/- and dji > dj (row 1, column 4 
in Table 1). 

Using Case 4. Eq. (A.3) can be simplified to: 
min{min{dj, dt-d;j} - 1 - dji+ 1, di} = min{min{dj, 
di - d,j} - dj;, di} = min{dj - dii, d, - di, - dj;, d;}. 
Because dji > dj, we know that dj - dj, d 0. There- 
fore, the minimum will be smaller than zero, which 
is a logical result because then activities i and j will 
not be companions at all (as is given in cell (1,4) in 
Table 1). Subsequently, no subactivities j, have to 
be removed from L, or, in the original problem, 

the remaining duration of activity j in L need not 
be reduced. 

Case 5: dij 3 - di and dji < - d, (row 1, COG- 
umn 4 in Table 1). 

Similar argument as for Case 4. 0 

Prooj’of Theorem 5 

If the set of added precedence constraints which 
leads to the project network in node x contains as a 
subset the set of added precedence constraints lead- 
ing to the project network in a previously examined 
node y, the project network obtained in node x 
consists of the project network obtained in node 
y, extended with zero or more extra zero-lag fin- 
ish-start precedence relations. Therefore, since the 
problem in node x is more constrained than the 
problem in node y, the set of feasible solutions 
which can be obtained when branching from node 
x is a subset of the set of feasible solutions which 
can be obtained when branching from node 
y (Q c Q,,). Therefore, the best possible solution 
that can be obtained when branching from node 
x can never be superior to the best possible solution 
that can be obtained when branching from node y. 

We know that node y is already examined and 
that it stems from another part of the search tree 
than node x. Therefore, when we reach node x, be- 
cause of the nature of the depth-first search proce- 
dure, node y is also backtracked upon. Therefore, 
we know that the best possible solution that can be 
obtained by branching from node y is already de- 
termined. Therefore, node x can be fathomed since 
no superior solution can be obtained by branching 
from it. 0 

Proof' of Theorem 6 

We know that 3 i, j E V and a resource type k 
for which: 

T& + [jk_ > ax3 (A.4) 

-dj < dij < dl. (W 

Suppose that there exists a feasible solution for the 
RCPSP-GPR. In each feasible solution (therefore 
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also in the optimal solution), Eq. (A.4) guarantees 
that either i + j or j + i. Suppose that 

j+i + s;+dj<s,. (A.61 
We can derive from Eq. (A.5) that 

dij > -dj. (A.7) 

Combining the general expression si + dlj < “1 
with Eq. (A.7). we get 

s, - d, < s., (A.81 
Substituting (A.6) into (A.8) yields: 
.~j + dl - d, < .~.i + Sj < sj, which is impossible. 
Therefore, in each feasible solution: i + j + 
s, + di < .ri. Consequently, we can set 1, = di. 

Now suppose that there does not exist a feasible 
solution for the RCPSP-GPR. Then, adding the 
constraint 1, = d, will not change the fact that 
no feasible solution is obtained, since its addition 
further constrains the problem, leading to a set 
of feasible solutions which is a subset of the origi- 
nal set. Since the original set was empty, so will the 
new set of feasible solutions. 0 
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