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Phase transitions in project scheduling
W Herroelen1 and B De Reyck2

1Katholieke Universiteit Leuven, Belgium and 2Erasmus University Rotterdam, The Netherlands

Researchers in the area of arti®cial intelligence have recently shown that many NP-complete problems exhibit phase
transitions. Often, problem instances change from being easy to being hard to solve to again being easy to solve when
certain of their characteristics are modi®ed. Most often the transitions are sharp, but sometimes they are rather continuous
in the order parameters that are characteristic of the system as a whole. To the best of our knowledge, no evidence has
been provided so far that similar phase transitions occur in NP-hard scheduling problems. In this paper we report on the
existence of phase transitions in various resource-constrained project scheduling problems. We discuss the use of network
complexity measures and resource parameters as potential order parameters. We show that while the network complexity
measures seem to reveal continuous easy-hard or hard-easy phase transitions, the resource parameters exhibit a relatively
sharp easy-hard-easy transition behaviour.
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Introduction

It is evidenced by practical experience that some computa-

tional problems are easier to solve than others. Complexity

theory provides a mathematical framework which classi®es

computational problems as `easy' or `hard' (see for exam-

ple, Karp1 and Garey and Johnson2). A distinction is made

between problems which are solvable in a polynomially

bounded amount of time (classi®ed in P) and problems

which are not (classi®ed in NP). The fact that a decision

problem is shown to be NP-complete or the fact that an

optimisation problem is shown to be NP-hard, implies that

solving it is very hard. On the other hand, it is well-known

that for many of these NP problems, many instances are

easy to solve.3 This is no surprise, however, since the

classi®cation of problems as P or NP (assuming that

P 6� NP) is based on a worst-case analysis, which says

nothing about the dif®culty of typical instances. Clearly,

the average case is also of interest. It may very well happen

that if one generates thousands of NP-complete problems at

random, simple algorithms quickly solve all but a few of

them.

Looking at these results more closely, researchers in the

area of arti®cial intelligence (AI) discovered that many NP-

complete problems exhibit so-called phase transitions,

resulting in a sudden and dramatic change in computational

complexity. Often, problem instances change from being

easy to being hard to solve to again being easy to solve

when certain of their characteristics are modi®ed.4±6. This

easy-hard-easy phase transition can usually be described by

one or more order parameters that are characteristic of the

system as a whole. Hard to solve instances occur around a

critical value of the order parameters. Moreover, the hard

instances are often clustered around a small range of the

order parameter values, which implies that most instances

(when looking at the entire range of the order parameters)

are easy to solve.

There are a number of open questions raised by these AI

studies.7 An important open issue concerns the range of

problems and characteristics over which phase transition

behaviour is exhibited. To date most of the research has

been directed at studies of the k-satis®ability problem,8±17

Hamiltonian paths,4,18 graph colouring,4 constraint satisfac-

tion,19 the travelling salesperson problem20±22 and random

tree search problems.23±29 Another issue concerns the tran-

sition pattern itself. Most often the transition between easy

and dif®cult regions is sharp, sometimes it is rather contin-

uous. To the best of our knowledge, no evidence has been

provided so far that similar phase transitions occur in NP-

hard scheduling problems.

In this paper we study the existence of phase transitions

in various project scheduling problems. In the next section

we brie¯y review the objectives of phase transition research

and offer a short review. The subsequent section reports on

the phase transitions which have been observed in various

resource-constrained project scheduling problems. We

show that while the network complexity measures seem

to reveal continuous easy-hard or hard-easy phase transi-

tions, the resource parameters exhibit a relatively sharp

easy-hard-easy transition behaviour. The last section is then

reserved for overall conclusions and suggestions for future

research.
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Phase transitions

A phase transition of a complex system is a dramatic

change of some system property when an order or control

parameter crosses a critical value. A simple example of a

phase transition is water changing from a solid to a liquid

when the temperature exceeds the freezing point.7

Phase transitions have also been observed in the ®eld of

AI. An intriguing problem in graph theory is to examine

whether a given graph has a Hamiltonian circuit (HC) or

not. A HC is a cyclic ordering of a set of nodes such that

there is an edge which connects every pair of nodes in the

graph in order. The cyclic condition ensures that the HC is

closed. In addition, all the nodes have to be included with no

repeats, which ensures that the HC does not cross over itself

and passes through every node. Studies4,18 have revealed

that the existence of a HC in a random graph varies with the

average connectivity of the graph. A fully connected graph

always contains a HC. An almost fully connected graph has

a very high probability of containing a HC. A random graph

with an average connectivity of 2 is unlikely to even be

connected, and so is unlikely to contain a HC. The prob-

ability of a HC changes steeply from almost 0 to almost 1 at

an average connectivity of ln�N � � ln�ln�N ��.18 Moreover, it

has been shown empirically by Cheeseman et al 4 that the

computational cost of ®nding a HC (if one exists) also

exhibits a phase transition at the same point at which the

probability that a random graph contains a HC changes

dramatically.

The NP-complete graph colouring problem30 consists of

a graph, a speci®ed number of colours, and the requirement

to ®nd a colour for each vertex in the graph such that

adjacent vertices (i.e. nodes linked by an edge in the graph)

have distinct colours. Graph colouring is a fundamental

constraint satisfaction problem which essentially deals with

partitioning a set of objects into classes according to certain

rules. The objects form the set of vertices V(G) of a graph G,

two vertices being joined by an edge in G whenever they are

not allowed in the same class. In order to distinguish

between the classes, a set C of colours is used and the

division is given by a colouring j : V �G� ! C, where

j�x� 6� j�y� for all (x, y) belonging to the set of edges

E�G� of G. If C has cardinality k, then j is a k-colouring.

Therefore each colour class forms an independent set of

vertices, that is, no two of them are joined by an edge. The

minimum cardinal k for which G has a k-colouring is the

chromatic number of G. Turner3 showed that almost all

instances of a k-colouring problem are easy to solve.

Cheeseman et al 4 empirically investigated the probability

of a solution for k-colourability problems for different values

of k and N (number of nodes). They observed an abrupt

change in the solution probability at higher values of the

connectivity for larger k. Moreover, they observed a phase

transition in the computational cost of solving k-colour-

ability problems, which occurs at the critical average

connectivity where the probability of a solution changes

dramatically. Because Turner3 in his experiments failed to

generate instances with that speci®c value for the connec-

tivity, he concluded that almost all instances are easy to

colour.

The satis®ability problem is the ®rst problem ever to be

classi®ed as NP-complete. Given a set of boolean variables

and a collection of clauses (a set of literalsÐvariables in

either af®rmative or negative formÐor true=false condi-

tions over the variables of which at least one should be

satis®ed), the satis®ability problem (SAT) concerns the

search for a solution (an assignment of boolean values to

each of the variables; also referred to as a truth assignment)

that simultaneously satis®es all the clauses (referred to as a

satisfying truth assignment). Looking at the computational

results from solving thousands of SAT problems, a phase

transition was discovered when computational cost is plotted

against the ratio of clauses to variables. The cost reaches a

peak where the instances change from probably satis®able to

probably unsatis®able. Formulas with only a few clauses and

many variables can almost always be satis®ed, since most of

the variables appear only once or twice, and a con¯ict

among them is unlikely (the formulas are said to be under-

constrained). A feasible solution can be found very easily.

At the other end, where there are many clauses and only a

few variables, each variable can be expected to appear in

many clauses, such that con¯icts are frequent and a feasible

solution is unlikely (the formulas are overconstrained).

Proving that no such feasible solution exists is very easy.

However, when the ratio between the number of clauses and

variables reaches an intermediate value, determining

whether a feasible solution exists becomes very dif®cult.

Selman et al17 have shown that random instances of SAT

can be generated in such a way that easy and hard sets of

instances (for a particular SAT procedure) can be predicted

in advance. They con®rmed previous observations that

many instances are quite easy and showed that for random

3-SAT the hardest area for satis®ability is near the point

where 50% of the formulas are satis®able.

A number of real-word problems, including numerous

scheduling problems (for instance with sequence-dependent

set-up times), can be formulated and solved as travelling

salesperson problems (TSP). In a TSP, the goal is to ®nd a

Hamiltonian circuit among a set of nodes (namely, the cities)

such that the total cost of the circuit is minimised. The costs

of the edges in the graph are represented by an integer-

valued cost matrix. When the distance matrix is symmetric,

that is the distance from city i to city j is the same as that

from j to i, the problem is referred to as a symmetric TSP.

When the distance from city i to j is not necessarily equal to

that from j to i, the asymmetric TSP (ATSP) results. Cheese-

man et al4 randomly generated intercity distances for the

symmetric TSP from a log-normal distribution and used the

branch-and-bound procedure of Little et al31 for solving the

resulting problem instances. They found that when the
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standard deviation of the intercity distance distribution (or

the square root of its variance) is either very small or very

large, the symmetric TSP is easy to solve. However, when

the standard deviation has an intermediate value, the

problem is very dif®cult. Stated otherwise, the complexity

transition appears as an easy-hard-easy pattern as the

standard deviation of the intercity distances increases. The

magnitude and sharpness of the phase transition increases

with city size. In their study of the ATSP, Zhang and Korf 22

found that when the discrete intercity distances are chosen

uniformly from f0; 1; 2; . . . ; rg, the complexity exhibits an

easy-hard transition as r increases. When the intercity

distances are drawn from a discretized log-normal distribu-

tion, the complexity displays easy-hard-easy transitions as

the standard deviation of the distribution grows. The authors

also show that the control parameter that determines the two

different transition patterns is the total number of distinct

intercity distances. The complexity transition follows an

easy-hard transition as the number of distinct intercity

distances increases. However, the transition between easy

and dif®cult regions is not as sharp as expected.

The reviewed studies inspired Cheeseman et al 4 to

conjecture that all NP-complete problems have at least one

order parameter for which it can be shown that the hard

instances of that problem occur around a critical value of

this parameter. This critical value (phase transition) sepa-

rates the problem space in separate regions, such as over-

constrained and underconstrained regions. Phase transitions

are not merely a common feature of NP-complete problems,

but are conjectured to be a de®ning characteristic of all such

problems.

By now, it seems well established that phase transitions

are not an artifact of any particular algorithm, but are

intrinsic to the problem itself.5 Yet, the connection between

phase transitions and NP-completeness remains complex.

Since all NP-complete problems exhibit phase transition

behaviour one might think that, when a particular problem

reveals a phase transition, it must belong to NP. However,

this is not the case. There are problems, such as 2-SAT,

which are in P and nevertheless show an easy-hard-easy

pattern. Conversely, there are problems in NP, such as the

TSP, whose hard instances are not clustered at a strict phase

boundary. Some phase transitions are continuous (for

example 2-SAT, while others are discontinuous (for exam-

ple the freezing and boiling of water and 3-SAT).

Basically, the empirical AI studies all plot some average

or median performance measure against simple structural

parameters. Although the plots reveal easy-hard-easy

patterns, they are still associated with extreme variances.

Problem instances situated in the supposedly `hard' region

may sometimes not be that hard to solve. The current

parameters used to specify the problem structure may

well be too crude. The discovery of the characteristic

easy-hard-easy pattern which is centered at a ®xed

transition point makes the phase transition phenomenon

interesting. Exploring the differences between the (anoma-

lous) hard instances in the easy region and the hard instances

in the hard region is of similar interest. To date, most of the AI

research has been concentrated on NP-complete decision

problems. It would be utmost interesting to learn whether

similar phase transitions manifest themselves in NP-hard

optimisation problems. In the next section, we discuss the

phase transitions which have recently been observed in

resource-constrained project scheduling.

Phase transitions in project scheduling

The characterisation of activity networks has attracted

attention since the mid-sixties. Researchers were interested

in studying the effects of problem structure on algorithmic

performance32,33 and the development of a reliable set of

measures of activity network `complexity'. Evidently, a

choice between algorithms or the determination of the

ef®ciency of a particular algorithm, would be greatly

facilitated if there exists a measure of network complexity.

This would eliminate any possible bias in the conclusions

regarding the ef®ciency of a particular algorithm relative to

others by ensuring that the algorithm is evaluated at several

points in the `range of complexity'.

Elmaghraby and Herroelen34 already recognised that the

isolation of the unique and unambiguous factors that

determine the required computing effort for solving an

activity network problem proves to be a formidable task.

Firstly, the measurement of activity network complexity

cannot be accomplished in a meaningful manner unless the

use of the measure is speci®ed a priori. The apparently `one

and the same' activity network problem may be complex on

one scale and easy on another. Moreover, complexity

measures may be confounded by the procedure of analysis.

The algorithm used to solve an activity network problem

may indeed be inextricably entwined with whichever prop-

erties one wants to isolate and characterise as the determin-

ing factors of complexity. Finally, it is very unlikely that

the complexity of a problem instance can be captured by

one single measured quantity. Rather one would expect that

a combination of different factors would determine the

required computational effort for solving an activity

network problem.

It is not a surprise then, that quite a number of activity

network `complexity' measures have been proposed in the

literature.32,33 Most measures try to capture information

about the size of the project network, the topological

structure (morphology) of the project network and the

availability of the different resource types in relation to

the resource requirements. Naturally, some measures may

capture information about several of these classes simulta-

neously. Recent extensive computational experience35

provides additional insight in the potential of the measures

as an explaining factor for the computational complexity

experienced by solution procedures for solving several types
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of resource-constrained project scheduling problems.

Detailed examination of the results in the next section

reveals the existence of easy-hard and hard-easy phase

transitions which, in contrast to what has been experienced

in AI, are not abrupt but continuous in the parameters used

to describe the topological structure of a network. It will be

shown in a subsequent section, however, that the resource

availability measures exhibit a continuous bell-shaped easy-

hard-easy complexity pattern with a relatively sharp easy-

hard-easy phase transition around a critical value of the

resource-constrainedness.

Topological network structure and the complexity of

resource-constrained project scheduling

Network-based parameters. Various parameters for

describing the topology of a project network have been

presented in the literature. The best known is the coef®cient

of network complexity (CNC), introduced by Pascoe36 for

activity-on-the-arc (AoA) networks. CNC is simply de®ned

as the ratio of the number of arcs over the number of nodes

(different de®nitions have been used by Davies37 and

Kaimann38,39). CNC has been adopted by Davis32 for the

activity-on-the-node (AoN) representation and has been

used in a number of studies since then.40±42 As observed

by Kolisch et al,43 in the AoN representation, `complexity'

has to be understood in the way that for a ®xed number of

activities (nodes), a higher complexity results in an increas-

ing number of arcs and therefore in a greater connectedness

of the network. A number of studies in the literature43,44

seem to con®rm that problems become easier with increas-

ing values of CNC. Elmaghraby and Herroelen34 already

questioned the use of CNC as a measure of activity network

complexity. The measure totally relies on the count of

activities and nodes in the network. Since it is easy to

construct networks of equal number of arcs and nodes but

varying degrees of dif®culty in analysis, they failed to see

how CNC can discriminate among them.

Another well-known measure of the topological structure

of an activity network is the order strength (OS), which is

de®ned as the number of precedence relations, including the

transitive ones, divided by the theoretical maximum of such

precedence relations, namely n�nÿ 1�=2, where n denotes

the number of activities.45 It is sometimes referred to as the

density46 and, as has been observed by Elmaghraby and

Herroelen,34 is equal to 1 minus the ¯exibility ratio, de®ned

by Dar-El47 as the number of zero entries in the precedence

matrix divided by the total number of matrix entries. De

Reyck48 has shown that OS is identical to RT, an estimator

for the restrictiveness (P) of an activity network.49 If Fseq

denotes the number of feasible sequences, that is the number

of possible permutations of the activities of a project such

that each activity does not precede one of its predecessors,

the restrictiveness is de®ned as P � 1ÿ �log�Fseq�= log�n!��.
P varies between 0 and 1, and assumes the value 0 for a

parallel digraph and 1 for a series digraph.49 However, Fseq

(and, consequently, P) are very hard to calculate. Therefore,

Thesen49 has tested several estimators for P, best of which

seemed to be (with the lowest mean relative error with

respect to P):

RT � 2
P

i; j2V rij ÿ 6�n� 1�
n�nÿ 1�

with

rij � 1; if there exists a directed path from i to j

0; otherwise

�
which is shown to be identical to OS. Therefore, we can

conclude that the order strength, the density, the ¯exibility

ratio and the restrictiveness estimator RT actually constitute

one and the same complexity measure.

Recently, Bein et al50 introduced a new characterisation

of two-terminal acyclic networks which essentially measures

how nearly series-parallel a network is. They de®ne the

reduction complexity on an activity network in AoA format

as the minimum number of node reductions suf®cient (along

with series and parallel reductions) to reduce a two-terminal

acyclic network to a single edge. De Reyck and Herroelen51

adopted the reduction complexity as the de®nition of the

complexity index (CI) of an activity network. For a more

detailed description of the CI and an algorithm to compute

it, we refer the reader to De Reyck and Herroelen.51

Topology measures and the complexity of the resource-
constrained project scheduling problem. Recent computa-

tional experience has provided useful insight in the potential

explanatory power of the topological network parameters on

the hardness of resource-constrained project scheduling

instances. The resource-constrained project scheduling

problem (RCPSP) involves the deterministic scheduling of

project network activities, subject to ®nish-start precedence

constraints and renewable resource constraints, in order to

minimise the project duration. The problem is referred to as

problem m; 1jcpmjCmax in the classi®cation scheme of

Herroelen et al.52 The problem is strongly NP-hard. For a

recent review see Herroelen et al.53

De Reyck and Herroelen51 investigated the potential use

of CNC and CI as a measure of activity network complexity

for the RCPSP. They generated ®ve sets of 1000 RCPSP

instances using ProGen,43 each with 25 activities. In each

of the ®ve sets, CNC is set at a different value, varying

from 1.5 in the ®rst set to 2.5 in the ®fth. Each RCPSP

instance was then solved using the branch-and-bound

procedure of Demeulemeester and Herroelen.54 Both

Alvarez-ValdeÂs and Tamarit44 and Kolisch et al 43 observed

a negative correlation between CNC and the required solu-

tion time for solving an RCPSP instance. De Reyck and

Herroelen,51 however, reached the conclusion that it is very

ambiguous to attach all explanatory power of problem

complexity to CNC. A positive correlation can be observed
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between CNC and the complexity index, CI. The CI-values

for the instances used in the experiment range from 9±21.

They found that CI plays an important role in predicting the

required computing effort for solving an RCPSP instance.

The generated plots of the required CPU-time against CI

revealed a rather continuous hard-easy complexity pattern:

the higher CI, the easier the RCPSP instance.

In a subsequent experiment, De Reyck48 again used

ProGen43 to generate 4200 RCPSP instances with 25

activities, CNC ranging from 1.2±2.5 and CI ranging

from 1±17. Each instance was then solved using the

enhanced procedure for the RCPSP developed by Demeu-

lemeester and Herroelen.55 Again CI was found to have a

strong impact on the required processing time. In addition,

OS was found to be a good network complexity measure.

Using values of OS ranging from 0.15±0.70, a plot of the

logarithm of the average CPU-time versus OS reveals a

linear hard-easy complexity transition (Figure 1).

Schwindt56 has chosen to use RT (OS) as a network

complexity measure while developing the problem generator

ProGen=max, which is capable of generating instances with

so-called generalised precedence relations (start-start, start-

®nish, ®nish-start and ®nish-®nish relations with minimal

and maximal time lags). The resource-constrained project

scheduling problem with generalised precedence relations

(problem m; 1jgprjCmax in the classi®cation scheme of

Herroelen et al52) is NP-hard. Even the problem of deter-

mining whether an arbitrary feasible solution exists is NP-

complete. De Reyck35 used ProGen=max to generate a set of

7200 instances and found the order strength, OS, to be the

most powerful measure in explaining the variations in the

CPU-time required by his branch-and-bound procedure (see

also De Reyck and Herroelen57). Again the complexity

transition follows a continuous hard-easy pattern: the

higher OS, the easier the instance.

Topology measures and the complexity of trade-off
problems in project scheduling. The discrete time=cost

trade-off problem (DTCTP) assumes a single nonrenewable

resource. The duration of an activity is a discrete, nonin-

creasing function of the amount of a single resource

allocated to it. An activity assumes different execution

modes according to the possible resource allocations.

Demeulemeester et al58 developed exact procedures for

generating the complete time=cost trade-off curve (problem

1; T jcpm;disc;mujcurve in the classi®cation scheme of

Herroelen et al52). Computational experience on a total of

250 instances51 indicates that both the number of modes and

CI have a strong effect on the required processing time. The

results exhibit a continuous easy-hard complexity pattern:

the higher CI, the harder the problem. Recently, Demeule-

meester et al59 have developed a new exact horizon-varying

procedure based on the iterative optimal solution of the

problem of minimising the sum of the resource use over all

activities subject to a project deadline. Computational

results obtained on 1800 test instances con®rm the easy-

hard complexity pattern.

The discrete time=resource trade-off problem (DTRTP)

assumes that the duration of an activity is a discrete, non-

increasing function of the amount of a single renewable

resource committed to it. Given a speci®ed work content for

an activity, all its ef®cient execution modes are determined

based on time=resource trade-offs. An activity when

performed in a speci®c mode has a duration and a resource

requirement during each period it is in progress, such that

the resource-duration product is at least equal to the speci-

®ed work content. The single resource has a constant

availability. The objective is to schedule each activity in

one of its modes, subject to the precedence and the renew-

able resource constraints, under the objective of minimising

the project duration (problem 1; 1jcpm;disc;mujCmax in the

Figure 1 Logarithm of CPU time vs OS.
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classi®cation of Herroelen et al52). Exact60 and heuristic

solution procedures61 have been recently developed. OS

again exhibits an hard-easy complexity pattern (the higher

OS, the easier the corresponding DTRTP instance).

Topology measures and maximising the net present value of
a project. Interesting project scheduling problems result if

the regular minimum makespan objective is replaced with

the non-regular performance measure of maximising the net

present value (npv) of a project. Herroelen et al62 have

developed an exact recursive procedure for solving the

unconstrained max-npv problem, that is the problem of

maximising the npv of a project subject to ®nish-start

zero-lag precedence constraints in the absence of resource

constraints (problem cpm;cjjnpv in the classi®cation of

Herroelen et al52). De Reyck and Herroelen63 have extended

the algorithm to the case of generalised precedence relations

with minimal and maximal time lags (problem gpr;cjjnpv).

The procedure has been tested on a set of 7200 randomly

generated problem instances using the number of activities

as a problem size-based measure and the order strength (OS)

as a network-based measure. The cash ¯ows for each of the

activities are generated randomly in the interval [ÿ500,

500]. Despite the fact that the problem is in P, the results

reveal a continuous easy-hard phase transition for the order

strength OS: the higher OS, the more dense the network

becomes, and the more recursion steps are needed. The

percentage of activities with a negative cash ¯ow has a bell-

shaped easy-hard-easy impact on the computational

complexity of the problem. If no activities with negative

cash ¯ows are present, the optimal solution reduces to the

early-start schedule, that is, no forward shifts and no

recursion steps are necessary. If all activities carry negative

cash ¯ows, all activities can be shifted forward till one of

them hits the deadline, which requires limited computational

effort. If, however, activities with positive and negative cash

¯ows are mixed, the problem becomes harder.

Resource availability parameters and the complexity of

resource-constrained project scheduling

Resource-based parameters. Elmaghraby and Herroelen34

were the ®rst to conjecture that the relationship between the

complexity of a resource-constrained project scheduling

problem (as measured by the CPU-time required for its

solution) and resource scarcity (availability) varies accord-

ing to a bell-shaped curve. If resources are only available in

extremely small amounts, there will be relatively little free-

dom in scheduling the activities. Hence, the corresponding

RCPSP instance should be relatively easy to solve. If, on the

other hand, resources are amply available, the activities can

be simply scheduled in parallel and the resulting project

duration will be equal to the critical path length, leading

again to a small computational effort �O�n2��.

Two of the best known parameters for describing

resource availability (scarcity) that have been proposed in

the literature are the resource factor and the resource

strength. The resource factor (RF)36 re¯ects the average

portion of resources requested per activity. If RF � 1, then

each activity requests all resources. RF � 0 indicates that no

activity requests any resource:

RF � 1

nK

Pn
i�1

PK
k�1

1; if rik > 0

0; otherwise

�
:

The resource strength RSk (Cooper64) is rede®ned by

Kolisch et al43 as ak ÿ rmin
k

ÿ �
=�rmax

k ÿ rmin
k �, where ak is

the total availability of renewable resource type

k; rmin
k � maxi�1;...;n rik (the maximum resource requirement

for each resource type), and rmax
k is the peak demand for

resource type k in the precedence-based early start schedule.

Hence, with respect to one resource the smallest feasible

resource availability is obtained for RSk � 0. For RSk � 1,

the problem is no longer resource-constrained. In their

experiments, Kolisch et al43 conclude (in contradiction

with Alvarez-ValdeÂs and Tamarit44) that RS has the stron-

gest impact on solution times: the average solution time

continuously increases with decreasing RS.

Patterson33 de®ned the resource-constrainedness, RCk ,

for each resource k as pk=ak , where ak is the availability of

resource type k and pk is the average quantity of resource k

demanded when required by an activity. The arguments for

using RC and not RS as a resource-based parameter are that

(a) RC is a `pure' measure of resource availability in that it

does not incorporate information about the precedence

structure of a network, and that (b) there are occasions

where RS can no longer distinguish between easy and hard

instances while RC continues to do so.

It should be noted that both the resource strength RSk

and the resource-constrainedness RCk are de®ned for each

renewable resource type k. Hence, their unambiguous use is

restricted to the case k � 1 or the case where RSk and RCk

are constant over all k. When this is not the case and the RS-

and RC-values would be averaged over all resource types,

serious bias may be introduced in the results. A totally

unambiguous resource availability measure does not yet

exist and remains a valid topic for further research.

Resource availability and the complexity of the RCPSP
(problem m; 1jcpmjCmax). De Reyck and Herroelen51

used ProGen to generate nine sets of 500 RCPSP instances

with 25 activities and one resource type. The activity

durations are drawn from the uniform distribution in the

range [1, 10]. The minimum and maximum resource

requirements are set to 1 and 10, respectively. CNC is set

to 2, while RF is set to 1. Using increments of 0.125, RS is

set to 0 for the ®rst set of 500 networks, to 0.125 for the
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second, up to 1 for the last set. The CI values varied from

7±17. The instances were solved using the branch-and-

bound procedure of Demeulemeester and Herroelen.54 For

the nine groups of networks, the required CPU-time varies

in function of RS according to a continuous bell-shaped

easy-hard-easy complexity pattern, in accordance with the

conjecture of Elmaghraby and Herroelen.34 De Reyck and

Herroelen51 observed a similar easy-hard-easy bell-shaped

complexity relationship between the CPU-time and RC.

An instance for which RS is small will have a high value

for RC. Figure 2 gives a clarifying plot of the required

CPU-time versus the resource strength RS (ranging from 1±

0) and the resource-constrainedness RC (ranging from 0±

100%). The precise correspondance between the RS- and

RC-values is not ®xed and is only shown for illustrative

purposes. Instances with RS5 1 are no longer resource-

constrained and can be solved using straightforward critical

path analysis (time complexity O�n2��. Instances with RS

close to 0 are typically very dif®cult to solve. For instances

with RS < 0, the problem boils down to checking whether

the resource requirements exceed the availabilities, in

which case the problem becomes infeasible (time complex-

ity O(nK)). The plot exhibits a relatively sharp easy-hard-

easy phase transition. The curve is skewed towards the end

of the spectrum with low RS (high RC) values. It should be

emphasised that although the average complexity is high at

the phase transition boundary, so is the variance. Various

problem instances situated in the `hard' region are not that

hard to solve. This again illustrates the fact that the currently

used resource availability measures may well be too crude.

Conclusions and suggested research

The observations reported in this paper have revealed

intriguing regularities in the structure of various resource-

constrained project scheduling problems which con®rm the

existence of phase transitions in project scheduling. Exten-

sive computational evidence could be obtained for the

existence of a continuous hard-easy complexity pattern

using the network topology measures order strength (OS)

and complexity index (CI) as order parameters. This was

found to be the case for the resource-constrained project

scheduling problem (RCPSP) with ®nish-start zero-lag

precedence relations (problem m; 1jcpmjCmax) as well as

for the resource-constrained project scheduling problem

with generalised precedence relations with both minimal

and maximal time lags (problem m; 1jgprjCmax), the

discrete time=cost trade-off problem (problem

1; T jcpm;disc;mujcurve) and time=resource trade-off

problem (problem 1; 1jcpm;disc;mujCmax). A continuous

easy-hard complexity pattern could also be observed for

OS for the problem of maximising the net present value of

a project in the absence of resource constraints (problem

cpm;cjjnpv). The resource-based parameters resource

strength (RS) and resource-constrainedness (RC), however,

exhibit an easy-hard-easy complexity pattern for the

Figure 2 Computational complexity vs RC and RS.
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RCPSP. These results con®rm the Elmaghraby and Herroe-

len34 conjecture made back in 1980. Especially the use of

RC as an order parameter, reveals the existence of a sharp

phase transition.

Phase transition research in AI has been mainly concen-

trated on NP-complete decision problems. The empirical

results reported in this paper provide a con®rmative answer

to one of the most often cited open questions in AI

research, that is the fundamental question whether phase

transitions do exist for NP-hard problems.4,5 Continuous

hard-easy transitions for both polynomial and various NP-

hard project scheduling problems have been observed for

the order parameter OS (order strength), making a strong

case for the inclusion of OS in popular problem generators

such as ProGen,43 as evidenced by the recently developed

generator ProGen=max.56 Relatively sharp easy-hard-easy

complexity transitions have been observed for the NP-hard

resource-constrained project scheduling problem when

using resource-constrainedness (RC) as an order parameter.

These results also provide additional insight in the intri-

guing phenomenon observed in AI research (see for exam-

ple, Hogg et al7) that hard problems may actually occur in

the `non-critical' region while a random problem instance

generated in the supposedly `hard' region may not actually

be that hard to solve.

Obviously, a number of other intriguing open issues and

research prospects emerge from the confrontation of AI

phase transition research and the validation of (exact)

procedures for solving NP-hard scheduling problems. The

derivation of network topology measures with suf®cient

discriminatory power to allow for the observation of sharp

easy-hard-easy phase transitions besides the observed

continuous hard-easy transitions must be stimulated. More-

over, additional research is needed to re®ne the location of

the phase transitions for resource-constrained project sche-

duling problems as well as the examination of hard

instances among generally easy underconstrained

problems. Re®ning the location of phase transitions might

provide a systematic basis for selecting the type of algo-

rithm to use on a given project scheduling problem. Addi-

tional research is needed to include order parameters of

suf®cient discriminatory power in existing and future

random problem generators. Random problem generators

should generate problem ensembles which span the full

range of problem complexity and which can be tuned to ®t

the unique characteristics of real-world scheduling

problems. If the insights provided by the validation results

of exact and suboptimal solution procedures for solving

NP-hard scheduling problems are to be of practical use, the

validation must be done on problem ensembles which

distinguish between easy and hard instances and which

span the full range of complexity. Even if the order

parameters used for evaluating possible phase transitions

are still imperfect, knowing where the really hard project

scheduling problems are is extremely useful.
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