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The multi-mode resource-constrained project scheduling problem
with generalized precedence relations

Bert De Reyck a,*, Willy Herroelen b

a London Business School, Sussex Place, Regent's Park, London NW1 4SA, UK
b Department of Applied Economics, Katholieke Universiteit Leuven, Naamsestraat 69, B-3000 Leuven, Belgium

Abstract

In this paper, we tackle the challenging problem of scheduling activities to minimize the project duration, in which

the activities (a) are subject to generalized precedence relations, (b) require units of multiple renewable, non-renewable

and doubly constrained resources for which a limited availability is imposed, and (c) can be performed in one of several

di�erent ways, re¯ected in multiple activity scenarios or modes. These multiple modes give rise to several kinds of trade-

o�s (time/resource, time/cost and resource/resource trade-o�s) which allow for a more e�cient allocation and use of

resources. We present a local search-based solution methodology which is able to handle many real-life project

scheduling characteristics such as time-varying resource requirements and availabilities, activity ready times, due dates

and deadlines, activity overlaps, activity start time constraints and other types of temporal constraints. Ó 1999

Elsevier Science B.V. All rights reserved.

Keywords: Project management; Planning and scheduling; Generalized precedence relations; Multiple activity modes;

Heuristics; Local search; Tabu search

1. Introduction

In this paper, we present a heuristic solution
methodology for the multi-mode resource-con-
strained project scheduling problem with generalized
precedence relations (MRCPSP-GPR). The objec-
tive of the MRCPSP-GPR is to schedule a number
of activities, subject to generalized precedence re-
lations (minimal and maximal time lags between
the activity starting and completion times), which
require a speci®c amount of possibly several re-
newable, non-renewable and doubly constrained

resources. The activities have multiple execution
scenarios (re¯ecting di�erent ways of performing
them), each scenario possibly having a di�erent
impact on the activity's duration, the costs asso-
ciated with it and its resource requirements. Mul-
tiple activity modes give rise to several types of
trade-o�s between (a) the activity duration and its
use of resources (time/resource trade-o�), (b) the
activity duration and its cost (time/cost trade-o�),
and (c) the quantity and combination of resources
employed by the activity (resource/resource
trade-o�).

Table 1 provides an overview of some of the
most important related problem types encountered
in the project scheduling literature. The problems
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are classi®ed with respect to whether they allow for
generalized precedence relations (CPM precedence
constraints, minimal time lags or minimal as well
as maximal time lags), multiple activity modes,
(multiple) renewable resource types and (multiple)
non-renewable resource types (for a de®nition of
renewable and non-renewable resources, we refer
the reader to the categorization scheme of Blaze-
wicz et al., 1986). An abbreviation of each result-
ing problem type is given in the appropriate cell of

the table. Table 2 reports the full name of each
problem type abbreviation. Using the classi®cation
scheme of Herroelen et al. (1998), we have also
added the notation of each of the problem types.

The remainder of this paper is organized as
follows. In Section 2, we discuss the project rep-
resentation used. Section 3 is devoted to the de-
scription of the MRCPSP-GPR. In Section 4, a
brief literature overview is provided. Section 5
elaborates on the temporal analysis of project

Table 1

A classi®cation of project scheduling problems

Single mode Multiple mode

No resource

types

Multiple renewable

resource types

1 non-renewable

resource type

1 renewable

resource type

Multiple renewable and

non-renewable resource

types

no trade-o�s no trade-o�s time/cost trade-o�s time/resource

trade-o�s

time/cost trade-o�s time/

resource trade-o�s

resource/resource

trade-o�s

ZERO-LAG FS CPM/PERT

cpm|Cmax

RCPSP

m,1|cpm|Cmax

DTCTP

1,T|cpm,disc,mu|Cmax

DTRTP

1,1|cpm,disc,mu|Cmax

MRCPSP

m,1T|cpm,disc,mu|Cmax

MIN SS, SF,

FS, FF

PDM min|Cmax GRCPSP

m,1,va|min,qi,

di |Cmax

GDTCTP 1,

T |min,qi,disc,mu|Cmax

GDTRTP 1,

1|min,qi,disc,mu|Cmax

GMRCPSP

m,1T|min,qi,disc,mu|Cmax

MIN + MAX

SS, SF, FS, FF

MPM gpr|Cmax RCPSP-GPR

m,1,va|gpr,qi,di,

vr|Cmax

DTCTP-GPR

1,T|gpr,qi,di,disc,

mu|Cmax

DTRTP-GPR

1,1,va|gpr,qi,di,disc,

mu|Cmax

MRCPSP-GPR

m,1T,va|gpr,qi,di,disc,

mu|Cmax

Table 2

Abbreviations

Problem type Description

CPM/PERT Critical Path Method/Program Evaluation and Review Technique

PDM Precedence Diagramming Method

MPM Metra Potential Method

RCPSP Resource-Constrained Project Scheduling Problem

GRCPSP Generalized Resource-Constrained Project Scheduling Problem

RCPSP-GPR Resource-Constrained Project Scheduling Problem with Generalized Precedence Relations

DTCTP Discrete Time/Cost Trade-o� Problem

GDTCTP Generalized Discrete Time/Cost Trade-o� Problem

DTCTP-GPR Discrete Time/Cost Trade-o� Problem with Generalized Precedence Relations

DTRTP Discrete Time/Resource Trade-o� Problem

GDTRTP Generalized Discrete Time/Resource Trade-o� Problem

DTRTP-GPR Discrete Time/Resource Trade-o� Problem with Generalized Precedence Relations

MRCPSP Multi-Mode Resource-Constrained Project Scheduling Problem

GMRCPSP Generalized Multi-Mode Resource-Constrained Project Scheduling Problem

MRCPSP-GPR Multi-Mode Resource-Constrained Project Scheduling Problem with Generalized Precedence Relations
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networks in which activity durations are allowed
to vary due to multiple execution scenarios. Sec-
tion 6 discusses the local search methodology that
is employed for heuristically solving the MRCPSP-
GPR. Computational experience is reported in
Section 7. Section 8 is reserved for our conclu-
sions.

2. Project representation

Assume a project represented in activity-on-the-
node format by a directed graph G� {V, E} in
which V is the set of vertices or activities and E is
the set of edges or generalized precedence relations
(GPRs). The non-preemptable activities are num-
bered from 1 to n, where the dummy activities 1
and n mark the beginning and the end of the
project. Each activity i has Mi execution modes,
where each mode determines the activity's dura-
tion and its requirements for the set of renewable
and non-renewable resources. The duration of an
activity in mode m is given by dim. The starting
time of an activity i is denoted by si and its ®n-
ishing time by fi. There are K renewable resource
types with rikm denoting the resource requirements
of activity i in mode m with respect to resource
type k and ak the availability of resource type k.
There also are �K non-renewable resource types with
ri�km denoting the resource requirements of activity i
in mode m with respect to resource type �k and a�k

the availability of resource type �k.
The activities are subject to generalized prece-

dence relations (GPRs), i.e. arbitrary minimal and
maximal time lags between the start and comple-
tion of the activities. We distinguish between four
types of GPRs: start±start (SS), start±®nish (SF),
®nish±start (FS) and ®nish±®nish (FF). A minimal
time lag speci®es that an activity can only start
(®nish) when the predecessor activity has already
started (®nished) for a certain time period. A
maximal time lag speci®es that an activity should
be started (®nished) at the latest a certain number
of time periods beyond the start (®nish) of another
activity. GPRs are often useful in practice, for
instance in cases where activities require ®xed or
simultaneous starting or completion times, non-
delay execution, mandatory overlaps with other

activities, time-varying resource requirements or
ready times and deadlines. The ®rst treatment of
GPRs is due to Kerbosh and Schell (1975), based
on the pioneering work of Roy (1962). Other
studies include Crandall (1973), Elmaghraby
(1977), Wiest (1981), Moder et al. (1983), Bartusch
et al. (1988), Elmaghraby and Kamburowski
(1992), Brinkmann and Neumann (1996), Zhan
(1994), Neumann and Zhan (1995), Schwindt
(1996), De Reyck and Herroelen (1996b,
1998a, b), Schwindt and Neumann (1996), Franck
and Neumann (1996), Neumann and Schwindt
(1997), De Reyck (1998), De Reyck et al. (1998),
Schwindt (1998), M�ohring et al. (1998) and
Dorndorf and Pesch (1998). The minimal and
maximal time lags between two activities i and j
have the form:

si � SSmin
ij 6 sj6 si � SSmax

ij ;

si � SF min
ij 6 fj6 si � SF max

ij ;

fi � FSmin
ij 6 sj6 fi � FSmax

ij ;

fi � FF min
ij 6 fj6 fi � FF max

ij ;

where SSmin
ij represents a minimal time lag between

the start time of activity i and the start time of
activity j (similar de®nitions apply for SSmax

ij ;
FSmin

ij ; . . .). Each type of GPR can be transformed
into a GPR of another arbitrary type. To ensure
that the dummy start and ®nish activities corres-
pond to the beginning and the completion of the
project, we assume that the GPRs ensure that ac-
tivity 1 should always start before every other ac-
tivity and that activity n can never terminate
before any other activity. If this is not the case,
we can insert additional zero-lag SSmin

1i precedence
relations and/or zero-lag FSmin

in precedence
relations.

3. Problem formulation

Assume that all maximal time lags are trans-
formed into equivalent minimal time lags with a
negative value in the opposite direction. For in-
stance, a FSmax

ij lag is transformed into a SF min
ji time

lag. De®ne ESS as the resulting set of SS-prece-
dence relations. Similarly, de®ne ESF , EFS and EFF .
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The actual values for each of the time lags
(whether they originate from a minimal time lag or
a maximal time lag) are given by SSij; SFij; FSij, and
FFij. The objective is to schedule each activity in
one of its modes, subject to GPRs and the resource
constraints under the objective of minimizing the
project duration. Introducing the decision vari-
ables

ximt �
1 if activity i is performed in mode m

and started at time t;
0 otherwise;

8<:
the MRCPSP-GPR (denoted as m,1T,va|gpr,
qi,di,disc,mu|Cmax in the classi®cation scheme of
Herroelen et al., 1998) can be formulated as fol-
lows:

min
Xlsn

t�esn

txn1t �1�

subject to

XMi

m�1

Xlsi

t�esi

ximt � 1; i � 1; 2; . . . ; n; �2�

XMi

m�1

Xlsi

t�esi

t
ÿ � SSij

�
ximt6

XMj

m�1

Xlsj

t�esj

txjmt; �i; j� 2 Ess; �3�

XMi

m�1

Xlsi

t�esi

t
ÿ � SFij

�
ximt6

XMj

m�1

Xlsj

t�esi

t
ÿ � djm

�
xjmt;

�i; j� 2 ESF ; �4�

XMi

m�1

Xlsi

t�esi

t
ÿ � dim � FSij

�
ximt6

XMj

m�1

Xlsj

t�esj

txjmt;

�i; j� 2 EFS ; �5�

XMi

m�1

Xlsi

t�esi

t � dim � FSij

ÿ �
ximt6

XMj

m�1

Xlsj

t�esj

t � djm

ÿ �
xjmt;

�i; j� 2 EFF ; �6�

Xn

i�1

XMi

m�1

rimk

Xminftÿ1;lsig

s�maxftÿdim;esig
xims6 ak;

k � 1; 2; . . . ;K; t � 1; 2; . . . ; T ; �7�

Xn

i�1

XMi

m�1

rim�k

Xlsi

t�esi

ximt6 a�k; �k � 1; 2; . . . ; �K; �8�

ximt 2 f0; 1g; i � 1; 2; . . . ; n;

m � 1; 2; . . . ;Mi; t � 0; 1; . . . ; T ; �9�
with T an upper bound on the project duration, esi

(lsi) the earliest (latest) start time of activity i (the
calculation of appropriate values for esi and lsi will
be discussed later). The objective function (1)
minimizes the project duration. Constraints (2)
ensure that each activity is assigned exactly one
mode and exactly one start time. Constraints (3)±
(6) denote the GPRs. The resource constraints are
given in Eqs. (7) and (8) for renewable and non-
renewable resources, respectively. Eq. (9) force the
decision variables to assume binary values.

The MRCPSP-GPR, as a generalization of the
RCPSP (m,1|cpm|Cmax), is known to be NP-hard.
Also the problem of determining whether an
MRCPSP-GPR instance has a feasible solution, is
NP-complete, since the MRCPSP-GPR is also a
generalization of the RCPSP-GPR (m,1,va|gpr,
qi,di,vr|Cmax), for which the feasibility problem
is proven to be NP-complete (Bartusch et al.,
1988).

4. Review of the literature

To the best of our knowledge, the literature on
the MRCPSP-GPR is completely void. Solution
procedures have been presented either for the
MRCPSP with zero-lag ®nish±start precedence
constraints or for the RCPSP-GPR in which every
activity is assigned a ®xed duration and a ®xed set
of resource requirements.

Exact procedures for the MRCPSP have been
presented by Talbot (1982), Patterson et al. (1989),
Speranza and Vercellis (1993), Sprecher (1994),
Ahn and Ereng�ucË (1995), Sprecher et al. (1997),
Nudtasomboon and Randhawa (1997) and Spre-
cher and Drexl (1998). Heuristic solution proce-
dures for the MRCPSP have been developed by
Talbot (1982), Drexl and Gr�unewald (1993), Slo-
winski et al. (1994), Boctor (1993, 1996), Boctor
(to appear), �Ozdamar and Ulusoy (1994), Kolisch
(1995), Yang and Patterson (1995), Ahn and
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Ereng�ucË (1996), �Ozdamar (1996), Kolisch and
Drexl (1997), Hartmann (1998), Sung and Lim
(1997) and Hartmann and Drexl (to appear).

Exact algorithms for the RCPSP-GPR have
been presented by Bartusch et al. (1988), De Reyck
and Herroelen (1998a, b) and De Reyck et al.
(1998b), Schwindt (1998), M�ohring et al. (1998)
and Dorndorf and Pesch (1998). Heuristic proce-
dures have been given by Zhan (1994), Neumann
and Zhan (1995), Brinkmann and Neumann
(1996), Schwindt and Neumann (1996), Franck
and Neumann (1996) and Schwindt (1998).

5. Temporal analysis

A schedule S � �s1; s2; . . . ; sn� is an array of
activity starting times. A mode assignment l �
�m1;m2; . . . ;mn� assigns a speci®c mode to each
activity and consequently, given a schedule
S � �s1; s2; . . . ; sn�, yields an array of activity ®nish
times �f1; f2; . . . ; fn�. A schedule S � �s1; s2; . . . ; sn�
with associated activity ®nish times �f1; f2; . . . ; fn�
is called time-feasible if the activity start and ®nish
times satisfy the following conditions:

si P 0 8i 2 V ; �10�

si � SSij6 sj 8�i; j� 2 ESS ; �11�

si � SFij6 fj 8�i; j� 2 ESF ; �12�

fi � FSij6 sj 8�i; j� 2 EFS ; �13�

fi � FFij6 fj 8�i; j� 2 EFF ; �14�

9m6Mi: dim � fi ÿ si 8i 2 V ; �15�
where Eqs. (10) ensure that no activity starts be-
fore the current time (time zero), Eqs. (11)±(14)
denote the GPRs transformed into minimal time
lags and Eqs. (15) represent the activity mode
constraints. The minimum starting times
�s1; s2; . . . ; sn� satisfying Eqs. (10)±(15)) form the
early start schedule ESS��es1; es2; . . . ; esn�. When
the activity durations are ®xed (only one mode per
activity), computing an ESS is straightforward.
The various GPRs can be transformed into mini-
mal start±start precedence relations lij. In this way,

all GPRs are consolidated in the expression
si � lij6 sj, where lij denotes a minimal start±start
time lag. Then, the earliest start of an activity i can
be calculated by ®nding the longest path d1i from
node 1 to node i in the network de®ned by the lij

values. The calculation of the matrix D� [dij] can
be done by standard graph algorithms for longest
paths in networks, for instance by the Floyd±
Warshall algorithm (see Lawler, 1976).

When activity durations are allowed to vary
due to multiple activity modes, the temporal
analysis is not as straightforward. In that case, the
longest path between activities may depend on the
selected mode for each of the activities in the
project. In the MRCPSP with zero-lag ®nish±start
precedence relations (m,1T|cpm,disc,mu|Cmax), an
ESS can be easily derived by assigning each ac-
tivity its shortest possible mode and then per-
forming a classic CPM analysis. When GPRs (even
of the minimal lag type only) are introduced,
however, selecting the shortest mode for each ac-
tivity will not necessarily minimize the project
duration. Certain activities in project networks
with GPRs may be backward-critical (reverse
critical), implying that decreasing their duration
leads to an increase of the project duration. De-
termining the optimal mode assignment that min-
imizes the project duration may prove to be very
di�cult.

6. Solution methodology

6.1. Local search methodology

The proposed local search methodology is an
extension of the one used in De Reyck et al.
(1998a) for solving the discrete time/resource
trade-o� problem (1,1|cpm,disc,mu|Cmax), the lat-
ter, however, not being able to cope with gener-
alized precedence relations, multiple resource types
and non-renewable resources. We will only brie¯y
describe the main features of our approach. More
details can be found in De Reyck and Herroelen
(1997) and De Reyck (1998). We divide the
MRCPSP-GPR into two distinct problems, which
are solved in two successive phases: a mode as-
signment phase and a resource-constrained project

542 B. De Reyck, W. Herroelen / European Journal of Operational Research 119 (1999) 538±556



scheduling phase with ®xed mode assignments.
The mode assignment phase assigns to each activity
i a speci®c execution mode mi. Each mode as-
signment l � �m1;m2; . . . ;mn� then yields a re-
source-constrained project scheduling problem
with generalized precedence relations (RCPSP-
GPR), which is subsequently solved in the re-
source-constrained project scheduling phase. A
similar local search methodology has been devised
by Kolisch and Drexl (1997) for dealing with the
MRCPSP (m,1T |cpm,disc,mu|Cmax). The authors
solve the MRCPSP using biased random sampling
and a priority-based heuristic for heuristically
solving the RCPSP (m,1|cpm|Cmax) for a ®xed
mode assignment. For heuristically solving the
RCPSP-GPR, we use a truncated version of the
branch-and-bound procedure developed by De
Reyck and Herroelen (1998a). The algorithm is
truncated after a very small amount of time has
elapsed (namely when 10 backtracking steps have
been performed, which requires, on the average,
less than 0.01 s).

We have experimented with several solution
approaches, including truncated enumeration,
random enumeration, descent methods and a tabu
search procedure. A truncated enumeration proce-
dure systematically enumerates a number of mode
assignments and solves each RCPSP-GPR in-
stance using the truncated RCPSP-GPR proce-
dure. A random enumeration procedure di�ers in
that it randomly generates a number of mode as-
signments which are subsequently evaluated. Local
search methods start with an initial mode assign-
ment l � �m1;m2; . . . ;mn� and compute an upper
bound on the project duration using the RCPSP-
GPR procedure. An improvement procedure is
then initiated which evaluates (using the same
RCPSP-GPR procedure) a number of new mode
assignments in the neighbourhood of l (all mode
assignments lk in which exactly one activity is
assigned another mode) and selects one of them
for further exploration. The procedures then per-
form a move from one mode assignment to another
one in which exactly one activity is assigned an-
other mode. This process continues until some
termination criterion is met. Upon ®nding the best
mode assignment, the same RCPSP-GPR proce-
dure is used, but it is now truncated after 1 second

of CPU-time, which results in high quality heu-
ristic solutions as has been shown by De Reyck
and Herroelen (1998a).

Given a mode assignment l, a steepest descent
method evaluates all mode assignments in the
neighbourhood of l and selects the one with the
smallest project duration. A fastest descent algo-
rithm di�ers in that the ®rst encountered improv-
ing mode assignment is implemented. Both types
of procedures terminate when no improving mode
assignment can be found. The descent procedures
can be enhanced with random restarts.

6.2. A tabu search procedure

6.2.1. Short-term search strategy
Descent methods only accept alterations which

result in an improvement of the incumbent solu-
tion. As a consequence, a major drawback is their
tendency to being trapped in a local optimum. A
tabu search (TS) procedure overcomes this disad-
vantage by also allowing for non-improving moves
and a (temporary) deterioration of the objective
function. When no improving moves can be de-
tected, a TS procedure selects the least deterio-
rating move (steepest descent / mildest ascent). In
order to avoid cycling, tabu search employs so-
called short-term memory to exclude from con-
sideration a speci®c number of moves. We classify
as tabu those moves that reverse one of the re-
cently made moves, i.e. after a move from mi � x
to mi � y, we prevent a move from mi � z to mi � x
for arbitrary values of z. We use a dynamic tabu
list the length of which varies randomly in the in-
terval

���
n
p

; 3
���
n
p� �.

Aspiration criteria are used to determine which
tabu restrictions should be overridden in order to
identify and again make available those moves
that may lead to an overall improvement of the
objective function or that can never lead to cy-
cling. The tabu status of such moves is not com-
pletely revoked, but transformed into a so-called
pending tabu status (Glover and Laguna, 1993),
which means that the move is eligible for selection
if no other non-tabu improving move exists. The
following aspiration criteria have been imple-
mented in the proposed procedure:
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· Global and regional aspiration by objective: If
a move that is classi®ed as tabu would lead
to the best solution obtained so far, the tabu
status is overridden and the move is imple-
mented. Additionally, if a tabu move would
lead to the best possible solution obtained
with a speci®c mode assigned to a speci®c ac-
tivity, we override the tabu status of that
move.

· Aspiration by in¯uence: We de®ne the in¯uence
of a move (the induced degree of change on
the structure of the incumbent solution) as the
absolute value of the di�erence between the cur-
rent duration of an activity and its duration in
the new mode assignment. We revoke the tabu
status of moves of rather low in¯uence, provid-
ed that between the time (iteration) the move
has been classi®ed as tabu and the current time
(iteration), a move of higher in¯uence has been
chosen. We also favour in¯uential moves by
making them more attractive in the move selec-
tion process.

· Aspiration by search direction: If the current
(tabu) move results in an improved solution,
and if the most recent move out of the new
(tabu) mode assignment was also an improving
move, the tabu status of the current move is re-
voked.

· Aspiration by strong admissibility: A move is la-
belled strongly admissible if it is eligible to be se-
lected and does not rely on any aspiration
criterion to qualify for admissibility, or if it
would lead to the best solution obtained so far
(Glover, 1990). If a strongly admissible move
was made prior to the most recent iteration dur-
ing which a non-improving move has been
made, we revoke the tabu status of every im-
proving move.
The procedure is terminated when (a) 10,000

iterations are performed, or (b) 1000 iterations
are performed without improving the best
known solution (this number is deemed to be
su�cient for the procedure to have either
reached the global optimum or to have con-
verged to and being stuck in a local optimum),
or (c) the time limit is exceeded, or (d) a so-
lution is encountered with a project duration
equal to a lower bound.

6.2.2. Long-term search strategy
The core of a TS procedure is a steepest de-

scent/mildest ascent procedure supplemented with
(short-term) recency-based memory in the form of
a tabu list to prevent cycling. Although this basic
scheme, supplemented with appropriate aspiration
criteria, may already outperform pure descent
procedures, another component is necessary that
typically operates on a somewhat longer time ho-
rizon to ensure that the search process examines
solutions throughout the entire solution space
(diversi®cation) and that promising regions of the
solution space (good local optima) are examined
more thoroughly (intensi®cation). This component
can be supplied by using frequency-based memory.
Essentially, frequency-based memory stores infor-
mation about the frequency that a speci®c solution
characteristic occurs over all generated solutions
or about the frequency that a move with a speci®c
attribute has occurred. For instance, we can store
(a) the number of generated solutions in which a
speci®c activity was executed in a speci®c mode,
(b) the number of times a move occurred in which
an arbitrary new mode was reassigned to a speci®c
activity, or (c) the number of times a speci®c mode
was assigned to a speci®c activity.

In the proposed TS procedure, we use fre-
quency-based memory to detect whether the
search space has been con®ned to a small region of
the entire solution space, and use that information
to guide the procedure into new unexplored re-
gions. We modify the attractiveness of the moves
under consideration by including a frequency-
based component which makes moves containing
frequently encountered attributes less attractive
than moves which contain rarely encountered at-
tributes. The diversifying in¯uence on the move
selection process is restricted to those occasions
when no admissible improving moves exist.

The search process is also divided in di�erent
phases, which diversify or intensify the search.
After an initial data collection phase in which the
required data for computing the frequencies is
stored, a diversi®cation phase is started based on
frequency information about the number of times
that an activity was assigned a speci®c mode. If the
frequencies indicate that for a speci®c activity only
a small subset of all possible modes have been

544 B. De Reyck, W. Herroelen / European Journal of Operational Research 119 (1999) 538±556



assigned to that activity, the search space is re-
stricted by excluding those moves that assign one
of these modes to that activity. After such a di-
versi®cation phase, all frequency-based memory is
erased and a new data collection is initiated.

Diversi®cation phases are alternated with in-
tensi®cation phases, in which the search is con-
centrated on promising regions of the solution
space. This is done by storing the number of times
a speci®c mode was assigned to each activity.
When a high frequency count for a speci®c activ-
ity-mode combination is combined with a small
associated project duration, it may be advanta-
geous to ``®x'' the mode assignment of that activity
to one mode or a small subset of all possible
modes. The intensi®cation procedure examines all
residence frequencies of the previously saved high
quality local optima (de®ned as having an upper
bound on the project duration equal to the current
best solution) and detects which activities have
been assigned a speci®c mode or a small subset of
all possible modes in each or a large number of
these solutions. Subsequently, the search space is
restricted by limiting the possible modes for each
activity to that small subset.

6.3. Reducing the search space using preprocessing

Before initiating the local search procedures,
the project data is modi®ed in order to reduce the
search space. The following reduction scheme is a
modi®ed version of the method devised by Kolisch
(1995) for the MRCPSP, with the major di�erence
that when dealing with GPRs, ine�cient modes
cannot be eliminated from consideration. A mode
is called e�cient if every other mode has either a
higher duration or a higher resource requirement.
As mentioned earlier, shortening activities in pro-
ject networks with GPRs may cause an increase of
the project duration. Similarly, prolonging activi-
ties may cause a decrease in project duration.
Therefore, it is possible that the optimal solution
can only be obtained by using ine�cient modes.

First, all doubly constrained resource types are
replaced by two new resource types, one renewable
and the other non-renewable. Then, the feasibility
of the problem is examined with respect to both

the renewable and the non-renewable resource
constraints. If there are activities that require more
of a renewable resource than what is available
�9i 2 V and k6K: minm�1::Mi rimk > ak�, the prob-
lem is infeasible. Similarly, if the sum of the
minimum requirements for a non-renewable
resource type exceeds its availability (9�k6 �K:Pn

i�1 minm�1::Mi rim�k > a�k�, the problem is also in-
feasible.

Subsequently, a number of modes and resource
types are eliminated because they play no role
whatsoever in the determination of the optimal
solution. First, all non-executable modes are elim-
inated. A non-executable mode mi of activity i
inevitably results in a violation of a renewable
resource constraint �9k6K: rimik > ak� or non-
renewable resource constraint �9�k6 �K: rimi �K > a�kÿPn

j�1; j 6�i minm�1::Mj rjm�k

� 	�. First, all non-execut-
able modes with respect to a renewable resource
type are eliminated, because the removal of such a
mode may cause other (prior executable) modes to
become non-executable with respect to a non-re-
newable resource type.

Subsequently, all redundant non-renewable
resource types are eliminated. A non-renewable
resource type �k is called redundant if no
mode assignment can result in a violation of
the corresponding resource constraint, i.e. ifPn

i�1 maxm�1::Mi rim�kf g6 a�k. This rule also elimi-
nates non-renewable resources the demand of
which does not depend on the selected activity
modes.

6.4. Determining a feasible initial solution

Determining a feasible starting solution for the
MRCPSP-GPR is not straightforward, due to the
fact that (a) when two or more non-renewable
resource types are present, the mode assignment
problem is NP-complete (Kolisch and Drexl, 1997)
and (b) the feasibility version of the RCPSP-GPR
is NP-complete. To determine a feasible initial
mode assignment with respect to the non-renew-
able resource constraints, we use a modi®ed ver-
sion of the heuristic proposed by Kolisch and
Drexl (1997) which assigns modes to activities
based on their requirements for each of the non-
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renewable resource types. The heuristic goes as
follows. De®ne, for each non-renewable resource
type, a residual availability ares

�k � a�k ÿ
P

i2A rimi �k,
where the set A includes all activities i which have
already been assigned a mode mi. Initially, A � /
and ares

�k � a�k. Then, compute, for each activity and
each of its modes, the relative resource consump-
tion of non-renewable resources as follows:
ravg

im �
P �K

�k�1 rim�k=ares
�k . For each activity, the mode

m�i is determined which leads to the least reduction
of the available non-renewable resources. There-
fore, select for each activity i the mode m�i for
which ravg

im�i
�P �K

�k�1 rim�i �k=ares
�k is minimal. Ties are

broken according to activity duration (smallest
mode ®rst). Then, assign mode m�i to activity i for
which ravg

im�i
� maxj2V nAfravg

jm�j
g. In other words, select

the activity for which the mode which puts least
mortgage on the non-renewable resources requires
more, on the average, of these resources relative to
(the corresponding modes of) the other activities.
As a tie-breaker, use the activity with the smallest
label. As a consequence, the residual availabilities
of the non-renewable resources are decreased as soon
as possible with an unavoidable amount, thereby
making the subsequent decisions more precise.

If there are no non-renewable resources, the
heuristic will select, for each activity, the mode
with smallest associated activity duration. In the
case that only a single non-renewable resource is
present, the heuristic always produces a feasible
mode assignment, provided one exists. When two
or more non-renewable resources are present, no
feasible mode assignment can be guaranteed. If in
that case, the heuristic fails to produce a feasible
mode assignment, we propose to use a truncated
implicit enumeration of mode assignments until a
feasible mode assignment is encountered. The
enumeration is implicit because certain mode as-
signments can be dominated if, for at least one
non-renewable resource type, it can be shown that
the resource requirements of the activities in their
currently allocated mode together with the theo-
retical minimum resource consumption of the ac-
tivities for which a mode has not yet been assigned
exceeds the availability.

The explicit checking of this dominance rule
can be avoided if preprocessing is applied on the
non-renewable resource requirements. For each

activity i and non-renewable resource �k, de®ne a
value xi�k as: xi�k � minm�1::Mi rim�k. Then, subtract the
value xi�k from the corresponding resource re-
quirements of activity i in every one of its modes:
8m � 1::Mi: rim�k � rim�k ÿ xi�k. This reduces the min-
imum requirement of each activity for each non-
renewable resource type to zero: 8i � 1::n; �k �
1:: �K: minm�1::Mi rim�k � 0. Finally, the availabilities
of each non-renewable resource type have to be
adjusted as follows: 8�k � 1:: �K: a�k � a�k ÿ

P
i2V xi�k.

If a feasible mode assignment (w.r.t. the non-
renewable resource constraints) is encountered, no
guarantee can be given that the corresponding
RCPSP-GPR has a feasible solution. Since deter-
mining whether an RCPSP-GPR instance has a
feasible solution constitutes an NP-complete
problem, determining a mode assignment that
leads to a feasible RCPSP-GPR instance is very
hard. However, even if no feasible solution to the
RCPSP-GPR can be detected, the local search can
be started as long as a feasible RCPSP-GPR so-
lution in the neighbourhood of the initial mode
assignment can be found. If not, a random restart
can be initiated.

It is clear that determining a feasible initial
solution can be very hard. Because our approach is
a heuristic one, it is possible that the problem has a
feasible solution, but that the procedure cannot
detect one. This is the case when (a) the implicit
enumeration of mode assignments is truncated
before a feasible mode assignment w.r.t. the non-
renewable resource constraints is found or (b) the
branch-and-bound procedure of De Reyck and
Herroelen (1998a) cannot ®nd a feasible solution
for the initial RCPSP-GPR instance or for any of
the neighbouring RCPSP-GPR instances before it
is truncated, and a random restart does not resolve
this problem. Several modi®cations can be used in
order to increase the chances of reaching a feasible
(initial) solution. First, the implicit enumeration of
mode assignments can be prolonged (possibly even
to complete enumeration), and second, another
procedure can be used to determine a feasible so-
lution for the corresponding RCPSP-GPR in-
stance. De Reyck and Herroelen (1998a) have
proposed another search strategy for solving the
RCPSP-GPR (referred to as the TWS-approach)
which involves looking for a feasible solution ®rst
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instead of directly trying to locate the optimal
solution. This approach greatly improves the
chances of ®nding a feasible solution, whereas the
time required for ®nding and verifying the optimal
solution remains more or less the same. The so-
lution quality of the heuristic solutions obtained
by truncating the search after a small amount of
time is slightly worse compared to the original
approach. Using this approach in an MRCPSP-
GPR instance for which a feasible solution cannot
be determined may very well lead to a feasible
solution. Although there is a theoretic possibility
that the proposed local search procedures are un-
able to ®nd a feasible solution for an MRCPSP-
GPR instance for which a feasible solution exists,
the computational experiments in Section 6 reveal
that most procedures succeed in ®nding a feasible
solution for all instances but the ones for which
infeasibility has been proven. These results are
certainly encouraging.

6.5. Infeasible moves

Moves are classi®ed as infeasible when (a) the
new mode assignment is infeasible with respect to
the non-renewable resource constraints, (b) the
resulting RCPSP-GPR instance has no feasible
solution or (c) although the resulting RCPSP-GPR
has a feasible solution, none can be found by the
truncated branch-and-bound procedure within the
given time limit. When no feasible moves can be
found, the fastest and steepest descent procedures
terminate. The iterated descent methods and the
TS restart with a randomly determined initial
mode assignment. Notice again that a move can be
classi®ed as infeasible because the truncated
branch-and-bound algorithm cannot determine a
feasible schedule based on the new mode assign-
ment, despite the fact that there may well exist a
feasible project schedule. This, of course, may lead
to missing the optimal solution if (a) the new mode
assignment was the optimal one, or (b) the new
mode assignment was the only way of reaching the
optimal mode assignment. Because there are typi-
cally several ways of reaching the optimal mode
assignment, we deem case (b) to pose less of a
problem. Again, the TWS-approach may be used

in order to increase the chances of ®nding a fea-
sible solution for an RCPSP-GPR instance.

6.6. Lower bounds

We use a lower bound on the project makespan
which is the maximum of a precedence-based
lower bound and a resource-based lower bound.
The resource-based lower bound lbr is computed
as lbr � maxm

k�1 d
Pn

i�1 minMi
m�1dimrimk

ÿ �
=ake

� 	
,

where dxe denotes the smallest integer equal to or
greater than x. As mentioned in Section 5, the
temporal analysis in project networks in which
activity durations are allowed to vary is not as
straightforward as in the case with ®xed activity
durations. Determining the optimal mode assign-
ment that minimizes the project duration (even in
the absence of resource constraints) constitutes a
very hard problem, which requires the use of
enumeration techniques. However, this would put
a mortgage on the use of the resulting project
duration as a lower bound on the optimal project
duration for the resource-constrained case. It is
essential that a lower bound can be computed very
e�ciently. Therefore, for the sake of computing a
lower bound, we assume that the activity durations
can be selected from a continuous interval rather
than their discrete set of possible values. Conse-
quently, it is possible to e�ciently compute a lower
bound on the project duration. First, we compute
for each activity i the minimal duration dmin

i �
minMi

m�1fdimg and maximal duration dmax
i �

maxMi
m�1fdimg that can be assigned to that activity.

Then, we assume that the duration of each activity
i can vary continuously between the interval
dmin

i ; dmax
i

� �
. The following algorithm then com-

putes optimal activity durations and a minimal
project duration, which can serve as a lower bound
on the duration of the project with discrete activity
durations and for the resource-constrained case.

Step 1. Initialization
Transform all maximal time lags into negative
minimal time lags in the opposite direction.
De®ne ESS as the resulting set of SS-precedence
relations. Similarly, de®ne ESF , EFS and EFF .
8i 2 V n f1g, set esi and efi to -9999. Set es1� 0
and ef1� 0.
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Set IT, the number of iterations to 0.
Step 2. Determine earliest starting and ®nishing

times
Increase IT by 1.
For each activity i 2 V do

{Determine SSS � j 2 Sj�j; i� 2 ESSf g; SSF �
j 2 Sj�j; i� 2 ESFf g, SFS � j 2 Sj�j; i� 2 EFSf g

and SFF � j 2 Sj�j; i� 2 EFFf g.
Compute esi � max esjSSijjj 2 SSS

� 	
; efi�f�

FSijjj 2 SFSgg and efi � max esj

�� �SFijjj 2
SSF g; efj � FFijjj 2 SFF

� 	g.
If efi ÿ esi > bi; set esi � efi ÿ bi; else if efi ÿ
esi < ai; set efi � esi � ai:

}
Step 3. Repeat until no change occurs in the

labels or a positive cycle is detected
If IT > n, STOP and report that the project is
time-infeasible.
If for any activity i, esi or efi has changed during
the previous iteration, go to STEP 2.
Otherwise, report the minimal project make-
span efn and STOP.
The minimal project duration efn can be used as

a modi®ed precedence-based lower bound lbmod
p . The

lower bound for the MRCPSP-GPR then equals
lb � maxflbr; lbmod

p g. The algorithm above can
also detect time-infeasibility. In that case, the esi

and/or the efi values in Step 2 will be modi®ed over
and over again, making the procedure cycle for-
ever until it is halted. We know that the maximum
number of iterations (IT, the number of times Step
2 is executed) equals n. Therefore, if IT exceeds n,
infeasibility is detected and the procedure is ter-
minated. In that case, the original project network
with discrete durations is also infeasible.

6.7. Mode-dependent generalized precedence rela-
tions

So far we assumed that the GPRs are inde-
pendent of the modes of the associated activities.
Actually, in some real-life project scheduling ap-
plications, it may occur that the value of a time lag
depends on the duration of either the predecessor
or successor activity. For an example we refer to
De Reyck (1998). The proposed procedures are
able to cope with such mode-dependent GPRs

under the assumption that (a) the time lags only
vary with the duration of the originating (prede-
cessor) activity and (b) although the time lags are
mode-dependent, the nature of the precedence re-
lation is not. Assumption (a) can easily be relaxed
if precedence relations from an activity i to an-
other activity j, the time lag of which depends on
the duration (mode) of activity j, are transformed
into precedence relations from j to i. Assumption
(b) seems very reasonable. In our experience, it
seems highly illogical that the nature of a prece-
dence relation depends on the duration of the as-
sociated activities.

The major modi®cation in the procedures in
order to cope with mode-dependent GPRs con-
cerns the computation of the lower bound. In the
precedence-based lower bound lbmod

p , the values
for the time lags used in the calculations should be
based on their minimal value, i.e. based on the
mode for the originating activity for which the
time lag is minimal. This will result in slightly in-
ferior lower bound values.

7. Computational experience

The procedures have been programmed in Mi-
crosoft Visual C�� 2.0 under Windows NT for use
on a Digital Venturis Pentium-60 personal com-
puter. The codes themselves require at most 105kb
and the data structures use at most 1.4Mb of in-
ternal memory, which allows them to be used on
computer platforms with little available memory.
A time limit of 100 s is imposed.

7.1. Benchmark problem set

We used ProGen/max (Schwindt, 1996) to
generate 1350 MRCPSP-GPR instances using a
full factorial experimental design by varying sev-
eral parameters as given in Table 3. The indication
[x, y] means that the corresponding value is ran-
domly generated in the interval [x, y], whereas x; y;
z means that three settings for that parameter were
used in the experiment. Table 4 shows the pa-
rameter settings of the full factorial experiment.
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For each combination of the control parameter
values, 10 problem instances have been generated.

The order strength OS is de®ned as the number
of precedence relations, including the transitive
ones, divided by the theoretical maximum of such
precedence relations, namely n(n ÿ 1)/2 (Mastor,
1970). Because OS only applies to acyclic net-
works, it is computed based on the acyclic skeleton
of the project networks obtained by removing all
the maximal time lags. The degree of redundancy
(Schwindt, 1996) is computed by dividing the
number of redundant arcs in the network by their
theoretical maximal value. A cycle structure (Zhan,
1994) is de®ned as a strongly connected compo-
nent of a project network with GPRs. It contains a
number of activities and directed arcs (minimal
time lags originating from standardizing the
GPRs) such that there is a directed path from each
activity to each other activity. The coe�cient of
cycle structure density (Schwindt, 1996) is a mea-
sure of the amount of precedence relations in a
cycle structure. The higher the number of prece-
dence relations, the more dense the cycle structure.
The deviations of the minimal time lags from the
activity durations (Schwindt, 1996) determine how

the values of the minimal time lags relate to the
activity durations. The tightness of maximal time
lags (Schwindt, 1996) determines how the values of
the maximal time lags relate to their theoretical
minimal value which preserves time-feasibility and
to a maximum value which always results in time-
and resource-feasibility. The slack factor
(Schwindt, 1996) determines how the minimal time
lags depend on the activity modes. The higher the
slack factor, the higher the dependency of the
minimal time lags on the associated activity
modes.

The resource factor RF (Pascoe, 1966) re¯ects
the average portion of resources requested per
activity. A resource factor is de®ned for both non-
renewable and renewable resource types:

Table 3

The parameter settings of the benchmark problem set

Control parameter Value

n 10; 20; 30

M (number of modes) 1; 2; 3; 4; 5

di �1; 10�
Number of initial and terminal activities �2; 3�
Maximal number of predecessors and successors 3

OS (order strength) 0.50

Degree of redundancy 0.0

Percentage of maximal time lags [10%, 20%]

Number of cycle structures �1; 10�
Number of activities per cycle structure �1; 30�
Coe�cient of cycle structure density 0.3

Deviations of minimal time lags from duration 0.5

Tightness of maximal time lags 0.5

Slack factor 0.0

K (number of renewable resource types) 2
�K (number of non-renewable resource types) 2

rimk (renewable resource demand) �1; 10�
rim�k (non-renewable resource demand) �1; 10�
RFren (resource factor for renewable resources) 1

RFnon (resource factor for non-renewable resources) 1

RSren (resource strength for renewable resources) 0.25; 0.50; 0.75

RSnon (resource strength for non-renewable resources) 0.25; 0.50; 0.75

Table 4

The parameter settings of the full factorial experiment

Control parameter Value

n (number of activities) 10; 20; 30

M (number of modes) 1; 2; 3; 4; 5;

RSren 0.25; 0.50; 0.75

RSnon 0.25; 0.50; 0.75
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RFren � 1

nK

Xn

i�1

1

Mi

XMi

m�1

XK

k�1

1 if rimk > 0;
0 otherwise;

�

RFnon � 1

n �K

Xn

i�1

1

Mi

XMi

m�1

X�K

�k�1

1 if rim�k > 0;
0 otherwise:

�

The resource strength for the renewable resource
types, RSren, is de®ned by Kolisch et al. (1995) as
ak ÿ rmin

k

ÿ �
= rmax

m ÿ rmin
m

ÿ �
, where rmin

k � maxi�1::n

minm�1::Mi rimkf g, and rmax
k is the peak demand for

renewable resource type k in the precedence-based
ESS based on the activity modes with maximal
resource requirement and on the minimal time lags
only. Hence, with respect to one resource the
smallest feasible resource availability is obtained
for RSren� 0. For RSnon� 1, the problem is no
longer resource-constrained. Similarly, the
resource strength for the non-renewable resource
types, RSnon, is de®ned as a�k ÿ rmin

�k

ÿ �
=rmax

�k ÿ rmin
�k ,

where rmin
�k �Pn

i�1 minm�1::Mi rim�k, and rmax
�k �Pn

i�1 maxm�1::Mi rim�k.
In an attempt to reduce the size of the experi-

ment, we ®xed certain problem parameters at
speci®c values rather than varying them over the
entire range of complexity. We ®xed OS at 0.5 and
RFren and RFnon at 1. Setting RF at 1 leads to a
bias towards the more di�cult problem instances,
since the complexity of resource-constrained pro-
ject scheduling problems is known to increase
when the RF increases (Kolisch et al., 1995; De
Reyck and Herroelen, 1998a). In total, 36

instances of the 1350 problems turn out to be
infeasible.

7.2. Basic computational results

Tables 5 and 63 summarize our ®ndings. They
report the average and maximal deviation with
respect to the best known solution, obtained by
running all procedures for 1000 s each (the results
in Tables 5 and 6 are obtained using a 100 s time
limit). Also given are the number of times the best
known solution is obtained, the number of prob-
lems solved to optimality, the average number of
RCPSP-GPR instances solved and the average
required CPU-time (in seconds). Table 5 reports
the average results on the entire problem set,
whereas Table 6 focuses on the 90 largest instances
with 30 activities and 5 modes per activity.

With the exception of truncated enumeration,
all procedures succeed in ®nding a feasible solution
for all problem instances except for those that are
known to be infeasible. Truncated enumeration
does not ®nd a feasible solution for 110 problem
instances, including 74 instances for which a fea-
sible solution is known.

The proposed TS procedure clearly is more ef-
fective than its competing local search methods.
For about 92% of the instances, TS is able to
match the best known solution (obtained by run-
ning all procedures, including the TS, for 1000 s).
However, the maximum deviation with respect to

Table 5

Summary results

Truncated

enumeration

Random

enumeration

Fastest

descent

Steepest

descent

Iterated

fastest

descent

Iterated

steepest

descent

Tabu

search

Hybrid

tabu

search

Avg. dev. from

best sol.

41.77% 19.40% 11.90% 13.44% 1.27% 2.52% 0.45% 0.40%

Max. dev. from

best sol.

353.85% 133.33% 247.37% 247.37% 91.67% 141.67% 35.90% 20.00%

Best solution 554 (41%) 594 (44%) 656 (49%) 631 (47%) 1,141 (85%) 1,041 (77%) 1,246 (92%) 1,232 (91%)

Optimal 388 (29%) 371 (27%) 442 (33%) 406 (30%) 593 (44%) 556 (41%) 603 (45%) 603 (45%)

RCPSP-GPRs

solved

55,811 28,380 102 382 11,788 15,994 5,883 5,732

Avg. CPU-time (s) 65.51 72.00 1.46 5.49 46.02 54.46 44.35 43.40
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the best known solution equals 35.90%. This value
is caused by an instance with 30 activities and 5
modes per activity. Clearly, this indicates that
further improvements are possible. Truncated and
random enumeration perform very poorly, al-
though random enumeration seems to outperform
truncated enumeration. Truncated enumeration
su�ers from the fact that while enumerating all
possible mode assignments in a systematic way,
resource feasibility with respect to the non-re-
newable resources may not be attained. Also, a
random enumeration results in a much more di-
versi®ed search. Fastest and steepest descent also
perform rather bad. Enhancing the descent pro-
cedures with random restarts substantially im-
proves the quality of the obtained solutions, at the
expense of increased computation times. Iterated
fastest descent turns out to be quite e�ective.
Contrary to expectations, the overall quality of the
solutions obtained with steepest descent are infe-
rior to those obtained using a fastest descent ap-
proach.

Inspired by the relatively good results obtained
with the iterated fastest descent approach, we de-
veloped a hybrid TS algorithm which takes ad-
vantage of both steepest and fastest descent. The
original TS is modi®ed in the sense that when a
mode assignment is encountered that results in the
best solution obtained so far, it is immediately
enforced. In other words, we use a fastest descent
each time the best solution obtained so far is im-
proved upon. A steepest descent is used when the
procedure ®nds improving moves which do not
lead to the best known solution. As was the case in

the original algorithm, a mildest ascent is used
when no improving moves can be found. The
major di�erences in behaviour of the original and
the hybrid TS algorithm are:
· The original TS uses steepest descent, whereas

the hybrid TS uses fastest descent until the ®rst
local optimum is encountered.

· The original TS investigates all mode assign-
ments in the neighbourhood of the current mode
assignment. Even if a move is found that im-
proves the best known solution, the search con-
tinues for even better moves. The hybrid
approach immediately accepts the ®rst move
leading to a global improvement, thereby possi-
bly missing better paths of improvement.

· The original TS considers the tabu status of
moves, even if they improve the best known so-
lution. Although in that case, the global aspira-
tion by objective aspiration criterion is
applicable, the corresponding moves are classi-
®ed as pending tabu moves which are only con-
sidered when no other feasible improving non-
tabu moves can be found. Contrary, the hybrid
approach accepts a global improvement regard-
less of its tabu status.
The results indicate that, on the average, the

hybrid TS performs better than the original TS,
especially for the larger instances (Table 6).

7.3. An extended time limit

Although TS outperforms all other local search
methods, it does not succeed in ®nding the best

Table 6

Results for the instances with 30 activities and 5 modes

Truncated

enumeration

Random

enumeration

Fastest

descent

Steepest

descent

Iterated

fastest

descent

Iterated

steepest

descent

Tabu

search

Hybrid

tabu

search

Avg. dev. from

best sol.

167.59% 79.85% 26.89% 42.66% 8.43% 18.42% 3.44% 2.55%

Max. dev. from

best sol.

316.67% 133.33% 247.37% 247.37% 91.67% 141.67% 35.90% 17.39%

Best solution 0 (0%) 0 (0%) 13 (14%) 4 (4%) 36 (40%) 10 (11%) 54 (60%) 66 (73%)

Optimal 0 (0%) 0 (0%) 11 (12%) 4 (4%) 24 (27%) 9 (10%) 27 (30%) 27 (30%)

RCPSP-GPRs

solved

9498 4999 354 1525 2920 4967 3875 3637

Avg. CPU-time (s) 101.00 99.24 6.41 30.07 58.08 86.00 85.81 80.81
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solution for some of the instances. Detailed results
reveal that for these instances, 100 seconds is not
enough to exploit the full advantages of the
intensi®cation and diversi®cation processes.
Tables 7 and 8 report the results when the CPU-
time limit is increased to 1000 s. Clearly, an in-
crease of the time limit allows the TS to substan-
tially increase its e�ectiveness. For the largest
instances (Table 8), the average (maximal) devia-
tion from the best known solution is decreased
from 3.44% (35.90%) to 0.03% (2.70%). The hybrid
TS procedure now performs slightly worse than
the original approach. The relative performance of
TS versus the other local search methods is im-
proved signi®cantly. The other local search meth-
ods do not bene®t greatly from an increased
allowed CPU-time. Only iterated steepest descent
takes advantage of the extra available time and
performs almost equally as good as a fastest de-

scent approach. To summarize, an increased time
limit results in an improved performance for pro-
cedures based on steepest descent (iterated steepest
descent and the original TS). Iterated fastest de-
scent and the hybrid TS do not gain as much.
Clearly, steepest descent is very time-consuming
compared to fastest descent (see Table 5), and
should only be undertaken if enough time is
available.

7.4. Detailed computational results

Detailed computational results showing the
impact of problem size and other problem char-
acteristics on the performance of the local search
methods are given in De Reyck and Herroelen
(1997). The main results can be summarized as
follows:

Table 7

Results for the complete problem set ± 1000 s time limit

Truncated

enumeration

Random

enumeration

Fastest

descent

Steepest

descent

Iterated

fastest

descent

Iterated

steepest

descent

Tabu

search

Hybrid

tabu

search

Avg. dev. from

best sol.

35.99% 15.35% 11.90% 13.44% 0.92% 1.10% 0.09% 0.13%

Max. dev. from

best sol.

280.00% 134.38% 247.37% 247.37% 133.33% 96.55% 15.00% 15.00%

Best solution 652(48%) 643(48%) 656 (49%) 631 (47%) 1,228 (91%) 1,183 (88%) 1,318 (98%) 1,293

(96%)

Optimal 445 (33%) 398 (29%) 442 (33%) 406 (30%) 607 (45%) 597 (44%) 612 (45%) 610 (45%)

RCPSP-GPRs solved 533,458 302,513 102 382 34,270 54,845 14,787 18,592

Avg. CPU-time (s) 569.24 696.82 1.46 5.49 278.38 352.21 201.08 205.50

Table 8

Results for the instances with 30 activities and 5 modes ± 1000 s time limit

Truncated

enumeration

Random

enumeration

Fastest

descent

Steepest

descent

Iterated

fastest

descent

Iterated

steepest

descent

Tabu

search

Hybrid

tabu

search

Avg. dev. from

best sol.

152.68% 65.22% 26.89% 42.66% 7.61% 9.89% 0.03% 0.52%

Max. dev. from

best sol.

266.67% 134.38% 247.37% 247.37% 133.33% 96.55% 2.70% 12.50%

Best solution 0 (0%) 0 (0%) 13 (14%) 4 (4%) 52 (58%) 35 (39%) 89 (99%) 73 (81%)

Optimal 0 (0%) 0 (0%) 11 (12%) 4 (4%) 26 (29%) 22 (24%) 29 (32%) 27 (30%)

RCPSP-GPRs

solved

114,825 57,701 354 1,525 24,815 35,599 29,563 28,281

Avg. CPU-time (s) 1000.03 943.03 6.41 30.07 431.14 574.43 616.49 602.31
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· TS outperforms all the other heuristic proce-
dures for each problem class, independently of
the size and characteristics of the problem in-
stances.

· RSren has a negative impact on the computation-
al complexity of the MRCPSP-GPR. The higher
RSren, the easier the corresponding problem in-
stance. These results are in line with results re-
ported in the literature for related problem
types (Kolisch et al., 1995; De Reyck and Her-
roelen, 1998a; Schwindt, 1998). However, we
conjecture that if a more re®ned experiment is
undertaken (with values for RSren between 0
and 0.2), a bell-shaped e�ect of RSren on the
computational complexity of the MRCPSP-
GPR will be revealed. This bell-shaped e�ect
has already been conjectured by Elmaghraby
and Herroelen (1980) for the RCPSP and veri-
®ed by De Reyck and Herroelen (1998a) for
the RCPSP and by De Reyck et al. (1998b) for
the RCPSP-GPR.

· The e�ect of RSnon on the complexity of the
MRCPSP-GPR is U-shaped. When RSnon is of
medium value (0.50), the problems seem to be
relatively easy. When RSnon is higher (0.75)
and especially when RSnon is low (0.25), the
problems becomes much harder. The reason
for this U-shaped e�ect stems from two di�erent
sources. On the one hand, a decreasing RSnon

makes the mode assignment problem more com-
plex in the sense that it is harder to ®nd feasible
mode assignments. On the other hand, when
RSnon is rather high, only very few mode assign-
ments can be eliminated because of the non-re-
newable resource requirements. Therefore,
much more mode assignments need to be exam-
ined. Consequently, the neighbourhood used in
the local search methods expands substantially.
This results in a longer time required for scan-
ning the neighbourhood and a less thorough ex-
amination of the solution space.

8. Conclusions

We presented a local search methodology and a
tabu search procedure for solving a general type of
resource-constrained project scheduling problem,

embodied in the multi-mode resource-constrained
project scheduling problem with generalized pre-
cedence relations (MRCPSP-GPR). The MRCPSP
consists of a number of project activities, subject
to generalized precedence relations (minimal and
maximal time lags between the activity starting
and completion times), which require a speci®c
amount of possibly several renewable, non-re-
newable and doubly constrained resources for
which a limited availability is imposed. The ac-
tivities possess di�erent execution modes, which
re¯ect di�erent ways of performing the activity,
each mode possibly having a di�erent impact on
the duration of the activity, the costs associated
with the activity and the required use of resources.
These multiple modes give rise to several kinds of
trade-o�s (time/resource, time/cost and resource/
resource trade-o�s) which allow for a more e�-
cient use of the resources.

The proposed local search methodology divides
the MRCPSP-GPR into two distinct phases: a
mode assignment phase and a resource-con-
strained project scheduling phase with ®xed mode
assignments. Several solution methods have been
examined, among which are truncated and ran-
dom enumeration, descent methods and a full-
¯edged tabu search procedure. The results indicate
that the tabu search procedure is capable of
outperforming all other heuristic approaches. A
study on the impact of several problem charac-
teristics on the computational complexity of the
MRCPSP-GPR reveals that a decreasing avail-
ability of the renewable resources leads to a more
complex MRCPSP-GPR instance. The e�ect of
the availability of the non-renewable resources is
U-shaped: a medium value corresponds to
MRCPSP-GPR instances which are the hardest to
solve.

It should be clear that the MRCPSP-GPR is a
very di�cult problem to solve. Not only is the
problem NP-hard, but also the two related sub-
problems, namely the mode assignment problem
and the resource-constrained project scheduling
problem with generalized precedence relations, are
NP-hard. This complexity is apparent from the
absence of exact procedures for this problem type.
Moreover, the NP-hardness of the two subprob-
lems creates di�culties in determining feasible
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solutions. Sometimes, the procedures proposed in
this paper may be unable to provide a feasible
solution without verifying that indeed no feasible
solution exists at all. Although the computational
results were encouraging in this respect, examining
other approaches for dealing with infeasibility
undoubtedly constitutes a promising area of future
research.
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