
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

3-2006

A hybrid scatter search/electromagnetism meta-heuristic for A hybrid scatter search/electromagnetism meta-heuristic for

project scheduling project scheduling

Dieter DEBELS

Bert DE REYCK
Singapore Management University, bdreyck@smu.edu.sg

Roel LEUS

Mario VANHOUCKE

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

 Part of the Business Administration, Management, and Operations Commons, and the Theory and

Algorithms Commons

Citation Citation
DEBELS, Dieter; DE REYCK, Bert; LEUS, Roel; and VANHOUCKE, Mario. A hybrid scatter search/
electromagnetism meta-heuristic for project scheduling. (2006). European Journal of Operational
Research. 169, (2), 638-653.
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6750

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6750&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A hybrid scatter search/electromagnetism meta-heuristic
for project scheduling

Dieter Debels a,*, Bert De Reyck b, Roel Leus c, Mario Vanhoucke a,d

a Faculty of Economics and Business Administration, Ghent University, Ghent, Belgium
b London Business School, London, UK

c Department of Applied Economics, Katholieke Universiteit Leuven, Leuven, Belgium
d Operations and Technology Management Centre, Vlerick Leuven Gent Management School, Gent, Belgium

Received 15 September 2003; accepted 18 May 2004

Abstract

In the last few decades, several effective algorithms for solving the resource-constrained project scheduling problem
have been proposed. However, the challenging nature of this problem, summarised in its strongly NP-hard status,
restricts the effectiveness of exact optimisation to relatively small instances. In this paper, we present a new meta-heu-
ristic for this problem, able to provide near-optimal heuristic solutions for relatively large instances. The procedure
combines elements from scatter search, a generic population-based evolutionary search method, and from a recently
introduced heuristic method for the optimisation of unconstrained continuous functions based on an analogy with elec-
tromagnetism theory. We present computational experiments on standard benchmark datasets, compare the results
with current state-of-the-art heuristics, and show that the procedure is capable of producing consistently good results
for challenging instances of the resource-constrained project scheduling problem. We also demonstrate that the algo-
rithm outperforms state-of-the-art existing heuristics.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Project scheduling; Heuristics; Scatter search; Electromagnetism

1. Introduction

We study the resource-constrained project
scheduling problem (RCPSP), denoted as m,1
jcpmjCmax using the classification scheme of
Herroelen et al. (1998a). The RCPSP can be stated
as follows. A set of activities N, numbered from 0
to n (jNj = n + 1), is to be scheduled without

0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2004.08.020

* Corresponding author.
E-mail addresses: dieter.debels@ugent.be (D. Debels), bder-

eyck@london.edu (B. De Reyck), roel.leus@econ.kuleuven.ac.be
(R. Leus), mario.vanhoucke@ugent.be (M. Vanhoucke).

European Journal of Operational Research 169 (2006) 638–653

www.elsevier.com/locate/ejor

mailto:dieter.debels@ugent.be
mailto:bdereyck@london.edu
mailto:bdereyck@london.edu
mailto:roel.leus@econ.kuleuven.ac.be
mailto:mario.vanhoucke@ugent.be

pre-emption on a set R of renewable resource
types. Activity i has a deterministic duration
di 2 N and requires rik 2 N units of resource type
k, k 2 R, which has a constant availability ak
throughout the project horizon. We assume that
rik 6 ak, i 2 N, k 2 R. The dummy start and end
activities 0 and n have zero duration while the
other activities have a non-zero duration; the dum-
mies also have zero resource usage. A is the set of
pairs of activities between which a finish–start
precedence relationship with time lag 0 exists.
We assume graph G(N,A) to be acyclic. A schedule
S is defined by an (n + 1)-vector of start times
s = (s0, . . . , sn), which implies an (n + 1)-vector of
finish times e (ei = si + di,"i 2 N). A schedule is
said to be feasible if the precedence and resource
constraints are satisfied. The objective of the
RCPSP is to find a feasible schedule such that
the schedule makespan en is minimised.

The research on the RCPSP has widely ex-
panded over the last few decades, and reviews can
be found in Brucker et al. (1999), Herroelen et al.
(1998b), Icmeli et al. (1993), Kolisch and Padman
(2001) and Özdamar and Ulusoy (1995). Numer-
ous exact solution approaches have been advanced,
with Brucker et al. (1998), Demeulemeester and
Herroelen (1992, 1997), Mingozzi et al. (1998)
and Sprecher (2000) perhaps the most noteworthy.
However, the RCPSP, being a generalisation of the
job shop scheduling problem, is strongly NP-hard
(Blazewicz et al., 1983), and the computation times
for exact algorithms can be excessive even for mod-
erately sized instances. This has motivated numer-
ous researchers to develop heuristic methods for
dealing with RCPSP instances of practical sizes.
Kolisch and Hartmann (1999) and Hartmann and
Kolisch (2000) present a classification and per-
formance evaluation of different such heuristics.
Alcaraz and Maroto (2001) and Hartmann (1998,
2002) tackle the RCPSP by means of genetic algo-
rithms, whereas Bouleimen and Lecocq (2003) use
simulated annealing. Fleszar and Hindi (2004)
implement a heuristic they refer to as ‘‘variable
neighbourhood search’’. Nonobe and Ibaraki
(2002) present a tabu search procedure that is ap-
plied to both the standard RCPSP problem as well
as to various extensions. Palpant et al. (2004) dis-
cuss a large neighbourhood search approach in

which blocks of activities scheduled within specific
time slices are rescheduled by a commercial solver.
Valls et al. (2003) present a population-based ap-
proach that adopts some tabu search principles.
Valls et al. (2004) propose to use a combination
of scatter search, path relinking, and improvement
and solution combination procedures; their algo-
rithm seems to be the best to date.

In this paper, we describe a new heuristic for the
RCPSP, inspired by recent advances in the devel-
opment of meta-heuristics. The procedure com-
bines elements from scatter search (SS), a
population-based evolutionary search method,
and a recently introduced heuristic method for
the optimisation of unconstrained continuous
functions that simulates the electromagnetism the-
ory of physics, hereafter referred to as the electro-
magnetism (EM) meta-heuristic. We extend the
EM heuristic for combinatorial optimisation prob-
lems and integrate it into an SS framework. In Sec-
tion 2, we explain how we represent and evaluate
RCPSP solutions. Our search strategy is cast into
an SS framework, as outlined in Section 3. Section
4 describes the main elements of the EM heuristic
applied to unconstrained continuous optimisation.
In Section 5, we show how the EM methodology
can be modified to be used in a combinatorial opt-
imisation setting and how it can be combined with
an SS algorithm for the RCPSP. Section 6 dis-
cusses an intensification strategy that is used to en-
hance the effectiveness and efficiency of the
algorithm. Section 7 contains the computational
results on benchmark datasets, as well as a com-
parison with other current state-of-the-art heuris-
tics. We conclude with Section 8.

2. Representation, schedule generation

and solution evaluation

The backbone of most improvement heuristics
for solving the RCPSP, where an initial (set of)
solution(s) is gradually improved, is a schedule rep-

resentation scheme, a schedule generation scheme
and a solution evaluation procedure. Typically, an
RCPSP improvement heuristic does not operate
directly on a schedule, but on some representation
of a schedule that is convenient and effective for

D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653 639

the functioning of the algorithm. After an opera-
tion on a solution (i.e. on a schedule represented
in a particular way) has been performed, the newly
obtained solution is transformed into a schedule
using a schedule generation scheme (SGS). We will
use a similar approach in this paper.

Kolisch and Hartmann (1999) distinguish be-
tween various representations for schedules in the
development of heuristics for the RCPSP. The
two most important ones are the random-key

(RK) representation and the activity-list (AL)

representation. In RK form, a solution corre-
sponds to a point in Euclidian (n + 1)-space, such
that the ith vector element functions as a priority
value for the ith activity. Using a serial schedule
generation scheme, these priority values can then
be used to construct an active schedule by schedul-
ing each activity one-at-a-time and as early as pos-
sible within the precedence and resource
constraints. Alternatively, a parallel SGS could
be used, although Kolisch (1996) has shown that,
contrary to the serial SGS, the parallel SGS is
sometimes unable to reach an optimal solution.
In the AL representation, a schedule is represented
by a linear extension of the partial order induced
by the precedence constraints, such that an SGS
gives priority to the activity that comes first in
the list containing a complete order on N. This is
similar to list scheduling in machine scheduling.

Hartmann andKolisch (2000) report that in gen-
eral, procedures that make use of the AL represen-
tation perform better than those based on the RK
form. This claim is based solely on computational
tests, and no underlying reasons are cited. We be-
lieve that the main reason for the inferior perform-
ance of the RK representation lies in the fact that
one single schedule can have many different repre-
sentations. This results in a larger solution space,
and the problem that the structure of a solution
or schedule representation does not necessarily con-
tain information about the quality of the associated
schedule, which sometimes prevent (meta-) heuris-
tics operating on schedule representations from
making improvements. The AL representation also
suffers from this, in that a single schedule can be
represented by different activity lists. This problem,
however, occurs more frequently using the RK rep-
resentation, for reasons we will explain below.

Despite this disadvantage, the RK representa-
tion has the advantage that each solution corre-
sponds to a point in Euclidian (n + 1)-space, so
that geometric operations can be performed on
its components. Since this is one of the corner-
stones of both the SS and EM methods, we adopt
the RK representation, allowing us to perform
mathematical operations on solutions. We have
modified the standard RK representation in order
to eliminate the problem stated above, thereby
removing its comparative disadvantage relative
to the AL form.

There are four underlying reasons why a sched-
ule can be represented by different RK forms,
caused by (1) scaling, (2) precedence constraints,
(3) timing anomalies and (4) activities with identi-
cal starting times. We will discuss these problems
one by one and show how these problems can be
eliminated using a unique, standardised form of
the RK representation. Note that problems (3)
and (4) also occur for activity lists. By eliminating
all four problem areas, our unique RK representa-
tion will perform better than both the standard
RK as well as the standard AL forms.

We introduce the example project depicted in Fig.
1, with a single renewable resource type with availa-
bility a1 = 2. A feasible schedule for this scheduling
problem, with a makespan equal to 18, is given in
Fig. 2. Assuming that lower RK values correspond
to higher priorities, the schedule in Fig. 2 can be
obtained with the following RK vector: x1 = [0.9;
1.1;2.6;0.7;2.1;0.8;1.0;1.9;3.2] (we omit the RK
values for the dummy start and end activity).

0

0

2

2

0

1 2

3 4

7

65

8 9

10

2

1

4

2
2

1
1

1

3

1

3

1

2

1

4

1

0

0

i

di

ri1

Fig. 1. Example project.

640 D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653

(1) Scaling in Euclidean space

Scaling the priority values of any RK represen-
tation up or down results in a different RK repre-
sentation, which, however, will always result in the
same schedule. In fact, there exist an infinite num-
ber of RK representations with different priority
values, but with the same priority structure. For
our example, x2 = [10;14;30;6;25;7;11;20;35] re-
sults in the same schedule. We eliminate this prob-
lem by replacing the priority values by their rank
values. For the example, we can transform x1 or
x2 into x3 = [3;5;8;1;7;2;4;6;9], which also yields
the schedule in Fig. 2.

(2) Precedence constraints

In an RK representation, priority values are not
constrained by the precedence constraints, in the
sense that the RK of an activity can be higher than
the RK of one of its predecessors. Essentially, this
is not a problem since an SGS will take the prece-
dence relations into account, but it can lead to differ-
ent RK representations for a single schedule. In our
example, we can see that activity 7 has a higher pri-
ority in x3 (a lower RK) than activities 2 and 3, two
predecessors of activity 7.A serial SGSwould sched-
ule the activities in the following order: 1, 2, 8, 5, 3, 4,
6, 7, 9, i.e. taking into account the precedence rela-
tions. However, another RK representation such
as x4 = [5;6;9;2;8;3;4;7;1] would result in the same
schedule. To eliminate this problem, we set the RK
values of each activity equal to its rank order in
the activity list obtained using a serial SGS. This re-
sults in an RK representation with priority values
‘‘in line’’ with the precedence constraints. For our
example, we obtain x5 = [1;2;5;6;4;7;8;3;9].

(3) Timing anomalies

The previous two problems arise only with the
RK representation. There are two more problems,

associated with both the RK and AL representa-
tion. The first is caused by the following phenom-
enon. If an activity a1 starts earlier than another
activity a2 in a schedule, then an AL representa-
tion of this schedule exists with a1 having a higher
priority than a2. If, however, none of the activities
starting after a1 and before a2 in the activity list,
nor a2 itself, could be scheduled earlier if activity
a1 were removed from the schedule (because of
precedence and/or resource constraints), then
there also exists an AL representation for the same
schedule in which a1 has a lower priority than a2.

In the example schedule of Fig. 2, activity 5
starts earlier than activity 8. Therefore, there is
an AL in which activity 5 has higher priority than
activity 8. Nevertheless, in x5 = [1;2;5;6;4;7;8;
3;9], which also leads to the schedule in Fig. 2,
the RK of activity 5, namely 4, is higher than the
RK of activity 8, namely 3, and thus activity 5 re-
ceives lower priority. This is due to the fact that
even in the absence of activity 5, activity 8 cannot
be scheduled earlier due to activities 1 and 2
requiring a significant amount of the resource in
periods 1–6. Activity 5, consuming fewer resources
and taking less time, can be inserted into the
schedule at time 0 both before and after activity
8 is included. In other words, there are at least
two priority vectors leading to the same schedule.

To deal with this problem, we propose to use a
topological order (TO) representation of schedules
(Valls et al., 2003, 2004): for a schedule S, a TO
representation of S is any vector x containing the
numbers from 0 to n + 1 and for which si(S) < sj(S)
implies xi < xj. Adhering to the TO representation
eliminates the problem discussed above. For the
example schedule in Fig. 2, activity 5 receives the
second highest priority in the TO representation.
Consequently, x5 is replaced by x6 = [1;3;5;6;
2;7;8;4;9].

(4) Activities with the same starting times

Even with the TO representation, there can still
be multiple representations of a single schedule. If
two activities i and j start at the same time, the pri-
orities of i and j can be interchanged without affect-
ing the associated schedule. In x6, this is the case
for activities 1 and 5, and 3 and 8, respectively.
To prevent this, we attribute the lowest ranking

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

1

1
2

8 6

3 4
7

9

Fig. 2. A schedule for the example project.

D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653 641

to all activities starting at the same time. By doing
so for the example schedule, we end up with x7 =
[1;3;4;6;1;7;8;4;9], a unique standardised random
key (SRK) representation for the schedule.

Using the SRK schedule representation, each
solution in SRK form is uniquely associated with
a schedule. When in our algorithm new solutions
are created, which do not necessarily conform to
the SRK form, they are transformed into SRK form
while at the same time evaluating the associated
objective function value as follows.When a new pri-
ority vector x 2 Rnþ1 is obtained, we compute a
schedule S = r(x), using a SGS r, with associated
objective function value equal to the makespan
en(r(x)). We then replace x by SRK priority vector
p(r(x)), where p transforms the schedule to SRK-
standardised priorities, based on the activity start-
ing times in r(x). In this way, when we work with
a population of solutions, we guarantee that each
solution corresponds to a unique schedule.

3. Scatter search

Scatter search (SS) is an evolutionary or popu-
lation-based method in which solutions are com-
bined to yield better solutions using convex or
non-convex linear combinations. Strategies for
diversification and intensification are typically
added to enhance the search. SS contrasts with
other evolutionary procedures such as genetic
algorithms (GA) by providing unifying principles
for joining solutions based on generalised path
constructions in Euclidean space and by utilizing
strategic designs where other approaches resort
to randomisation. Some sources (for instance Tail-
lard et al., 2001) see SS as a very generic method-
ology, constituting a generalisation of the GA
procedure. For a general introduction to SS, we re-
fer the reader to Glover et al. (2000, forthcoming)
and Martı́ et al. (2004). The algorithm we present
in this paper for solving the RCPSP contains a SS
skeleton as outlined in pseudo-code below:

Algorithm SS

1.construct a pool P of randomly gener-

ated solutions

2.construct RefSet = B1 [B2, B1 [B2 � P,
B1 \ B2 = ;
while (nr_schedules < schedule_limit)
do

3.generate subsets from RefSet
4.create a new pool P of trial solu-

tions by applying a solution combi-

nation method to each subset

5.update RefSet
endwhile

In step 1, a large pool P of solutions is generated:
solution vectors are obtained by randomly gener-
ating each of their components; these are trans-
formed to SRK format when the schedule is
evaluated, in the way described in the previous sec-
tion. In step 2, a reference set RefSet is constructed
from P containing high quality solutions (subset
B1) and diverse solutions (subset B2), with
B1 \ B2 = ;; this ‘‘two-tier’’ design is maintained
throughout the search. B1 contains the b1 solutions
in P with best makespan, while a threshold t1 on
the minimal distance between the elements in B1

is imposed in pursuit of diversity. B2 contains the
best (minimum makespan) schedules from PnB1

that are sufficiently distant from the elements of
B1. The latter diversity requirement is achieved
by means of a threshold t2 on the smallest distance
to any element in B1 with t2 > t1. As a distance
measure, we use the sum of the absolute values
of the component-wise differences divided by the
number of activities. As a stopping criterion, we
impose a limit on the number of generated sched-
ules, which is in line with the existing literature on
RCPSP heuristics.

In steps 3 and 4, a new pool of solutions is cre-
ated using a solution combination method to pairs
of solutions in RefSet. This is performed in two
different ways:

1. Pairs in B1: All pairs in B1 containing at least
one new solution compared to the previous gen-
eration are considered. From each such pair,
two children are produced by means of a stand-
ard two-point crossover operator, which are
added to the new pool.

2. Elements from B1 · B2: From each combination
of one element from B1 and one from B2 a single

642 D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653

offspring is constructed by means of EM (see
Sections 4 and 5).

In step 5, RefSet is updated on the basis of the
newly generated pool of solutions. We opt for a
static update, in which the reference set is updated
only after the new pool is completely generated. B1

is updated by considering also the new solutions in
the pool; when there is a tie, preference is given to
new solutions. B2 is recomputed as the set of
remaining minimum makespan solutions that are
sufficiently distant from the elements of B1.

4. The electromagnetism meta-heuristic

Birbil and Fang (2003) propose a so-called elec-
tromagnetism (EM) optimisation heuristic for
unconstrained global optimisation problems, i.e.
the minimisation of non-linear functions. Conver-
gence details for the heuristic are provided in Bir-
bil et al. (forthcoming). In a multi-dimensional
solution space where each point represents a solu-
tion, a charge is associated with each point. This
charge is related to the objective function value
associated with the solution. As in evolutionary
search algorithms, a population, or set of solu-
tions, is created, in which each solution point will
exert attraction or repulsion on other points, the
magnitude of which is proportional to the product
of the charges and inversely proportional to the
distance between the points (Coulomb�s Law).
The principle behind the algorithm is that inferior
solution points will prevent a move in their direc-
tion by repelling other points in the population,
and that attractive points will facilitate moves in
their direction. This can be seen as a form of local
search in Euclidian space in a population-based
framework. The main difference with existing
methods is that the moves are governed by forces
that obey the rules of electromagnetism. Birbil
and Fang (2003) provide a generic pseudo-code
for the EM algorithm:

Algorithm EM

while (stopping criterion not met) do

1.local search

2.compute forces

3.apply forces

endwhile

Step 1 explores the immediate (Euclidian) neigh-
bourhood of individual points in the population.
The total force exerted on each point by all other
points is calculated in step 2. This force depends
on the charge of the point under consideration as
well as of the points exerting the force. The charge
of each point xi is determined by its objective func-
tion value f(xi) in relation to the objection function
value of the current best point xbest in the popula-
tion, with better objective function values resulting
in higher charges. For a minimisation problem, the
charge qi of point xi is determined according to Eq.
(4.1):

qi ¼ exp �d
f ðxiÞ � f ðxbestÞ

Pm
k¼1

ðf ðxkÞ � f ðxbestÞÞ

0
BB@

1
CCA: ð4:1Þ

The parameter m represents the population size, d
is the dimension of the solution space. Subse-
quently, a set of force vectors Fi, i = 1, . . . ,m, is
determined, that are exerted on points xi:

Fi ¼
Xj¼m

j¼1
j 6¼i

ðxj � xiÞ
qiqj

kxj�xik2

� �

if f ðxjÞ < f ðxiÞ

ðxi � xjÞ
qiqj

kxj�xik2

� �

if f ðxjÞ P f ðxiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð4:2Þ

A point with a relatively good objective function
value attracts the other ones, points with inferior
objective value repel the other population mem-
bers. The forces exerted on i by all other points
are combined by means of vector summation, as
shown in the two-dimensional example in Fig. 3.
F13 is the force exerted by x1 on x3 (repulsion:
the objective function value of x1 is worse than
that of x3) and F23 is the force exerted by x2 on
x3 (attraction: the objective function value of x2
is better than that of x3). The total force exerted
on x3 equals F3 = F13 + F23.

Movement according to the resulting forces re-
sults in a new population of solutions. Contrary to
the simplified example in Fig. 3, the imposed force

D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653 643

is normalised by division by its norm, and there-
fore only identifies the direction of the move, not
the magnitude. The magnitude of each move is
determined for each dimension separately, and
is equal to a value randomly selected from
domain [0; maxmove], where maxmove indicates
the maximum allowable movement in the particu-
lar dimension.

5. Modifying the EM algorithm for the RCPSP

In our SS procedure, part of the combination
method to create a new pool of solutions from
the solutions in RefSet is implemented using the
EM framework. In the following section, we will
discuss how we have extended the EM methodol-
ogy for combinatorial optimisation and for the
RCPSP in particular, and how it can be integrated
into a general SS framework.

In the basic EM algorithm, all points in a pop-
ulation exert a force on all other points. We gener-
alise this concept by allowing a pre-determined
number z 2 [1; m � 1] of points to act on any given
point, where m is the population size. Experiments
have shown that the choice z = 1 yields good re-
sults and can be easily implemented, so that we
have restricted our procedure to this value. Recall
that in step 3 of our algorithm, we create a new
pool of solutions by combining pairs of activities
in RefSet = B1 [B2. For all pairs in B1 · B2 a
force is exerted by the point in B1 on the point in
B2 attracting it in its direction. For all pairs from
B1 · B1 however, we use a crossover operator
rather than an EM movement because the make-
span values of the corresponding schedules will

tend to be very similar, which reduces the effective-
ness of the EM algorithm as it looks for improve-
ments based on differences in objective function
values to guide the search.

For determining the force exerted on point i
(from B2) by point j (from B1), we do not use fixed
charges qi and qj as in the standard EM algorithm,
but instead a charge qij that depends on the relative
difference in objective function value between i and
j. So, contrary to the basic EM algorithm, point
charges are not computed independently but based
on the point they exert force on

qij ¼
f ðxiÞ � f ðxjÞ

f ðxworstÞ � f ðxbestÞ ð5:1Þ

with xworst and xbest the worst and best solutions in
RefSet. As a result, qij 2 [�1;1] and ‘‘better’’
points j have higher scores on qij. More specifi-
cally, if f(xi) > f(xj), i.e. when point i has a higher
makespan than point j, qij is positive and j attracts
i. The opposite, i.e. repulsion, occurs when
f(xi) < f(xj), and no action is taken when
f(xi) = f(xj).

In our implementation, the force exerted by
point j on point i equals

Fij ¼ ðxj � xiÞ � qij: ð5:2Þ

We then move from solution xi to xi + Fij in the
direction of xj, but xj itself is rarely reached be-
cause the multiplier qij in the right-hand side of
(5.2) is almost always smaller than 1. Based on
the computed force and the resulting movement,
new solutions are created in Euclidian space. In a
sense, this method is similar to the meta-heuristic
path relinking (Glover et al., 2000), which is based
on gradual moves from one solution in the direc-
tion of another. EM offers a generic framework
to determine these movements.

In the basic EM algorithm, forces are exerted in
each dimension. For the RCPSP, this corresponds
to a change in the priority of each activity. We ex-
tend this idea by allowing forces to act only in a
particular subset of the dimensions. We randomly
select pmin 2 [1;n � 1] and pmax 2 [2;n] with pmin 6

pmax and a minimum distance between pmin and
pmax. We update only the SRK values between pmin

and pmax (inclusive) according to the forces exerted
in these dimensions. Note that due to the SRK

x1

x2

x3

F23

F13

F3

Fig. 3. Example of exertion of forces.

644 D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653

representation, the thus updated activities all start
within a particular time interval. The other SRK
components are updated as follows. We subtract
a large constant (n or higher) from all SRK values
lower than pmin and add the same constant to all
SRK values higher than pmax. This preserves the
priority structure of the activities unaffected by
the forces, and the relative priorities of the three
corresponding subsets of activities. For the activi-
ties with SRK value <pmin or >pmax the relative
priorities are taken from the original solution,
and remain the highest priorities (when SRK
value < pmin) or lowest priorities (when SRK
value > pmax), compared to the activities with
SRK value between pmin and pmax for which the
new priority values are determined using EM. In
fact, this means that we have hybridised the basic
EM move with a two-point crossover, which re-
sults in increased flexibility of the algorithm and
improved performance. Note that the resulting
RK vector is not necessarily in SRK form, but
can be transformed into SRK format.

We again consider the example project pre-
sented in Section 2, and the schedule associated
with SRK vector x8 = [3;6;1;4;1;7;8;5;9], which
is depicted in Fig. 4. The makespan of this sched-
ule equals en(r(x8)) = 19. As explained in Section

3, x8 will be combined with the elements in B1

using EM. Consider the schedule given in Fig. 5
with a makespan equal to 15 and RK representa-
tion x9 = [1;3;1;4;6;8;7;4;8].

We will illustrate the functioning of the EM
solution combination method by examining the ef-
fects of a force exerted by x9 on x8, with pmin = 3
and pmax = 7. We assume that f (xworst) = 22 and
f (xbest) = 15, so that the charge q89 = 4/7 � 0.57.
Force F89 on x8 can now be computed as
q89(x9 � x8). In Table 1, the components of x8 in
interval [pmin;pmax] are bolded and the vector
added to x8 is referred to as F0

89, with
x8 þ F0

89 ¼ x0
8. Finally, we can transform x0

8 into
its SRK form x00

8 ¼ pðrðx0
8ÞÞ. The associated sched-

ule rðx0
8Þ ¼ rðx00

8Þ is depicted in Fig. 6, with
enðrðx00

8ÞÞ ¼ 17.
Note that the implemented hybrid two-point/

EM move will not simply copy the priority struc-
ture of x9 for the part of the vector between pmin

and pmax but rather result in a priority structure
that is somewhere between x8 and x9. A standard
two-point crossover can be implemented as
follows:

1. SRK < pmin: a large constant value (e.g. n) is
subtracted from the priority value.

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

1

1
2

8 6

3 4
7

9

Fig. 4. A schedule for the example project (associated with
vector x8).

Table 1
Illustration of the execution of a move

Activities 1 2 3 4 5 6 7 8 9

x8 3 6 1 4 1 7 8 5 9
x9 1 3 1 4 6 8 7 4 8
F89 �1.14 �1.71 0 0 2.86 0.57 �0.57 �0.57 �0.57
F0
89 �1.14 �1.71 �10 0 �10 0.57 +10 �0.57 +10

x08 1.86 4.29 �9 4 �9 7.57 18 4.43 19
x008 3 5 1 4 1 6 8 6 9

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

1

1
2

8 63

4
7

9

Fig. 5. The schedule r(x9).

D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653 645

2. pmin 6 SRK 6 pmax: copy the attracting vector.
3. pmax < SRK: a large constant value is added to

the priority value.

For x8 and x9 above, such a crossover would
lead to x10 = [1;3;�9;4;�9;8;18;4;19], with
en(r(x10)) = 18 and p(r(x10)) = [3;4;1;5;1;7;8;
5;9]. In other words, a two-point crossover yields
a schedule with makespan 18, whereas the hybrid
move results in a schedule with makespan 17.
The second crossover offspring, which takes its
lowest and highest priorities from x9 and its
middle part from x8, reproduces r(x8) with make-
span 19.

6. Intensification

The makespan en(r(x)) associated with a solu-
tion x is obtained using a serial SGS r. In order
to improve the intensification characteristics of
the algorithm, we use an enhanced generation
scheme r* that iteratively looks for improvements
in the priority vector using global forward and
backward shifts of individual activities. The
scheme r* guarantees that en(r*(x)) 6 en(r(x)),
and results in a standardised solution p(r*(x)).
Our method is based on principles described by
Li and Willis (1992) and Özdamar and Ulusoy
(1996).

First we apply r on x, yielding an active, i.e.
left-justified, schedule. Next, we iteratively per-
form backward and forward passes. The priorities
used in these passes are based on the SRK vector
consisting of the ending times (backward) and
starting times (forward) in the schedule, which re-
sults in a right-justified and left-justified schedule,
respectively. The schedule makespan of each inter-

mediate schedule is never higher than the make-
span of the previous one. In this way, we exploit
opportunities for global right and left shifts of
individual activities in order to reduce the
makespan.

A computational example will illustrate our ap-
proach: consider the project of Fig. 1 and RK vec-
tor x7 = [1;3;4;6;1;7;8;4;9]. r(x7) was depicted in
Fig. 2 and is repeated at the top of Fig. 7. The
schedule has a makespan of 18 time units. We
now try to reduce the makespan by shifting each
activity, in decreasing order of activity end times,
as much as possible to the right without affecting
the project completion time. Activities 9 and 7 can-
not be scheduled later. Activity 6 can be right
shifted to start at time 15. Activity 4 can be shifted
two time units and start at time 10. Since the global
right shift of activity 6 has made some additional
resources available, activity 8 can be shifted three
time units to start at time instant 9. Activities 3, 2
and 1 can shift two time units. Finally, activity 5
is shifted to time 14. In this way, we obtain a sched-
ule with a makespan of 16 units. Further improve-
ments of the schedule are possible by shifting
activities as much as possible to the left. This re-
duces the makespan by one further time unit, as
illustrated in Fig. 7. This procedure is continued
until no further improvements can be found.

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

1

1
2

8

63 4
7

9

Fig. 6. The resulting schedule after execution of a move.

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

1

1
2

8 6

3 4
7

9

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

1

1
2

8 6

3 4
7

9

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

1

1
2

8 63

4
7

9

Fig. 7. Stepwise improvement of the makespan.

646 D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653

7. Computational experiments

We have coded the procedure in Visual C++
6.0 and performed computational tests on an Acer
Travelmate 634LC with a Pentium IV 1.8GHz
processor using two different testsets. The first set
is composed of instances generated by RanGen
(Demeulemeester et al., 2003) and is used to study
the impact of the different parameters on the per-
formance of the algorithm, and to determine the
optimal settings for these parameters. The second
testset is the well-known PSPLIB dataset (Kolisch
and Sprecher, 1997), used to report computational
results of our procedure and to compare with
other state-of-the-art results.

7.1. Impact of the parameters

To test the impact of the different parameters
on the effectiveness and efficiency of the procedure,
we have constructed a dataset containing 480 in-
stances using RanGen (Demeulemeester et al.,
2003). Each instance contains 75 activities and
has been generated with the following settings.
The order-strength is set at 0.25, 0.50 or 0.75, re-
source usage at 1, 2, 3 or 4 and the resource-con-
strainedness at 0.2, 0.4, 0.6 or 0.8. Using 10

instances for each problem class, we obtain a prob-
lem set with 480 network instances.

This approach is similar to the way Valls et al.
(2003, 2004) derive their computational results.
The authors optimise the values of the different
parameters based on a subset of the J120 instances,
and then test the effectiveness of the algorithm on
the complete testset. Although the results would be
improved by optimising the parameter values for
the entire testset, the approach by Valls et al.
(2003, 2004) is more suitable since the results do
not rely on customising the parameters for that
particular set. We opt for a similar approach, but
take it one step further by not optimising the
parameter values on the testset at all, not even
on a subset, but on a completely different testset
as described in this section.

The size of the initial solution pool P is set to
100. Table 2 illustrates the influence of the param-
eters b1 and b2 i.e. the number of solutions in sub-
set B1 and B2 on the performance of the algorithm
for 1000, 5000, 50,000 and 500,000 schedules,
respectively. The column ‘‘Sum’’ contains the
sum of the 480 project makespans, and the column
‘‘Avg. Dev.’’ contains the average deviation from
the critical-path lower bound. The table reveals
that the optimal values for b1 and b2 (with

Table 2
Impact of parameters b1 and b2

Sum Avg. Dev. (%) Sum Avg. Dev. (%) Sum Avg. Dev. (%)

1000 Schedules b1 = 4 b1 = 5 b1 = 6

b2 = 2 91,659 278.9 91,632 278.8 91,635 278.8
b2 = 3 91,637 278.8 91,612 278.8 91,726 279.3
b2 = 4 91,634 278.9 91,691 279.1 91,681 279.1

5000 Schedules b1 = 8 b1 = 10 b1 = 12

b2 = 4 91,032 276.2 90,930 275.7 90,966 275.9
b2 = 5 90,951 275.8 90,920 275.7 90,965 275.9
b2 = 6 90,945 275.8 90,938 275.9 90,927 275.8

50,000 Schedules b1 = 26 b1 = 28 b1 = 30

b2 = 14 90,457 273.6 90,454 273.6 90,471 273.7
b2 = 16 90,456 273.6 90,433 273.5 90,443 273.6
b2 = 18 90,452 273.6 90,441 273.6 90,449 273.6

500,000 Schedules b1 = 62 b1 = 65 b1 = 68

b2 = 30 90,215 272.6 90,226 272.5 90,230 272.5
b2 = 33 90,225 272.5 90,209 272.5 90,211 272.5
b2 = 36 90,225 272.5 90,217 272.5 90,210 272.5

D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653 647

solutions highlighted in bold) depend on the num-
ber of schedules. Not all test results are shown,
only the ones surrounding the parameter values
that were found to be optimal. The tests also re-
vealed that the optimal values for parameters t1
and t2 (the diversity thresholds for B1 and B2) were
1.1 and 2.0, respectively, and were not found to be
sensitive to the schedule limit.

7.2. Comparative results with best known solutions

In order to compare with the best results from
the literature, we use the well-known J30, J60,
J90 and J120 instances of the PSPLIB testset (Ko-
lisch and Sprecher, 1997). Table 3 shows the re-
sults that were obtained using the optimal

parameter settings for the RanGen set as described
in the previous section. The row labelled ‘‘Sum’’
contains the sum of the makespans of all problem
instances. The row labelled ‘‘Avg. Dev. CPM’’ re-
ports the average deviation from the critical-path
lower bound. The row labelled ‘‘Avg. Dev. Best’’
displays the average percentage deviation from
the currently best known solution in PSPLIB as re-
ported on September 12, 2003. For the J30 set
these solutions are all optimal. The fourth row, la-
belled ‘‘Best’’, shows the number of instances for
which our heuristic algorithm reports a makespan
equal to the currently best solution. The fifth row,
labelled ‘‘Improved’’, reports the number of prob-
lem instances for which we have been able to im-
prove the best known solution (based on PSPLIB

Table 3
Computational results

Problem set Schedules J30 J60 J90 J120

Sum 1000 28,410 38,765 46,321 76,736
5000 28,355 38,554 46,030 75,537
50,000 28,319 38,420 45,822 74,671
500,000 28,319 38,357 45,700 74,055

Avg. Dev. CPM 1000 13.77% 11.73% 11.30% 35.22%
5000 13.54% 11.10% 10.59% 33.10%
50,000 13.38% 10.71% 10.09% 31.57%
500,000 13.38% 10.53% 9.80% 30.48%

Avg. Dev. Best 1000 0.27% 0.90% 1.11% 3.24%
5000 0.11% 0.46% 0.61% 1.90%
50,000 0.01% 0.19% 0.27% 0.95%
500,000 0.01% 0.07% 0.07% 0.28%

Best 1000 421 (480) 360 (480) 365 (480) 199 (600)
5000 451 (480) 386 (480) 373 (480) 225 (600)
50,000 477 (480) 415 (480) 395 (480) 282 (600)
500,000 477 (480) 447 (480) 437 (480) 434 (600)

Improved 1000 – 0 0 0
5000 – 0 0 0
50,000 – 0 1 3
500,000 – 2 13 35

Avg. CPU (seconds) 1000 0.01 0.03 0.07 0.12
5000 0.06 0.18 0.37 0.65
50,000 0.69 1.88 4.03 6.66
500,000 7.16 19.61 38.87 69.57

Max. CPU (seconds) 1000 0.05 0.07 0.13 0.22
5000 0.12 0.27 0.70 0.93
50,000 1.27 2.64 8.02 9.22
500,000 9.89 33.14 54.94 98.45

648 D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653

results on February 9, 2004, see http://www.bwl.
uni-kiel.de/bwlinstitute/Prod/psplib/datasm.html).
The last rows, labelled ‘‘Avg. CPU’’ and ‘‘Max.
CPU’’, indicate the average and maximal compu-
tation time to solve a problem instance. Each cell
of the table displays the results for a run with max-
imum 1000, 5000, 50,000 and 500,000 schedules.

The results indicate that the algorithm is capa-
ble of providing near-optimal solutions for set
J30 within very small computation times, and
competitive solutions for the other problem sets,
all with limited computational effort. Also, the re-
sults show only a moderate increase in required
computational effort when the problem size in-
creases, which is an encouraging result since this
should allow for solving very large scale instances.
We have also been able to improve the best known
solutions for several of the problem instances in
the PSPLIB set. During our experiments with the
algorithm, we have been able to find better solu-
tions for 6 instances of the J60 set, 44 instances
of the J90 set and 99 instances of the J120 set.
Since these best known solutions have been ob-
tained using a large set of solution procedures,
including exact ones for some sets, these improve-
ments are another indication of the potential use-
fulness of the proposed heuristic.

When the parameters settings are optimised for
these problem sets, a slight improvement in the
performance of the heuristic can be observed.
The biggest improvement was found for J120,
where the average deviation from the lower bound
could be reduced from 35.22% to 34.90% for 1000
schedules. However, overall, the optimal parame-
ter settings for each set are quite close to those
determined using the RanGen set, which shows
that these settings are robust with respect to

changes in the problem characteristics (see Table
4). For the comparative computational experi-
ments in the following sections, the original
parameter settings (i.e. not optimised for a partic-
ular set) are used.

7.3. Comparative results with 5000 schedule limit

In the following tables we provide a compari-
son with the best heuristic procedures reported
in the literature. In order to have a fair base of
comparison, we only compare the results with a
limit of 5000 schedules, and omit procedures that
do not report such results (these will be discussed
later). To measure the effectiveness of the algo-
rithms, we report the average deviation of the
heuristic solutions from the critical path, except
for J30, where we report the average deviation
from the optimal solution. We also provide a rank
order of effectiveness for each problem set in col-
umn ‘‘R’’. Empty cells denote that, to the best of
our knowledge, no results are stated. Table 5
reveals that our new algorithm performs consist-
ently well over all problem sets, and outperforms
the currently best performing procedure in each
class.

7.4. Comparative results with extended time limit

In this section we provide a comparison with
other state-of-the-art heuristics for which compu-
tational results with a limited number of schedules
are not available. These include Valls et al. (2003,
2004), Fleszar and Hindi (2004) and Palpant et al.
(2004). We also compare with results obtained by
the algorithm of Nonobe and Ibaraki (2002) with-
out a limit on the number of schedules (as reported

Table 4
Optimal set-dependent parameter settings

Problem set RanGen J30 J60 J90 J120

b1 1000 Schedules 5 6 4 5 4
5000 Schedules 10 10 10 8 8
50,000 Schedules 28 28 26 20 26

b2 1000 Schedules 3 4 4 2 2
5000 Schedules 5 3 7 5 5
50,000 Schedules 16 16 16 14 12

D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653 649

http://www.bwl.uni-kiel.de/bwlinstitute/Prod/psplib/datasm.html
http://www.bwl.uni-kiel.de/bwlinstitute/Prod/psplib/datasm.html

by Valls et al., 2003). Because the results for the
different algorithms have been obtained using dif-
ferent computers, a direct comparison is not possi-
ble. Rather, we will show that our algorithm is
able to outperform these heuristics with a specific
limit on the number of schedules generated. As
measures of algorithmic effectiveness and effi-
ciency, we report the sum of the project make-
spans, the average deviations from the critical
path (except for J30, where we report the average
deviation from the optimal solution) and average
and maximum CPU times, where available.

Nonobe and Ibaraki (2002) developed a tabu
search algorithm for the RCPSP, for which new
computational results are reported by Valls et al.
(2003). Table 6 shows that we are able to obtain
better results using only 5000 schedules, except
for J30, where we need 50,000 schedules. Addition-
ally, we require far less computation time, even if
we take into account the difference in computer
system (Sun Ultra 2 running at 300MHz versus
1.8GHz PC).

Recently, Fleszar and Hindi (2004) have devel-
oped a heuristic for the RCPSP based on variable

Table 5
Comparative computational results with limit on number of schedules

Author Problem set

J30 J60 J90 J120

Dev. (%) R Dev. (%) R Dev. (%) R Dev. (%) R

Hartmann (1998) 0.25 5 11.89 4 – – 36.74 5
Hartmann (2002) 0.22 3 11.70 2 – – 35.39 2
Nonobe and Ibaraki (2002) – – – – – – 35.86 3
Alcaraz and Maroto (2001) 0.12 2 11.86 3 – – 36.57 4
Bouleimen and Lecocq (2003) 0.23 4 11.90 5 – – 37.68 6
Our procedure 0.11 1 11.10 1 10.59 1 33.10 1

Table 6
Comparative computational results without schedule limit

Author Problem set

J30 J60

Sum Dev. (%) Avg. CPU Max. CPU R Sum Dev. (%) Avg. CPU Max. CPU R

Nonobe and Ibaraki (2002) 28,337 0.06 9.07 – 5 38,697 11.55 26.49 – 8
Fleszar and Hindi (2004) – – 0.64 5.86 – 10.94 8.89 80.70 4
Palpant et al. (2004) – 0.02 22.23 211.00 3 – 10.93 58.04 343.00 3
Valls et al. (2003) 28,335 0.06 1.61 6.15 4 38,671 11.45 2.76 14.61 7
Valls et al. (2004) 28,361 0.13 0.38 1.54 7 38,512 10.98 1.14 7.03 5
Our [5000] 28,355 0.11 0.06 0.12 6 38,554 11.10 0.18 0.27 6
Our [50,000] 28,319 0.01 0.69 1.27 1 38,420 10.71 1.88 2.64 2
Our [500,000] 28,319 0.01 7.16 9.89 1 38,357 10.53 19.61 33.14 1

J90 J120

Nonobe and Ibaraki (2002) 46,294 11.25 181.41 – 7 76,600 34.99 645.33 – 7
Fleszar and Hindi (2004) – 32.43 247.91 – 33.10 219.86 1126.97 4
Palpant et al. (2004) – 10.54 93.91 508.00 4 – 33.16 318.33 852.00 5
Valls et al. (2003) 46,247 11.12 4.63 25.49 6 76,356 34.53 17.00 43.94 6
Valls et al. (2004) 45,967 10.44 2.53 17.57 3 75,009 32.18 14.52 60.80 3
Our [5000] 46,030 10.59 0.37 0.70 5 75,537 33.10 0.65 0.93 4
Our [50,000] 45,822 10.09 4.03 8.02 2 74,6717 31.57 6.66 9.22 2
Our [500,000] 45,700 9.80 38.87 54.94 1 74,055 30.48 69.57 98.45 1

650 D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653

neighbourhood search. They report good compu-
tational results, but requiring substantial compu-
tational effort. For sets J60 and J120, Fleszar
and Hindi (2004) report average deviations from
the critical-path lower bound of 10.94% and
33.10%. Our algorithm is capable of producing
deviations of only 10.53% and 30.48% with
500,000 schedules, and 10.71% and 31.57% with
50,000 schedules, respectively. This indicates that
we outperform their results, even with a maximum
of 50,000 schedules, whereas Fleszar and Hindi
(2004) do not set a limit on the number of sched-
ules, which runs to a maximum of more than 1 mil-
lion for J60 and more than 10 million for J120.
They also report high computation times up to a
maximum of 1127 seconds (1GHz processor),
compared to a maximum of less than 10 seconds
for our procedure (with 50,000 schedules on a
1.8GHz processor).

In another recent paper, Palpant et al. (2004)
present a large neighbourhood search approach
in which blocks of activities scheduled within spe-
cific time slices are rescheduled by a commercial
solver. We achieve lower percentage deviations
from the critical-path lower bound with a limit
of 50,000 schedules, and with only 5000 schedules
for J120. Moreover, the algorithm of Palpant et al.
(2004) requires high computation times (on a 4
processor HP 9000 workstation running at
440MHz), namely between 23 and 489 times as
much as our algorithm needs to produce even bet-
ter results.

Valls et al. (2003) present a heuristic based on
critical activity reordering. Although their results
for the J30 set are good, and require a 50,000
schedule-limit for our procedure to be able to out-
perform it, the results are rather disappointing for
sets J60, J90 and J120, where our algorithm can
produce better results with only 5000 schedules.
The CPU time required by Valls et al. (2003) is
limited, but our procedure requires even less time,
more than offsetting the difference in processor
speeds (400MHz versus 1.8GHz). This is espe-
cially clear for set J120, where Valls et al. (2003)
require more than 25 times the CPU time we need
to outperform them.

Valls et al. (2004) report excellent results, espe-
cially for sets J60, J90 and J120, as shown in Table

6. They show that their results outperform all
other state-of-the-art heuristics, although their
procedure is not subjected to a schedule limit, con-
trary to the other procedures. Nevertheless, the
authors also demonstrate that even with extended
time limits, the quality of the solutions produced
by the other heuristics is lower than theirs. With
our new procedure, we are able to do even better,
using 5000 schedules for J30 and 50,000 schedules
for J60, J90 and J120. Note, however, that in order
to outperform the results of Valls et al. (2004), our
procedure requires more CPU time if we take into
account the difference in processor speed
(400MHz versus 1.8GHz). On average, our proce-
dure requires more time for sets J60, J90 and J120,
but we are able to report better solutions for all
problem sets.

From these experiments, we can conclude that
the proposed heuristic outperforms all existing
heuristic algorithms presented in the literature in
terms of both solution quality as well as time re-
quired, except for Valls et al. (2004), where we
do produce better solutions, but at the expense
of slightly more required time.

8. Conclusions

In this paper, we have presented a new heuristic
procedure for solving the resource-constrained
project scheduling problem (RCPSP), one of the
most challenging combinatorial optimisation
problems in scheduling. The procedure is a popu-
lation-based evolutionary method that combines
elements from scatter search and from a novel
method originally introduced for optimising
unconstrained continuous functions based on an
analogy with electromagnetism theory. We have
explained how this electromagnetism heuristic
can be extended for application to combinatorial
optimisation problems and to the RCPSP, and
how it can be integrated into a scatter search
framework. The computational results show that
the procedure outperforms other state-of-the-art
heuristics in the literature, and that it is competi-
tive with the procedure of Valls et al. (2004), which
is probably the most effective heuristic presented in
the literature to date.

D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653 651

References

Alcaraz, J., Maroto, C., 2001. A robust genetic algorithm for
resource allocation in project scheduling. Annals of Oper-
ations Research 102, 83–109.

Birbil, S.I., Fang, S.C., 2003. An electromagnetism-like mech-
anism for global optimization. Journal of Global Optimi-
zation 25, 263–282.

Birbil, S.I., Fang, S.C., Sheu, R.-L., forthcoming. On the
convergence of a population-based global optimization
algorithm. Journal of Global Optimization.

Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G., 1983.
Scheduling subject to resource constraints: Classifica-
tion and complexity. Discrete Applied Mathematics 5, 11–
24.

Bouleimen, K., Lecocq, H., 2003. A new efficient simulated
annealing algorithm for the resource-constrained project
scheduling problem and its multiple mode version. Euro-
pean Journal of Operational Research 149, 268–281.

Brucker, P., Knust, S., Schoo, A., Thiele, O., 1998. A branch &
bound algorithm for the resource-constrained project
scheduling problem. European Journal of Operational
Research 107, 272–288.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.,
1999. Resource-constrained project scheduling: Notation,
classification, models and methods. European Journal of
Operational Research 112, 3–41.

Demeulemeester, E., Herroelen, W., 1992. A branch-and-bound
procedure for the multiple resource-constrained project
scheduling problem. Management Science 38, 1803–1818.

Demeulemeester, E., Herroelen, W., 1997. New benchmark
results for the resource-constrained project scheduling
problem. Management Science 43, 1485–1492.

Demeulemeester, E., Vanhoucke, M., Herroelen, W., 2003. A
random generator for activity-on-the-node networks. Jour-
nal of Scheduling 6, 13–34.

Fleszar, K., Hindi, K.S., 2004. Solving the resource-constrained
project scheduling problem by a variable neighbourhood
search. European Journal of Operational Research 155 (2),
402–413.

Glover, F., Laguna, M., Martı́, R., 2000. Fundamentals of
scatter search and path relinking. Control and Cybernetics
39, 653–684.

Glover, F., Laguna, M., Martı́, R., forthcoming. Scatter search.
In: Ghosh, A., Tsutsui, S. (Eds.), Theory and Applications
of Evolutionary Computation: Recent Trends, Springer-
Verlag, New York.

Hartmann, S., 1998. A competitive genetic algorithm for the
resource-constrained project scheduling. Naval Research
Logistics 45, 733–750.

Hartmann, S., 2002. A self-adaptive genetic algorithm for
project scheduling under resource constraints. Naval
Research Logistics 49, 433–448.

Hartmann, S., Kolisch, R., 2000. Experimental evaluation of
state-of-the-art heuristics for the resource-constrained pro-
ject scheduling problem. European Journal of Operational
Research 127, 394–407.

Herroelen, W., Demeulemeester, E., De Reyck, B., 1998a. A
classification scheme for project scheduling. In: Weglarz, J.
(Ed.), Project Scheduling—Recent Models, Algorithms and
Applications, International Series in Operations Research
and Management Science, vol. 14. Kluwer Academic
Publishers, Dordrecht, pp. 77–106 (Chapter 1).

Herroelen, W., De Reyck, B., Demeulemeester, E., 1998b.
Resource-constrained project scheduling: A survey of recent
developments. Computers and Operations Research 25 (4),
279–302.

Icmeli, O., Erenguc, S.S., Zappe, C.J., 1993. Project scheduling
problems: A survey. International Journal of Operations
and Productions Management 13 (11), 80–91.

Kolisch, R., 1996. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and computa-
tion. European Journal of Operational Research 43, 23–
40.

Kolisch, R., Hartmann, S., 1999. Heuristic algorithms for
solving the resource-constrained project scheduling prob-
lem: Classification and computational analysis. In: Weglarz,
J. (Ed.), Project Scheduling—Recent Models, Algorithms
and Applications. Kluwer Academic Publishers, Boston, pp.
147–178.

Kolisch, R., Padman, R., 2001. An integrated survey of
deterministic project scheduling. Omega 49 (3), 249–272.

Kolisch, R., Sprecher, A., 1997. PSPLIB—A project scheduling
library. European Journal of Operational Research 96, 205–
216.

Li, K.Y., Willis, R.J., 1992. An iterative scheduling technique
for resource-constrained project scheduling. European
Journal of Operational Research 56, 370–379.

Martı́, R., Laguna, M., Glover, F., 2006. Principles of scatter
search. European Journal of Operational Research, 169,
359–372.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L., 1998.
An exact algorithm for the resource-constrained project
scheduling problem based on a new mathematical formu-
lation. Management Science 44, 715–729.

Nonobe, K., Ibaraki, T., 2002. Formulation and tabu search
algorithm for the resource constrained project scheduling
problem (RCPSP). In: Ribeiro, C.C., Hansen, P. (Eds.),
Essays and Surveys in Metaheuristics. Kluwer Academic
Publishers, Boston, pp. 557–588.

Özdamar, L., Ulusoy, G., 1995. A survey on the resource-
constrained project scheduling problem. IIE Transactions
27, 574–586.

Ozdamar, L., Ulusoy, G., 1996. A note on an iterative forward/
backward scheduling technique with reference to a proce-
dure by Li and Willis. European Journal of Operational
Research 89, 400–407.

Palpant, M., Artigues, C., Michelon, P., 2004. LSSPER: The
resource-constraint project scheduling problem with large
neighbourhood search. Annals of Operations Research 131,
237–257.

Sprecher, A., 2000. Scheduling resource-constrained projects
competitively at modest resource requirements. Manage-
ment Science 46, 710–723.

652 D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653

Taillard, E.D., Gambardella, L.M., Gendreau, M., Potvin, J.-
Y., 2001. Adaptive memory programming: A unified view of
metaheuristics. European Journal of Operational Research
134, 1–16.

Valls, V., Quintanilla, S., Ballestı́n, F., 2003. Resource-con-
strained project scheduling: A critical activity reordering

heuristic. European Journal of Operational Research 149,
282–301.

Valls, V., Ballestı́n, F., Quintanilla, S., 2004. A population-
based approach to the resource-constrained project sched-
uling problem. Annals of Operations Research 131, 305–
324.

D. Debels et al. / European Journal of Operational Research 169 (2006) 638–653 653

	A hybrid scatter search/electromagnetism meta-heuristic for project scheduling
	Citation

	A hybrid scatter search/electromagnetism meta-heuristic for project scheduling
	Introduction
	Representation, schedule generation�and solution evaluation
	Scatter search
	The electromagnetism meta-heuristic
	Modifying the EM algorithm for the RCPSP
	Intensification
	Computational experiments
	Impact of the parameters
	Comparative results with best known solutions
	Comparative results with 5000 schedule limit
	Comparative results with extended time limit

	Conclusions
	References

