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An R&D project typically consists of several stages. Due to technological risks, the project may have to be terminated before completion,
each stage having a specific likelihood of success. In the project planning and scheduling literature, this technological uncertainty has
typically been ignored and project plans are developed only for scenarios in which the project succeeds. In this paper we examine
how to schedule projects in order to maximize their expected net present value when the project activities have a probability of failure
and when an activity’s failure leads to overall project termination. We formulate the problem, show that it is NP-hard, develop a
branch-and-bound algorithm that allows us to obtain optimal solutions and provide extensive computational results. In the process, we
establish a complexity result for an open problem in single-machine scheduling, namely for the discounted weighted-completion-time
objective with general precedence constraints.

Keywords: Project management, scheduling, risk, research and development, analysis of algorithms, computational complexity

1. Introduction

An important feature of Research and Development
(R&D) projects is that, apart from the commercial and mar-
ket risks common to all projects, their constituent activities
also carry the risk of technical failure. Therefore, besides
projects overrunning their budgets or deadlines and the
commercial returns not meeting their targets, R&D projects
also carry the risk of failing altogether, resulting in time and
resources spent without any tangible return. In this paper,
we tackle the problem of scheduling the activities of an
R&D project that is subject to technological uncertainty,
i.e., in which the individual activities carry a risk of failure,
and where an activity’s failure results in the project’s overall
failure. The goal is to schedule the activities in such a way as
to maximize the expected net present value of the project,
taking into account the activity costs, the cash flows gener-
ated by a successful project, the activity durations and the
probability of failure of each of the activities.

The algorithms developed in this paper are useful for
any R&D setting where activities carry a risk of failure,
and are of particular interest to drug development projects
in the pharmaceutical industry, in which stringent scien-
tific procedures have to be followed to ensure patient safety
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in distinct stages before a medicine can be approved for
production. The project may need to be terminated in any
of these stages, either because the product is revealed not
to have the desired properties or because of harmful side
effects. The failure of one of the stages results in overall
project termination. As stated by Gassmann et al. (2004),
“If a drug candidate fails during the development phase it
is withdrawn entirely from further testing. Unlike in the au-
tomobile industry, drugs are not modular products where a
faulty stick shift can be replaced without throwing the en-
tire car design away. In pharmaceutical R&D, drug design
cannot be changed.”

The contributions of this paper are the following. We
introduce and formulate a generic model for optimally
scheduling R&D project activities with a non-zero failure
probability subject to precedence constraints, referred to as
the R&D Project Scheduling Problem (RDPSP). We show
that the RDPSP is NP-hard and develop a branch-and-
bound algorithm that is capable of solving the RDPSP to
optimality. We present computational tests demonstrating
the capabilities of the algorithm and we discuss how the
model and algorithms can be extended to take into account
the risk preferences of the decision maker. The complexity
status of the single-machine scheduling problem with dis-
counted weighted-completion-time objective is established
as an intermediate result.

0740-817X C© 2008 “IIE”
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In our model we make a number of simplifying assump-
tions, including unlimited resources and no explicit consid-
eration of the uncertainty in activity durations or project
cash flows. These restrictions allow us to focus on the ef-
fect of possible technological failure on the development
of optimal R&D project schedules. We will show how to
identify a project schedule that maximizes the project’s ex-
pected Net Present Value (expected NPV, eNPV), whereas
a more simplified approach can result in a lower—and pos-
sibly negative—eNPV. In other words, we may find projects
to be worthwhile to pursue while they would be rejected
using more simplistic scheduling. These benefits of ad-
vanced scheduling procedures are significant especially for
medium to high-risk projects. Other insights include the
fact that Critical Path Method (CPM)-based schedules are
good when the probability of failure is small and when the
decision maker is risk seeking; longer schedules (with less
parallel activities) tend to be better when the probabilities
of failure are significant and when the decision makers are
risk averse.

The remainder of this article is organized as follows. Re-
lated work is discussed in Section 2. Section 3 presents an
introductory problem description by means of a real-life
example from the pharmaceutical sector. A detailed prob-
lem formulation of the RDPSP and an examination of its
properties are given in Section 4. In Section 5, we provide
an overview of a branch-and-bound algorithm for solving
the RDPSP to optimality. We explain our upper-bounding
procedure in Section 6 and provide details on branching
and fathoming in Section 7. Section 8 investigates how risk
preferences of the decision maker can be incorporated. In
Section 9, we discuss computational tests that demonstrate
the capabilities of our procedure. Section 10 presents a num-
ber of insights based on further numerical experiments. Fi-
nally, a summary and outlook on further research are given
in Section 11.

2. Related work

The issue of parallel versus sequential scheduling of project
activities, which lies at the core of the problem discussed in
this paper, has been addressed, among others, by Eppinger
et al. (1994), Krishnan et al. (1997) and Dahan (1998).
This topic is also closely related to concurrent engineer-
ing, a systematic approach to the integrated, concurrent
design of products and their related processes (Hill, 2002).
Hoedemaker et al. (1999) provide some theoretical evidence
as to why there are limits to the benefits of paralleliza-
tion. Parallel (redundant) development of alternative tech-
nologies is studied in Abernathy and Rosenbloom (1969),
Bard (1985) and Krishnan and Bhattacharya (2002), and
a generic representation of multi-stage R&D problems is
provided in Lockett and Gear (1973). Zemel et al. (2001)
focus on the optimal timing of support activities for R&D
tasks of variable length. Ding and Eliashberg (2002) exam-

ine the so-called “pipeline problem:” since New Product
Development (NPD) projects may fail in each stage, multi-
ple projects are started simultaneously in order to increase
the likelihood of having at least one successful product. In
our model, we lift the limiting assumption encountered in
the aforementioned studies that R&D projects are limited
to a single uncertain activity or sequential R&D stages only
and allow the precedence relations between the individual
activities to take the form of an arbitrary acyclic graph.

The literature on deterministic project scheduling is vast
and contains numerous methods and algorithms for pro-
ducing project schedules. For recent overviews of schedul-
ing with NPV objective we refer to Herroelen et al. (1997)
and Padman et al. (1997). The incorporation of uncertainty
into project planning and scheduling has also resulted in
numerous research efforts, particularly focusing on uncer-
tainty in the activities’ duration or cost; for a recent survey,
see Herroelen and Leus (2005). None of these models, how-
ever, incorporates technological uncertainty in the form of
stochastic success activities.

Closely related to our model is that of Weitzman (1979),
who describes an optimal search procedure for obtain-
ing maximum reward from a number of independent test-
ing efforts; only sequential testing is considered. Granot
and Zuckerman (1991) also examine sequencing for R&D
projects with success or failure in individual activities but
only consider sequential stages. Denardo et al. (2004) con-
sider R&D projects that are successful if a successful path of
edges from stem to leaf in a forest is found. Most similar to
our setting are the works by Boros and Ünlüyurt (1999) and
Ünlüyurt (2004) on sequential testing, and by Schmidt and
Grossmann (1996) on scheduling NPD testing tasks, where
also non-sequential testing is admitted; differences between
these sources and this article are outlined in Section 4.1.

Schmidt and Grossmann (1996) point out that in many
industries, including the chemical and pharmaceutical sec-
tors, a number of the tasks involved in producing a new
product are regulatory requirements such as environmen-
tal and safety tests. The failure of a single required test may
prevent a potential product from reaching the marketplace.
An informal overview of the importance of including the
possibility of technical failure into planning is given in Blau
et al. (2000), who focus especially on the pharmaceutical
industry. DiMasi (2001) also refers to economic, efficacy,
safety and “other” reasons for cutting projects. In this pa-
per, we will mainly refer to “technical” success of products.
More information on success probabilities in the pharma
sector can be found in Zipfel (2003); a broader overview of
key issues and strategies for optimization in pharmaceutical
supply chains is provided by Shah (2004).

3. An example

In the US, the pharmaceutical drug development process is
monitored by the Food and Drug Administration (FDA),
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Fig. 1. Precedence network for the example project.

and typically follows four main stages: basic research, pre-
clinical, clinical and FDA review, with the clinical stage
subdivided in Phases I, II and III. Each clinical substage
contains a number of tasks that are repeated several times,
each time increasing in duration. Similar processes are fol-
lowed in Europe and the rest of the world.

We present an example of a pharmaceutical project initi-
ated by a biotech company based in Cambridge, England.
The project was started in 2001 with an expected US market
launch in 2008, assuming that the product makes it success-
fully through all the stages. At the time of this writing, all
activities prior to the clinical stage have been successfully
performed, and the company is developing a project plan
for the clinical development and launch of the product. The
total remaining duration of the project is approximately
5 years, for a total cost of approximately £15 000 000 (all
data are disguised). For the purpose of this paper, we have
simplified the project plan, which contains more than 300
activities, by identifying natural task groupings, yielding the
aggregate project network structure in Fig. 1. More details
can be found in Crama et al. (2006). Phase III in this project
is subdivided into three runs of toxicological studies on an-
imals, referred to as “Tox,” and medical studies on humans,
referred to as “Med.” The remaining activities in Phase III
have been grouped into two tasks named “Other,” which
include manufacturing of the product, chemical product
analysis and pharmacological studies. The project also in-
cludes the ancillary agronomical task (“Agro”). Each medi-
cal study has to be preceded by its corresponding toxicology
study. The toxicology studies, however, do not require the
results from the previous medical study. Some toxicology
and medical studies are dependent on the “Other” activities
in the network. The agronomical activity can be scheduled
freely.

Table 1 gives for each activity group the total devel-
opment cost, the duration and the Probability of Tech-
nical Success (PTS). The project has an estimated overall
PTS of 16.2%. If successful, the NPV of net sales equals
£300 000 000. For this example, we use a discount rate of
1% per month.

While developing a schedule for this project, several con-
siderations are in order. If all activities are carried out as
soon as possible, the revenues of the project, if successful,
are received as soon as possible, resulting in a high present

value. On the other hand, development costs are also in-
curred early on. A better option is to execute the project
according to the late start schedule as determined by the
CPM. This corresponds with the schedule of Fig. 2(a) and
results in an eNPV of approximately £13 000 000.

Alternatively, we can schedule the activities carrying
technical risk in series, thereby avoiding unnecessary expen-
ditures when one of the activities fails. One such schedule
is depicted in Fig. 2(b), with an eNPV of approximately
£10 000 000. Note that the arrows in Fig. 2 do not represent
the technological precedence relations but extra “informa-
tion flows:” knowledge of the outcome of an uncertain ac-
tivity constitutes useful information since a failure allows
the project to be abandoned without investing in the re-
maining tasks. Information flows implied by the precedence
relations are not shown.

Finally, a schedule allowing for a partial overlap of R&D
activities is shown in Fig. 2(c), yielding an eNPV of approx-
imately £16 000 000, which can be shown to be the highest
value achievable. This schedule exhibits the optimal trade-
off between overlapping activities “at risk” and the cost of
delaying project completion and market launch. Finding
such a schedule is the objective of the algorithms that will
be presented in this paper.

The probability distributions of the project’s NPV for
each of the three schedules are depicted in Fig. 3. Clearly, the
different schedules exhibit very different risk profiles. The
series schedule is conservative and minimizes the downside

Table 1. Project data (disguised)

Cash flow Duration PTS
Task (£) (months) (%)

Agro −12 000 000 60 100
Tox I −300 000 6 75
Other I −1 000 000 8 100
Med I −200 000 8 80
Other II −300 000 8 100
Tox II −100 000 6 75
Med II −200 000 10 80
Tox III −700 000 9 75
Med III −400 000 20 60
Launch 300 000 000 — —
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Fig. 2. Three possible schedules for the R&D project: (a) CPM late start schedule; (b) serial schedule; and (c) optimal schedule.

risk, but the total project execution time is maximal. On the
other extreme, a CPM schedule results in a large downside
risk, compensated for by an earlier launch date, yielding a
higher upside potential. In between these two extremes we
find the optimal schedule, which strikes a balance between
timeliness of project launch and limiting at-risk investments
and the associated costs.

4. Problem formulation and properties

4.1. Problem formulation and notation

The objective of the RDPSP is to maximize the eNPV of the
project by constructing a project schedule specifying when
to execute each activity. The final project payoff is only
achieved when all activities are successful, and the project
is terminated as soon as an activity fails. We focus on the
case where all activity cash flows during the development
phase are negative, which is typical for R&D projects. Ac-
tivity success or failure is revealed at the end of each activity.

Fig. 3. Cumulative distribution function of the NPV for the three schedules.

Consequently, each activity will only be started if all the ac-
tivities scheduled to finish earlier have a positive outcome.
Therefore, in the objective function, the activity cash flows
are weighted by the probability of joint success of all its
scheduled predecessors. We do not consider resource con-
straints and duration uncertainty, and consider the PTS of
the different tasks as independent. The parameters that are
used throughout the paper are defined in Table 2.

Without loss of generality, we assume activity 0 to be
a dummy representing project initiation, with c0 = d0 = 0
and p0 = 1, and (0, i) ∈ A for all i ∈ N0. Activity n repre-
sents project completion and is a successor of all other activ-
ities. Activities N0n are referred to as intermediate activities;
we assume that di > 0 for i ∈ N0n. A deadline δ is imposed
on project completion: we require that sn ≤ δ. This dead-
line is needed because optimization will try to push activity
start times to infinity if the optimal eNPV of a particular
problem instance is negative. A second reason for using a
deadline is that it allows the examination of the impact of
schedule length on the quality of the schedule.
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Table 2. Definitions.

Parameter Definition

N the set of project activities with N = {0, 1, . . . , n}
Ni = N\{i} (i ∈ N) and N0n = N\{0, n}

ci cash flow of activity i ∈ Nn, non-positive integer;
incurred at the start of the activity

C integer end-of-project payoff, ≥ 0; received at the
start of activity n

di duration of activity i ∈ Nn, non-negative integer
(positive for i ∈ N0n)

pi PTS of activity i ∈ Nn
r continuous discount rate
A (strict) partial order on N, i.e., an irreflexive and

transitive relation, representing technological
precedence constraints

si starting time of activity i ∈ N, ≥ 0; starting time
vector s is a schedule

δ project deadline

Relation A imposes the following constraints on s:

si + di ≤ sj, ∀(i, j) ∈ A.

For an arbitrary relation E on N, define S(E) = {s ∈ R
n+1
≥ :

si + di ≤ sj, ∀(i, j) ∈ E}, which is a convex polyhedron (R≥
denotes the set of positive real numbers).S(E) is non-empty
if and only if the corresponding precedence graph G(N, E)
is acyclic. The set of feasible schedules for the RDPSP is
{s ∈ S(A) : sn ≤ δ}. Clearly, if A ⊆ E then S(E) ⊆ S(A). If
A ⊆ E and G(N, E) is acyclic, we say that E is a feasible ex-
tension of A. For a given schedule s, we define the schedule-
induced strict order R(s) = {(i, j) ∈ N × N|i �= j ∧ si + di ≤
sj}, which corresponds to the precedence constraints im-
plied by s (see e.g., Bartusch et al. (1988) and Neumann
et al. (2003)).

This paper investigates the determination of an optimal
schedule for the RDPSP. For i ∈ N0, we define:

qi(E) =
∏

(k,i)∈E

pk, with E any order relation on N.

As explained in Section 3, for schedule s ∈ S(A), the activity
pairs in R(s) can be considered as representing “informa-
tion flows:” the probability that activity i is initiated and
hence induces expenditures is equal to the probability that
all activities scheduled to finish no later than si succeed,
which equals qi(R(s)). We note that qn(R(s)) is a constant,
independent of the schedule; we write qn ≡ qn(R(s)). The
RDPSP can now be formulated as follows:

max g(s, E) = qnCe−rsn

+
n−1∑
i=1

qi(E)cie−rsi ,

subject to




s ∈ S(A),
E = R(s),
sn ≤ δ.

In the objective function g(), each activity cash flow ci is
weighted with two factors, namely with qi(E), the proba-
bility of joint success of all predecessors in time, and with
a discount factor e−rsi which is dependent on the starting
time si of activity i.

Schmidt and Grossmann (1996) propose a generalized
version of the foregoing model, in which multiple scenar-
ios are allowed for the activity data (ci, di, pi); project pay-
off is a piecewise-linear decreasing function of time but is
not discounted. They do not, however, obtain exact results:
they approximate the non-linear objective function with a
piecewise-linear function and, for larger instances, impose
further simplifications such as a project deadline equal to
the longest path length in G(N, A), r = 0, and a linear ap-
proximation of the objective.

A significant body of literature exists on the problem of
diagnosing a complex system by means of a sequence of
tests of its components; we refer to Boros and Ünlüyurt
(1999) and Ünlüyurt (2004) for reviews. Their setting is
rather similar to ours, apart from the fact that: (i) R(s) needs
to be a complete order on N (a full sequence); and (ii) no
discounting is considered (r = 0). It will become evident
from Section 4.3 that these two properties go hand in hand.

4.2. Sketch of the solution approach

In the next paragraphs, we draw a sketch of the solution
approach. A detailed description of our solution algorithm
is provided in Section 5.

The RDPSP is solved in two phases. In the first phase,
we produce a feasible extension E of A, which yields val-
ues q(E). We then optimize g(s, E) in s subject to s ∈ S(E)
and the deadline constraint, which constitutes the second
phase. If we implicitly or explicitly enumerate all feasible ex-
tensions of A, we are guaranteed to find an optimal schedule
for the RDPSP, since for each feasible schedule s ∈ S(A) it
holds that s ∈ S(R(s)), and R(s) extends A; a corresponding
relation E is called an optimal feasible extension.

The second phase (optimization for given coefficients q)
amounts to project scheduling with an NPV objective with-
out resource constraints (see Herroelen et al. (1997)). In this
case, the scheduling problem is easily solved because all in-
termediate cash flows are non-positive: each activity can
be scheduled to end at the earliest of the starting times of
its successors in E. Depending on whether the correspond-
ing eNPV is positive or negative, we set s0 = 0 or sn = δ,
respectively. The resulting schedule is referred to as φ(E).
Note that Schmidt and Grossmann (1996) opt for an early
start schedule rather than this late start approach.

4.3. Properties

The following theorem allows us to establish ties with the
literature on sequential testing.
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Theorem 1. If r = 0 and δ ≥ ∑
i∈Nn

di then an optimal feasible
extension of A exists that is a complete order on N.

The proofs of the theorems appear in the Appendix. Intu-
itively, the theorem says that when money has no time value,
it is a dominant choice to perform all tasks sequentially.

We define problem LCT as problem RDPSP whose solu-
tion space is restricted to schedules that impose a complete
order on N; Monma and Sidney (1979) refer to this setting
as the “least-cost fault-detection problem.” We note that
LCT is not a subproblem of RDPSP since we restrict the
set of solutions and not the input parameters.

Without a dummy start and end (and so without final
project payoff), a number of special cases of LCT with r = 0
can be solved in polynomial time. If A = Ø then each op-
timal complete order relation E sequences the activities in
non-increasing order of ci/(1 − pi), and each complete or-
der that sequences the activities in non-increasing order
of ci/(1 − pi) is optimal. One of the earliest references for
this result seems to be Mitten (1960), obtained in the con-
text of “least-cost testing;” another source is Butterworth
(1972). A polynomial-time algorithm for LCT also exists
when G(N, A) consists of a number of parallel chains (see
Chiu et al. (1999)). Based on Monma and Sidney (1979) it
can be shown that the problem is also solvable in polyno-
mial time when G(N, A) is series parallel.

The foregoing results carry over to the RDPSP when δ ≥∑
i∈Nn

di and r = 0. However, the incorporation of prece-
dence constraints taking the form of an arbitrary acyclic
digraph G(N, A) results in an NP-hard problem.

Theorem 2. RDPSP is NP-hard in the ordinary sense, even
if r = 0, C = 0, ∀i ∈ N0n : di = 1, and δ ≥ ∑

i∈Nn
di.

Corollary 1. LCT is ordinarily NP-hard under the same
conditions.

This corollary settles what is said to be an open problem in
Monma and Sidney (1979) and in Ünlüyurt (2004). In order
to further examine the complexity status of LCT, we start
with the problem 1|prec|�wj(1 − e−rCj ), the single-machine
scheduling problem with discounted weighted-completion-
time objective and general precedence constraints, with ob-
jective function to be minimized (see for instance Pinedo
(2002)). The complexity status of this scheduling problem
was considered to be open in Monma and Sidney (1979)
(with max-objective, but this does not change the result),
and has to the best of our knowledge since then not been
treated in the scheduling literature.

Lemma 1. Problem 1|prec|�wj(1 − e−rCj ) is strongly NP-
hard, even with unit durations.

Based on this lemma we derive the following theorem.

Theorem 3. LCT is NP-hard in the strong sense even if C = 0
and ∀i ∈ N0n : pi = di = 1.

In the remaining sections of this text we deal only with
problem RDPSP, not with LCT.

5. A branch-and-bound algorithm

In light of the NP-hardness of the RDPSP, an exact algo-
rithm with better than exponential time complexity is un-
likely to exist, and we will devise a Branch and Bound (B&B)
algorithm to implicitly enumerate the solution space. The
algorithm follows the intuitive approach described in Sec-
tion 4.2, although the distinction between the two phases is
less explicit.

We use the concept of a “distance matrix” as described
by Bartusch et al. (1988) to collect information about min-
imal differences between the starting times of all pairs of
activities. Lower bounds lij are imposed on the differences
between the starting times of activities:

lij ≤ sj − si, ∀i, j ∈ N.

At the root of the search tree, we initialize:

ln0 = −δ and for (i, j) �= (n, 0) :

lij =




0 if i = j,
di if (i, j) ∈ A,

−∞ otherwise.

The (n + 1) × (n + 1) matrix D tightens the foregoing indi-
vidual minimal distances: the distance matrix entry Dij is
the length of a longest path from i to j in the complete graph
with node set N and distances lij. For a set of values lij, the
distance matrix can be found in O(n3) time, for instance by
means of the Floyd-Warshall algorithm (Lawler, 1976).

It can be shown (Bartusch et al., 1988) that a feasible
schedule exists iff all Dii = 0. If Dii > 0 for some i, the cor-
responding graph contains a directed cycle with positive
length. We observe that, when Dij ≥ di for an arbitrary ac-
tivity pair (i, j), then activity j will always start after activity i
has finished, and so Dij ≥ di implies the possibility of infor-
mation flow from i to j, denoted as “i → j”. The conditions
si + di > sj and sj + dj > si jointly imply that i will be exe-
cuted in parallel with j (“i||j”). Since we work with discrete
durations and hence discrete starting times, these condi-
tions are equivalent with Dij ≥ −dj + 1 and Dji ≥ −di + 1.

In node h of the search tree, minimal distances are l(h) and
the distance matrix is D(h). For each node h we distinguish
set πh, the set of (unordered) activity pairs {i, j} for which
i||j holds according to D(h) (the activity pairs that need to
overlap). Implied information flows i → j are gathered in
order relation Eh. Finally, we also maintain set νh, the set of
activity pairs that are not inπh or in Eh. Branching continues
while νh �= Ø; a branching decision consists of the selection
of a set {i, j} ∈ νh and generates three branches: (i) i → j;
(ii) j → i; and (iii) i||j. These branching options are mutually
exclusive and jointly exhaustive.
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Exploring a branch means that we update the distance
matrix to incorporate the additional constraints that are im-
posed via l(h). Each update can be performed in O(n2) time
(c.f. Bartusch et al., 1988). The recognition of additional
implied parallel and serial relations (in πh and Eh, respec-
tively) is embedded in the distance updates and does not
add to the O(n2)-time complexity of these updates. Search
nodes that no longer allow a feasible solution are immedi-
ately recognized when the distance updates trigger a change
in D(h)

ii for some i ∈ N.

6. Upper bounds

Define g(h) to be the best objective value reachable from
node h of the search tree. In other words:

g(h) = max
s,E

{
qnCe−rsn +

n−1∑
i=1

qi(E)cie−rsi

}
(1)

subject to




s ∈ S(E),
E is a feasible extension of Eh,

sn ≤ δ,

s satisfies D(h).

(2)

In Equation (2), “s satisfies D(h)” is shorthand for “s satisfies
the lower bounds on starting time differences represented
by D(h)”. In the computation of upper bounds on g(h), we
separate the determination of the values q and the discount
factors.

In a first approach, we start by underestimating the exe-
cution probabilities qi(E), i ∈ N0n: lower bounds for these
values are θ

(h)
i = ∏

j∈N:D(h)
ij ≤−dj

pj. We substitute these values

into Equation (1) and relax constraint set (2) to{
sn ≤ δ,

s satisfies D(h).
(3)

Note that if s satisfies D(h), it automatically holds that s ∈
S(Eh). The problem has been reduced to scheduling the
activities with NPV objective subject to the constraints (3)
on s. If D(h)

0n ≤ δ, the solution can be seen to satisfy:

si = sn − D(h)
in , ∀i ∈ Nn, (4)

for a given value of sn. In an optimal schedule either s0 = 0
or sn = δ, depending on the sign of the resulting NPV. The
optimal objective function of this relaxation is referred to
as UB(h). When D(h)

0n > δ, no feasible schedule exists cor-
responding with all branching decisions that were made to
reach search node h; this situation will be recognized during
the distance matrix updates. In non-dominated leaf nodes
h, UB(h) equals the exact objective function value corre-
sponding with extension E(h) of A (the dominance rule is
discussed in Section 7).

For the determination of UB(h), we replaced the values
q first. Alternatively, discount factors e−rsi could be fixed

first by substituting for si as given by Equation (4), after
which remains the determination of sn and values qi(E).
This leads to a new RDPSP instance with zero discount rate
and cash flows cierD(h)

in for intermediate activities i. This new
problem is subjected to the general precedence constraints
contained in Eh. An efficient upper bound on its objective
function can be computed by (e.g., greedily) extracting sets
of chains from Eh and imposing only those constraints on
the auxiliary problem. Unfortunately, the resulting bound
on g(h) turns out to be rather weak and is not retained in
the final version of our algorithm.

7. Algorithmic structure and details

7.1. Overall structure of the algorithm

A general overview of the structure of the B&B algorithm
is given in Fig. 4. Further details on some of its aspects are
provided below.

7.1.1. Branching choice
We explore different rules for the selection of an activity
pair {i, j} ∈ νh to branch on. As a first possibility, rule 1 se-
lects the first encountered activity pair {i, j} in νh based on
lexicographic ordering of the alternatives. From our experi-
ments we have observed that the “low-impact” choices typ-
ically concern activities with a lot of slack in their starting

Fig. 4. Flow chart of the algorithm.
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times. Therefore, we have implemented rule 1 with activity
ordering based on: (i) the activity index; and (ii) float values
(increasing CPM-based total float in G(N, A)). The goal of
this second option is to make decisions that strongly affect
the bounds on lower-indexed levels in the search tree. We
also examine a decreasing order. Alternatively, we order the
candidate activity pairs in decreasing order of a “pseudo-
cost” of insertion, which is an estimate of their true impact.
The role of this pseudo-cost is in guiding heuristic decisions
in the algorithm, not in generating incumbent solutions or
in proving fathomability (Parker and Rardin, 1988). Rule
2 selects the {i, j} ∈ νh with the highest ratio ci/pj + cj/pi,
in an attempt to make the most important decisions first.
Rule 3 also tries to select the most influential activity pair
{i, j} first, by maximizing the difference between the latest
ending time of the earliest starting activity (latest start times
are given by D(h)

0n − D(h)
in ) and the latest start of the other ac-

tivity. Finally, rule 4 is a criterion that (approximately) min-
imizes the number of nodes in the search tree: we choose
the activity pair that allows removing the most elements
from νh, summed over its three emanating branches. An
estimate of the number of elements removed by alterna-
tive i → j is #{k ∈ N : ((j, k) ∈ Eh ∧ (i, k) /∈ Eh) ∨ ((k, i) ∈
Eh ∧ (k, j) /∈ Eh)}; an estimate of the effect of i||j is #{k ∈
N : ({j, k} ∈ πh ∧ {i, k} /∈ πh) ∨ ({k, i} ∈ πh ∧ {k, j} /∈ πh)}.

7.1.2. Branching order
We examine two different approaches with respect to the
branching order, i.e., the order in which the three branches
i → j, j → i and i||j are explored once a branching choice
{i, j} has been made. One possibility is to adhere to a fixed
branching order; the actual order in this case turns out not
to be decisive for algorithmic performance, we implement:
(i) i → j; (ii) j → i; and (iii) i||j. The second option is to
use a variable order, in which we first select the branch that
is compatible with the currently best known solution: if
si + di ≤ sj in this schedule, we first explore i → j, then i||j
and finally j → i. If i and j overlap in the incumbent, we
first explore i||j; the second alternative is i → j if si ≤ sj.

7.1.3. Dominance rule
Consider the following lemma. A search node indexed h of
the search tree is called a “leaf node” if νh = Ø.

Lemma 2. A feasible solution in a leaf node h of the search
tree can be discarded without loss of all optimal solutions if
the following holds:

∃i ∈ N0n : ∀(i, k) ∈ Eh : D(h)
ik > di.

The proof of the lemma can be found in the Appendix. The
basic idea is that if parallelity constraints (constraints of
the type i||j) are binding for a feasible solution, in the sense
that at least one activity could be shifted later in time if
such an (artificial) constraint were removed, then the solu-
tion is dominated. We highlight that such parallelity con-

straints do remain useful for partitioning the search space.
The lemma builds on the insight that distance matrix en-
tries can only increase, never decrease, when descending the
search tree.

Based on Lemma 2 we have implemented a dominance
rule. We dynamically maintain the cardinality of sets S1

i =
{k ∈ N : {i, k} ∈ νh}, S2

i = {k ∈ N : (i, k) ∈ Eh} and S3
i =

{k ∈ N : D(h)
ik > di} for each activity i, and we fathom a

search node when ∃i ∈ N0n : |S1
i | = 0 and |S2

i | = |S3
i |.

7.1.4. A heuristic stand-alone procedure
We propose a heuristic that examines a set of order rela-
tions E, starting with E = A. We gradually append activity
pairs to E until a full order is obtained; each solution φ(E)
is evaluated and the best one retained. The procedure is de-
scribed in pseudo-code as Algorithm 1. The output of this
heuristic is used at the initialization phase of the B&B algo-
rithm to produce a good lower bound LB. The procedure
is interrupted when sn(φ(E)) − s0(φ(E)) > δ, where si(φ(E))
represents the (1 + i) th component of φ(E). Here and later,
we write g(s, R(s)) as g(s).

Algorithm 1. A heuristic procedure

sbest := φ(A); E := A
construct full order F extending A, sequencing incomparable
activities in non-increasing order of ci/(1 − pi)
for d = (n − 2) downto 1 do

S is the set of ordered activity pairs (i, j) for which the
difference between the rank order of i and j in F equals d
and j comes after i in F
order the elements (i, j) ∈ S in decreasing −cj/pi
for ordered (i, j) ∈ S do

E := E ∪ {(i, j)}
if g(φ(E)) > g(sbest) then

sbest := φ(E)
end if

end for
end for
return sbest

8. Incorporating risk preferences

The objective of RDPSP is to maximize the expected NPV,
but this does not preclude actual project realizations from
resulting in higher or lower NPV values. In order to eval-
uate the entire risk profile associated with a schedule, a
representation of all possible NPV realizations together
with the probability of each realization would be desir-
able (which was illustrated at the end of Section 3 for
the example project). In the literature on project networks
with stochastic activity durations, it is shown (Hagstrom,
1988; Möhring, 2001) that even with independent process-
ing times, the determination of a single point of the cu-
mulative distribution function of project completion time
is #P-complete, and thus in particular NP-hard. As noted
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by Adlakha and Kulkarni (1989), the difficulty arises from
two sources: (i) the number of paths grows exponentially
in the number of activities; and (ii) even when the activity
durations are independent, the path lengths are generally
dependent, as several paths have one or more activities in
common.

Fortunately, our setting of stochastic success activities
does not suffer the same difficulties. In spite of the fact that
O(2n) different realizations are possible of success or fail-
ure of the individual activities, the knowledge that activity
failure leads to immediate project termination permits an
efficient determination of the pmf (probability mass func-
tion) of the NPV of an arbitrary schedule. With each sched-
ule s we associate a set τ (s) of decision points correspond-
ing with the (intermediate) activity start and finish times:
t ∈ τ (s) ⇔ ∃i ∈ N0n : (t = si) ∨ (t = si + di).

Algorithm 2. Computation of expectation and pmf of NPV for a
schedule s

prob = 1; cost = 0
fs(·) = 0; g(s) = 0
for increasing t in τ (s) do

if ∃i ∈ N : t = si + di then
successpr = ∏

i∈N|t=si+di
pi

if successpr < 1 then
fs(cost) := fs(cost) + prob × (1 − successpr)
g(s) := g(s) + cost × prob × (1 − successpr)
prob := prob × succespr

end if
end if
for all i ∈ N|si = t do
cost := cost + cie−rt

end for
end for
cost := cost + Ce−rsn

fs(cost) := fs(cost) + prob
g(s) := g(s) + cost × prob

The procedure named Algorithm 2 determines the NPV
pmf of s, denoted fs(·), and its expected NPV g(s); it can
be implemented in O(n log n) time. In the code, prob and
cost respectively monitor the probability of reaching the
different t ∈ τ (s) and the cost incurred up until that time.
successpr represents the probability that all activities end-
ing at the considered time instance succeed. For easy access
τ (s) can be conceived as a multi-set (which is not explicitly
taken into account in the code description). A bifurcation
of probability mass occurs each time when fallible activities
(pi < 1) end.

The NPV pmf can be used by the decision maker to eval-
uate the downside risk, e.g., the probability that the NPV is
lower than a threshold value, or the upside potential, e.g.,
the probability that NPV is larger than or equal to a thresh-
old. This gives the decision maker a number of additional
options: (i) it allows for the specification of a constraint
on downside risk and/or upside potential, which could be
imposed during the search for schedules with maximum

eNPV; and (ii) the approach permits the generation of the
efficient frontier showing the trade-off between return and
risk.

9. Computational performance

We have performed a series of computational experiments
using randomly generated test problems in order to examine
and enhance the performance of the B&B algorithm.

9.1. Experimental setup

Random test sets were generated for various values of n
using the random network generator RanGen (Demeule-
meester et al., 2003). Each dataset contains 20 instances for
each of the values 0.25, 0.50 and 0.75 of the network shape
parameter order strength1 OS, resulting in 60 instances per
set. Unless mentioned otherwise, we set r = 0.05. Cash
flows for each activity in N0n are generated as indepen-
dent realizations of a discrete uniform random variable on
[−50, 0], durations for these activities are discrete values
in [1, 15], and success probabilities are, unless stated other-
wise, chosen randomly from [80%, 100%]. Deadline δ is set
at the non-restrictive value

∑
i∈Nn

di.
The end-of-project payoff value C is an integer randomly

selected from the interval [0.5a, 2a] with

a = −(1/qn)
n−1∑
i=1

ciq
(0)
i exp

(
0.05D(0)

in

)
,

with distance matrix D(0) based on the initial order re-
lation A and probabilities q (0)

i based on starting times
(D(0)

0n − D(0)
in ). Note that when C ≥ a the optimal project’s

eNPV is guaranteed to be non-negative. The algorithm can
be easily adapted to exclude negative eNPV schedules by ex-
ploring only search nodes with positive upper bounds. This
would speed up the algorithm’s running time for some of
the test instances. We have not implemented this enhance-
ment, since the value C is generated arbitrarily and its se-
lection would allow for manipulation of the computational
efficiency.

In order to compare the quality of schedules, we define
the function

I(s1, s2) = (g(s2) − g(s1))/|g(s1)|,
which measures the improvement in the objective function
g() of a schedule s2 compared with a schedule s1. In the
(rare) cases when g(s1) = 0, the instance is skipped when
computing averages for a dataset.

1The order strength is the number of comparable intermediate
activity pairs divided by the maximum number n(n − 1)/2 of such
pairs, and is a measure for the closeness to a linear order of the
technological precedence constraints in A (c.f. Mastor (1970)).
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Table 3. Computational results for different versions of the B&B algorithm. Efficiency measures are averaged only over the 52
instances solved by setting (3). Efficacy measure I(s(i), s(3)) for setting (i) is averaged only over the instances not solved to guaranteed
optimality by (i). I(s(0), s(i)) is averaged over the entire dataset

Efficiency (%) Efficacy (%)
Opt

(/60) Nodes CPU time I(s(0), s(i)) I(s(i), s(3))

(1) base 40 1362 1282 +3.84 +3627.16
(2) = (1) + initial LB 45 146 153 +23.64 +26.43
(3) = (2) + var. br. order 52 100 100 +26.10 0.00
(4) = (3) with rule 2, index 24 269 258 +20.01 +15.70
(5) = (3) with rule 3, index 19 33 939 30 191 +19.51 +32.36
(6) = (3) with rule 4, index 50 163 172 +25.67 +2.44
(7) = (3) with rule 1, incr. float 48 1651 1555 +12.15 +41.86
(8) = (3) with rule 1, decr. float 23 39 656 34 801 +23.14 +7.93

The algorithms were coded in C using Microsoft Visual
C++ 6.0. The experiments were run on a Dell OptiPlex
GX620 PC with an Intel Pentium 4 2.80 GHz processor
and 1 GB RAM, equipped with Windows XP Professional.
Unless stated otherwise, a time limit of 2 minutes is imposed
on the running time of the algorithms.

9.2. Parameter settings

For the dataset with n = 20, Table 3 shows the improve-
ments in the performance of the B&B algorithm starting
from the base case setting (1) in Table 3, which relates to
the following settings: lexicographic branching choice (rule
1) using index order, fixed order branching, no dominance
rule, no initial solution and upper bound UB. Settings (2)
and (3) illustrate the successive improvements by using the
schedule produced by the heuristic described in Section 7 as
initial incumbent, and by resorting to a variable branching
order. The table shows the number of instances solved to
guaranteed optimality within the time limit, two efficiency
measures (the average running time and the average number
of nodes in the search tree) expressed as a percentage of the
best setting (3), and two efficacy measures (improvement
from the initial solution to the output of setting (i), and im-
provement upon setting (1) by setting (3)). s(i) is the output
of the procedure run in setting (i); s(0) refers to the sched-
ule produced by Algorithm 1. The efficiency measures are
computed only for the instances that are solved to guaran-
teed optimality by setting (3). Efficacy measure I(s(i), s(3))
is computed only for the instances that are not solved to
optimality by the setting (i).

The performance of the B&B algorithm without an initial
solution (setting (1)) is rather poor. The incorporation of
a variable branching order (from setting (2) to setting (3))
allows us to solve more instances to optimality (from 45
to 52 out 60) and yields a 53% gain in CPU time for these
52 instances. Efficacy-wise, for the 15 instances not solved
to optimality in setting (2), the variable branching order

achieves an average improvement in the objective function
of some 26%.

As for the branching choice, we find that the simplest op-
tion possible is also the best: lexicographic branching choice
(rule 1) using index order significantly outperforms all other
branching rules (settings (4)–(8)). Various other rules have
also been tried and found not to improve upon setting (3),
including some more accurate (but considerably more time
intensive) estimates of the change in UB(h) for each alterna-
tive. We conjecture that this simple branching rule fits best
into our overall search approach because it allows us to ex-
amine each search node in the most efficient manner: the
computational effort for processing each node is very low.
We should point out that activity ordering in increasing or
decreasing float values for settings (7) and (8) takes place
only once at the beginning of the B&B algorithm, so that
the time spent on sorting is negligible.

Table 4 examines the influence of the dominance rule.
“ND” refers to setting (3) in Table 3, “D” adds the domi-
nance rule to this setting. We observe that both for efficiency
and for efficacy, the dominance rule improves the perfor-
mance of the algorithm (except for a small dip for CPU time
for n = 20). For the instances not solved to optimality, an
average improvement in the objective function of between
1.5 and 3% is achieved. In the remainder of this text, when

Table 4. The impact of incorporating the dominance rule for dif-
ferent values of n

n

10 15 20 25 30 35 40

Opt (/60) ND 60 60 52 36 25 20 14
Opt (/60) D 60 60 52 36 25 20 14
CPU time ND∗ (%) 110 106 99 106 107 114 113
I(sND, sD)∗∗ (%) — — +3.33 +1.46 +1.68 +3.02 +2.99

∗Averaged only over the instances solved to optimality by D, and ex-
pressed as a percentage of the result for D.
∗∗Averaged only for the instances not solved to optimality by ND.
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Table 5. Performance of the B&B algorithm with varying time lim-
its (in seconds), for n = 25. I(s(0), s(i)) is computed for the entire
dataset, I(s(i), s(1000)) only for the instances not solved to guaran-
teed optimality by setting (i)

Time
limit

Opt
(/60) Nodes

I(s(0), s(i))
(%)

I(s(i), s(1000))
(%)

0 0 0 0.00 +31.59
1 20 62 240 +21.67 +30.50
5 23 274 900 +23.61 +28.42

20 28 996 001 +25.33 +25.39
100 35 4 045 108 +27.70 +19.06
250 38 8 958 914 +28.60 +17.83

1000 41 31 498 214 +31.59 0.00

reference is made to “the B&B algorithm,” we always mean
the algorithm corresponding with setting (3) and with the
dominance rule.

9.3. Time limit

Since the problem at hand is NP-hard, no optimal
polynomial-time algorithms are likely to exist so that we
have to impose a time limit on our (exponential time) B&B
algorithm because it may otherwise take an inordinately
long amount of time before terminating, especially for large
scheduling instances.

Table 5 examines the performance of the B&B procedure
for various time limits with n = 25; s(i) is the output of the
procedure run with time limit i. A time limit of zero means
that the actual branching procedure is never entered so that
s(0) is the output of Algorithm 1. When a time limit of 1000
seconds is imposed, 41 instances are solved to guaranteed
optimality; this number gradually increases with the time
limit from zero onwards. A running time of 1000 seconds al-
lows us to considerably improve the objective function of a
number of instances, even when compared with 100 and 250
seconds. This result is a very strong indication that “sophis-

Table 6. Investigation of the influence of OS and the degree of uncertainty for n = 25. “Length ratio” refers to the average of
ratio (λ(sBB) − λ(φ(A)))/λ(φ(A)), with sBB the schedule produced by our B&B algorithm after 2 minutes of running time; s(0) is the
schedule used to produce the initial lower bound

OS Uncertainty
Opt

(/20)
Length

ratio (%)
I(φ(A), sBB)

(%)
I(φ(EC), sBB)

(%)
I(s(0), sBB)

(%)

0.25 Low 3 0.00 0.17 2318.00 0.09
Medium 0 24.21 69.00 330.39 30.35
High 0 122.07 99.89 99.24 97.23

0.50 Low 19 0.00 0.09 1662.17 0.08
Medium 16 13.31 57.56 200.86 38.99
High 16 25.99 99.90 99.65 99.51

0.75 Low 20 0.00 0.02 1552.52 0.02
Medium 20 3.30 48.34 180.85 15.80
High 20 7.42 99.38 98.65 98.04

ticated” scheduling methods, such as our B&B algorithm,
are valuable.

10. Insights

In this section we run a number of experiments in order
to derive managerial insights. We find (Section 10.1) that
adopting a simplistic schedule (e.g., doing all activities in
series) may result in a negative eNPV at time 0 and abandon-
ment of a project, while using a more sophisticated schedul-
ing approach such as our (truncated) B&B procedure may
result in a positive eNPV and the project being pursued. The
benefits of advanced scheduling procedures will be signif-
icant especially for medium to high-risk projects. Another
valuable insight (discussed in Sections 10.1 and 10.4) is the
fact that CPM-based schedules are good when the prob-
ability of failure is small and when the decision maker is
risk seeking; longer schedules (with less parallel activities)
tend to be better when the probabilities of failure are sig-
nificant or when the decision makers are risk averse. These
limits to the benefits of parallelization are also considered
in Section 10.2. The non-intuitive behavior of the optimal
schedule length as a function of the discount rate is treated
in Section 10.3.

10.1. Benefits of advanced scheduling procedures

Table 6 presents results of the B&B algorithm for the dataset
n = 25 (again with a 2-minute time limit). The table con-
tains a column “uncertainty”, in which we account for dif-
ferent levels of technical risk: “medium” uncertainty refers
to the situation where each activity’s PTS is in interval
[80%, 100%], which was the case in Section 9. “high” and
“low” uncertainty relates to success probabilities within
[60%, 100%] and [95%, 100%], respectively. The length λ(s)
of a schedule s is defined to be sn − s0; the “length ratio”
in Table 6 is zero if the length of the best found schedule
equals the critical path length (remember that φ(A) is the
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CPM-based late start schedule). EC is the complete order
on N that is obtained at the end of Algorithm 1.

We observe that, when the risk level of the project is rel-
atively low, the CPM schedule performs quite well. There-
fore, for low-risk projects the use of a simple CPM schedul-
ing scheme seems to be warranted. One might intuitively ex-
pect a similar good performance for a serial schedule when
project risks are high, but our results show that this is not
the case: although for high-risk projects a serial schedule
typically performs better than CPM, a further substantial
improvement can be obtained by using the exact algorithm;
the B&B algorithm also does significantly better than our
“greedy” heuristic (see the final column of Table 6). We con-
clude that optimally scheduling R&D projects, i.e., obtain-
ing an optimal degree of parallelization, can result in a sig-
nificantly higher project eNPV when compared to the CPM
or serial schedule, and these benefits of advanced schedul-
ing procedures will be significant especially for medium to
high-risk projects.

Even more important, perhaps, is the fact that the B&B
algorithm is sometimes able to produce a positive eNPV
schedule for a project where both the CPM and serial ap-
proaches fail to do so. This would result in the project being
cut from the portfolio using simple scheduling, whereas it
would be able to add value given an optimal schedule to
carry out the project. Dependent on the parameter settings
(in particular on the risk level and on the value of r ), this
was the case for up to five out of the 60 instances in each
dataset. Although the complexity of a project’s structure,
as measured by OS, also has an impact on the benefit of
optimal scheduling, this effect is not as pronounced. Our
results suggest that these benefits are higher when OS is
relatively low, i.e., when there is more freedom in schedul-
ing the activities: the number of “undecided” activity pairs
in ν0 is higher for lower OS values. On a separate note, we
observe (from the number of guaranteed optimal solutions)
that problem difficulty is inversely related to OS; this goes
hand in hand with the previous observation.

10.2. Limits to the benefits of parallelization

From Table 6 we can also observe that the schedule length
λ(sBB) is often higher than the critical path length λ(φ(A));
the dependence on OS is important in this case. Although
the present value of the project payoff decreases with
increasing λ(s) (at least for a positive eNPV), performing
certain activities in series rather than in parallel will some-
times allow the expected development cost of a project to
be decreased, resulting in an overall improvement in the
project’s eNPV. An optimal project schedule will need to
balance information flows between activities against delays
in final project payoff.

In line with the findings of Hoedemaker et al. (1999) but
from a different perspective, we find that there are limits
to the benefits of parallelization in R&D projects. This is
especially so for highly uncertain environments: as random-

ness increases, good schedules become increasingly longer.
This observation should be contrasted with projects with-
out technical uncertainty (equivalent with the limit case
where all pi = 1), for which the CPM late start schedule is
optimal. Again we conclude that the use of “simple” heuris-
tics such as CPM is recommendable only when the degree
of variability in the environment is very low: only in such
cases, the added benefit of advanced scheduling procedures
is marginal.

10.3. The influence of the discount rate

Intuitively, one would expect the incentive for paralleliza-
tion to increase with increasing cost associated with project
delay. We examine this behavior by means of varying the
interest rate, representing the time value of money, for a
constant project payoff.

Figure 5(a) contains the results for the example problem
of Section 3: the graph shows the optimal schedule length
as a function of the interest rate. With a zero discount rate,
the value of the project payoff is constant over time and
the project schedule can take full advantage of information
flows: no activity with a PTS value of less than one will be
in parallel with other activities, which leads to maximum
total length (this insight led to Theorem 1). As the interest
rate goes up, we observe a reduction in the optimal schedule
length: some activities are overlapped, forfeiting informa-
tion flows for the sake of earlier project completion (with a
positive eNPV). Interestingly, however, from a certain point
onwards a further increase in the interest rate induces an
increase in the optimal project schedule length. The reason
for this phenomenon is that the magnitude of the change
in the present value due to an incremental delay in a cash
flow decreases as the interest rate becomes larger, and this
effect is more marked for cash flows that occur later in time.
As a consequence, cost savings early on in the project due
to a higher project duration may more than offset the as-
sociated decrease in the present value of the project payoff.
Subsequently, once the objective function becomes negative
(when r = 0.031 95, indicated with a dot in the graph), all
activities are scheduled against the deadline and the ben-
efits of information exchange are again dominated by the
discounting effect: schedule length decreases again.

Our observations are also illustrated by Fig. 5(b), which
shows the optimal schedule length for different values of
the interest rate for three arbitrary instances of the dataset
with n = 15: problems p15 1, p15 21 and p15 41 have
OS = 0.25, 0.5 and 0.75, respectively. The pattern observed
above is more markedly present for lower OS, presumably
because this corresponds with the existence of more fea-
sible solutions. As a comparison, the order strength of the
example project of Section 3 also equals 0.5—but the graph
of Fig. 5(a) is based on a finer discretization of the values
of r . The objective function becomes negative for a value of
r in [0.06. 0.065] for p15 1 and p15 21, and in [0.04, 0.045]
for p15 41.
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Fig. 5. The influence of the discount rate on schedule length: (a) schedule length against interest rate for the example problem (the
schedules corresponding to r values beyond the dot have a negative eNPV); and (b) schedule length against interest rate for three more
instances.

10.4. Impact of risk preferences

In order to examine the impact of risk preferences, we have
performed a detailed analysis of the example problem that
was presented in Section 3: we have opted for an illus-
tration of risk preferences on one example project rather
than on an entire dataset because, in our approach to deal-
ing with risk preferences, appropriate thresholds are set
manually.

If Z(s) denotes the random variable representing the NPV
of schedule s, then the pmf of Z(s) is fs(z). We model down-
side risk preferences in the following way: for a given prob-
ability plim and a threshold T , the constraint is imposed
that the probability that Z is lower than T should not be
higher than plim. In other words, a candidate schedule s is

acceptable only if ∫ T−ε

−∞
fs(z)dz ≤ plim,

for any ε > 0. In a similar way, we might implement a con-
straint on upside potential of the form:∫ +∞

T
fs(z)dz ≥ plim,

but it can be seen that:∫ +∞

T
fs(z)dz =

{
qn if T ≤ z∗(s),
0 otherwise,
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Fig. 6. Trade-off curves for downside risk and upside potential against eNPV. (a) Downside risk versus eNPV. The three curves
associated with the first ordinate “eNPV” represent g(sD(plim, T)) for three probability limits plim (which is written as “plim”); the
threshold T is on the abscissa. The second ordinate represents the length λ(sD(0, T)) of the optimal schedule for plim = 0% and applies
to the only increasing curve. (b) Upside potential versus eNPV. The two curves represent g(sU(T)) and λ(sU(T)), each with its own
ordinate. The threshold T is on the abscissa.

with z∗(s) representing the NPV of s for the case of project
success (the only positive realization of Z(s)), so that a value
plim is not really useful in this case. We call sD(plim, T) the
schedule that optimizes g(s) subject to the downside risk
constraint represented by plim and T , and similarly sU(T)
the schedule with highest value g(s) subject to the upside-
potential requirement with parameter T that z∗(s) ≥ T .

Figure 6(a) illustrates the trade-off between downside
risk preferences and expected return (the optimal eNPV
without a risk constraint is £16 244 000). We observe de-
creasing eNPV values with tighter value-at-risk constraints.
As explained, in the particular setting of RDPSP, con-
straints on upside potential offer less freedom to the de-

cision maker than downside risk preferences: positive cash
flows are always obtained with probability qn. Figure 6(b)
describes the trade-off between minimum NPV for the case
of project success on the one hand, and expected NPV on
the other hand.

Both graphs in Fig. 6 were produced by invoking Al-
gorithm 2 each time the B&B procedure found a new in-
cumbent, and by accepting only those schedules that com-
ply with the risk preference constraint under consideration;
the initial lower bound is not used. In both graphs, when
the threshold is set too high, no feasible schedule can be
found that meets the demands (which is where the curves
end). Both graphs also depict the evolution of the optimal
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schedule length as a function of the risk preferences. We ob-
serve that a longer schedule (more activities in series) tends
to be better if the decision maker is more risk averse, and
that scheduling more activities in parallel becomes prefer-
able when the decision maker is more risk seeking.

11. Summary and outlook on further research

In this article we have presented a model and algorithms for
scheduling R&D projects to maximize the expected NPV of
a project when the activities have an inherent possibility of
failure and when individual activity default causes overall
project failure. We have shown that this problem, referred
to as the RDPSP, is NP-hard and have developed a B&B
algorithm that is able to produce optimal project schedules.
As a side result, we have established a complexity result
for an open problem in single-machine scheduling (the dis-
counted weighted-completion-time objective with general
precedence constraints).

We have observed that R&D project scheduling requires
balancing early project completion with minimizing ex-
pected expenditures, and this balance is influenced by the
degree of randomness in the planning environment. The
benefits of advanced scheduling procedures turn out to
be significant especially for medium to high-risk projects.
Other insights include the fact that CPM-based schedules
are good when the probability of failure is small and when
the decision maker is risk seeking; longer schedules (with
less parallel activities) tend to be better when the probabili-
ties of failure are significant and when the decision makers
are risk averse.

The model we have presented and analyzed is rather
stylized, and will not always be of immediate use for de-
cision support. Decision makers faced with planning R&D
projects in industry will often be confronted with resource
constraints and duration uncertainty, an observation that
was also made by Schmidt and Grossmann (1996) and Jain
and Grossmann (1999). Further research is needed if opti-
mal scheduling solutions are to be developed for realistically
sized scheduling problems with such additional complica-
tions. However, we are convinced that the insights and re-
sults provided in this paper can serve as guidelines in this
process.

Another practically relevant generalization of RDPSP is
to make project payoff a function of the project comple-
tion time. The choice of a non-increasing function would
be appropriate for most innovative projects: the earlier a
new product enters the market, the longer it can benefit
from a monopoly position and first-mover advantages, or
the longer it can exploit a patent. A further open option
for model extension is correlated activity success, an in-
herent characteristic of many R&D projects. Quantifying
correlations may be difficult, however. The model can also
be altered to include alternative sets of activities for which
success is required for only one set, allowing to model the

pursuit of alternative technologies. Finally, decision makers
may also desire to take into account that some R&D activ-
ities can be performed in different ways, e.g., by allocating
more or less money, resulting in different success probabili-
ties associated with these multiple activity execution modes.
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Appendix

Proof of Theorem 1. When r = 0, the objective func-
tion corresponding with feasible extension E is qnC +∑n−1

i=1 qi(E)ci, with qn independent of the information flow
decisions; we also omit the argument to qi in this proof. Each

optimal feasible extension minimizes
∑n−1

i=1 qi|ci|. Consider
an optimal feasible extension E(0) that is not a complete
order. If no such relation exists, the theorem holds, other-
wise, take an arbitrary activity k ∈ N that is incomparable
with at least one other element in N according to E(0). The
expression to be minimized can now be written as follows,
in which Ē(0) is the set of unordered activity pairs that are
incomparable according to E(0):

n−1∑
i=1

qi|ci| = qk|ck| +
∑

(i,k)∈E(0)

qi|ci|

+
∑

{i,k}∈Ē(0)

qi|ci| +
∑

(k,i)∈E(0)

qi|ci|.

If we extend E(0) to E(1) = E(0) ∪ {(k, i) : {k, i} ∈ Ē(0)}, the
only term changing in the right-hand side of the foregoing
equation is the third (it is multiplied by pk). We conclude
that the objective function value associated with E(1) is at
least as good as the value for E(0). Continuing in this way, we
obtain a complete order E∗ after at most (n − 2) iterations,
whose objective function value is at least as high as that of
E(0). �

Proof of Theorem 2. We consider the following problem:

Problem 


Instance: Directed precedence graph G(V, F), non-negative
integer job durations d ′

i and non-negative integer weights
wi for each i ∈ V .

Goal: Find a single-machine schedule that is contiguous
from time 0 for the jobs in V such that the precedence
constraints are respected and �jwjCj is maximized, with
Cj the completion time of job j.

Lenstra and Rinnooy Kan (1978) show that problem
1|prec|�wjCj (the single-machine scheduling problem with
general precedence constraints and weighted-completion-
time objective) is strongly NP-hard by means of a reduction
from OPTIMAL LINEAR ARRANGEMENT. From this
result, NP-hardness of the maximization of the weighted
sum of completion times �jwjCj, i.e., of problem 
, is im-
mediate, as can be seen by reversing the precedence con-
straints.

For an arbitrary instance of 
, we construct an instance
of RDPSP, as follows. The set of activities N = V ∪ {0, n},
with n = |V | + 1. We have non-positive activity cash flows
ci = −wi and durations di = 1, ∀i ∈ V . C = 0 and (i, n) ∈
A, ∀i ∈ Nn; c0 = d0 = 0, p0 = 1 and (0, i) ∈ A, ∀i ∈ N0. For
each activity i ∈ V , we set probability pi = (1 − d ′

i/M) with
non-negative integer M ≥ d ′

max = maxi∈V {d ′
i } (further spec-

ification of M follows). Let δ = |V | and r = 0, so that an
optimal solution to RDPSP that does not correspond with
a complete order on N can be rearranged in polynomial
time into a complete order with equal objective function
(as outlined in the proof of Theorem 1). Consider such an
optimal complete order and let [i] represent the job from
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V in the ith position. Since s[1] = 0, the objective function
value of the thus built RDPSP instance equals:

c[1] +
n−1∑
j=2

c[j]

j−1∏
i=1

p[i] = c[1] +
n−1∑
j=2

c[j]

j−1∏
i=1

(
1 −

d ′
[i]

M

)
, (A1)

with
j−1∏
i=1

(
1 −

d ′
[i]

M

)
= 1 − 1

M

j−1∑
k=1

d ′
[k] +

1
M2

j−2∑
k=1

j−1∑
l=k+1

d ′
[k]d

′
[l] − . . . ,

so that the objective function (A1) becomes:

n−1∑
j=1

cj − 1
M

n−1∑
j=2

c[j]

j−1∑
k=1

d ′
[k] +

n−1∑
j=2

c[j]

j−1∑
i=2

(−1
M

)i

×
∑

all sets K:|K|=i,
K⊆{1,2,...,j−1}

∏
k∈K

d ′
[k].

The first term in this expression is a constant. We want
the impact of a change of a single unit in quantity∑|V |

j=2 c[j]
∑j−1

k=1 d ′
[k] (the weighted sum of the starting times

in 
) to be larger than the largest possible change in all re-
maining terms, so that any optimal solution to the RDPSP
instance automatically optimizes this weighted sum. We im-
pose:

1
M

>

n−1∑
j=2

cmax

j−1∑
i=2

1
Mi

∑
all sets K:|K|=i,
K⊆{1,2,...,j−1}

∏
k∈K

d ′
max, (A2)

with cmax = maxi∈V {|ci|}. The right-hand side of Equa-
tion (A2) is smaller than or equal to

n−1∑
j=2

cmax

j−1∑
i=2

(
d ′

max

M

)i(j − 1
i

)
,

and this expression in turn is strictly smaller than:

cmax

(
d ′

max

M

)2

2n−1,

since:

d ′
max ≤ M,

j−1∑
i=2

(
j − 1

i

)
< 2j−1 and

n−1∑
j=2

2j−1 < 2n−1.

This leads us to the conclusion that Equation (A2) holds
when

M = cmaxd ′2
max2n−1.

For this M value, we have shown that any job sequence
maximizing Equation (A1) also maximizes the weighted
sum of completion times in 
 minus constant

∑
i∈V wid ′

i .
This description establishes a polynomial-time transforma-
tion from 
 to RDPSP. Since this proof of intractability
of RDPSP clearly depends on the fact that large (expo-
nential) input numbers are allowed, we can only conclude
NP-hardness in the ordinary sense. �

Proof of Lemma 1. We use � to refer to the problem under
study; Cj again represents the completion time of job j. Con-
sider an instance of � for set of activities V to be scheduled
with weights wi and durations d ′

i , i ∈ V . Knowing that

e−rCj=1−rCj + (rCj)2/2 − (rCj)3/3! + (rCj)4/4! − . . . ,

we see that:∑
j∈V

wj
(
1 − e−rCj

) = r
∑
j∈V

wjCj

+
∑
j∈V

wj

(
− (rCj)2

2
+ (rCj)3

3!
− · · ·

)
.

(A3)

We examine under which conditions the effect of the change
of a single unit in the weighted sum of completion times (the
first term in the right-hand side of Equation (A3)) is larger
than the largest possible joint effect of all remaining terms.
This is true when:

r > wmax

∑
j∈V

(
+

(
rCj

2

)2

+
(

rCj

3!

)3

+ · · ·
)

,

with wmax = maxj∈V {wj}, which is certainly true under the
stronger condition:

r > wmax|V |((rT)2 + (rT)3 + · · ·),
where T = ∑

j∈V d ′
j . If we impose rT < 1, this is equivalent

with:

r > wmax|V |((rT)2/(1 − rT)),

or (if r > 0)

r < (wmax|V |T2 + T)−1.

The foregoing provides all the necessary elements for the
construction of a polynomial-time reduction from the
strongly NP-hard problem 1|prec|�wjCj to �, and the max-
imum number in the resulting instance of � is polynomially
bounded such that strong NP-hardness of � is established.
1|prec|�wjCj remains strongly NP-hard in case of unit du-
rations (Lenstra and Rinnooy Kan, 1978), which concludes
the proof of the lemma. �

Proof of Theorem 3. The proof of Lemma 1 is eas-
ily adapted to show that single-machine scheduling with
general precedence constraints and discounted weighted-
starting-time objective (1|prec|�wj(1 − e−rsj ) in the stan-
dard three-field notation), with the objective to be maxi-
mized, is also strongly NP-hard. The result is then straight-
forward. �

Proof of Lemma 2. All intermediate activities are started
as late as possible. The only reason why an activity would
not end exactly at the start of its earliest starting successor
in Eh, is because it needs to be in parallel with some other
activity. If we iteratively remove all parallelity constraints
for this activity and shift it later in time until it ends exactly
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at its earliest successor starting time, there is no effect on the
contribution to the objective function of any of the other
activities. On the other hand, the (negative) contribution
of the activity itself to the objective function goes down,
first of all because of the discounting effect, and second
also because additional activities may now end before or at
the starting time of the activity itself, which would allow a
further reduction of its expected NPV via extra information
flows. �

Biographies

Bert De Reyck is an Associate Professor in the Department of Manage-
ment Science & Innovation, Faculty of Engineering, of University College
London, and an Adjunct Associate Professor of Management Science at

the London Business School. He teaches courses on decision models and
project management in the MBA and Executive MBA programs of the
London Business School, and in the M.Sc. program on Technical Ven-
tures and the Foundations of Entrepreneurship at University College
London. His research focuses on project and project portfolio manage-
ment, with a particular interest in pharmaceutical, aerospace and energy
industry applications. Recent research topics include R&D licensing con-
tract design, project and real options valuation, R&D-project scheduling,
and technology portfolio selection. He previously worked at the Kellogg
School of Management, Northwestern University, and the Rotterdam
School of Management, Erasmus University.

Roel Leus is an Assistant Professor in the Department of Decision Sci-
ences and Information Management, Faculty of Business and Economics,
of the Catholic University of Leuven, Belgium. His research interests are
in operations research and operations management, in particular project
planning and scheduling. He teaches courses in the area of operations
research and quantitative methods in business.


	R&D project scheduling when activities may fail
	Citation

	tmp.1630303275.pdf.CcxlU

