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Abstract

We develop a heuristic procedure for solving the discrete time/resource trade-off problem in the field of project scheduling. In this
problem, a project contains activities interrelated by finish-start-type precedence constraints with a time lag of zero, which require
one or more constrained renewable resources. Each activity has a specified work content and can be performed in different modes,
i.e. with different durations and resource requirements, as long as the required work content is met. The objective is to schedule each
activity in one of its modes in order to minimize the project makespan. We use a scatter search algorithm to tackle this problem, using
path relinking methodology as a solution combination method. Computational results on randomly generated problem sets are com-
pared with the best available results indicating the efficiency of the proposed algorithm.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Project scheduling; Heuristic; Scatter search; Path relinking; Time/resource trade-offs

1. Introduction

The resource-constrained project scheduling problem (RCPSP) involves the non-preemptive scheduling of project activ-
ities subject to finish-start-type precedence constraints and renewable resource constraints in order to minimize the project
duration. Each activity in the RCPSP can be executed in a single way. For more information on the RCPSP and solution
methods, we refer to Demeulemeester and Herroelen (2002). In the multi-mode RCPSP (MRCPSP) each activity can be
accomplished in one of several execution modes. Each execution mode represents an alternative combination of resource
requirements of the activity and its duration. Following Slowinski (1980), three types of resources are considered in the
MRCPSP: renewable, non-renewable and doubly constrained. Renewable resources are available in constrained quantities
during each time period, while non-renewable resources are constrained for the overall project and doubly constrained
resources are constrained per period as well as for the overall project. However, the third type of resources does not need
to be considered explicitly, since they can be incorporated by considering them as a renewable as well as a non-renewable
resource.

In practice, however, it is often the case that activities can be performed with different amounts of resources, result-
ing in different possible durations. In these cases, activities can be thought of as containing a specific work content,
e.g. in terms of person-days, whereby different combinations of duration and resource requirements could be specified,
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as long as the activity’s specified work content is met. A set of allowable execution modes can then be specified for
each activity, each characterized by a fixed duration and associated constant resource requirements such that the prod-
uct of them should be at least equal to the activity’s specified work content. The version of this problem with a single
renewable resource was first introduced by De Reyck et al. (1998) as the discrete time/resource trade-off problem

(DTRTP).
The NP-hardness of the RCPSP was shown by Blazewicz et al. (1983) as a generalization of the job shop scheduling

problem. As a generalization of the RCPSP, the MRCPSP is strongly NP-hard (Kolisch, 1995). Furthermore, Demeulem-
eester et al. (2000) show that the DTRTP, as a generalization of the parallel machine problem, is strongly NP-hard.

In this paper, we consider the DTRTP with multiple resource types (MDTRTP). In the MDTRTP, there are multiple
renewable resources, each with time/resource trade-offs. As a generalization of the DTRTP, MDTRTP is strongly NP-
hard.

The MDTRTP is also a subproblem of the MRCPSP, which includes time/resource and resource/resource trade-offs for
multiple renewable, non-renewable and doubly-constrained resource types. The major difference between the MDTRTP
and the MRCPSP is the existence of non-renewable resources. In the MRCPSP, the mode assignment problem becomes
NP-complete when there are at least two non-renewable resource types (Kolisch, 1995).

In this paper, we present a new hybrid metaheuristic algorithm based on scatter search and path relinking methods.
Scatter search (SS) is an evolutionary or population-based method in which solutions are combined to yield better solu-
tions using convex or non-convex linear combinations. SS contrasts with other evolutionary procedures such as genetic
algorithms (GA), by providing unifying principles for joining solutions based on generalized path constructions in Euclid-
ean space and by utilizing strategic designs where other approaches resort to randomization. In our SS algorithm for the
MDTRTP, we use path relinking concepts to generate children from parent solutions, in the form of a new combination
method. We also incorporate new strategies for diversification and intensification to enhance the search, in the form of
local search and forward–backward scheduling, based on so-called reverse schedules, with the activity dependencies
reversed. We also modify our procedure to tackle the MRCPSP and RCPSP.

The remainder of the paper is organized as follows. A review of the literature is given in Section 2. Section 3 describes
the problem formulation and notation. The schedule representation is discussed in Section 4. The scatter search algorithm
is described in detail in Section 5. Section 6 is assigned to the extension of our procedure for the MRCPSP and RCPSP.
Computational results are presented in Section 7, while Section 8 is reserved for overall conclusions and suggestions for
future research.

2. Literature review

Numerous exact and heuristic procedures are presented in the literature for the RCPSP and MRCPSP. Chapters 6
and 8 of the project scheduling research handbook of Demeulemeester and Herroelen (2002) give an extensive literature
overview of the RCPSP and MRCPSP, respectively, and hence, it is not repeated here. In addition, Kolisch and
Hartmann (2006) present a classification and performance evaluation of different heuristic and metaheuristic algorithms
for the RCPSP. To the best of our knowledge, there are only two metaheuristics based on SS in the field of project
scheduling: Debels et al. (2006) and Yamashita et al. (2006). The first one is a hybrid metaheuristic for the RCPSP devel-
oped on the basis of the standard structure of SS in which two elements from SS are combined by a heuristic optimi-
zation method that simulates the electromagnetism theory of physics. The second one is a metaheuristic based on SS for
the resource availability cost problem in which the authors work on determining the resource availabilities and trans-
form the problem to the RCPSP.

Contrary to the RCPSP and MRCPSP, the literature on the DTRTP and MDTRTP is sparse. De Reyck et al. (1998)
present several heuristic procedures for the DTRTP based on local search and tabu search (TS). These heuristic procedures
are based on the decomposition of the problem into a mode assignment phase and a resource-constrained project sched-
uling phase with fixed mode assignments. They use different types of memory and aspiration criteria to improve the pro-
cedure’s performance. Demeulemeester et al. (2000) have developed a branch-and-bound algorithm (B&B) for the DTRTP
based on the concept of activity–mode combinations, i.e. subsets of activities executed in a specific mode. At each decision
point t which corresponds to the completion time of one or more activities, the algorithm evaluates feasible partial sched-
ules PSt (corresponding to nodes in the search tree) obtained by enumerating all feasible maximal activity–mode combina-

tions. Activity–mode combinations are feasible if the activities can be executed in parallel in the specified mode without
resulting in a resource constraint violation. They are maximal when no other activity can be added in one of its modes
without causing a resource conflict. Each partial schedule resulting from a specific activity–mode combination is evaluated
by computing a critical path-based and a resource-based lower bound.

Recently, Ranjbar and Kianfar (2007) have developed a metaheuristic procedure based on genetic algorithms for the
DTRTP. They use a two-point crossover in which crossover points are determined based on the resource utilization
ratio.
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3. Problem formulation and notation

The objective of the MDTRTP is to schedule each activity of a project in one of its defined modes subject to precedence and
resource constraints, in order to minimize the project makespan. The duration of each activity is not predetermined, but
changes as a discrete non-increasing function of the amount of renewable resources assigned to it. The notations are defined
in Table 1. Activities 0 and n represent the start and completion of the project respectively, with w0k = wnk = 0, k = 1, . . ., |R|
and |M0| = |Mn| = 1. For each activity j, each efficient mode (djm, rjm) is allowed as long as rjmkdjm P wjk for each resource typek.
A mode is efficient if every other mode has a strictly higher duration or a strictly higher resource requirement for at least one
resource k. Furthermore, we assume that the modes of each activity are sorted in the order of non-decreasing duration.

The MDTRTP can be formulated by introducing the decision variable yjmt as follows:

yjmt ¼
1; if activity j is performed in mode m and started at time t;

0; otherwise;

�

Min
Xlstn

t¼estn

tyn1t; ð1Þ

Subject to
XjMjj

m¼1

Xlstj

t¼estj

yjmt ¼ 1; j ¼ 0; . . . ; n; ð2Þ

XjMi j

m¼1

Xlsti

t¼esti

ðt þ dimÞyimt 6

XjMjj

m¼1

Xlstj

t¼estj

tyjmt; ði; jÞ 2 E; ð3Þ

Xn

j¼0

XjMjj

m¼1

rjmk

Xminft�1;lstjg

s¼maxft�djm;estjg
yjms 6 ARk; k ¼ 1; . . . ; jRj; t ¼ 1; . . . ; T ; ð4Þ

yjmt 2 f0; 1g; j ¼ 0; . . . ; n; m ¼ 1; . . . ; jMjj; t ¼ 1; . . . ; T : ð5Þ
The objective function (1) minimizes the project makespan. Constraints (2) assure that exactly one mode and one start time
are assigned to each activity. Constraints (3) and (4) indicate the precedence and resource constraints, respectively. Finally,
constraints (5) ensure that the decision variables are binary variables.

4. Schedule representation and generation scheme

Our constructive heuristic algorithm uses a schedule representation to encode a project schedule and a schedule genera-

tion scheme (SGS) to translate the schedule representation to a schedule S = (s, f). The SGS determines how a feasible sche-

Table 1
Notations

J = {0,1, . . .,n} Set of activities with index j

E = {(i, j); i, j 2 J} Set of precedence relations
Pj Set of total predecessors of activity j

Qj Set of total successors of activity j

R = {1, . . ., |R|} Set of renewable resources with index k

ARk Constant availability of renewable resource k; k = 1, . . ., |R|
wjk Work content of activity j with respect to renewable resource k;

k = 1, . . ., |R|
|Mj| Number of modes of activity j

djm Duration of activity j in mode m; j = 0,1, . . .,n; m = 1, . . ., |Mj|
rjmk Resource requirement of activity j in mode m for renewable resource

k; j = 0,1, . . .,n, m = 1, . . ., |Mj|, k = 1, . . ., |R|
rjm = (rjmk) Vector of resource requirements of activity j in mode m; j = 0,1, . . .,n,

m = 1, . . ., |Mj|
Mj = {(djm, rjm)} = {1, . . ., |Mj|} Set of possible modes for activity j; j = 0,1, . . .,n; m = 1, . . ., |Mj|
dmin

j ¼ maxk2Rfdwjk=ARkeg Minimum possible duration for activity j; j = 0,1, . . .,n

dmax
j ¼ maxk2Rfwjkg Maximum possible duration for activity j; j = 0,1, . . .,n

estj ¼ max maxk
P

i2P i
wik=ARk

l mn o� �
; maxi2P j esti þ dmin

i

� �� �n o
Earliest start time of activity j; j ¼ 0; 1; . . . ; n

lstj ¼ min T � dmin
j �maxk

P
i2Qj

wik=ARk

l mn o� �
; T �mini2Qj

flstig � dmin
j

� �n o
Latest start time of activity j; j = 0,1, . . .,n

s = (s0, . . ., sn) Set of activity start times
f = (f0, . . ., fn) Set of activity finish times
T An upper bound on the project makespan
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dule is constructed by assigning starting times to the activities, whereby the relative priorities are determined by the sche-
dule representation.

We represent a schedule S of the MDTRTP by a double list x = (k,l). The first list is an activity list k = (j0, . . ., jn), a
sequence of activities where activity ji is the activity number with ith priority for being scheduled using the SGS, and
the second list is a mode list l = (m(j0), . . .,m(jn)), where m(ji) represents the mode chosen for activity ji. So, in the ith posi-
tion of the mode list the execution mode of the activity placed in the ith position of the activity list is represented. We call
an activity list precedence feasible (PF) if every activity is positioned after all of its predecessors in the list. We also enforce
the topological order (TO) condition introduced by Valls et al. (2003) in our activity list representation. To embed the TO-
condition in a given activity list, we first schedule the activities using a serial SGS (SSGS) and then sequence them in non-
increasing order of their finish times, i.e. for all i and j, if fi(S) > fj(S), where fi(S) and fj(S) denote the finish time of activities
i and j in schedule S, respectively, activity i comes before activity j in the topologically ordered activity list. The advantage
of this is that, whereas several activity lists can result in the same schedule using a SSGS, each topological order corre-
sponds to a unique schedule, except in the case of identical activity finish times. Each activity list obtained using the
TO-condition is also a PF activity list for the reverse network, in which all dependencies of the activity network are
reversed. For a detailed discussion of the advantages of the topological order representation, we refer to Debels et al.
(2006).

We translate a representation x of the MDTRTP to a schedule S using a SSGS and denote its project makespan by
mak(x). Kolisch (1996) shows that for the RCPSP there always is a k* yielding the optimum solution for a regular measure
of performance when using a SSGS. Similarly for the MDTRTP, there always is a x* = (k*,l*) with optimum makespan
using the SSGS. In each iteration of the SSGS, the activity with the highest priority is chosen and assigned the first possible
starting time such that no precedence or resource constraint is violated.

5. The scatter search algorithm

5.1. General overview

Scatter search (SS) is an evolutionary method that constructs new solutions by combining existing ones in a systematic
fashion. For a general introduction to SS, we refer the reader to Laguna and Marti’ (2003). Fig. 1 shows the main structure
of our algorithm. In the first step we generate an initial population P containing |P| solutions. In the second step, we con-
struct the reference set RefSet including RefSet1 and RefSet2, the former containing b1 solutions with low makespans, the
latter containing b2 solutions with high diversity (b = b1 + b2). The solutions of RefSet1 and RefSet2 are called reference

Fig. 1. Scatter search procedure.

38 M. Ranjbar et al. / European Journal of Operational Research 193 (2009) 35–48



solutions. Next, we generate the NewSubsets, each of them containing two reference solutions. Subsequently, the two solu-
tions of each subset are combined, and new solutions are generated using a path relinking algorithm which explores a set of
solutions on the path between the solutions in the selected subset. From the newly generated solutions in step 5 and based
on the both quality and diversity, we select nrc of them as children solutions. In order to improve these children solutions,
we perform a local search around each of them with local search probability pls resulting in new members of P. Then, we
transfer the best solution so far, after applying by the TO-condition, to the new population. In the next step, we reverse the
dependencies in the activity network to perform a forward–backward improvement scheduling step (Li and Willis, 1992).
More precisely, our procedure uses direct schedules, obtained from the activity network with original dependencies, to gen-
erate reverse children, obtained from the activity network with reversed dependencies, and reverse schedules to generate
direct children. Steps 2–9 are repeated until the termination criterion is reached.

5.2. Construction of initial population P

Each element in the initial population is created by randomly generating activity and mode lists, constructing the cor-
responding schedules using a SSGS and then modifying the activity lists in order to satisfy the TO-condition.

To guarantee a diversified population of solutions, we use biased random sampling using frequency memory. When gen-
erating solutions, the probability that activity j is placed in position i in the activity list equals:

pji ¼
1=njiP

p2NSP1=njp
; j; i ¼ 1; . . . ; n� 1; ð6Þ

where nji is the number of times that activity j was placed in position i in previously generated solutions and NSP denotes
the set of unselected positions in the current activity list under construction. Similarly, the probability that mode m is se-
lected for activity j equals:

pjm ¼
1=njmPjMjj
q¼11=njq

; j ¼ 1; . . . ; n; m ¼ 1; . . . ; jMjj; ð7Þ

where njm is the number of times that activity j was assigned mode m in previously generated solutions.

5.3. Intensification

A local search procedure is applied over each generated schedule S with probability Pls. It changes the mode m assigned
to activity j two times. First, it changes mode m to mode m + 1 if m < |Mj| and then to mode m � 1 if m > 1, while the other
activities remain unchanged. It then generates at least n � 2 and at most 2(n � 2) corresponding new solutions using the
SSGS. If an improved solution is obtained, we apply the TO-condition on the best found solution and restart the local
search based on this solution. This process is stopped when no more improvement is obtained.

5.4. Reference set building and subset generation methods

RefSet, the set of reference solutions, includes solutions based on both quality and diversity. The construction of high-
quality solutions, RefSet1, starts with the selection of the solution in P with the lowest makespan. This solution is added to
RefSet1 as x1 and deleted from P. The next best solution x in P is chosen and added to RefSet1 only if Dmin(x) P th-dist1,
where Dmin(x) is the minimum of the distances of solution x to the solutions currently in RefSet1 and th-dist1 is a threshold
distance. The distance between two solution vectors xp and xq is calculated as

Dðxp; xqÞ ¼ 1

2
ðDðkp; kqÞ þ Dðlp; lqÞÞ ¼ 1

2ðn� 1Þ
Xn

i¼0

ðDðjp
i ; j

q
i Þ þ DðmpðjiÞ;mqðjiÞÞÞ; ð8Þ

where

Dðjp
i ; j

q
i Þ ¼

1; if jp
i 6¼ jq

i

0; otherwise

�
and DðmpðjiÞ;mqðjiÞÞ ¼

1; if mpðjiÞ 6¼ mqðjiÞ
0; otherwise

�
:

This process is repeated until b1 elements are selected for RefSet1. To construct diverse solutions in RefSet2, we follow the
same strategy as for RefSet1, but with th-dist2 > th-dist1, and with Dmin(x) as the minimum distance to the solutions in both
RefSet1 and RefSet2. Therefore, both RefSet1 and RefSet2 contain diversified solutions, but with more emphasis on diver-
sification in RefSet2. When no qualified solution can be found in the population, we complete RefSet with randomly gen-
erated solutions based on the method used for building the initial population. In this case, we do not check the minimum
threshold distance condition for the generated solutions.
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After the RefSet construction, we generate NewSubsets. Each subset includes two solutions from RefSet1 or one solu-
tion from RefSet1 and the other one from RefSet2. Therefore, since |RefSet1| = b1 and |RefSet2| = b2, then |NewSub-
sets| = b1(b1 � 1)/2 + b1b2.

5.5. Combination method

We combine the solutions of each subset, generated from RefSet, using path relinking (Glover et al., 2000). This
approach generates new solutions by exploring trajectories connecting high-quality solutions. We start from one of these
solutions, called initiating solution (xin = (kin,lin)), and generate a path in the neighborhood space leading toward another
solution, called guiding solution (xgu = (kgu,lgu)). The selection of xin and xgu is based on the makespan so that mak(xgu) 6
mak(xin) and the move direction is always from xin towards xgu. In the combination method, we explore a set of PF activity
lists obtained by moving between the activity lists of the two elements of each subset. Since kin and kgu are obtained based
on the TO-condition, they are PF as well.

To ensure that the new activity lists are PF, we use the following process. Suppose we have a PF activity list
�k ¼ ðj0; . . . ; jnÞ. If we interchange activities ji and jp, where p > i, we obtain a new activity list which may not be PF. Sup-
pose we know that all predecessors of activity jp are located before position i. Therefore, we start from position i + 1 and
move to the right and check at each position q if the activity at that position is a predecessor of activity jq. If this is the case,
we interchange the activities in positions q and p and continue until q = p.

The combination method works as follows. First we initialize xcu, the current solution between xin and xgu, as xcu = xin.
Then we create a set C, the set of children solutions, as follows: we find the smallest i for which jcu

i 6¼ jgu
i or mðjcu

i Þ 6¼ mðjgu
i Þ.

If mðjcu
i Þ 6¼ mðjgu

i Þ and jcu
i ¼ jgu

i , we update xcu by changing mðjcu
i Þ as mðjcu

i Þ ¼ mðjgu
i Þ and add it to C; otherwise, we have

jcu
i 6¼ jgu

i . In this case, assume jgu
i is located at position p of kcu, i.e. jcu

p ¼ jgu
i . Note that p is larger than i. Now, in order to

have the same activities at position i in both kcu and kgu, we interchange the activities in positions i and p of kcu. Since the
ith position of every mode list is related to ji of the corresponding activity list, at this point, we have to exchange the modes
in positions i and p of lcu. If the resulting activity list is not PF, we make it PF as explained above. The resulting solution in
this stage is not considered as a candidate for the set C if mðjcu

i Þ 6¼ mðjgu
i Þ. Thus, we change the mode of the new jcu

i as
mðjcu

i Þ ¼ mðjgu
i Þ if mðjcu

i Þ 6¼ mðjgu
i Þ and then add the new xcu to the set C. Note that the new added xcu has the same activities

and modes as xgu in positions 1 to i. This process is continued until i = n; i.e. xcu = xgu. At this point, the combination of
xin and xgu is finished and the set C contains |C| solutions whose characteristics change progressively from characteristics of
xin to that of xgu.

After the combination of two elements of each subset, we select nrc solutions from C. For that purpose, we partition set
C into subsets C1, . . .,Cb|C|/nrcc, apply the SSGS to all solutions of C and finally we select the best solution from each subset
Cc. Before adding the selected solutions to the population, we apply the TO-condition.

5.5.1. Numerical example

An example project is shown in Fig. 2, with work content and mode information in Table 2.
We assume that there is only one renewable resource with 10 available units in each time period. To start the combi-

nation method, assume the two following solutions are given. Based on the makespan of the solutions, we determine
xin and xgu:

j

Wj1

0 

0 

1 

88 

2 

33 

3 

79 

4 

93 

5 

6

87

10

66

9

64 11 

0 

7

428

37

32 

Fig. 2. Example project.
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xin ¼ ðkin; linÞ ¼ ðð0; 4; 3; 6; 5; 1; 2; 7; 9; 10; 8; 11Þ; ð1; 8; 1; 1; 8; 2; 1; 3; 6; 5; 2; 1ÞÞ; makðxinÞ ¼ 103;

xgu ¼ ðkgu; lguÞ ¼ ðð0; 4; 2; 5; 3; 1; 6; 8; 9; 10; 7; 11Þ; ð1; 2; 8; 1; 7; 6; 3; 8; 6; 8; 2; 1ÞÞ; makðxguÞ ¼ 68:

First, we initialize xcu as xcu = xin.
The combination of these solutions is illustrated in Fig. 3.
The first difference between xcu and xgu occurs at i = 1 for which mcu(j1) = 8 5 mgu(j1) = 2 while jcu

1 ¼ jgu
1 ¼ 4. We

change mcu(j1) as mcu(j1) = 2 and add the resulting solution to set C. The next difference is related to i = 2 for which
jcu

2 ¼ 3 6¼ jgu
2 ¼ 2. As explained in the combination method, we exchange jcu

2 ¼ 3 with jcu
6 ¼ 2 because jcu

6 ¼ jgu
2 ¼ 2. In

order to arrange lcu based on the kcu, we exchange mcu(j2) and mcu(j6). At this stage, kcu is not precedence feasible
because activity 3 is placed after activity 6, the successor of activity 3. We make kcu precedence feasible by exchanging
activities 6 and 3 in kcu and also their corresponding modes in lcu. Since mcu(j2) = 1 5 mgu(j2) = 8, the resulting solution
in this stage is not considered as a candidate for set C, we adjust mcu(j2) = mgu(j2) = 8. Now, the new xcu, with kcu

i ¼ kgu
i

and lcu
i ¼ lgu

i for i = 0,1,2,3, is added to set C as a new solution. This process continues until xcu = xgu. It should be
noted that the first and the last solution (xin and xgu) are not considered as the elements of C. This combination results

Table 2
All possible modes of the example project

Activity (j) Work content (wj1) Modes ðMj ¼ fðdjm; rjm1Þg ¼ f1; . . . ;mjMj jgÞ |Mj|

0 0 {(0,0)} 1
1 88 fð9; 10Þ; ð10; 9Þ; ð11; 8Þ; ð13; 7Þ; ð15; 6Þ; ð18; 5Þ; ð22; 4Þ; ð30; 3Þ; ð44; 2Þ; ð88; 1Þg 10
2 33 fð4; 9Þ; ð5; 7Þ; ð6; 6Þ; ð7; 5Þ; ð9; 4Þ; ð11; 3Þ; ð17; 2Þ; ð33; 1Þg 8
3 79 fð8; 10Þ; ð9; 9Þ; ð10; 8Þ; ð12; 7Þ; ð14; 6Þ; ð16; 5Þ; ð20; 4Þ; ð27; 3Þ; ð40; 2Þ; ð79; 1Þg 10
4 93 fð10; 10Þ; ð11; 9Þ; ð12; 8Þ; ð14; 7Þ; ð16; 6Þ; ð19; 5Þ; ð24; 4Þ; ð31; 3Þ; ð47; 2Þ; ð93; 1Þg 10
5 32 fð4; 8Þ; ð5; 7Þ; ð6; 6Þ; ð7; 5Þ; ð8; 4Þ; ð11; 3Þ; ð16; 2Þ; ð32; 1Þg 8
6 87 fð9; 10Þ; ð10; 9Þ; ð11; 8Þ; ð13; 7Þ; ð15; 6Þ; ð18; 5Þ; ð22; 4Þ; ð29; 3Þ; ð44; 2Þ; ð87; 1Þg 10
7 42 fð5; 9Þ; ð6; 7Þ; ð7; 6Þ; ð9; 5Þ; ð11; 4Þ; ð14; 3Þ; ð21; 2Þ; ð42; 1Þg 8
8 37 fð4; 10Þ; ð5; 8Þ; ð6; 7Þ; ð7; 6Þ; ð8; 5Þ; ð10; 4Þ; ð13; 3Þ; ð19; 2Þ; ð37; 1Þg 9
9 64 fð7; 10Þ; ð8; 8Þ; ð10; 7Þ; ð11; 6Þ; ð13; 5Þ; ð16; 4Þ; ð22; 3Þ; ð32; 2Þ; ð64; 1Þg 9

10 66 fð7; 10Þ; ð8; 9Þ; ð9; 8Þ; ð10; 7Þ; ð11; 6Þ; ð14; 5Þ; ð17; 4Þ; ð22; 3Þ; ð33; 2Þ; ð66; 1Þg 10
11 0 {(0,0)} 1

Fig. 3. Illustration of the combination method.
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in eight new solutions. If we assume nrc = 2, we have to select one solution from solutions 1, . . ., 4 and the other one
from solutions 5, . . ., 8. Based on the makespan of solutions, we select solution 3 with makespan 73 and solution 5 with
makespan 67. Before adding these two new solutions to the P, we apply the TO-condition to both of them resulting in
the two following solutions:

fð11; 8; 10; 9; 7; 6; 3; 2; 1; 5; 4; 0Þ; ð1; 2; 5; 6; 3; 1; 1; 8; 2; 8; 2; 1Þg; makespan ¼ 73;

fð11; 8; 10; 9; 7; 6; 3; 2; 1; 5; 4; 0Þ; ð1; 2; 5; 6; 3; 1; 7; 8; 6; 1; 2; 1Þg; makespan ¼ 67:

These new solutions along other elements of new population will be evaluated in the next iteration of SS procedure based
on the network with reverse dependencies.

5.6. Termination criteria

The procedure is terminated when (a) the specified time limit is exceeded, or (b) a solution is encountered with a make-
span equal to a known lower bound. We use as a lower bound the maximum of the critical path-based lower bound LB0

and the resource-based lower bound LBr. LB0 is obtained by calculating the critical path in the activity network where each
activity is assigned its shortest feasible mode, taking into account the resource availabilities. LBr is computed as

LBr ¼ maxk
P

j2J wjk

.
ARk

l mn o
. Since djm is discrete, if for a specific activity j and resource k, w0jk ¼ min

jMjj
m¼1fdjmrjmkg

exceeds wjk, we use w0jk for computing LBr rather than wjk itself to reach to a stronger lower bound.

6. Modification of the procedure for the RCPSP and MRCPSP

Although we have designed our procedure for the MDTRTP and DTRTP, it can be modified to tackle RCPSP and
MRCPSP. For both RCPSP and MRCPSP, we change the selection strategy of the newly generated solutions from the
combination of two reference solutions. Contrary to the MDTRTP and DTRTP, for which we apply the SSGS over all
generated solutions to select the best solution from each Cc, where c = 1, . . .,b|C|/nrcc, we select a solution randomly from
each Cc and then apply the SSGS to the selected solutions. In the combination method, the higher the number of activities,
the higher the number of solutions generated from the combination of two reference solutions. On the other hand, the com-
mon termination criterion for the RCPSP and MRCPSP is the maximum number of times SSGS (max-sch) is used. There-
fore, this new selection strategy is used. For the same reason, we also exclude the local search from our procedure for both
RCPSP and MRCPSP.

6.1. Modification of the procedure for the RCPSP

Since the MDTRTP is a generalization of the RCPSP, to tackle the RCPSP, it is sufficient only to consider |Mj| = 1 for
all j 2 J where the single execution mode of each activity is defined by the input parameters. To measure the distance of two
activity lists of a RCPSP instance, we use the sum of the absolute values of the component-wise differences divided by the
number of activities (Debels et al., 2006).

6.2. Modification of the procedure for the MRCPSP

The most important difference here is the existence of non-renewable resources. Each activity j executed in mode m uses
a total amount of nrjml units of the non-renewable resource l 2 NR = {1, . . ., |NR|}. For each non-renewable resource l, the
overall availability for the entire project is represented by ANRl.

Before starting the SS procedure, we apply a pre-processing procedure over the project data, in order to reduce the
search space. We follow the pre-processing procedure introduced by Sprecher et al. (1997) that consists of excluding
non-executable modes, inefficient modes and redundant non-renewable resources. A mode is non-executable if its execution
would violate the renewable or non-renewable resources constraints. A mode is called inefficient if both its duration and
resource requirement are not smaller than those of another mode of the same activity. A non-renewable resource is called
redundant if the sum of the maximal requirements for this resource does not exceed its availability.

The SSGS transforms each schedule representation x into a feasible solution if only renewable resources are taken into
account. If non-renewable resources are also considered the solution may be infeasible, with respect to the non-renewable
resource constraints. Since finding a feasible solution, when there is more than one non-renewable resource, is an NP-com-
plete problem, we allow solutions which are infeasible with respect to the non-renewable resources but feasible with respect
to precedence and renewable resource constraints. However, we penalise them using the evaluation function defined by
Alcaraz et al. (2003) in their genetic algorithm.
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We also allow infeasible solutions to enter to the RefSet, but for transferring the best found solutions to the next pop-
ulation, we always consider feasible solutions. However, it is worthwhile to consider infeasible solutions as the reference
solutions because the combinations of some of them may generate elite feasible solutions.

7. Computational results

7.1. Benchmark problem sets

We have coded the procedure in Visual C++ 6.0 and performed all computational experiments on a PC Pentium IV
3 GHz processor with 1024 MB of internal memory. We have validated the procedure on four datasets, for the DTRTP,
MDTRTP, RCPSP, and MRCPSP.

For both RCPSP and MRCPSP, we used the PSPLIB (Kolisch and Sprecher, 1997). The RCPSP dataset consists of four
sets of instances: J30, J60, J90 and J120 that contain problem instances of 30, 60, 90 and 120 activities, respectively. Sets
J30, J60 and J90 contain 480 instances while set J120 contains 600 instances. For the MRCPSP, we used sets J10, J12, J14,
J16, J18 and J20 of the PSPLIB. These sets contain 640 instances each, with 10, 12, 14, 16, 18 and 20 activities, three modes
per activity, two renewable resources and two non-renewable resources.

The DTRTP dataset was generated by Demeulemeester et al. (2000), and includes 5250 instances with 10–30 activities.
We generated a dataset for MDTRTP based on the DTRTP dataset by adding renewable resource types. The work content
of every activity for each renewable resource is between 10 and 100 and the resource availability for every renewable
resource varies from 10 to 50 in steps of 10.

We solve several versions of each instance using a different restriction on the number of modes, denoted |M|, which var-
ies from 1 to 6 to a version with an unlimited number of modes. The modes are generated in line with De Reyck et al. (1998)
as follows: The procedure generates the first mode (m = 1) for activity j with duration dj1 and resource requirement
rj1k = dwjk/dj1e with dj1 ¼ maxkfmaxfb ffiffiffiffiffiffiffi

wjk
p c; dwjk=ARkegg when the number of modes is unrestricted and

dj1 = maxk{dwjk/ARke} when it is restricted. Then the procedure generates the second mode with duration dj1 + 1 and cor-
responding resource requirements. This new mode is accepted as the second mode if at least one of the resource require-
ments is different. This mode generation process continues until the desired number of modes is reached or no more modes
are left.

7.2. Parameters settings

Using fine tuning, we set the values of the number of children and the probability of local search as nrc = 2 and
Pls = 0.02, respectively. The diversity thresholds th-dist1 and th-dist2 are set to 0.4 and 0.6, respectively, for the DTRTP,
MDTRTP and MRCPSP. The values of these parameters for the RCPSP are as th-dist1 = 1 and th-dist2 = 2.2. The size of
initial population is set to |P| = 10TL for the DTRTP and MDTRTP, where TL denotes the allocated time limit. For the
RCPSP and MRCPSP, the size of initial population is set to |P| = 10b. The values of b1 and b2 are determined based on the
settings in Tables 3 and 4. We investigated the results of the DTRTP and MDTRTP for three time limits, namely 1, 10 and

Table 3
Tuned values of parameters b1 and b2 for the DTRTP and MDTRTP

TL (seconds) b1 b2

1 4 2
10 7 3

100 18 9

Table 4
Tuned values of the parameters b1 and b2 for the RCPSP and MRCPSP

Parameter max-sch RCPSP MRCPSP

J30 J60 J90 J120 J10, J12, J14, J16, J18, J20

b1 1000 4 4 3 4 4
5000 7 6 8 7 8

50,000 21 22 18 21 –

b2 1000 2 4 2 2 2
5000 7 5 4 5 5

50,000 13 15 17 14 –

M. Ranjbar et al. / European Journal of Operational Research 193 (2009) 35–48 43



100 seconds. The RCPSP was tested for max-sch=1000, 5000 and 50,000, and the MRCPSP for max-sch = 1000 and 5000,
in line with the results in the literature. Since the range of number of activities is small for the DTRTP, MDTRTP and
MRCPSP, the results are not sensitive to the values b1 and b2, but for the RCPSP, b1 and b2 should be adjusted for both
max-sch and n.

7.3. Comparative computational results

7.3.1. DTRTP

The performance of our procedure for the DTRTP on the 5520 instances of the DTRTP dataset is summarized in Table
5. We report the total sum of the makespan of each obtained solution and the average and maximal deviation from the best
known solution, which is obtained using all procedures presented in this paper as well as a long run (1000 seconds) of the
branch-and-bound procedure. 5130 of those best known solutions, i.e. about 98%, are known to be optimal. Also given are
the number of times the best known solution is obtained, the average and maximal deviation with respect to the lower
bound, and the number of problems solved to optimality. Also, the average number of RCPSP instances solved and
the average and median values for the required CPU time are reported. In order to compare our results with the available
procedures in the literature, we ran the TS procedure of De Reyck et al. (1998), the B&B procedure of Demeulemeester
et al. (2000) and the GA procedure of Ranjbar and Kianfar (2007). In the B&B procedure, the CPU time sometimes runs
over the time limit because in this algorithm, the time is only checked when it backtracks to a lower level in the search tree.

The results show that the B&B dominates the heuristics, and that the SS procedure is the best among the heuristics. A
more detailed analysis can be found in Tables 6 and 7. Although Tables 6 and 7 show that when the number of modes is
limited, the B&B outperforms the SS, GA and TS procedures, when the number of modes is unlimited, the SS procedure
performs best, particularly when the number of activities increases and CPU time limit is decreased (indicated by bold
numbers in the tables). This trend becomes even more clear on datasets with larger number of activities. Since the B&B
code was only designed for at most 32 activities, we could not test it on larger instances. Additionally, despite the fact that
98% of the solutions have a known optimal solution, our procedure found improved best-known solutions for 10 instances.

Table 5
Comparative results for the DTRTP

CPU time limit (seconds)

1 10 100

B&B SS GA TS B&B SS GA TS B&B SS GA TS

Sum 355,907 356,353 356930 357,749 355,477 355,528 355,631 356,099 355,108 355,185 355,411 355,669
Average deviation best

solution (%)
0.36 0.40 0.65 0.88 0.16 0.17 0.20 0.32 0.04 0.06 0.11 0.20

Maximal deviation best
solution (%)

35.30 11.11 33.02 84.00 24.32 7.13 8.23 9.09 17.65 4.32 5.65 7.14

Best solution 4780 4376 4253 4134 4950 4802 4726 4497 5168 5048 4883 4669
(91%) (83%) (81%) (79%) (94%) (91%) (90%) (86%) (98%) (96%) (93%) (89%)

Average deviation LB (%) 2.73 2.77 3.06 3.26 2.53 2.51 2.55 2.69 2.40 2.41 2.47 2.56
Maximal deviation LB (%) 43.75 42.86 42.86 91.67 42.86 42.86 44.17 45.86 42.86 42.86 44.17 45.86

Optimal 4772 4361 4250 4134 4928 4773 4673 4489 5107 4961 4779 4633
(91%) (83%) (81%) (79%) (94%) (91%) (89%) (85%) (97%) (94%) (91%) (88%)

Average RCPSP – 54,084 56,719 11,643 – 461,613 53,348 39,710 – 4,102,381 5,171,470 73,835
Average CPU time 0.21 0.51 0.62 0.46 0.72 4.93 6.74 2.82 3.87 48.11 51.97 11.85
Maximum CPU time 57.69 1 1 1.22 57.61 10.02 10.01 10.25 100.28 100.14 100.05 100.22

Table 6
Average percent deviation from best solution for 1 second CPU time

Number of modes

Limited (number of activities) Unlimited (number of activities)

10 15 20 25 30 Global 10 15 20 25 30 Global

B&B 0.01 0.03 0.03 0.01 0.12 0.06 0.81 1.74 1.68 3.34 3.56 2.22
SS 0.03 0.04 0.09 0.27 0.28 0.14 0.67 1.04 1.93 2.92 3.46 2.00

GA 0.05 0.09 0.16 0.41 0.45 0.23 0.73 1.45 2.75 5.00 6.11 3.21
TS 0.06 0.13 0.22 0.54 0.69 0.33 0.79 1.80 3.41 6.90 8.22 4.22
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7.3.2. MDTRTP

To the best of our knowledge, no results have been published yet on the MDTRTP. We present the results of the SS and
GA procedures on the MDTRTP dataset with 1050 instances. The results of Table 8 reveal that the SS procedure outper-
forms the GA procedure in all cases.

7.3.3. RCPSP

Comparative results for the RCPSP are available for instances sets J30, J60 and J120 in the literature. Tables 9–11 dis-
play the rank of our procedure among 10 best heuristics to date based on the results presented by Kolisch and Hartmann
(2006). The comparison is made for values of 1000, 5000 and 50,000 as the limits of the maximum number of schedules. For
the J30 set, the results are given in terms of average percent deviation from the makespan of the optimal solution. For the
other sets, the average percent deviation from the critical path-based lower bound is used as a measure of performance,
since many optimal solutions are unknown. In the following tables, the heuristics are sorted for the case of max-

Table 7
Average percent deviation from best solution for 10 seconds CPU time

Number of modes

Limited Unlimited

Number of activities Number of activities

10 15 20 25 30 Global 10 15 20 25 30 Global
B& B 0.01 0.01 0.01 0.06 0.05 0.03 0.05 0.30 0.66 1.65 2.20 0.97
SS 0.01 0.01 0.03 0.09 0.10 0.05 0.13 0.44 0.98 1.48 1.51 0.92

GA 0.01 0.02 0.06 0.14 0.16 0.08 0.23 0.63 1.21 1.97 2.09 1.22
TS 0.01 0.04 0.09 0.23 0.24 0.12 0.35 0.80 1.55 2.33 2.64 1.53

Table 9
Comparative results for J30

Author (year) max-sch

1000 5000 50,000

Ranjbar et al. (this work) 0.10 0.03 0.00
Kochetov and Stolyar (2003) 0.10 0.04 0.00
Debels et al. (2006) 0.27 0.11 0.01
Valls et al. (2003) 0.27 0.06 0.02
Valls et al. (2005) 0.34 0.20 0.02
Alcaraz et al. (2004) 0.25 0.06 0.03
Alcaraz and Maroto (2001) 0.33 0.12 –
Tormos and Lova (2003) 0.25 0.13 0.05
Nonobe and Ibaraki (2002) 0.46 0.16 0.05
Tormos and Lova (2001) 0.30 0.16 0.07

Table 8
Comparative results for the MDTRTP

CPU time (seconds)

1 10 100

GA SS GA SS GA SS

Sum 111,030 110,867 110,263 110,177 110,054 109,996
Average deviation best solution (%) 0.91 0.77 0.25 0.17 0.07 0.01
Maximal deviation best solution (%) 18.25 16.07 6.12 4.72 3.06 2.56

Best solution 693 762 915 962 998 1040
(66%) (73%) (87%) (92%) (95%) (99%)

Average deviation LB (%) 11.61 9.35 9.09 8.70 8.57 8.52
Maximal deviation LB (%) 48.21 48.21 48.21 48.21 48.21 48.21
Average RCPSP 41,731 40,508 376,132 360,989 462,2218 4,471,061
Average CPU time 0.82 0.80 8.24 7.93 82.65 79.65
Maximum CPU time 1.01 1.02 10.01 10.02 100.07 100.11
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sch = 50,000. As a tie-breaker, the results for 5000 and then 1000 schedules are used in sorting. Tables 9–11 reveal that our
procedure outperforms the other heuristics for J30, J60 and is ranked second for J120. Furthermore, our procedure
improved the best-known solutions for seven instances of J90 and 32 instances of J120.

7.3.4. MRCPSP

We compare the performance of our procedure for the MRCPCP using J10, J12, J14, J16, J18 and J20 of the PSPLIB.
We compare our procedure with the genetic algorithm of Alcaraz et al. (2003) and the simulated annealing of Jozefowska
et al. (2001), which are the two best heuristics for the MRCPSP. The comparative results, shown as the average percent
deviation from optimal solution, for max-sch = 5000, are presented in Table 12. The results reveal that our procedure out-
performs the two other heuristics.

7.4. Impact of the local search

Fig. 4 indicates the impact of the local search on the DTRTP results by changing Pls. The results are obtained based on
the average percent deviation from the best found solutions for all instances of the DTRTP when the allowed CPU time
limit is 10 seconds. The results reveal that 0.02 is the best tuned values for Pls.

Table 10
Comparative results for J60

Author (year) max-sch

1000 5000 50,000

Ranjbar et al. (this work) 11.59 11.07 10.64
Debels et al. (2006) 11.73 11.10 10.71
Valls et al. (2003) 11.56 11.10 10.73
Kochetov and Stolyar (2003) 11.71 11.17 10.74
Valls et al. (2005) 12.21 11.27 10.74
Alcaraz et al. (2004) 11.89 11.19 10.84
Hartmann (2002) 12.21 11.70 11.21
Hartmann (1998) 12.68 11.89 11.23
Tormos and Lova (2003) 11.88 11.62 11.36
Alcaraz and Maroto (2001) 12.57 11.86 –

Table 11
Comparative results for J120

Author (year) max-sch

1000 5000 50,000

Valls et al. (2003) 34.07 32.54 31.24
Ranjbar et al. (this work) 35.08 33.24 31.49
Alcaraz et al. (2004) 36.53 33.91 31.49
Debels et al. (2006) 35.22 33.10 31.57
Valls et al. (2005) 35.39 33.24 31.58
Kochetov and Stolyar (2003) 34.74 33.36 32.06
Valls et al. (2005) 35.18 34.02 32.18
Hartmann (2002) 37.19 35.39 33.21
Tormos and Lova (2003) 35.01 34.41 33.71
Merkle et al. (2002) – 35.43 –

Table 12
Comparative results for MRCPSP

Author (year) Instances set

J10 J12 J14 J16 J18 J20

Ranjbar et al. (this work) 0.18 0.65 0.89 0.95 1.21 1.64
Alcaraz et al. (2003) 0.24 0.73 1.00 1.12 1.43 1.91
Jozefowska et al. (2001) 1.16 1.73 2.6 4.07 5.52 6.74
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8. Conclusions

In this paper, we present a metaheuristic algorithm for solving the multi-resource discrete time/resource trade-off prob-
lem in project scheduling, based on scatter search and path relinking. We also modify our procedure for the DTRTP,
RCPSP and MRCPSP. The performance of the algorithm is tested on four datasets, which show that our procedure in
most cases outperforms the other available heuristics presented in the literature. Also, our procedure gives better results
compared to the only available branch-and-bound method for the DTRTP when the number of execution modes for each
activity is unlimited, the CPU time limit is small (less than 10 seconds) and the number of activities is large (more than 25).
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