
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2021

Edgeduet: Tiling small object detection for edge assisted Edgeduet: Tiling small object detection for edge assisted

autonomous mobile vision autonomous mobile vision

Xu WANG

Zheng YANG

Jiahang WU

Yi ZHAO

Zimu ZHOU
Singapore Management University, zimuzhou@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Graphics and Human Computer

Interfaces Commons

Citation Citation
WANG, Xu; YANG, Zheng; WU, Jiahang; ZHAO, Yi; and ZHOU, Zimu. Edgeduet: Tiling small object detection
for edge assisted autonomous mobile vision. (2021). Proceedings of the IEEE International Conference on
Computer Communications.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6747

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6747&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

EdgeDuet: Tiling Small Object Detection for Edge
Assisted Autonomous Mobile Vision

Xu Wang∗, Zheng Yang∗‡, Jiahang Wu∗, Yi Zhao∗ and Zimu Zhou†
∗School of Software and BNRist, Tsinghua University

†School of Information Systems, Singapore Management University
‡ Corresponding Author

{wangxu2020,yangzheng}@tsinghua.edu.cn,wujx20@mails.thu.edu.cn,zhaoyi.yuan31@gmail.com, zimuzhou@smu.edu.sg

Abstract—Accurate, real-time object detection on resource-
constrained devices enables autonomous mobile vision appli-
cations such as traffic surveillance, situational awareness, and
safety inspection, where it is crucial to detect both small and
large objects in crowded scenes. Prior studies either perform
object detection locally on-board or offload the task to the
edge/cloud. Local object detection yields low accuracy on small
objects since it operates on low-resolution videos to fit in mobile
memory. Offloaded object detection incurs high latency due to
uploading high-resolution videos to the edge/cloud. Rather than
either pure local processing or offloading, we propose to detect
large objects locally while offloading small object detection to
the edge. The key challenge is to reduce the latency of small
object detection. Accordingly, we develop EdgeDuet, the first
edge-device collaborative framework for enhancing small object
detection with tile-level parallelism. It optimizes the offloaded
detection pipeline in tiles rather than the entire frame for high
accuracy and low latency. Evaluations on drone vision datasets
under LTE, WiFi 2.4GHz, WiFi 5GHz show that EdgeDuet
outperforms local object detection in small object detection
accuracy by 233.0%. It also improves the detection accuracy by
44.7% and latency by 34.2% over the state-of-the-art offloading
schemes.

I. INTRODUCTION

Bringing advanced machine vision to mobile devices such
as drones and robots enables a wide spectrum of autonomous
mobile vision applications. Examples include mobile phones
for localization [1] and navigation [2], drones for cost-effective
traffic surveillance [3], and robot dogs to enforce social
distancing during the COVID-19 pandemic [4]. Crucial in
these applications is the capability to detect objects from
video inputs. An ideal object detection engine for autonomous
mobile vision applications should be accurate, real-time, and
resource-efficient. (i) Drones and robots should accurately
detect a large number of big and small objects in the scene
(e.g., vehicles and pedestrians in an aerial view of a busy
street). (ii) Fast object detection on continuous videos enables
decision-making on the go.

For instance, a robot may identify the crowd density from
live videos and broadcast alerts when moving in a park. (iii)
resource-efficient: For portability and mobility, the compu-
tation and memory resources in commercial drones are still
limited. Object detection algorithms need to be optimized to
fit in the resource budgets of mobile devices.

Existing object recognition solutions for resource-limited
devices fail to satisfy the accuracy and real-time requirements.

(i) One promising approach for fast object detection is to run
the model locally on-board. Model compression techniques
can dramatically reduce the workload of deep learning models
[5]. However, local object detection with compressed models
is sub-optimal for autonomous mobile vision because accurate
small object detection requires high-resolution input [6], which
easily overwhelm mobile memory. (ii)

An alternative is to offload object detection to the edge,
which utilizes the powerful edge to run large models on
high-resolution inputs for accurate detection. Nevertheless,
offloading incurs a long delay since it involves wireless
transmission of high-resolution videos to the edge. Long end-
to-end detection delay leads to large detection errors as the
mobile device’s view is constantly changing [7].

Pioneer studies [7], [8] avoid transmitting every frame by
using cached detection results of previous frames to track
objects in the current frame and only offloading key frames
to update the cached results. This “detect+track” strategy
supports real-time object detection in case of high bandwidth
networks. Its performance tends to deteriorate in the case
of low-bandwidth, e.g., outdoors, which autonomous mobile
vision applications often target at.

Instead of pure local processing or offloading, we propose to
split the object detection task between the mobile device and
the edge. Specifically, we offload small object detection to the
edge. The rationale is intuitive. Commercial mobile devices are
now able to accurately and rapidly detect large- to medium-
sized objects by running compressed models on low-resolution
videos [9], [10]. Hence only data relevant to small objects need
to be uploaded to the edge in high quality, thus reducing the
overall offloading delay and improving detection accuracy.

Realizing the above idea for accurate and real-time object
detection needs a systematic design on (i) what and how to
offload to the edge and (ii) how to aggregate the detection
results. We base our design upon “detect+track” (Fig. 1), the
prevailing framework, to accelerate offloaded object detection
[7], [8]. The detection results of the current frame is obtained
by adapting cached detection results of prior frames using
lightweight trackers. The cached results are routinely updated
by offloading key frames for expensive yet highly accurate
object detection. In our case, the trackers and the detectors
for big objects are lightweight. Hence the bottleneck for real-
time detection is the offloaded small object detection. Since

Server

Client

t t+1 t+2 t+τ-2 t+τ-1 t+τ…

Frame Cache

Trackers

Offloading

Update Update Update

Real-time

Detection

t

Detector Bounding BoxFrame

t

Detector Bounding BoxFrame

Fig. 1. An illustration of the popular “detect+track” framework for offloaded
object detection [7], [8]. The detection results of the current frame are obtained
by applying trackers on the cached detection results. The cached results are
routinely updated by offloading key frames.

the detection results of the current frame rely on the cached
results, the bottleneck for accurate detection, especially for
small objects, lies in the freshness of the cached results.

We propose EdgeDuet, an accurate, real-time object detec-
tion engine, which tiles and offloads small object detection
to the edge (Fig. 2). EdgeDuet tackles the aforementioned
accuracy and real-time bottlenecks via the following tech-
niques. (i) Optimizing offloaded small object detection with
region-of-interest (RoI) frame encoding and content-prioritized
tile offloading. EdgeDuet applies RoI frame encoding to save
network traffic. Only pixel blocks potentially containing small
objects are transmitted in high quality, while the rest of the
frame is compressed to low quality. EdgeDuet adopts content-
prioritized tile offloading to accelerate small object detection
at the edge. It processes videos in the unit of tiles rather
than the entire frame, so as to improve the parallelism of
offloading. It also prioritizes the offloading of tiles containing
more objects, so that the cached detection results of more
objects are freshly updated. (ii) Real-time tracking via cache
management and adaptive tracker configuration. EdgeDuet
aggregates the detection results from the local and remote
object detectors to obtain fresh and consistent cached results
via a cache management mechanism. It also applies adaptive
tracker configuration to improve the resource efficiency and
real-time performance of the trackers.

We implement EdgeDuet as a cross-platform framework
and evaluate its performance with mobile phones on VisDrone
[11], a public video dataset captured by drone-mounted cam-
eras. Evaluations show that pure local object detection yields a
detection accuracy (in terms of 0.232 of only 0.096 for small
objects, while EdgeDuet achieves an accuracy of 0.319 for
small objects. EdgeDuet also improves the overall accuracy by
44.7% and the end-to-end latency by 34.2% over the state-of-
the-art object detection offloading schemes [7], [8], especially
in the case of low bandwidth and high input frame rate.

The main contributions of this work are summarized below.
• EdgeDuet is the first framework that enhances small

object detection in crowded scenes via collaboration
between the edge and the mobile device.

• We push the state-of-the-art offloaded object detection

Video Decoder
Remote Object

Detector

Mobile

Edge

Input Frame
Local Object

Detector

Cache

Management

Adaptive Tracker

Configuration

Video Encoder

Content-prioritized

tile offloading

RoI Frame

Encoding

Real-time Object

Detection

Detect Results

Fig. 2. An overview of EdgeDuet. Rectangles in different colors represent the
three functional modules (offloaded small object detection (blue) (Sec. III),
local object detector (yellow) (Sec. IV) and real-time tracking (green) (Sec. V).
EdgeDuet is implemented as a cross-platform framework consisting of both
edge-side and device-side modules (Sec. VI)).

studies [7], [8] from task-level parallelism to tile-level
parallelism, which notably reduces the offloading latency.
EdgeDuet is a systematic design that enables accurate,
real-time object detection on mobile devices even in the
case of low network bandwidth.

• We implement EdgeDuet as a cross-platform framework.
Evaluations on VisDrone [11] show that EdgeDuet im-
proves the overall accuracy by 44.7% and the end-to-end
latency by 34.2% over the state-of-the-art object detection
offloading schemes [7], [8].

In the rest of this paper, we give an overview of EdgeDuet
in Sec. II and elaborate on its functional modules in Sec. III,
Sec. IV and Sec. V. We present the implementation of Edge-
Duet in Sec. VI and the evaluations in Sec. VII. We review
related work in Sec. VIII and finally conclude in Sec. IX.

II. EDGEDUET OVERVIEW

As shown in Fig. 2, EdgeDuet consists of three functional
modules: (i) an offloaded small object detection module which
uploads high-resolution frames to the edge to detect small
objects; (ii) a local object detector module which detects large
objects from low-resolution frames; and (iii) a real-time track-
ing module which associates the detection results (bounding
boxes, a.k.a bboxes) from both the edge and the mobile
device and tracks each object with single-object trackers. We
elaborate on the detailed designs of each functional module in
the subsequent sections.

III. OFFLOADED SMALL OBJECT DETECTION

This module aims to (i) reduce the data for transmission
to the edge and (ii) accelerate the offloading pipeline for
timely updates of the cached detection results on the mobile
device. EdgeDuet exploits RoI frame encoding to compress
video frames, and content-prioritized tile offloading for highly
parallel object detection at the edge.

2000 4000 6000 8000 10000
Object Size

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

(5150, 0.9)

(a) Car

500 1000 1500 2000
Object Size

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

(1698, 0.9)

(b) Pedestrian

Fig. 3. An example of the class-dependent size threshold for small objects.
Details of datasets, local and remote object detectors see Sec. VI.

A. RoI Frame Encoding

As mentioned in Sec. I, accurate small object detection
relies on high-resolution, high-quality frames as input. Yet
uploading high-quality frames to the edge impairs real-time
object detection [12]–[14]. The RoI frame encoding module
reduces the amount of transmitted data by only keeping the
pixel blocks containing small objects in high quality while
compressing the rest of the frame to low quality. Although
RoI frame encoding has been used in other offloading schemes
[8], [15], the definition of RoI (i.e., blocks containing small
objects in our case) and the compression level vary and should
be tuned for specific applications.

1) Determining Blocks Containing Small Objects: A pixel
block is considered as containing small objects if (i) the local
object detector cannot classify the block into a class (or reports
low confidence scores); and (ii) the remote object detector can
classify the block to a class (or reports high confidence scores).
Due to the high temporal correlation between successive
frames, we use the detection results of the previous frame
to identify blocks potentially containing small objects in the
current frame. For simplicity, we decide whether an object is
small using a fixed size. The size is empirically tuned such
that objects below this size cannot be accurately detected by
the local object detector but can be accurately detected by
the remote object detector. An object size is considered as
accurately detected if the recall is above 90%. Experiments
show that the optimal size threshold for small objects varies
across classes. For example, a size of 2000 results in almost
100% recall for pedestrians but less than 40% recall for cars
(see Fig. 3). Hence a different size threshold is set for each
targeting class.

2) Determining Compression Levels: Blocks which are de-
termined as containing no small objects cannot be compressed
to arbitrarily low quality. This is because the decision is made
based on the detection results of the previous frame. If a new
object appears in the current frame, the blocks containing this
object may be so heavily compressed that the object cannot
be detected by the remote object detector. To avoid missing
detection of new objects, the compression level is chosen such
that the remote object detector outputs low confidence scores
on the compressed blocks but will not fail to locate objects.
These low confidence objects are also return to the device for

offloading their blocks at the next frame.
3) Implementing RoI Frame Encoding: We use the Ef-

ficiency Video Coding (HEVC, a.k.a h.265) codec [16] to
encode pixel blocks containing small objects to high quality
and compress the rest of the frame to low quality. We generate
a delta QP map describing the delta QP values of each
macroblock in the raster order and encode the current frame
with the HEVC codec. Fig. 4a and Fig. 4b show an example
image before and after RoI frame encoding.

B. Content-Prioritized Tile Offloading

This module enables real-time small object detection via
fine-grained (tile-level) parallel offloading. It also facilitates
timely updates of cached detection results on the mobile device
by prioritizing the processing of tiles that contain more small
objects. Pipelined offloading proves effective for fast object
detection [8], where the offloading process is split into frame
encoding, frame upload, frame decoding, object detection, and
result downloading. Nevertheless, existing work [8] pipelines
the offloading process on a frame basis, which limits the
achievable parallelism. In contrast, EdgeDuet breaks a frame
into tiles and enables tile-level parallelism, thus allowing faster
pipelined and parallel offloading. We explain how to realize
tile-level parallelism and content-based priority below.

1) Enabling Tile-Level Parallelism: A tile is a rectangular
region in a frame defined in HEVC [17]. Fig. 4c shows an
example of 5x3 tiles. To support tile-level parallelism, we need
to modify the frame encoding, frame decoding, and object
detection stage, as they are designed to operate on a frame
basis. The principle is to eliminate dependencies among tiles
for each stage, as described in detail below.

• Frame Encoding. Existing video encoders [18]–[20] out-
put the encoded bit-stream after processing all the tiles
in a frame. We redesign the video encoder such that it
outputs the bit-stream of each tile once it is encoded.
Our method is based on Kvazaar [20], which treats the
encoding of each tile as an individual task and allows
parallel tile encoding via a dynamic task graph. However,
Kvazaar outputs bit-streams on a frame basis. Fig. 5(a)
shows the task dependencies among tile encoding tasks
and frame bit-stream tasks of the current frame and
the next frame in Kvazaar. We modify its bit-stream
writing module so that the bit-stream tasks operate on
a tile basis, as the task dependencies shown in Fig. 5(b).
Specifically, we break the bit-stream of a frame into a
picture parameter set (PPB) and each tile’s bit-streams.
Consequently, each tile’s bit-stream only depends on PPB
and the tile encoding task. Hence the video encoder will
first output the PPB, and once one tile is encoded, its bit-
stream will be output and sent for offloading. We also
introduce a fake bit-stream task to mark the end of the
bit-stream tasks in a given frame.

• Frame Decoding. Existing video decoders operate on
a frame basis. They assume the bit-streams of all the
tiles in a frame arrive sequentially and utilize the offset
from the first tile in the frame to locate the other tiles.

1 2 3 4

5 6 7 8

A
BCD

(a)

1 2 3 4

5 6 7 8

A
BCD

A B C

(b)

1 2 3 4

5 6 7 8

A
BCD

(c)

1 2 3 4

5 6 7 8

A
BCD

A B C

(d)

1 2 3 4

5 6 7 8

A
BCD

(e)

1 2 3 4

5 6 7 8

A
BCD

A B C

(f)

1 2 3 4

5 6 7 8

A
BCD

A B C

(g)

1 2 3 4

5 6 7 8

A
BCD

A B C

(h)

Fig. 4. An example of key steps in EdgeDuet. (a) Input frame. (b) Frame after RoI frame encoding, where blocks containing no small objects are compressed
to low quality. (c) Tiles. (d) The output of video decoder after enabling tile-level parallelism. (e) Overlap-tiling. (f) Remote object detector results of tiles (red
rectangles). (g) Local object detector results of the low-resolution frame (yellow rectangles). (h) Cache management of remote and local object detectors.

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Frame-Level
Bit-stream

Frame-Level
Bit-stream

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Frame-Level
Bit-stream

Frame-Level
Bit-stream

Frame t Frame t+1

(a) Kvazaar parallelism (b) EdgeDuet parallelism

PPSPPS Tile encodingTile encoding Frame/Tile bit-streamFrame/Tile bit-stream

Frame t Frame t+1

Fake bit-streamFake bit-stream Task dependencyTask dependency

Dynamic Priority

Mapping

Task Priority Queue

p
p+N

N N

p
p+N

N N

Task Priority Queue

p
p+N

N N

Fig. 5. Video encoding parallelism of Kvazaar and EdgeDuet.

For example, in HEVC, only the location of the first
tile is signaled in the slice header. All the other tiles
transmit their bit-stream offsets in the slice header, which
introduces dependencies on the first tile. We eliminate
such dependencies and enable tile-level parallelism in
frame decoding by forcing every tile in a frame as a “first
tile”. This is implemented by modifying the bit-stream of
each tile in the video encoder (Kvazaar) and the HEVC
parser in the video decoder (OpenHevc [21]) accordingly.
Fig. 4d shows an example of tile-level frame decoding.
Each tile is decoded to its position independent of the
other tiles (shown in black).

• Object Detection. Performing object detection on each tile
separately may miss objects which cross the boundaries
of adjacent tiles. We mitigate such dependencies among
tiles during object detection via overlap-tiling. Fig. 4e
shows an example, where tile 2 and 4 are primary tiles
and tile 1, 3, 5, 6, 7, 8 are overlap tiles. We group
each primary tile with its surrounding overlap tiles for
small object detection. In this example, tile 1, 2, 3, 5,
6, 7 will be grouped together. Detecting objects for each
tile group reduces the probability of missing objects that
exceed the boundary of a primary tile. We only group
the surrounding tiles because our remote detector targets
at small objects. Only large objects may be present in

two primary tiles crossing the overlap tiles, as person
A and B in Fig. 4f. The overlap size (minimal width
and height of overlap tiles) is set to the least multiple
coding tree blocks, which is larger than the maximal size
of small objects defined in Sec. III-A1 and complies to
the tile definition in HEVC. Fig. 4f shows an example of
detection results using our method.

2) Enabling Content-based Priority: Prioritizing tiles con-
taining more objects over those containing fewer objects al-
lows the cached detection results of more objects to stay fresh.
Since our implementation of tile-level parallelism (Sec. III-B1)
ensures tiles offloaded early to return detection results early,
we only need to prioritize tiles at the frame encoding stage.

• Implementing Tile Priority for Frame Encoding. We mod-
ify the task schedule module in Kvazaar by adding a
dynamic priority mapping module to enable the ordering
of tiles (see Fig. 6). Specifically, the dynamic priority
mapping layer associates a priority value p to each pri-
mary tile according to the input content, where p ∈ [0, N)
and N is the number of primary tiles, each overlap tile
calculates its priority p as the maximum priority of its
surrounding primary tiles. Then the encoding task of each
tile is assigned a priority value of p while its bit-stream
task is assigned a priority value of p+N . This is to force
the bit-stream task to execute once the tile is encoded,

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Frame-Level
Bit-stream

Frame-Level
Bit-stream

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Frame-Level
Bit-stream

Frame-Level
Bit-stream

Frame t Frame t+1

Frame-level parallelism Tile-level parallelism

PPSPPS Tile encodingTile encoding Frame/Tile bit-streamFrame/Tile bit-stream

Frame t Frame t+1

Fake bit-streamFake bit-stream Task dependencyTask dependency

Dynamic Priority

Mapping

Task Priority Queue

p
p+N

N N

p
p+N

N N

Task Priority Queue

p
p+N

N N

Fig. 6. An illustration of content-based tile priority.

TABLE I
PERFORMANCE OF LOCAL DETECTOR ON IPHONE 11.

Model IoU (offline) Latency IoU (online)

YOLOv3-tiny (320x320) 0.015 12.4ms 0.012
YOLOv3-tiny (640x640) 0.078 19.5ms 0.052
YOLOv3-tiny (960x960) 0.140 38.9ms 0.090

YOLOv3 (320x320) 0.176 23.8ms 0.092
YOLOv3 (640x640) 0.361 62.5ms 0.193
YOLOv3 (960x960) 0.522 178.7ms 0.161

which can be before other tiles’ encoding tasks.
• Assigning Tile Priority based on Content. To determine

the priorities (i.e., p) of the N primary tiles, we count the
number of small objects of the corresponding tile group.
The priority value p of each primary tile is the index in
ascending order.

IV. LOCAL OBJECT DETECTOR

The local object detector aims to detect medium- to large-
sized objects in the video frames locally on the mobile device.
Since the mobile devices have limited resources compared
with the edge, the local object detector should be lightweight
and operate on low-resolution frames. We empirically decide
the model and input resolution for the local object detector.
The local object detector should balance between offline accu-
racy and latency to achieve high online accuracy. The offline
accuracy refers to the accuracy of the object detector, while
the online accuracy refers to the accuracy in the “detect+track”
framework [7], [8]. Accuracy is measured by metrics such as
IoU, as will be defined in Sec. VII-A5.

Table I shows the performance of different combinations of
object detectors and input resolutions evaluated on the Vis-
Drone [11] dataset with an iPhone 11. For resource efficiency,
the models are quantized to float16. Based on the analysis,
we choose YOLOv3 (640x640) as the local object detector.
Fig. 4g shows an example of detection results of the local
object detector. Note that we only aim to show the feasibility
of running an object detector locally for accurate and real-time
medium- to large-sized objects. An exhausted search on the
optimal local object detector is out of the scope of this paper.

V. REAL-TIME TRACKING

This module aggregates the offloaded and the local detection
results into the cache and adjusts the cached results via object
trackers to output the bounding boxes for the current frame.
EdgeDuet adopts multiple single-object trackers for object
tracking, as in [7], [8]. Fig. 7 shows the general workflow.

… ……

……

Video

Streaming

Tracker 1

Tracker 2

…

Query real-time resultsRecv bounding boxes

Timeline

Update Task

Init Task

Update Task

Init Task

Update Task

Init Task

Fig. 7. General workflow using multiple single-object trackers.

Trackers returns latest updated bounding boxes so as to query
as the same fps as the video input. Since we target at video
streams with high frame rates (30/60/120 fps) and the cached
results come from two object detectors, the general workflow
needs to be optimized for EdgeDuet, as we describe below.

1) Cache Management: We cache the detection results
received from the local or remote object detector and discard
the old results upon receiving new ones. One issue in our
cache management is that the local and the remote detector
may introduce duplicated detection results of the same object.
We drop the results of the local detector for small objects
and those of the remote detector for medium- to large-sized
objects in case of duplicated results. Fig. 4h shows an example
of merging local detection results and remote detection results.

2) Adaptive Tracker Configuration: To optimize the track-
ing performance on mobile devices, we consider the following.

• Choice of Single-object Tracker. We empirically choose
KCF [22] as our single-object tracker since it is both
faster and more accurate than the optical flow based
tracker in [7] and has a higher accuracy than the motion
vector based tracker in [8].

• Priority-based Tracker Scheduling. To execute multiple
single-object trackers on resource-constrained devices,
we adaptively update the tracking results based on the
speed of the objects, because it is unnecessary to fre-
quently update the tracking results of objects that are
static or moving slowly. Specifically, we estimate the
object’s speed by the object’s move distance in contin-
uously tracked frames. Then we set a different weight
to each speed range, and the priority of each tracker
is updated to the product of its weight value and the
default priority (distance between the current frame and
last tracked frame in sequential task scheduling). We
schedule the tracker with high priority to track first to
ensure high-speed objects frequently updated.

VI. IMPLEMENTATION

This section presents the implementation of EdgeDuet on
the edge-side and the device-side.

A. Implementation of Core Edge-Side Modules

We implement the edge-side modules of EdgeDuet on a
CentOS 7.0 server. It is equipped with two 8-core Intel Xeon
CPU E5-2560 v4 CPUs, two GTX 2080ti GPUs and 256GB

memory. The edge-side modules of EdgeDuet consist of a
video decoder and a remote object detector.

1) Video Decoder: The video decoder is implemented in
C++ based on the OpenHEVC library [21]. We modify the
library to support tile-based parallel decoding as in Sec. III-B1.
We use OpenCV-Python bindings [23] for Python to run the
decoder and access the decoding results from memory.

2) Remote Object Detector: The detector for small objects
on the edge is implemented as a pre-trained full-precision
YOLOv3-spp [24] model in PyTorch [25]. We run the model
in multiple processes for parallel inference on tiles. The GPU
is set to CUDA Multi-Process Service mode [26] to reduce
GPU context switching.

B. Implementation of Core Device-Side Modules

We implement the device-side of EdgeDuet on an iPhone
11, with the A13 Bionic chip embedded with a four-core
GPU. The device-side modules of EdgeDuet consist of a video
streamer, a video encoder, a local object detector, and an object
tracker. Most modules on the device side are implemented in
C++ 17 [27] for easy deployment on different platforms such
as iOS Frameworks [28] and Android NDK [29].

1) Video Streamer: This module is used for simulating the
video camera streaming process using standard video datasets.
The streamer loads a video file and feeds video frames into
EdgeDuet at 30/60/120 fps. The module is implemented in
C++ using the VideoCapture module in OpenCV [30] to
read RGB images from a video file and convert the image to
I420 format for video encoding.

2) Video Encoder: This module is implemented in C++
based on Kvazaar [31], an open-source HEVC encoder.
We modify the library to support tile-based parallel encoding
and priority, as described in Sec. III-B1 and Sec. III-B2. We
empirically encode and offload frames at a fixed frame rate
(e.g., 5 fps).

3) Local Object Detector: This module is implemented in
Objective-C [32] with Core ML [33], which optimizes on-
device performance by jointly leveraging the CPU, GPU, and
Neural Engine. We use the pre-trained compressed YOLOv3
model YOLOv3FP16 (640x640). for medium- to large-sized
object detection, as explained in Sec. IV. We empirically run
the local object detector at a fixed frame rate (e.g., 10).

4) Object Tracker: This module is implemented in C++
with the KCF [22] Tracker and ThreadPool [34] to sched-
ule multiple object tracking. We use the implementation of
KCFcpp [35] without the HOG features [36] for fast object
tracking, as described in Sec. V-2.

VII. EVALUATION

This section presents the evaluations of EdgeDuet.

A. Experiment Setup

1) Datasets: We compare different methods on VisDrone
[11], a dataset of videos captured by drone-mounted cameras.
We filter out the low-resolution videos and only keep six 2K
videos (2560x1440) captured along a street. We upsample the

origin 30fps videos to 60/120 fps with Super-SloMo [22] to
evaluate the performance with the video frame rate. Although
the VisDrone dataset contains annotated bounding boxes, some
small objects are not annotated. Therefore we use the outputs
(cars and pedestrians) of a YOLOv3-spp (2560x2560) model
to re-annotate these videos and treat them as the ground truth,
as with other recent studies on video analytics [15], [37], [38].

Fig. 8 shows certain vital statistics of the VisDrone dataset.
From Fig. 8a, the average number of objects in each frame is
148.4. As we will show later, adaptive tracker configuration
is beneficial to track such many objects in real-time. From
Fig. 8b and Fig. 8c, 75.1% of cars and 71.8% of pedestrians are
small objects. We will show the performance gain of offloading
small object detection over local detection shortly.

2) Compared Methods: We compare our EdgeDuet with
the following object detection schemes.

• Glimpse [7]: a continuous, real-time object detection
system that first proposes the “detect + track” framework
on mobile devices. It offloads frames to the cloud and
uses optical flow based tracker for real-time tracking.

• EAAR [8]: a state-of-the-art real-time object detection
system with offloading. It exploits parallel streaming and
inference as well as motion vector based object tracking.

• LaT: a variant of EdgeDuet (Local object detector +
adaptive Tracking configuration) that only performs local
object detection and tracks with our adaptive tracker
configuration.

3) Implementation and Settings of Compared Methods: The
implementation of EdgeDuet and LaT can be found in Sec. VI.
We briefly explain the implementation of Glimpse, EAAR,
and parameter settings for all methods below.

• Frames Encoding. To ignore the difference of JPEG
encoders and video encoders, we use Kvazaar to get
compressed JPEGs for Glimpse and video frames for
EAAR and EdgeDuet. This setting ensures the same frame
quality for fair comparison. For Glimpse, we encode
each frame to I frame by setting Group of pictures (GOP)
as 1. For EAAR and EdgeDuet, the GOP is set to 10. We
use the ultrafast preset for real-time video encoding.
We tune high-quality QP as 22 and low-quality QP as 44
for RoI encoding in EAAR and EdgeDuet. EAAR uses
Kvazaar to encode one frame to 1x4 tiles and pack
each tile into one slice, as the default setting. EdgeDuet
splits the frame into 5x3 tiles for offloading, as in Fig. 4c.

• Remote Object Detector. We use the same remote ob-
ject detection model, i.e., YOLOv3-spp, for Glimpse,
EAAR, and EdgeDuet. Glimpse operates on the input
size of 2560x2560. EAAR operates on 1280x1280 but
returns the detection results in 2560x2560. This setting
allows a lower latency of EAAR compared with its ori-
gin dependency aware inference. EdgeDuet operates on
960x960 for overlap-tiling inference. The overlap size is
set to 128 (2 macroblocks) as in Sec. III-B1.

• Real-time Object Tracking. We implement the optical
flow based tracker with calcOpticalFlowPyrLK for

100 150 200
Object count of each frame

0.0

0.2

0.4

0.6

0.8

1.0
C
D
F

Average: 148.4

(a) CDF of object count in each frame

0 5000 10000 15000
Car Size

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Small Car Thres: 5150

(b) CDF of car size

0 1000 2000 3000 4000 5000
Pedestrian Size

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Small Pedestrian Thres: 1698

(c) CDF of pedestrian size

Fig. 8. Characteristics of VisDrone [11] dataset. There are a number of objects in each frame, and most objects are small in size.

Glimpse. For EAAR, the motion vector based tracker is
implemented as an offline process. When received from
the server, each track frame is associated with a refer
frame ID. We use ffmpeg to compress the refer and
track frames and extract the motion vector based on the
refer frame to simulate RPS Control in EAAR. LaT uses
the same tracking module of EdgeDuet. They both split
speed range into two groups and set weight as 2.0 for fast
speed range and 1.0 for slow speed range, as explained
in Sec. V-2. We query the tracking results of the previous
frame when the current frame is feed for all methods.

4) Network Setting: Since autonomous mobile vision appli-
cations are often deployed outdoors, the network connections
vary. Accordingly, we compare the methods in different net-
work settings. We connect the mobile device and the edge
with WiFi 5GHz and emulate different types of networks with
Network Link Conditioner, a developer tool provided
by Apple. We use it to simulate different network conditions
(LTE, WiFi 2.4GHz, WiFi 5GHz), and network bandwidths.

5) Metrics: We evaluate the performance of different meth-
ods with the following metrics.

• Latency: Since our detection results are composed of
medium- to large-sized objects in frames from local
object detector and small objects in tiles from remote
object detector. We average latency for all objects, which
is compatible with the definition of latency in EAAR.

• Accuracy: We use the average IoU [39] to measure the
real-time object detection accuracy as in Glimpse and
EAAR. The IoU is averaged over all objects in all frames.

B. End-to-End Performance

Fig. 9 summarizes the accuracy (IoU) and latency of differ-
ent methods under LTE, WiFi 2.4GHz, WiFi 5GHz network
conditions. Fig. 10 highlights the accuracy of small objects.
We present our observations and explain the results below.

1) Overall Comparison: EdgeDuet notably outperforms the
two offloading schemes, Glimpse and EAAR, in both accu-
racy and latency under all the three network conditions. LaT is
the fastest because it only performs local detection. However,
pure local detection has the worst accuracy, especially for
small object detection. EdgeDuet achieves 161.5%, 245.0%,

292.4% improvement for small object detection accuracy
under the three network conditions, respectively. Under slow
network connection, e.g., LTE, LaT achieves similar accuracy
with Glimpse and EAAR. This indicates the necessity of a
local object detector when network conditions vary, which
is common outdoors. Since LaT performs badly for small
objects, we exclude it for the subsequent evaluations.

2) Comparison with Offloading Schemes on Latency: Edge-
Duet achieves 48.7%, 39.6%, 38.6% latency improvement than
Glimpse and 35.4%, 35.2%, 32.1% latency improvement
than EAAR under the three network conditions. The improve-
ment in latency is more notable under slower networks, e.g.,
LTE. EAAR achieves shorter latency than Glimpse since it
transmits encoded videos instead of raw JPEGs. EdgeDuet is
faster than EAAR for the following reasons.

• Detection of medium- to large-sized objects of EdgeDuet
is from a local object detector. The latency of the local
object detector is lower than offloading.

• Only small object detection is offloaded in EdgeDuet.
Therefore fewer data need to be transmitted.

• EdgeDuet accelerates the offloading pipeline with tile-
level parallelism. EAAR only implements task-level par-
allelism, so that the detection results have to wait for
processing the entire frame.

3) Comparison with Offloading Schemes on Accuracy:
EdgeDuet achieves 51.6%, 45.3%, 47.0% accuracy improve-
ment gain over Glimpse and 49.5%, 43.4%, 41.1% accuracy
improvement over EAAR under the three network conditions.
EAAR achieves slightly better accuracy than Glimpse under
LTE and WiFi 2.4GHz. The reason might be that motion
vector based tracker behaves badly when latency increases.
EdgeDuet yields the highest accuracy because it trades off
between the tracker’s accuracy and efficiency and employs
adaptive tracking to update fast-moving objects.

4) Comparison with Offloading Schemes on Small Object
Detection.: EdgeDuet achieves 35.2%, 34.3%, 44.3% small
object accuracy improvement over Glimpse and 73.3%,
67.0%, 62.6% small object accuracy improvement over EAAR.
EAAR is worse than Glimpse for small object detection,
although it has a higher overall detection accuracy. This is

LaT Glimpse EAAR EdgeDuet
0.0

0.1

0.2

0.3

0.4

0.5
Io
U

0

100

200

300

400

500

600

La
te
nc

y
(m

s)

(a) LTE

LaT Glimpse EAAR EdgeDuet
0.0

0.1

0.2

0.3

0.4

0.5

Io
U

0

100

200

300

400

500

600

La
te
nc

y
(m

s)

(b) WiFi 2.4GHz

LaT Glimpse EAAR EdgeDuet
0.0

0.1

0.2

0.3

0.4

0.5

Io
U

0

100

200

300

400

500

600

La
te
nc

y
(m

s)

(c) WiFi 5GHz

Fig. 9. End-to-end object detection accuracy (bars in red) and latency (bars in blue) of different methods under three network connections.

LaT Glimpse EAAR EdgeDuet

0.1

0.2

0.3

0.4

S
m
al
lO

bj
ec
tI
oU

(a) LTE

LaT Glimpse EAAR EdgeDuet

0.1

0.2

0.3

0.4

S
m
al
lO

bj
ec
tI
oU

(b) WiFi 2.4GHz

LaT Glimpse EAAR EdgeDuet

0.1

0.2

0.3

0.4

S
m
al
lO

bj
ec
tI
oU

(c) WiFi 5GHz

Fig. 10. Small object detection accuracy of different methods under three network connections. Pure local object detection (LaT) is excluded from subsequent
evaluations for its low detection accuracy on small objects.

because small objects contain very few macroblocks to extract
motion vectors, making it inaccurate to represent the object.

C. Impacting Factors on Overall Performance

1) Impact of Bandwidth: Fig. 11 shows the accuracy of
different methods under different bandwidths. Thanks to the
local object detector and optimized offloading, EdgeDuet con-
sistently achieves better accuracy than Glimpse and EAAR.
Particularly, when the bandwidth is limited (below 10Mbps),
the accuracy of Glimpse and EAAR drops dramatically.

2) Impact of Frame Rate: Fig. 13 shows the accuracy of
different methods when feeding videos of different frame
rates. EdgeDuet consistently achieves higher accuracy than
Glimpse and EAAR, even at 120fps. With the increase of
frame rate, the accuracy of Glimpse drops. This is because
the real-time tracker of Glimpse only works in an fps lower
than 30fps. As for EAAR, increasing the frame rate motion
does not impact the motion vector based tracker and thus the
accuracy. An interesting finding is the accuracy of EdgeDuet
increases with the frame rate. The reason may be that we
use adaptive tracker configuration to update trackers of high
speed objects frequently to reduce the influence of the skipped
frames. Our tile-level parallelism may also help since once
each tile’s results are received, they do not wait for the new
frame fed with high fps video input.

D. Benefits of Individual Modules in EdgeDuet

1) Benefits of RoI Frame Encoding: We evaluate the ben-
efits of RoI frame encoding by comparing the offloading file
size with EAAR and Glimpse. We average the bits count of

frames with the same index in GOP. Since Glimpse only
contains I frame, we only average the corresponding frames
with the same frame index. Fig. 12 shows the average frame
size of GOP. Since Glimpse does not apply inter-frame
prediction and RoI frame encoding, its frame size is the largest,
especially when the frame is encoded to P frame in EAAR and
EdgeDuet. Since EdgeDuet does not offload medium- to large-
sized objects, its frame size is smaller than EAAR.

2) Benefits of Content-prioritized Tile Offloading: We show
the benefits of content-prioritized tile offloading by comparing
EdgeDuet with two variants. The variant Frame-Level
encodes frames without splitting into tiles. The variant
Tile-Level splits frames into tiles, but does not change
their priority. Fig. 14 shows the accuracy and latency of
EdgeDuet and the two variants. EdgeDuet achieves 7.3%
and 4.3% accuracy improvement over Frame-Level and
Tile-Level. EdgeDuet achieves 12.2% and 5.1% latency
improvement over Frame-Level and Tile-Level.

3) Benefits of Adaptive Tracker Configuration: We evaluate
the benefits of adaptive tracker configuration by comparing
EdgeDuet with a variant SeqTracking which sequentially
updates each tracker. Fig. 15 shows the accuracy of Edge-
Duet and SeqTracking. Our adaptive tracker configuration
improves the overall accuracy by 4.2%.

VIII. RELATED WORK

Our work is relevant to the following categories of research.

Object Detection Models. Advances in deep learning have
resulted in various accurate and fast object detection models

10 20 30 40
Bandwidth (Mbps)

0.0

0.1

0.2

0.3

0.4

Io
U

Glimpse EAAR EdgeDuet

Fig. 11. Impact of Network Bandwidth

0 2 4 6 8 10
Frame Index in GOP

100

150

200

Fr
am

e
S
iz
e
(K
B
)

Glimpse EAAR EdgeDuet

Fig. 12. Benefits of RoI Frame Encoding

30 60 120
Frame Rate (fps)

30

40

50

60

Io
U

Glimpse
EAAR

EdgeDuet

Fig. 13. Impact of Frame Rate

Frame-Level Tile-Level EdgeDuet
EdgeDuet and the baselines

0.40

0.42

0.44

0.46

0.48

0.50

Io
U

100

125

150

175

200

225

250

La
te
nc

y
(m

s)

Fig. 14. Benefits of Content-Prioritized Tile Offloading

SeqTracking EdgeDuet
EdgeDuet and the baseline

0.40

0.43

0.46

0.49

Io
U

Fig. 15. Benefits of Adaptive Tracker

such as two-stage models e.g., Faster-RCNN [40] and one-
stage models e.g., YOLO [41]. Model compression and ac-
celeration techniques [5], [42]–[44] can substantially reduce
the computation workload of deep learning-based models.
However, the compressed models suffer from low accuracy
on small object detection if the input image/video is low in
resolution [6]. For accurate and fast small object detection,
customized models [6], [13], [14] have been developed to
detect objects on sub-regions of the input image/video. Our
work also performs object detection on sub-regions. However,
rather than design new object detection models, we exploit
existing YOLO-family models of different capabilities [41] to
process different sub-regions of video frames.

Edge/Cloud Offloading. A popular strategy to enable highly
accurate object detection on resource-constrained mobile de-
vices is to offload the compute-intensive object detection to
the powerful edge/cloud server [7], [8], [12], [15], [45]–
[51]. However, offloading may incur long delays since large
amounts of videos need to be uploaded to the server via
wireless networks. To enable offloaded object detection on
continuous videos, Glimpse [7] proposes to only send trigger
frames and proposes the “detect + track” framework for fast
object detection. EAAR [8] compresses the uploaded frames
via RoI based video encoding and applies parallel streaming
and inference techniques to reduce the offloading latency
further. Our work is built upon the “detect + track” framework
and the pipelined offloading principle, but improves the par-
allelism of the offloading pipeline to tile-level. Furthermore,
these studies do not optimize small object detection. DDS [15]
differentiates small and large object detection by first offload-

ing high-resolution, low-quality video frames to detect large
objects and locate small objects. Regions containing small
objects are then encoded in high quality and offloaded again
to detect small objects. The method improves the accuracy
of small object detection but doubles the delay for object
detection. Unlike DDS, which detects large and small objects
sequentially, we run a fast model on low-resolution frames to
detect large objects and offload small object detection with
high-quality frames at the same time.

IX. CONCLUSION

This paper presents EdgeDuet, the first splits object detec-
tion between the mobile device and the edge for accurate,
real-time object detection on resource-constrained devices.
Specifically, EdgeDuet offloads small object detection to the
edge while detecting medium- to large-sized objects locally on
the mobile device. EdgeDuet exploits RoI frame encoding and
priority-based tile offloading to reduce the network traffic and
accelerate the offloading pipeline. It also optimizes the cache
detection results and tracker configurations for real-time object
tracking. Evaluations on VisDrone, a video dataset from drone-
mounted cameras, show that EdgeDuet outperforms local
object detection in small object detection accuracy by 233.0%.
It also improves the overall accuracy by 44.7% and end-to-end
latency by 34.2% over the state-of-the-art offloading schemes,
especially in low bandwidth and high frame-rate input.

ACKNOWLEDGEMENT

This work is supported in part by the NSFC under grant
61832010, 61632008, 61872081, 61972131. Zimu Zhou’s re-
search is supported by the Singapore Ministry of Education
(MOE) Academic Research Fund (AcRF) Tier 1 grant.

REFERENCES

[1] J. Xu, H. Chen, K. Qian, E. Dong, M. Sun, C. Wu, L. Zhang, and
Z. Yang, “ivr: Integrated vision and radio localization with zero human
effort,” in PACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, Sep 2019.

[2] J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, and Z. Yang,
“Edge assisted mobile semantic visual slam,” in Proceedings of the IEEE
INFOCOM, 27-30 April 2020.

[3] K. Kanistras, G. Martins, M. J. Rutherford, and K. P. Valavanis, “A
survey of unmanned aerial vehicles (uavs) for traffic monitoring,” in
Proc. of IEEE ICUAS, 2013.

[4] E. Su, “Roaming ’robodog’ politely tells singapore park goers to keep
apart,” https://www.reuters.com/, 2020.

[5] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[6] F. Ozge Unel, B. O. Ozkalayci, and C. Cigla, “The power of tiling for
small object detection,” in Proc. of IEEE CVPR Workshops, 2019.

[7] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proc. of ACM SenSys, 2015.

[8] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in Proc. of ACM MobiCom, 2019.

[9] M. Liu, X. Ding, and W. Du, “Continuous, real-time object detection
on mobile devices without offloading,” in Proc. of IEEE ICDCS, 2020.

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[11] P. Zhu, L. Wen, D. Du, X. Bian, Q. Hu, and H. Ling, “Vision meets
drones: Past, present and future,” arXiv preprint arXiv:2001.06303,
2020.

[12] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang,
and M. Satyanarayanan, “Bandwidth-efficient live video analytics for
drones via edge computing,” in Proc. of IEEE/ACM SEC, 2018.

[13] V. Rŭžička and F. Franchetti, “Fast and accurate object detection in high
resolution 4k and 8k video using gpus,” in Proc. of IEEE HPEC, 2018.

[14] M. Gao, R. Yu, A. Li, V. I. Morariu, and L. S. Davis, “Dynamic zoom-
in network for fast object detection in large images,” in Proc. of IEEE
CVPR, 2018.

[15] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proc. of ACM SIGCOMM, 2020.

[16] H. E. V. Coding and I. Rec, “H. 265 and iso,” 2013.
[17] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou, “An

overview of tiles in hevc,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 6, pp. 969–977, 2013.

[18] x265, the free H.265/HEVC encoder. [Online]. Available: https:
//www.videolan.org/developers/x265.html

[19] NVIDIA Video Codec SDK. [Online]. Available: https://developer.nvidia.
com/nvidia-video-codec-sdk

[20] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and
T. D. Hämäläinen, “Kvazaar: open-source hevc/h. 265 encoder,” in Proc.
of ACM MM, 2016.

[21] OpenHEVC. [Online]. Available: https://github.com/OpenHEVC/
openHEVC

[22] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2014.

[23] How OpenCV-Python Bindings Works? [Online]. Available: https:
//docs.opencv.org/3.4.9/da/d49/tutorial py bindings basics.html

[24] ultralytics/yolov3. [Online]. Available: https://github.com/ultralytics/
yolov3

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[26] N. NVIDIA, “Multi-process service,” 2014.
[27] ISO, “Iso/iec 14882: 2017 information technology—programming lan-

guages—c++.” 2017.
[28] Introduction to Framework Programming Guide. [Online].

Available: https://developer.apple.com/library/archive/documentation/
MacOSX/Conceptual/BPFrameworks/Frameworks.html

[29] https://developer.android.com/ndk, Android NDK.
[30] OpenCV 4.2.0. [Online]. Available: https://opencv.org/opencv-4-2-0
[31] Kvazaar. [Online]. Available: https://github.com/ultravideo/kvazaar
[32] https://developer.apple.com/documentation/objectivec, Objective-C Run-

time.
[33] CoreML. [Online]. Available: https://developer.apple.com/

documentation/coreml
[34] ThreadPool. [Online]. Available: https://github.com/progschj/

ThreadPool
[35] KCFcpp. [Online]. Available: https://github.com/joaofaro/KCFcpp
[36] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,

“Object detection with discriminatively trained part-based models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 9, pp. 1627–1645, 2009.

[37] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proc. of ACM
SIGCOMM, 2018.

[38] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in Proc. of ACM
SIGCOMM, 2018.

[39] M. Dantone, L. Bossard, T. Quack, and L. Van Gool, “Augmented faces,”
in Proc. of IEEE ICCV Workshops, 2011.

[40] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Proc. of NeurIPS,
2015.

[41] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. of IEEE CVPR, 2016.

[42] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: resource-aware multi-tenant
on-device deep learning for continuous mobile vision,” in Proc. of ACM
MobiCom, 2018.

[43] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Proc. of ACM/IEEE ISCA, 2016.

[44] X. He, Z. Zhou, and L. Thiele, “Multi-task zipping via layer-wise neuron
sharing,” in Proc. of NeurIPS, 2018.

[45] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-
namurthy, “Mcdnn: An approximation-based execution framework for
deep stream processing under resource constraints,” in Proc. of ACM
MobiSys, 2016.

[46] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in Proc. of IEEE
INFOCOM, 2018.

[47] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
A. Ylä-Jääski, “Latency and throughput characterization of convolutional
neural networks for mobile computer vision,” in Proceedings of the 9th
ACM Multimedia Systems Conference, 2018, pp. 204–215.

[48] J. Yi, S. Choi, and Y. Lee, “Eagleeye: wearable camera-based person
identification in crowded urban spaces,” in Proc. of ACM MobiCom,
2020.

[49] T. Tan and G. Cao, “Fastva: Deep learning video analytics through edge
processing and npu in mobile,” in Proc. of IEEE INFOCOM, 2020.

[50] S. P. Chinchali, E. Cidon, E. Pergament, T. Chu, and S. Katti, “Neural
networks meet physical networks: Distributed inference between edge
devices and the cloud,” in Proc. of ACM HotNets, 2018.

[51] A. Galanopoulos, V. Valls, G. Iosifidis, and D. J. Leith, “Measurement-
driven analysis of an edge-assisted object recognition system,” arXiv
preprint arXiv:2003.03584, 2020.

	Edgeduet: Tiling small object detection for edge assisted autonomous mobile vision
	Citation

	tmp.1643280458.pdf.87vnc

