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Causal Interventional Training for Image Recognition
Wei Qin, Hanwang Zhang, Richang Hong*, Ee-Peng Lim and Qianru Sun

Abstract—Deep learning models often fit undesired dataset bias
in training. In this paper, we formulate the bias using causal
inference, which helps us uncover the ever-elusive causalities
among the key factors in training, and thus pursue the desired
causal effect without the bias. We start from revisiting the process
of building a visual recognition system, and then propose a
structural causal model (SCM) for the key variables involved in
dataset collection and recognition model: object, common sense,
bias, context, and label prediction. Based on the SCM, one can
observe that there are “good” and “bad” biases. Intuitively, in
the image where a car is driving on a high way in a desert, the
“good” bias denoting the common-sense context is the highway,
and the “bad” bias accounting for the noisy context factor is the
desert. We tackle this problem with a novel causal interventional
training (CIT) approach, where we control the observed context in
each object class. We offer theoretical justifications for CIT and
validate it with extensive classification experiments on CIFAR-10,
CIFAR-100 and ImageNet, e.g., surpassing the standard deep
neural networks ResNet-34 and ResNet-50, respectively, by 0.95%
and 0.70% accuracies on the ImageNet. Our code is open-sourced
on the GitHub https://github.com/qinwei-hfut/CIT.

Index Terms—Image recognition, causality, causal intervention,
deep learning, ImageNet

I. INTRODUCTION

Deep neural networks (DNNs) achieve the state-of-the-
art performance in many tasks [1]–[5]. Since deep neural
networks are driven by data, biased data inevitably cause biased
models, resulting in poor generalization for test domains [6]. To
confront with the bias, unbiased training is proposed to directly
compensate the bias effect, e.g., jitter or flip the images for
data augmentation [7], [8], batch normalization for stable mean
and variance [9], neuron dropout for robust features [10], and
re-weighting for balanced sample loss [11]–[13], just to name
a few. Meanwhile, we do find that some of the bias types, such
as visual contexts, are essentially good for different tasks [14],
[15], e.g., an image with a highway definitely increases the
probability of car or truck and decreases that of lion or fish.
In fact, there are evidences showing that removing such “good”
bias indeed hurts the model performance [16], as the “good”
bias has a high probability to appear in test cases. However,
how to distinguish the “good” from the “bad” at the training
stage still remains open.

In this paper, we aim to pursue the desired model trained
with the “good” and without the “bad”. We start from revisiting
the fundamental process of building a visual recognition system.
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Fig. 1: Our modeling and interpretation. (a) shows our causal
assumption in the format of structural causal model (SCM)
specifically proposed for the task of image recognition. (b)
shows some examples corresponding to two important SCM
paths from object X to context C: one through “bad” bias
B and the other one through “good” bias A. In specific, (b)
shows that on a highway is a common-sense background factor
for the object class car and the desert or the CBD are noisy
background factors.

Specifically, we build a structural causal model (SCM) [17]
for the key variables involved in dataset collection and its
corresponding recognition model: object, common sense, bias,
context, and label prediction. SCM represents the causal
assumption for any image recognition models driven by large-
scale training datasets. As illustrated in Figure 1(a), our
assumption can be detailed as: (i) object content X directly
yields the prediction Y . This is the essential causality we want
to learn in image recognition; (ii) X has its context C, which
is mediated by class-specific common sense denoted as A.
This is the “good” bias; and (iii) dataset bias B confounds
the association between X and its context C. This results in
the “bad” bias effect. We justify that (i) and (ii) indicate the
“good” correlation among X , C and Y , e.g., Y = car; X =
visual content of car; and C = visual context of car such as
on a highway in a desert ( SUV car) and on a highway in a
CBD ( sports car), see the Figure 1(b). We highlight that (iii)
is due to the reporting bias (selection bias [8]) or the natural
noise distribution, which are inevitable in dataset collection.
As [18] claimed, objects features have causal relations with
some context features but have no causal relations with others.
Examples on the first row of Figure 1(b) show the common-
sense context factors that the car has a causal relation with the
highway. Examples on the second row of Figure 1(b) reveal
the noisy context factors that the car has no causal relation
with the desert or the CBD. The model should infer there may
be a car based on cars’ visual features or highways’ features
but not the deserts’ features. We will elaborate the SCM with

https://github.com/qinwei-hfut/CIT
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formal definitions in Section Structure Causal Model.
Instead of training P (Y |X), we leverage causal inference

that is to learn P (Y |do(X)) where the do-calculus means the
pursuit of the true causality between X and Y without the
confounding effect [17]. The ideal way to P (Y |do(X)) is by
intervening X physically (a.k.a. random controlled trial [19]),
e.g., if we could curate the data of any car in any context,
we can train a unbiased classifier P (Y = fish|do(X)). As
this is not applicable in given datasets, we thus propose an
approximate approach called causal interventional training
(CIT). The key idea of CIT is interventional data sampling.
More specifically, we achieve a “virtual” intervention for X
by fixing it as x and sample contexts c given x, to cut off
the backdoor path involving C. In particular, the sample is
conditional on the object class, e.g., for any x of car, we
sample from the context subset appearing in the car class
only. Finally, we use sampled data to train P (Y |do(X)).
We provide a theoretical justification for CIT (in Section
Causal Intervention by Backdoor Adjustment) based on causal
intervention theories [17]. We also devise two implementations
in order to plug the CIT in deep neural networks (DNNs) and
on large-scale training datasets, e.g., the ImageNet including
millions of samples. We will elaborate with the details in
Section Experiments on the ImageNet Dataset.

In summary, our main contributions are three-fold. (i) We
propose a novel structural causal model for object recognition,
demonstrating that the evil of dataset bias is the effect it causes
by confounding content and context. (ii) We propose a novel
CIT approach, and theoretically justify it can achieve the same
performance of mitigating confounding effect as if it were
able to physically control the bias. (iii) We introduce two
implementation designs to plug CIT in state-of-the-art DNNs
and train unbiased image classifiers on large-scale datasets, i.e.,
CIFAR-10, CIFAR-100 [20], and ImageNet [21].

II. RELATED WORK

Causality in Multimedia. Causal inference has been success-
fully applied in psychology, politics and epidemiology [22],
[23]. In recent years, researchers try to introduce causal
inference into multimedia tasks and computer vision tasks.
To estimate temporary movement in video images, [24]
introduced a novel flow extraction approach called causal flow,
which can estimate the dominant causal relationships among
nearby pixels. [25] used counterfactual examples to explain
the learning behaviors of image classifiers. [26] introduced
Invariant Risk Minimization to train robust models against
spurious correlations. [16] proposed a counterfactual training
framework to learn the unbiased scene graph from biased
training data. [27] introduced causal intervention into visual
representation learning, its backdoor adjustment is a soft-
attention approximation under a quite strong assumption,
i.e., the confounder inventory is well-established and fully
observable. In this paper, we relax it to partially observable
(visible), and we prove that it can be recovered by sampling
in SGD.

To address the problem of domain shift, [28] use a single
causal-based underlying system to model the difference of the

distributions for the source (or training) domain(s) and target
(or test) domain(s). [29] built a synthetic Visual Question
Answering (VQA) dataset to quantify spurious correlations
learned in VQA models. [30] regarded the goal of providing
explanations for the decisions of machine-learning models as
a causal learning task, and exploited the causal explanation
(CXPlain) models that learn to evaluate to what degree certain
inputs have a causal effect on outputs in another machine-
learning model. [31] theoretically analyzed self-supervised
representation learning using a causal framework and proposed
a novel self-supervised objective– Representation Learning
via Invariant Causal Mechanisms. More recently, [32], [33]
proposed to tackle weakly-supervised semantic segmentation,
respectively, by building SCMs for them. [34] used a causal
perspective to reformulate the compositional zero-shot recog-
nition. In specific, they formalized inference as a problem of
finding the most likely intervention. [35] investigated what role
do the regularizing terms play in standard regression tasks from
the perspective of causal. [36] provided a causal perspective
on representation learning which covers disentanglement and
domain shift robustness as special cases. [37], [38] proposed
a causality-inspired framework that builds structural causal
model to capture the true effect of query and video content on
the prediction. [39] argued that causal concepts can be used
to explain the success of data augmentation by describing how
they can weaken the spurious correlation between the observed
domains and the task labels. [40] mitigated the noisy factors
in feature space rather than example space. Different from
our belief that the background contains both common-sense
factors and noisy factors, [41] argued that context features
should not be relied upon in classification tasks. Mitigating all
information from context features may be more robust, but at
the expense of performance. Although both [18] and our paper
have isolated content and context of images, the investigating
purposes are totally different. They try to discover the causal
relation between objects in a single image. In specific, they
propose a new task, distinguishing the object features from
the context features, to empirically support their hypothesises.
Therefore, they employ an object segmentation algorithm to
isolate all possible objects in the image while our CIT uses a
saliency detection model to isolate the single main object in the
image. Compared with our work, [18] neglected what role the
class and the predicted class play in the causal graph and did
not involve how to recognize the object in the image. However,
[18] supported the hypothesis of our work that objects features
have causal relations with some context features but have no
causal relations with others Our work is the first one to make
the causal assumption and propose a new training solution for
the most generic task in computer vision — image recognition.
Data Augmentation. The implementation of our CIT approach
can be regarded as data augmentation. Typical data augmenta-
tion methods are random cropping, color augmentation [42]
and resizing images [43]. Recently, there are some advanced
data augmentation methods. For example, [44] trained a neural
network on convex combinations of pairs of examples and
their labels. [45] cut and pasted patches among training
images whose ground truth labels are from the labels mixed
proportionally to the area of the patches. [46] presented a
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novel multiview-interpolation framework for wide-baseline
camera arrays. To use the high-level semantics in videos,
[47] augmented each frame representation with its context
information. To solve the domain shift between training data
and test data, [48] generated heterogeneous training images
by mutually transforming the cross-modality differences and
incorporating synthesized images into the learning process.
[49] introduced a framework based on the deep convolutional
generative adversarial networks for generating training images
to augment the training set in order to improve the performance.
Our CIT is different from them as it is motivated by
causal intervention which is fully explainable, while the related
methods are more heuristic. Besides, our work focuses on
the relationship between object content and context (common-
sense context and biased context), while the related works
produce “new classes” using the mixup of existing classes to
augment the data. More recent data augmentation methods [29],
[50]–[53] are based on the counterfactual-level causal analysis.
We highlight that according to Judea Pearl’s causal ladder
[17], our interventional level underpins the counterfactual
level, i.e., the latter requires a well-trained SCM model to
infer counterfactuals. Therefore, our work is fundamentally
orthogonal to them and essentially supports them. Besides,
generating counterfactual examples strongly relies on the
performance of image generation models which are notoriously
hard to train. We guess this is the reason why [50] and [51]
showed only simple results on low-dimensional data space. [52]
and [53] generated counterfactual examples using manually-
designed methods.
De-bias in Image Data. Previous works [14], [54], [55]
mentioned that image contexts are important visual cues
for object recognition but sometimes undesirable. [56] and
[57] removed context bias through adversarial learning. [58]
regarded co-occurring objects in the image as context bias in the
multi-label classification tasks. They thus proposed to reduce
the co-occurrence. In this paper, we define the “good” and
“bad” of the context in a more general causal perspective.
We apply causality techniques (i.e., interventional training)
to enable the data themselves to de-bias. Our approach can
be potentially applied in a wider range of image recognition
tasks.

III. CAUSAL INTERVENTIONAL TRAINING

The dataset bias B misleads the correlation between input
image X and output label Y , leading to unrobust classifiers
P (Y |X). To model this causality, we introduce our causal
assumption represented by SCM in Section Structural Causal
Model. Based on the SCM, we point out that the key is to
mitigate the confounded effect of X on Y by B. To achieve
that, we propose a novel approach CIT, based on the general
causal intervention tool — backdoor adjustment [17], in Section
Causal Intervention by Backdoor Adjustment. Finally, in Section
Causal Interventional Training, we detail the implementation
steps of applying CIT to learn unbiased object classifiers
P (Y |do(X)).

A. Structural Causal Model

The SCM in Figure 1(a) represents the causalities among
the key variables in a general object recognition system: image
X , label Y , context C, common sense A and bias B. Each
arrow denotes the cause-effect relationship between two nodes.
In the follows, we detail the underline rationale behind SCM.

X → A→ C. The context C pictures the surrounding (and/or
object attributes) of the content X . The association between X
and C is mediated by the latent variable of knowledge, we call
it common sense A. This affects the result of data collection.
For example, dataset creators tend to take images of marine
fish particularly in the scenes of ocean, based on a common
sense that marine fish live in ocean.

C

B

X

A Y

Fig. 2: The intervened
SCM where we only cut
the path involving “bad”
bias B.

X ← B → C. We use a
latent variable B to denote the bias
which leads to negative effects. B
could be of different kinds, e.g.,
selection bias introduced by data
annotators or collection tools [8],
as shown in Figure 2. In most
cases, B is not visible or not easy
to be disentangled from the data.
B confounds another correlation
between X and C, which is differ-
ent from the above mediation (via
A). The former is “bad” as it hurts the generalization ability
of the model (i.e., makes the model fit to biased factors [8]),
while the latter is “good” to the model. Therefore, de-biasing
is to mitigate the confounding correlation caused by B. As
illustrated in Figure 2, this is equivalent to do(X) which cuts
the path from B to X [17]. A plausible realization of this “cut”
is given in Section Causal Interventional Training.

Z

X Y

Fig. 3: A classic three-
variable SCM that con-
tains a confounder (Z).

C → Y ← X . We use Y
to denote the label space or the
prediction of trained models. On
the intervened SCM shown in
Figure 2, Y is determined by X
via two causal paths: (i) the direct
X → Y and (ii) the mediated
X → A → C → Y (as “cut” is
applied to block X ← B → C →
Y ). The first path is essential. The
second path (through C) is inevitable in object recognition, as
object itself is contextualized, e.g., the appearance of the fish
on plates is cooked.

So far, we have pinpointed the roles of bias B and common
sense A played in object recognition. We understand in the
conventional P (Y |X), the prediction of Y given X is not
only due to “X causes Y ” via X → Y and X → A →
C → Y , but also the undesirable X ← B → C → Y . In the
language of causal inference, the undesirable path is called
backdoor [59]. To “cut” it, the general solution is backdoor
adjustment, i.e., using P (Y |do(X)) instead of P (Y |X) as
the training objective. Next, we elaborate how we apply this
solution to image recognition in our approach.
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B. The Backdoor Criterion and The Backdoor Adjustment

In Figure 3, we illustrate the most fundamental confounding
case using the classical three-variable SCM, where Z denotes
the confounder [60], [61]. Based on the law of total probability,
it is easy to get

P (Y |X) =
∑
Z

P (Y |X,Z)P (Z|X), (1)

which includes both the direct causal effect of X on Y and the
correlation confounded by Z. Taking this three-variable SCM
as an example, we then introduce how to implement the causal
intervention P (Y |do(X)) by using the conventional backdoor
adjustment [62], [63].

Definition 1: (The Backdoor Criterion) Given a pair of
variables (X,Y ) in a directed acyclic graph G, a variable Z
satisfies the backdoor criterion with respect to (X,Y ), if (i)
no node in Z is a descendant of X , and (ii) Z blocks every
path between X and Y which contains an arrow into X .

If Z satisfies The Backdoor Criterion for (X,Y ), backdoor
adjustment is to replace P (Z|X) with P (Z), which yields the
true causal effect of X on Y , i.e., mitigates the confounded
effect of Z. The formulation is thus as follows,

P (Y |do(X)) =
∑
Z

P (Y |X,Z)P (Z). (2)

Please note that in the original definition, Z could denote a
set of variables. Here, we use a single variable (in Z) as an
example.

C. Causal Intervention by Backdoor Adjustment

Preliminary. Based on the SCM in Figure 1(a), the corre-
lation between X and Y in the conventional classifier can be
formulated as:

P (Y |X) =
∑
C

∑
A

∑
B

P (Y |X,C,A,B)P (C|A,B,X)

P (A|X)P (B|X), (3)

which accords to the law of total probability. P (Y |X) is inferior
due to the effect of confounder B.
Our Approach. We propose the causal intervention by using
P (Y |do(X)) as the new classifier, which explicitly “removes”
B to achieve the true causality between X and Y . Specifically,
we apply backdoor adjustment. As shown in Figure 2, do-
Calculus “cuts” the pathway from B to X . To formulate it,
we replace P (B|X) with P (B) in Eq. 3, and obtain:

P (Y |do(X)) =
∑
C

∑
A

∑
B

P (Y |X,C,A,B)

P (C|A,B,X)P (A|X)P (B) (4)

=
∑
C

∑
A

∑
B

P (Y |X,C)P (C|A,B)

P (A|X)P (B) (5)

=
∑
C

∑
B

P (Y |X,C)P (C|A = a,B)P (B) (6)

Thanks to the rule 1 of do-Calculus [64], A,B do not affect
Y directly and X does not affect C, so P (Y |X,C,A,B) and
P (C|A,B,X) in Eq. 4 can be replaced with P (Y |X,C) and
P (C|A,B), respectively, yielding Eq. 5. As A is determined by

the common sense knowledge of X where X is fixed, A can be
specified and fixed as a, yielding Eq. 6. Then, we elaborate the
case (rare) when physical intervention is applicable, followed
by our approximate solution for the other case (most) when
physical intervention is not applicable.
Stratify B. If assume B is visible, the physical intervention
is to stratify B that produces an integrated set of contexts Cx
(for any given content x) using every value of B. For example,
if B denotes data annotators’ preference, the annotator labels
can be used as the values of B [65]. Using these labels, we
can search the context set Cx introduced by all annotators and
use them to contextualize x. We use the resulted images XC
to train P (Y |do(X)) as in Eq. 6.

However in many cases, B is not visible or not easy to
disentangle from the real dataset, e.g., ImageNet [21]. In
other words, Stratify B is not always applicable. Fortunately,
by leveraging causal inference, we are able to propose an
equivalent solution called Stratify C conditional on A. In
specific, if accumulate B in Eq. 6, we get:

P (Y |do(X)) =
∑
C

P (Y |X,C)P (C|A = a). (7)

It is worth highlighting that this “accumulate B” requires the
independence between A and B, which can be guaranteed by
applying D-Separation [66] on our proposed SCM (shown in
Figure 1(a)): if B → X → A exists, A and B are independent
conditional on X .
Stratify C conditional on A is our solution for Eq. 7, by
which we can learn the classifier P (Y |do(X)). This solution
is based on the assumption that A = a is visible given x.
We approximate it by sampling context images Cx from the
class of x. Our intuition is obvious. For example, if x is an
example of marine fish, a is the common sense that marine fish
lives in ocean water. So, the contexts in the class of marine
fish (mostly in ocean water) are the most suitable samples for
Cx to contextualize x. Similar to Stratify B, we can use the
contextualized images to learn the classifier P (Y |do(X)).

D. Causal Interventional Training

In this section, we introduce our causal interventional training
(CIT) on real large-scale image datasets. In the general sense,
there are three steps. Step 1 is to disentangle the original
image I into content xI and context cI . Step 2 is to generate
the context set Cx given every specific content xI . Step 3 is
to contextualize xI using Cx to produce new data to train
P (Y |do(X)). As aforementioned, we need to detail Step 2 in
two cases regarding B is visible or not. We provide the pseudo
code of these 3 steps in Algorithm 1.
Step 1: Given an image I , we use a function g to isolates the
content and context as:

xI , cI = g(I), (8)

where g can be (i) a pre-trained model, e.g., of saliency
detection [67], and (ii) a pre-defined pattern such as using
colorized the backgrounds for specific classes, where the color
bias is easy to recognize by the classifier itself without needing
additional models. In experiments, we apply these two kinds of
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(b)	double-branch	neural	networks
(ResNet-50	or	ResNet-34	as	backbone)

+
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Fig. 4: We show three ImageNet samples with their saliency detection results in (a). We place the best-quality one on the
leftmost and the worse ones on the rightmost. We show the double-branch network architecture (used for ImageNet) in (b).
Input layer is included in res-block 1. “res-” stands for the residual architecture, “AP” denotes the average pooling, and “FC” is
the fully-connected layer.

g for ImageNet and CIFAR datasets, respectively. Step 2: We
need to formulate two cases separately. First, if B is visible,
we use Stratify B to generate CxI

. Let h denote the generating
process of B → C ← A. It uses A as a specific value axI

conditional on xI , and then stratify all values of B (denoted
as {bi}) using the prior probability of bi (denoted as P (bi)).
Therefore, we have:

CxI
= {h(axI

, bi) · P (bi)}, (9)

where i ∈ {1, 2, ..., N}, and P (·) denotes the prior distribution.
Function h(axI

, bi) means using common-sense background
factor axI

and noisy background factor bi to create a new
background image. Second, if B is not visible, Stratify C
conditional on A is used to sample Cx as follows:

CxI
= {cxi

}, (10)

where axi
= axI

meaning that xi and xI are in the same
class (i.e., have the same common sense knowledge). Step 3:
Contextualizing content xI is to pair it with each specific
sample cj in CxI

. Using contextualized data to train the
classifier is to minimize the following loss function:

L =

M∑
j=1

Lce(f(xI , cj), yI), (11)

where cj ∈ CxI
, yI is the ground truth label, M is the size

of CxI
, Lce denotes the cross-entropy loss function, and f

represents the classifier. In this way, we have to learn M times
of data and require M times of computation costs, which is
implausible on the real large-scale datasets. We tackle this
problem by introducing a new implementation method called
epoch-wise data augmentation. In each epoch, we learn the
model using the original data as well as the same number of
new contextualized data. Both data contain the same set of
object content. The objective is thus to minimize:

Lj = Lce(f(xI , cj), yI) + Lce(f(xI , cI), yI), (12)

where Lj is the loss at the j-th epoch, cI is the original context
of xI and cj ∈ CxI

. Empirically, we observe the model can
converge at the T -th epoch where T ≪M .

IV. EXPERIMENTS ON THE IMAGENET DATASET

In this section, we evaluate one of our CIT approaches —
Stratify C conditional on A on ImageNet where the bias is not
visible. Below we introduce the dataset, implementation details,
and comparison methods, followed by the result analysis and
the interpretation of our approach.
Datasets. ImageNet 2012 [21] is a large-scale image dataset
consisting of 1, 000 classes. It has 1.28M samples for training
and 50K for validation. On this dataset, we employ a pre-
trained saliency detection model [67] to separate the content
and context for each image. The separation results are noisy (as
shown in Figure 4(a)), but are still supportive to our evaluation
process.
Implementation details. To realize CIT, i.e., by pairing
different contexts to the content, we deploy two double-branch
neural networks (based on ResNet-50 and ResNet-34). One
branch is fed by content while the other for context. We show
the architecture in Figure 4(b). We pre-train the standard
ResNet and then use the learned weights to initialize the
corresponding residual blocks in our double-branch networks.
When training P (Y |do(X)), we fine-tune only two high-level
blocks and the FC layer (blue blocks in Figure 4(b)). We use
the SGD optimizer with Nesterov momentum [68]. Following
the standard settings of ResNet [1], we set the mini-batch
size to 128, the momentum to 0.9, the weight decay to 1e−4

and the initial learning rate to 1e−3. We drop the learning
rate by 0.1 after every 16 epochs. We train all models for 32
epochs. Our code is based on the official PyTorch Hub. All
our reporting numbers are obtained on the same validation set,
and are averaged over three runs of experiments.
Comparison methods. Referring to Table I, we introduce the
comparison methods. Baseline is the standard ResNet in
the official PyTorch code. Obj+Bg is our implementation of
a similar double-branch neural network proposed in [69]. The
reason why we use a double-branch neural network is because
our input contains two parts(context and content). One branch is
fed with object region and the other is for background (context).
Sal IMG is our implementation of another similar double-
branch network proposed in [70]. Different from Obj+Bg, it
inputs the whole image into one branch and the corresponding
saliency map to the other branch. For both methods, we deploy
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Algorithm 1 Causal Interventional Training (CIT)

STEP ONE: isolate images into content and context.
INPUT: training data (I,Y), function g that isolates the
content and context of an image.
OUTPUT: isolated training data Siso.

1: Siso = {}
2: for Ii, yi in (I,Y) do
3: xi, ci = g(Ii)
4: Siso.ADD

(
xi, ci, yi

)
5: end for

STEP TWO: get the context set given each specific content.
INPUT: isolated training data Siso, the function a = f(x) that
gets the mediator a from content x, the function c = h(b, a)
that simulates the process from a and b to c.
OUTPUT: intervened training data Sitv (images and labels).
If B is observable, we use Stratify B:

1: Sitv = {}
2: for xi, ci, yi in Siso do
3: axi

= f(xi)
4: Cxi

= {}
5: for bj in B do
6: Cxi .ADD

(
h(bj , axi)

)
7: end for
8: Sitv .ADD

(
xi, Cxi

, yi
)

9: end for
If B is unobservable, we use Stratify C conditional on A:

1: Sitv = {}
2: for xi, ci, yi in Siso do
3: Cxi = {}
4: for xj , cj , yj in Siso do
5: if f(xj) == f(xi) then {On the ImageNet, this line

is realized as ”if yj == yi then”}
6: Cxi

.ADD
(
cj
)

7: end if
8: end for
9: Sitv .ADD

(
xi, Cxi , yi

)
10: end for

STEP THREE: epoch-wise causal interventional training.
INPUT: intervened training data Sitv, model fθ with
parameters θ, learning rate λ.
OUTPUT: trained model fθ with parameters θ.

1: for epc in Numepoch do
2: Sepc = {}
3: for (xi, Cxi

, yi) in Sitv do
4: cxi

is randomly sampled from Cxi

5: Sepc.ADD((xi, cxi , yi))
6: end for
7: for Xbat, Cbat, Ybat in Sepc do
8: L = Lce(fθ(Xbat, Cbat), Ybat)
9: θ = θ − λ · ∂L/∂θ

10: end for
11: end for

TABLE I: Image classification accuracies (%) on the ImageNet.
Top three lines are related works. Bottom shows the ablation
study. In this table, do(X) is general and represents any
intervention conducted on the training data. * indicates using
the standard ResNet (single branch).

Methods ResNet-50 ResNet-34

Baseline∗ [1] 76.15 73.30
Obj+Bg [69] 76.43 73.97
Sal+IMG [70] 76.44 73.46

2xBaseline∗ 76.37 73.69
Only Obj∗ 73.45 70.20
Only Bg∗ 63.52 62.70
Obj+all Bg 71.79 69.02
CIT(ours) 76.85+0.7 74.25+0.95

Obj+Bg+Mixup [44] 77.65 75.31
CIT(ours)+Mixup 77.86+1.71 75.60+2.30

Obj+Bg+CutMix [45] 78.40 75.79
CIT(ours)+CutMix 78.64+2.49 76.01+2.71

the same architecture as in Figure 4(b). For ablation study,
we have 4 settings: 2xBaseline learns a baseline model by
double times of training iterations. Only Obj learns a baseline
model using the images with only object regions. Only Bg
learns a baseline model using the images with only background
regions. Obj+all Bg learns a double-branch model using the
content paired with different contexts randomly sampled from
the dataset. Last, we plug-in Mixup and CutMix (augmentation
methods using the data of different classes) in our CIT. For
fair comparison, we implement above methods use the same
hyperparameters. Our CIT and the baseline methods have the
same resource consumption.

A. Results and Analyses

In Table I, we demonstrate the overall results for the ablation
study and the comparison to related works [1], [44], [45], [69],
[70]. We detail our observations in the follows.
Context is important to object recognition. As we explained
above (in Figure 1(a)), the context C is affected by both the
common sense A of the class and unfortunately also by the
dataset bias B. The latter B can be caused by a variety of
invisible reasons. In the language of SCM, C not only bridges
the “true” correlation between X and Y (through A), but also
indirectly confounds their “spurious” correlation (through B).
As the results shown in Table I, if we simply remove the
value of context C from the input data as in Only Obj, the
performance of the resulting model is significantly reduced
(by about 3% accuracy) compared to Baseline. The reason
is that the image of any object is intrinsically contextualized,
and its representation will be degraded if the context is broken.
This can be indirectly proved by using only context for object
recognition. For example, the ResNet-50 model of Only Bg
achieves the accuracy of 63.52%, which is significantly higher
than the chance rate (0.1% on the 1,000-class ImageNet). Note
that for this 63.52%, another inevitable cause is: Only Bg
is trained on the context images containing the object shapes
(due to saliency detection).
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Fig. 5: Training and test loss curves on the ImageNet.

CIT performs the best for mitigating “bad” effects. The
context C is important but it also indirectly causes the
confounding effect (through B) causing harm to the model. Our
CIT aims to eliminate such bad effect without needing to adjust
B (not visible on the ImageNet). From Table I, we can see that
Baseline achieves the accuracy of 76.15% on ResNet-50.
Our CIT intervenes the input images and achieves the accuracy
of 76.85%, the best performance over related methods (the top
one achieves 76.44%) as well as the ablative models (the top
one achieves 76.37%). This result is consistent for the models
of ResNet-34, e.g., our improvement over Baseline is more
significant as 0.95%.
Other observations. From Table I, we have three additional
observations. (1) 2xBaseline trained with double iterations1

gains improvements, e.g., 0.4% accuracy over Baseline
ResNet-34. (2) The double-branch network architecture per
se contributes to boosting the accuracy of image classifiers.
Specifically, Obj+Bg [69] achieves the accuracy of 76.43%
on ResNet-50 which is 0.3% higher than the result of
Baseline [1]. The difference is that Obj+Bg is learned on
the double-branch neural network. (3) Without our proposed
“conditional on the common sense”, the performance of do(X)
suffers from a considerable drop. Specifically, Obj+all Bg
on both ResNet-34 and ResNet-50 are degraded by about 5%
accuracies, compared to our results of using CIT. (4) The
results on bottom two blocks show that our CIT can contribute
additional improvements to the performance, on the shoulder
of class mixup-based data augmentation methods.

B. Interpretation

On the SCM of conventional P (Y |X) (e.g., Baseline)
there are three cause-effect relationships between X and Y :
(i) X directly causes Y ; (ii) X indirectly affects Y through
mediators A and C where A is not visible and the mediating
effect is reflected via the value of C; (iii) the unrobust indirect
effect confounded by B (not visible) which is also reflected via
the value of C. Our solution to mitigating (iii) is to train the new
classifier P (Y |do(X)). In the following, we refer to two real

1Due to the constrains of lab GPU machines, we have to leave the time-
consuming search of hyperparameters (e.g., iterations) in the future work. We
do the best to ensure the reporting results are as fair as possible, by following
the standard setting of ResNets [1] and using the official Pytorch code.

TABLE II: Test accuracies (%) with background images or
object images as input. Background and object images (from
one image) are separated by a pre-trained saliency detection
model [67].

Backbone Method Test on bg
images

Test on obj
images

ResNet-34 Obj+Bg 20.82 52.04
CIT 34.60+13.78 61.91+9.87

ResNet-50 Obj+Bg 22.11 56.41
CIT 40.43+18.32 65.94+9.53

models of P (Y |do(X)) (Only Obj and CIT) and compare
their performance to that of P (Y |X) (Baseline) while
interpreting the realized causal effects in image recognition
models. We particularly demonstrate their training and testing
curves in Figure 5. Direct causal effect generalizes the best.
We model the direct effect from X to Y by removing the
context pixels from training images (identical test to ours).
This corresponds to the model of Only Obj. Please note that
this model can only approximate to the direct effect due to
two reasons: (i) the saliency detector can not perfectly separate
the content, and (ii) the content per se contains contextual
information, e.g., the lightness of the same object is different in
different scenes. We have employed different saliency detection
models. In a nutshell, better saliency detection technique will
help us achieve better performance. From Figure 5, we can
see that using Only Obj the resulted gap between training
and test curves is the smallest.

This shows that Only Obj has the best generalization
ability, which is definitely true as the direct effect from content
X to prediction Y is the most essential causality learned by
any image classifiers. If recall the results in Table I, we can see
that the performance of Only Obj is poor, i.e., 3.4% and 4%
lower than our CIT on ResNet-50 and ResNet-34, respectively.
This is also easy to explain. The contexts are caused not only
by data bias but also by common sense knowledge which is
of high representation (as the results of Only Bg are much
higher than the chance rate). Therefore, Only Obj removing
all context pixels can no longer learn any representation from
the common sense related contexts.

CIT improves generalization and reduces overfitting. The
input data of Obj+Bg is normal, so its resulting model learns
all the correlations shown in the SCM of P (Y |X) (Figure 1(a)).
Obj+Bg uses the double-branch neural network to separate
the input of content and context. Figure 5 shows that its
performance gap between training and test (red curves) is the
largest. After the 15-th epoch, the gap becomes more obvious.
Therefore, its model generalization ability is the worst. Besides,
its training loss is the lowest which reveals the serious problem
of overfitting to training data. Compared to Obj+Bg, our CIT
(using the same neural network architecture) achieves better
generalization ability and suffers from less overfitting problem.
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Fig. 6: We show the mapping among A, B, X , Y and C (using CIFAR-10 examples) in (a). Two classes with the same value
of A are assigned with B=0 or B=1 arbitrarily in the training set but randomly in the test set. In (b) and (c), we demonstrate
the computing flows of our CIT approaches.

C. Additional Experiments on ImageNet

As we mentioned, CIT can help the model to learn the
“good” and avoid the “bad” bias. The trained CIT models are
thus expected to have better understanding and representation
abilities for the objects (content) as well as the backgrounds
(context) in images. We compare such abilities to those of
Obj+Bg, where Obj+Bg is a fair architecture based on
baseline ResNets using exactly the same architecture and same
hyperparameters to our CIT. These experiments are conducted
on the ImageNet. We present the recognition accuracies of
background images (“bg images”) and object images (“obj
images”) in Table II.

Settings. We deploy the trained models using the comparable
baseline Obj+Bg and our CIT, but set their testing images to
contain only image content, i.e. the object pixels denoted as
obj, or only image context, i.e. the background pixels denoted
as bg. We note that using bg (or obj) means simply feeding
the separated bg (or obj) images on the context (or content)
branch of the model.

Observation and Conclusions. From Table II, we can see that
our CIT achieves consistently and greatly better recognition
performance than Obj+Bg with respect to the object classes
(i.e., the labels of the input images), e.g. it gets improvement
margins of over 18% and 9% with ResNet-50 for the testing of
obj images and bg images, resprectively. We can conclude that
CIT enhances the machine models with a better understanding
of both the content and the context of images.

Visualization of the intervened context images. We show
some examples of content images and the corresponding
intervened context images in Figure 7. We can observe that
most intervened context images contain the ”good” bias. For
simplicity, we take the car in the first row as an example. As we
discussed in Section I, road is the common-sense background
factor in all elements of cars’ background while the changing
environments are noisy background factors. In our CIT, the
car image in the first row is augmented with the intervened
context images. The model will easily capture the correlation
between the car and road while alleviating the overfitting to
the desert or the river.

Intervened ContextsContent

Car

Sheep 

Dog

Fig. 7: We show some content images and their corresponding
intervened context images.

V. EXPERIMENTS ON THE CIFAR DATASETS

Experiments on ImageNet validates the effectiveness of
Stratify C conditional on A when “bad” bias B is not
visible. In this section, we demonstrate the results of two CIT
approaches, i.e., both Stratify B and Stratify C conditional
on A, by using the synthetic B (visible and controllable). Our
synthesizing is based on the data of CIFAR datasets [20].
Synthetic datasets. CIFAR-10 (100) datasets [20] contains 10
(100) object classes and each with 5, 000 (500) samples for
training and 1, 000 for test. The image size is 32 × 32. On
each image, we add 4-pixel padding and change the value of
the padded pixels to synthesize different contexts. Our contexts
are changed according to two manual reasons: one is “biased”
meaning the contexts are different between training and test
sets; and the other one is “from common sense” meaning that
the contexts are the same in training and test sets. We manually
assign values to the nodes of SCM, which can be referred to
illustration in Figure 6(a). We elaborate the details as follows.
X → A→ C. X represents the original image on CIFAR. C
denotes the synthetic context. A is the common sense integer
determined by the object label of X . As shown in Figure 6(a),
the value of A determines (the hue of) the color on synthetic
C pixels, and it can be shared by more than one class, e.g.,
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TABLE III: Four versions of settings designed for CIFAR datasets. “brig.(2)” on column 2 denotes the brightness on CIFAR-10
has 2 values corresponding to |A| = 2. Similarly, “hue(50)” on column 5 denotes the hue on CIFAR-100 has 50 values
corresponding to |B| = 50.

Version
CIFAR-10 CIFAR-100

A determines B determines A determines B determines
V1 brig.(2)&hue(5) - brig.(2)&hue(50) -
V2 hue(5) brig.(2) hue(50) brig.(2)
V3 brig.(2) hue(5) brig.(2) hue(50)
V4 - brig.(2)&hue(5) - brig.(2)&hue(50)

TABLE IV: Image classification accuracies (%) on the CIFAR datasets. “on Ori.” indicates training the models on original
datasets. “on Syn.” indicates training the models on synthetic datasets. The last row are the differences between the model
performances of Stratify B (ideal performance) and Stratify C conditional on A (which was proposed to handle the case
when B is not visible in real-world datasets such as ImageNet). V1-V4 are defined in Table III.

CIFAR-10 CIFAR-100

Training Methods V1 V2 V3 V4 V1 V2 V3 V4

Baseline [1] on Ori. 91.92 91.92 91.92 91.92 68.01 68.01 68.01 68.01
Baseline [1] on Syn. 100 51.2 20.2 0.7 98.28 41.05 2.67 0.1
CIT - Stratify B 99.87 97.47 94.02 91.70 98.18 95.01 74.85 67.50
CIT - Stratify C conditional on A 99.81 97.49 94.03 91.76 98.15 95.03 74.83 67.52
|Stratify B - Stratify C conditional on A| 0.06 0.02 0.01 0.06 0.03 0.02 0.02 0.02

by two classes on the CIFAR-10. Similarly, we can generate
the synthetic CIFAR-100. The only difference is that A on
CIFAR-100 varies from 0 to 49, i.e., generating contexts with a
larger range of colors. X ← B→ C. B is a bias integer. The
value of B determines the brightness of the color on C pixels.
Figure 6(a) shows how we apply B to intentively confound X
and Y on CIFRA-10 (two classes with the same value of A
are assigned with B=0 and B=1 arbitrarily in the training
set but randomly in the test set). In this way, B introduces a
correlation between X and Y (through C), which is totally
random but not causal. It is also applied in the test set.

Using different integer settings for A and B, we generate 4
versions of synthetic data. V1: common sense only (B is null).
V2: common sense takes a bigger proportion (|A| > |B|). V3:
bias takes a bigger proportion (|A| < |B|). V4: bias only (A
is null).

We elaborate the proposed four versions of synthetic datasets
(taking either CIFAR-10 or CIFAR-100 as the data source). We
mentioned that A is mediator, B is confounder, and they may
affect C at different degrees. We thus can set different degrees
for A and B and derive four version of synthetic datasets
to evaluate our CIT. On version one (V1), A determines the
context C and B has no effect on C. In specific, A determines
both the brightness and the hue of the context pixels (the value
of C) padded on the CIFAR images. On V2, A determines
the hue of C and B determines the brightness. On V3, A
determines the brightness and B determines the hue. On V4,
A has no effect on C but B determines both the hue and the
brightness of context pixels (the value of C). Detailed bins
of brightness and hue on the CIFAR-10 and CIFAR-100 are
given in Table III.

Implementation details. We deploy ResNet-20 [1], and use its
official code in PyTorch [71]. Following [1], we use the SGD
optimizer with Nesterov momentum [68], and set mini-batch
size to 128, momentum to 0.9, weight decay to 1e−4 and initial
learning rate to 0.1. We drop learning rates by 0.1 at the 80-th
and 120-th training epochs. We train all models for 160 epochs.
We illustrate our CIT approaches in Figure 6 (b) and (c), and
show the results in Table IV.

CIT approaches achieve the “ideal performance”. As
aforementioned, if B is visible, we can achieve the “ideal
performance” using Stratify B, i.e., backdoor adjustment on
B [17]. From the bottom two rows in Table IV, we see that the
same “ideal performance” (with Stratify B) can be achieved by
Stratify C conditional on A (which was proposed to handle
the case when B is not visible). We thus empirically validate
these two approaches perform equally. We are not surprised,
because their formulations are derived from the same backdoor
adjustment (in Eq.4). Please note that we used standard ResNet
(single branch) for all methods on CIFAR, so it is not plausible
to compare to Obj+Bg or Sal+Img (double-branch models
designed for ImageNet).

CIT approaches mitigate the “bad” and preserve the
“good”. Row 1 in Table IV presents the original results of
Baseline (no distinction from V1 to V4). While on Row 2,
if Baseline models are trained on “manually biased” data,
the accuracy drops sharply, e.g., from 91.92% to 0.7% (on the
V4 of CIFAR-10). In contrast, our CIT approaches do not drop
at all, and even improve the results on both V2 and V3 — the
general scenarios where both “good” and “bad” bias exist. It
is because CIT can mitigate the “bad” and preserve the “good”
of image contexts in the trained model.
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VI. CONCLUSIONS

This paper presents a novel study of causality for the
fundamental visual task — image recognition. We build the
structural causal model (SCM) to demonstrate the cause-effect
relationships among 5 key factors involved in the task. We
propose a novel causal interventional training (CIT) approach
to mitigate the bad effects caused by biased image contexts,
but preserve the good parts to train better image classifiers.
We achieve superior classification results on large-scale image
benchmarks.
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