
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection Lee Kong Chian School Of 
Business Lee Kong Chian School of Business 

4-2015 

Project planning with alternative technologies in uncertain Project planning with alternative technologies in uncertain 

environments environments 

Stefan CREEMERS 

Bert DE REYCK 
Singapore Management University, bdreyck@smu.edu.sg 

Roel LEUS 

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research 

 Part of the Business Administration, Management, and Operations Commons, and the Technology and 

Innovation Commons 

Citation Citation 
CREEMERS, Stefan; DE REYCK, Bert; and LEUS, Roel. Project planning with alternative technologies in 
uncertain environments. (2015). European Journal of Operational Research. 242, (2), 465-476. 
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6759 

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at 
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research 
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6759&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


European Journal of Operational Research 242 (2015) 465–476

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Stochastics and Statistics

Project planning with alternative technologies in uncertain

environments

Stefan Creemers a, Bert De Reyck b, Roel Leus c,∗

a Management Department, IESEG School of Management, Lille, France
b Department of Management Science & Innovation, University College London, United Kingdom
c Research Group ORSTAT, Faculty of Economics and Business, KU Leuven, Belgium

a r t i c l e i n f o

Article history:

Received 26 August 2013

Accepted 5 November 2014

Available online 21 November 2014

Keywords:

Project scheduling

Uncertainty

Net present value

Alternative technologies

Stochastic activity durations

a b s t r a c t

We investigate project scheduling with stochastic activity durations to maximize the expected net present

value. Individual activities also carry a risk of failure, which can cause the overall project to fail. In the project

planning literature, such technological uncertainty is typically ignored and project plans are developed only

for scenarios in which the project succeeds. To mitigate the risk that an activity’s failure jeopardizes the

entire project, more than one alternative may exist for reaching the project’s objectives. We propose a model

that incorporates both the risk of activity failure and the possible pursuit of alternative technologies. We find

optimal solutions to the scheduling problem by means of stochastic dynamic programming. Our algorithms

prescribe which alternatives need to be explored, and how they should be scheduled. We also examine the

impact of the variability of the activity durations on the project’s value.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Projects in many industries are subject to considerable uncer-

tainty, due to many possible causes. Factors influencing the comple-

tion date of a project include activities that are required but that were

not identified beforehand, activities taking longer than expected, ac-

tivities that need to be redone, resources being unavailable when

required, late deliveries, etc. In research and development (R&D)

projects, there is also the risk that activities may fail altogether, re-

quiring the project to be halted completely. This risk is often referred

to as technical risk. In this text, we focus on two main sources of un-

certainty in R&D projects, namely uncertain activity durations and

the possibility of activity failure: we incorporate the concept of ac-

tivity success or failure into the analysis of projects with stochastic

activity durations, where the successful completion of an activity can

correspond to a technological discovery or scientific breakthrough.

We examine the impact of these two factors on optimal planning

strategies that maximize the project’s value, and on its value itself.

This work is a continuation of De Reyck and Leus (2008), where an

algorithm is developed for project scheduling with uncertain activity

outcomes and where project success is achieved only if all individ-

ual activities succeed. Reference De Reyck and Leus (2008) consti-

∗ Corresponding author. Tel.: +32 16 32 69 67; fax: +32 16 32 66 24.

E-mail addresses: s.creemers@ieseg.fr (S. Creemers), bdereyck@ucl.ac.uk
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tuted the first description of an optimal approach for handling ac-

tivity failures in project scheduling, but neither stochastic activity

durations nor the possibility of pursuing multiple alternatives for the

same result, and the inherent possibility of activity selection, were ac-

counted for. Earlier work studied optimal procedures for special cases;

see Chun (1994), for instance. Other references relevant to this text

stem from the discipline of chemical engineering, mainly the work by

Grossmann and his colleagues (e.g., Jain & Grossmann, 1999; Schmidt

& Grossmann, 1996), who studied the scheduling of failure-prone

new-product development (NPD) testing tasks when non-sequential

testing is admitted. They point out that in industries such as chemicals

and pharmaceuticals, the failure of a single required environmental or

safety test may prevent a potential product from reaching the mar-

ketplace, which has inspired our modeling of possible activity and

project failure. Therefore, our models are also of particular interest to

drug-development projects, in which stringent scientific procedures

have to be followed in distinct stages to ensure patient safety, before

a medicine can be approved for production. Such projects may need

to be terminated in any of these stages, either because the product

is revealed not to have the desired properties or because of harmful

side effects. Illustrations of modeling pharmaceutical projects, with

a focus on resource allocation, can be found in Gittins and Yu (2007)

and Yu and Gittins (2008).

Due to the risk of activity failure resulting in overall project failure,

it has been suggested that R&D projects should explore multiple alter-

native ways for developing new products (Sommer & Loch, 2004). To

mitigate the risk that an individual activity’s failure jeopardizes the

http://dx.doi.org/10.1016/j.ejor.2014.11.014

0377-2217/© 2014 Elsevier B.V. All rights reserved.
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entire project, we model projects in which the same (intermediate or

final) outcome can be pursued in several different ways, where one

success allows the project to continue. The different attempts can be

multiple trials of the same procedure or the pursuit of different al-

ternative ways to achieve the same outcome, e.g., the exploration of

alternative technologies. Following Baldwin and Clark (2000), a unit

of alternative interdependent tasks with a distinguished deliverable

will be called a module.

Project profitability is often measured by the project’s net present

value (NPV), the discounted value of the project’s cash flows. This

NPV is affected by the project schedule and therefore, the timing of

expenditures and cash inflows has a major impact on the project’s

financial performance, especially in capital-intensive industries. The

goal of this article is to find optimal scheduling strategies that max-

imize the expected NPV (eNPV) of the project while taking into ac-

count the activity costs, the cash flows generated by a successful

project, the variability in the activity durations, the precedence con-

straints, the likelihood of activity failure and the option to pursue

multiple trials or technologies. Thus, this article extends the work of

Buss and Rosenblatt (1997), Benati (2006), Sobel, Szmerekovsky, and

Tilson (2009) and Creemers, Leus, and Lambrecht (2010), who focus

on duration risk only, and of Schmidt and Grossmann (1996), Jain and

Grossmann (1999) and De Reyck and Leus (2008), who look into tech-

nical risk only (although Schmidt and Grossmann (1996) also explore

the possibility of introducing multiple discrete duration scenarios).

Our contributions are fourfold: (1) we introduce and formulate a

generic model for optimal scheduling of R&D activities with stochas-

tic durations, non-zero failure probabilities and modular completion

subject to precedence constraints; to the best of our knowledge, such

a model has never been studied before; (2) we develop a dynamic-

programming recursion to determine an optimal policy for execut-

ing the project while maximizing the project’s eNPV, extending the

algorithm of Creemers et al. (2010) with activity failures, multiple

trials and phase-type (PH) distributed activity durations instead of

exponentials; (3) we conduct numerical experiments to demonstrate

the computational capabilities of the algorithm; and (4) we examine

the impact of activity duration risk on the optimal scheduling pol-

icy and project values. Interestingly, our findings indicate that higher

operational variability does not always lead to lower project values,

meaning that (sometimes costly) variance reduction strategies are

not always advisable. To the best of our knowledge, this is the first

article to numerically support such a recommendation.

The remainder of this text is organized as follows. In Section 2,

we provide the necessary definitions and a detailed problem state-

ment. We produce solutions by means of a backward dynamic-

programming recursion for a Markov decision process, which is

discussed in Section 3. Section 4 reports on our computational

performance on a representative set of test instances. In Section 5,

a computational experiment is described in which we examine the

effect of activity duration variability on the eNPV of a project and

Section 6 evaluates two different choices for the policy class to be

considered. Section 7 contains a brief summary of the text.

2. Definitions and problem statement

2.1. Stochastic project scheduling

A project consists of a set of activities N = {0, . . . , n}. The execution

of a project with stochastic components (in our case, stochastic activ-

ity outcomes and durations) is a dynamic decision process. A solution,

therefore, cannot be represented by a schedule but takes the form of a

policy: a set of decision rules defining actions at decision times, which

may depend on the prior outcomes. Decision times are typically the

start of the project and the completion times of activities; a tenta-

tive next decision time can also be specified by the decision maker.

An action entails the start of a precedence-feasible set of activities

(see Section 2.2 for a statement of the precedence constraints). In

this way, a schedule is constructed gradually as time progresses. Next

to the information available at the start of the project, a decision at

time t can only use information on duration realizations and activity

outcomes that has become available before or at time t; this is the

so-called non-anticipativity constraint. Activities should be executed

without interruption.

Each activity i ∈ N\{n} has a probability of technical success pi;

we assume that p0 = 1. We do not consider (renewable or other) re-

source constraints and assume the outcomes of the different tasks to

be independent. We define a success (state) vector as an n-component

binary vector x = (x0, x1, . . . , xn−1), with one component associated

with each activity in N \ {n}. We let Xi represent the Bernoulli ran-

dom variable with parameter pi as success probability for each ac-

tivity i, and we write X = (X0, X1, . . . , Xn−1). Information on an ac-

tivity’s success (the realization of Xi) becomes available only at the

end of that activity. We say that x is a realization or scenario of X.

The duration Dj ≥ 0 of each activity j is also a stochastic variable; the

vector (D0, D1, . . . , , Dn) is denoted by D. We use lowercase vector

d = (d0, . . . , , dn) to represent one particular realization of D, and we

assume Pr[D0 = 0] = Pr[Dn = 0] = 1.

We assume that all activity cash flows during the development

phase are non-positive, which is typical for R&D projects: the (known)

cash flow associated with the execution of activity i ∈ N\{n} is repre-

sented by the integer value ci ≤ 0 and is incurred at the start of the

activity. We choose c0 = 0. If the project is successful (see Section 2.2

for the specific conditions under which this is true) then the final

activity n can be executed. This corresponds with obtaining an end-

of-project payoff C ≥ 0, which is received at the start of activity n

(which is also its completion time). The value si ≥ 0 represents the

starting time of activity i; we call the (n + 1)-vector s = (s0, s1, . . . , sn)
a schedule, with si ≥ 0 for all i ∈ N. We assume s0 = 0 in what follows:

the project starts at time zero. The value si = +∞ means that activity

i will not be executed at all.

We follow Igelmund and Radermacher (1983), Möhring (2000) and

Stork (2001), who study project scheduling with resource constraints

and stochastic activity durations, in interpreting every scheduling

policy � as a function R
n−1
≥ × B

n → R
n+1
≥ , with R≥ the set of non-

negative reals and B = {0, 1}. The function � maps given samples

(d, x) of activity durations and success vectors to vectors s(d, x; �)
of feasible activity starting times (schedules). For a given duration

scenario d, success vector x and policy �, sn(d, x; �) denotes the

makespan of the schedule, which coincides with project completion.

Note that not all activities need to be completed (or even started) by

sn, nor that the realization of all Xi’s needs to be known.

We compute the NPV for schedule s as

f (s) = Ce−rsn +
n−1∑
i=1

si �=∞

cie
−rsi , (1)

with r a continuous discount rate chosen to represent the time value

of money: the present value of a cash flow c incurred at time t equals

ce−rt , where e is the base of the natural logarithm. Our goal in this ar-

ticle is to select a policy �∗ that maximizes E[f (s(D, X; �))], with E[·]
the expectation operator with respect to D and X; we write E[f (�)],
for short. The generality of this problem statement suggests that op-

timization over the class of all policies is probably computationally

impractical. We therefore restrict our optimization to a subclass that

has a simple combinatorial representation and where decision points

are limited in number: our solution space P consists of all policies

that start activities only at the end of other activities (activity 0 is

started at time 0). The solution space also contains policy �0, which

corresponds with immediate abandonment of the project (formally,

all starting times apart from s0 are set to infinity), which will be

preferable when C is not large enough compared to the costs of the
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activities: then it is better simply not to undertake the project at all,

with objective value 0.

2.2. Modular projects

Modularity means splitting the design and production of tech-

nologies into independent subparts (Baldwin & Clark, 2000). This has

benefits towards inventory management for mass-produced items

via techniques such as commonality and postponement (Chopra &

Meindl, 2013), but also with respect to the duration and chances of

success of a product development project by itself: in this setting,

a module is a set of alternative development activities that pursue

a similar target, representing repeated trials or technological alter-

natives. Lenfle (2011) provides a thorough literature review of the

management of projects via modules, and he points out that differ-

ent alternatives can be pursued either in parallel or sequentially, or

following a mix of both strategies. Obviously, management can also

decide not to pursue certain alternatives, for instance because their

cost is too high compared to their expected benefits.

Lenfle refers to the Manhattan Project as one prime example

where such techniques were applied (for instance, multiple alterna-

tive bomb assembly designs were tested simultaneously). Weitzman

(1979) brings up the evaluation and selection of alternative suppli-

ers for some commodity as one possible practical application. Nelson

(1961) cites a RAND working paper on the development of a new

microwave relay system at Bell Telephone Laboratories, where the

eventual success of the development was greatly facilitated by run-

ning multiple approaches in parallel to solving some of the encoun-

tered development problems. Granot and Zuckerman (1991) refer

to the development of nylon at DuPont, where numerous polymers

were tested one by one before the discovery of a suitable polyamide.

Abernathy and Rosenbloom (1969) evaluate the merits of a parallel

strategy at a critical point in a million-dollar advanced power-supply

development project. In the context of the development of an AIDS

vaccine, Ding and Eliashberg (2002) note that ‘In many new prod-

uct development (NPD) situations, the development process is char-

acterized by uncertainty, and no single development approach will

necessarily lead to a successful product. To increase the likelihood of

having at least one successful product, multiple approaches may be

simultaneously funded at the various NPD stages.’

In this text, we will take the modular structure of the project as

given, assuming that an appropriate project network design and ini-

tial selection of development alternatives have already been set out.

Formally, the set of modules is M = {0, . . . , m}; each module i ∈ M

contains the activities Ni ⊂ N, and the set of modules constitutes a

partition of N: N = ⋃
i∈M Ni and Ni ∩ Nj = ∅ if i �= j. A is a (strict) par-

tial order on M, i.e., an irreflexive and transitive relation, which repre-

sents technological precedence constraints. (Dummy) modules 0 and

m represent the start and the end of the project, respectively; they

are the (unique) least and greatest element of the partially ordered

set (M, A) and are assumed to contain only one (dummy) activity, in-

dexed by 0 and n, respectively. On the activities within each module

i, we also impose a partial order Bi, to allow for modeling precedence

requirements between these activities. In drug development, for ex-

ample, when a certain module is needed to show the effectiveness of a

drug, two precedence-related activities could represent the repeated

measurement of the beneficial effects of the drug: the first test is per-

formed after one week; the effects after two weeks will only be mea-

sured if first the effects after one week are inconclusive (Coolen, Wei,

Talla Nobibon, & Leus, 2011). Alternatively, trials may be repeated in

different doses and with different test subjects (Huysmans, Coolen,

Talla Nobibon, & Leus, 2012). Precedence constraints within modules

may also represent fallback options for project failure, as ‘contingency

plans’: plans devised for an outcome different from expected. Com-

parable modeling choices were made in Coolen et al. (2011) and in

Huysmans et al. (2012), but without discounting the cash flows, in

which case durations become irrelevant and scheduling all activities

sequentially is a dominant choice.

For convenience, we associate a completion time hi(s; d, x) with

each module i, in the following way (here and later, we omit the ar-

guments if no misinterpretation is possible): hi = minj∈Ni|xj=1{sj + dj},

coinciding with the earliest completion of a successful activity con-

tained in the module; if the min-operator optimizes over the empty

set then we define hi := +∞, meaning that the module is never suc-

cessfully completed. For a given success vector x and durations d, we

then say that a schedule s is feasible if the following conditions are

fulfilled:

hi ≤ sj ∀(i, k) ∈ A,∀j ∈ Nk (2)

si + di ≤ sj ∀k ∈ M,∀(i, j) ∈ Bk (3)

Eq. (2) are inter-module precedence constraints, which imply that a

necessary condition for the start of an activity j ∈ Nk is success for all

the predecessor modules i of the module k to which j belongs, where

a module is said to be successful if at least one of its constituent activ-

ities succeeds. Eq. (3) are intra-module constraints: an activity j can

only be started when all predecessor activities i in the same module

have been completed, and its execution would obviously be useful

only if all those predecessors failed. An activity’s starting time equal

to infinity corresponds to not executing the activity and therefore not

incurring any related expenses, or in case of activity n, not receiv-

ing the project payoff. Consequently, the project payoff is achieved

(sn �= ∞) only if every module is successful.

The classic PERT problem (Adlakha & Kulkarni, 1989; Elmaghraby,

1977; Kulkarni & Adlakha, 1986; Ludwig, Möhring, & Stork, 2001)

aims at characterizing the random variable sn(D, 1; �ES), where policy

�ES starts all activities as early as possible, each module contains

only one activity, and 1 is an n-vector with value 1 in all components.

Contrary to the makespan, however, NPV is a non-regular measure of

performance: starting activities as early as possible is not necessarily

optimal, since the ci are usually negative.

2.3. Illustration

Fig. 1 illustrates the foregoing definitions and problem statement.

This project consists of seven activities, N = {0, 1, 2, 3, 4, 5, 6}, where

0 and n = 6 are dummies. There are five modules, so m = 4 : N0 =
{0} , N1 = {1, 2, 3} , N2 = {4}, N3 = {5} and N4 = {6}. In the example,

B1 = {(1, 3), (2, 3)}. Note that Fig. 1 actually shows the transitive re-

duction of A: the order relation A also contains elements such as (0, 2)
and (1, 4), while the arcs N0 → N2 and N1 → N4 are not included in

the figure.

A policy �12 for this project is the following: start the project

at time 0 (s0 = 0) and immediately initiate activities 1 and 2

(s1 = s2 = 0). If X1 = X2 = 0 then abandon the project: set s3 = s4 =
s5 = s6 = +∞. Otherwise, module N1 completes successfully. In that

case, start both activities 4 and 5 upon the successful completion of

activity 1 or 2 (whichever is the earliest), and terminate the project

if either 4 or 5 fails. Note that under policy �12, activity 3 is never

started, and we effectively include activity selection as part of the deci-

sions to be made. Represented as a function, �12 entails the following

N0

4

N1 N2

N3

N4

6

5

0

1

2

3

Fig. 1. Example module network.
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mapping:

(d1, d2, d3, d4, d5, x0, x1, x2, x3, x4, x5)
�→

(0, 0, 0,∞, h1, h1, max{h2; h3}),
with h1 = minj=1,2;xj=1{dj} and h1 = ∞ if x1 = x2 = 0, h2 = h1 + d4 if

x4 = 1 and h2 = ∞ if x4 = 0, and h3 = h1 + d5 if x5 = 1 and h3 = ∞ if

x5 = 0.

3. Markov decision process

3.1. Policy class

In the literature, the input parameters of the PERT problem are

often referred to as a PERT network, and a PERT network with inde-

pendent and exponentially distributed activity durations is also called

a Markovian PERT network. For Markovian PERT networks, Kulkarni

and Adlakha (1986) describe an exact method for deriving the dis-

tribution and moments of the earliest project completion time using

continuous-time Markov chains (CTMCs), where it is assumed that

each activity is started as soon as its predecessors are completed (an

early-start schedule).

Buss and Rosenblatt (1997), Sobel et al. (2009) and Creemers et al.

(2010) investigate an eNPV objective and use the CTMC described

by Kulkarni and Adklakha as a starting point for their algorithms. A

similar problem is studied by Benati (2006), who proposes a heuris-

tic scheduling rule. Next to stochastic durations, Buss and Rosenblatt

(1997) also consider activity delays. These studies, however, all as-

sume success in all activities and an exponential distribution for all

durations and they also imply the requirement that all activities be

executed.

De Reyck and Leus (2008) study project scheduling with known

activity durations but with uncertain activity outcomes. In that article,

if an activity A ends no later than the start of another activity B then

knowledge of the outcome (success or failure) of A can sometimes be

used to avoid incurring the cost for B, since a failure in A would allow

abandoning the project, but payment for B cannot be avoided when B

has already started before the outcome of A is discovered. For a given

selection of such ‘information flows’ between activities (under the

form of additional precedence constraints), a late-start schedule is

then optimal when the activity durations are known. Unfortunately,

late-start scheduling is difficult to implement in case of stochastic

durations, and Sobel et al. (2009) implicitly restrict their attention

to scheduling policies that start activities only at the end of other

activities. Buss and Rosenblatt (1997) partially relax this restriction

by starting an activity only after a fixed time interval (delay), but they

do not decide which sets of activities to start at what time (all eligible

activities are started as soon as possible after their delay). Creemers

et al. (2010) study the same problem as Sobel et al. (2009) and achieve

significant computational performance improvements.

In this article, we also propose to restrict the attention to policies

that start activities at the completion time of other activities. This

can be seen to be a dominant set of policies for those cases in which

the project payoff is sufficiently large relative to the costs associated

with the intermediate activities, because the benefit of delaying the

payment of an activity would then be more than offset by the dis-

advantage of the higher possibility of delay in obtaining the payoff;

this reasoning holds for any discount rate r > 0. The generalization

in which activity starting times are delayed by a fixed offset beyond

their earliest starting time poses significant computational challenges

(cf. Buss & Rosenblatt, 1997). The models and algorithms in this arti-

cle can be extended so that activities can also be started when other

activities are ‘underway,’ and in Section 6, we describe our findings

for an experiment where we consider the possible start of new activ-

ities after each phase in the PH distribution of each ongoing activity

(a setting that gives rise to a larger policy class, hence a larger search

space). The experiment indicates that the average improvement in

the objective function is minor (up to 0.3 percent of the payoff at

most, depending on the settings). We recognize that the practical rel-

evance of this larger policy class can obviously be questioned, and the

experiment should merely be seen as an approximation of the setting

where activities can be started whenever the decision maker chooses.

We conclude that only starting activities at the completion time of

other activities is not a very restrictive decision, under the settings

tested.

Below, we extend the work of Creemers et al. (2010) to accommo-

date PH-distributed activity durations, possible activity failures and a

modular project network, allowing also for activity selection. We first

study the special case of exponential activity durations (Section 3.2),

followed by an illustration (Section 3.3) and by a treatment of more

general distributions (Section 3.4).

3.2. The exponential case

For the moment, we assume each duration Di to be exponentially

distributed with rate parameter λi = 1/E[Di] (i = 1, . . . , n − 1); we

consider more general distributions in Section 3.4. At any time instant

t, an activity’s status is either idle (not yet started), active (being exe-

cuted), or past (successfully finished, failed, or considered redundant

because its module is completed). Let I(t), Y(t) and P(t) represent the

activities in N that are idle, active and past, respectively; these three

sets are mutually exclusive and I(t)∪ Y(t)∪ P(t) = N. The state of the

system is defined by the status of the individual activities and is rep-

resented by a triplet (I, Y, P). State transitions take place each time an

activity becomes past and are determined by the policy at hand. The

project’s starting conditions are Y(0) = {0} and I(0) = N \ {0}, while

the condition for successful completion of the project is P(t∗) = N,

where t∗ represents the project completion time.

The problem of finding an optimal scheduling policy corresponds

to optimizing a discounted criterion in a continuous-time Markov de-

cision chain (CTMDC) on the state space Q , with Q containing all the

states of the system that can be visited by the transitions (which are

called feasible states); the decision set is described below. We apply

a backward stochastic dynamic-programming (SDP) recursion to de-

termine optimal decisions based on the CTMC described in Kulkarni

and Adlakha (1986). The key instrument of the SDP recursion is the

value function F(·), which determines the expected NPV of each feasi-

ble state at the time of entry of the state, conditional on the hypothesis

that optimal decisions are made in all subsequent states and assum-

ing that all ‘past’ modules (with all activities past) were successful.

In the definition of the value function F(I, Y), we supply sets I and

Y of idle and active activities as parameters (which uniquely deter-

mines the past activities). When an activity finishes, three different

state transitions can occur: (1) activity j ∈ Ni completes successfully;

(2) activity j ∈ Ni fails and another activity k ∈ Ni is still idle or active;

(3) activity j ∈ Ni fails and all other activities k ∈ Ni have already failed

(or it is the only activity in the module).

We define the order B∗ on set N to relate activities that do not

necessarily belong to the same module, as follows:

(i, j) ∈ B∗ ⇔ (∃Bm : (i, j) ∈ Bm)∨ (∃(l, m) ∈ A : i ∈ Nl ∧ j ∈ Nm).

We call an activity j eligible at time t if j ∈ I(t)and ∀(k, j) ∈ B∗ : k ∈ P(t).
Let E(I, Y) ⊂ N be the set of eligible activities for given sets I and Y of

idle and active activities. Upon entry of a state (I, Y, P) ∈ Q , a deci-

sion needs to be made whether or not to start eligible activities in

E(I, Y)and if so, which. If no activities are started, a transition towards

another state occurs at the first completion of an element of Y . Not

starting any activities while there are no active activities left, corre-

sponds to abandoning the project. Let λ̂ = ∑
k∈Y λk. The probability

that activity j ∈ Y completes first among the active activities equals

λj/λ̂ (competing exponentials; see our working paper Creemers, De

Reyck, and Leus (2013) for more details). The expected time to the
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first completion is λ̂−1 time units (the length of this timespan is also

exponentially distributed) and the appropriate discount factor to be

applied for this timespan is λ̂/
(

r + λ̂
)

(see working paper). In state

(I, Y, P) ∈ Q , the expected NPV to be obtained from the next state on

condition that no new activities are started equals

F0(I, Y) = λ̂

r + λ̂

∑
j∈Y

pjλj

λ̂
F(I \ Ni, Y \ Ni)

+ λ̂

r + λ̂

∑
j∈Y:Ni\{j}�⊂P

(1 − pj)λj

λ̂
F(I, Y \ {j}), (4)

with j ∈ Ni in the summations. Our side conditions are F(I, ∅) = 0 for

all I.

The second alternative is to start a non-empty set of eligible ac-

tivities S ⊆ E(I, Y) when a state (I, Y, P) ∈ Q is entered. This leads to

incurring a cost
∑

j∈S cj and an immediate transition to another state,

with no discounting required. The corresponding eNPV, conditional

on set S �= ∅ being started, is

FS(I, Y) = F(I \ S, Y ∪ S)+
∑
j∈S

cj. (5)

The total number of decisions S that can be made is 2|E(I,Y)|. The de-

cision corresponding to the highest value in (4) and (5) determines

F(·):

F(I, Y) = max

{
F0(I, Y) ; max

S �=∅

{FS(I, Y)}
}

, (6)

for feasible state (I, Y, N \ (I ∪ Y)).
The computation of the backward SDP recursion (6) starts in state

(∅, {n}, N \ {n}). Subsequently, the value function is evaluated step-

wise for all other states. The optimal objective value max�∈P E[f (�)]
is obtained as F(N \ {0}, {0}). We should note that the policies from

which one with the best objective function is chosen, do not consider

the option of starting activities at the end of activities that are re-

dundant (past) because another activity already made their module

succeed.

3.3. Illustration

In this section, we illustrate the functioning of the SDP algorithm

by analyzing the example project with seven activities (n = 6) intro-

duced in Section 2.3, for which the module order A is described by

Fig. 1. Further input data are provided in Table 1; the project’s pay-

off value C is 300 and the discount rate is 10 percent per time unit

(r = 0.1).

For exponentially distributed activity durations, the SDP recursion

described in Section 3.2 can be applied to find an optimal policy. At the

onset of the project (in state (N \ {0}, ∅, {0})) we can decide to start

Table 1

Project data for the example project.

Task i Cash flow ci Mean duration E[Di] pi (percent)

0 0 0 100

1 −20 10 40

2 −35 2 35

3 −70 8 75

4 −10 2 100

5 −10 2 60

6 0 100

either the first activity, the second activity, or both, from module 1.

The SDP recursion evaluates the expected outcome of each of these

decisions and selects one that yields the highest expected NPV (as-

suming that optimal decisions are made at all future decision times).

In our example, it is optimal to start only the first activity (correspond-

ing to an objective function of 3.27) and we subsequently end up in

state ({2, 3, 4, 5}, {1}, {0}), in which two possibilities arise. If activity

1 succeeds, module 1 succeeds as well and a transition occurs to state

({4, 5}, ∅, {0, 1, 2, 3}); otherwise (if activity 1 fails), we end up in state

({2, 3, 4, 5}, ∅, {0, 1})and have to make a decision: either we start ac-

tivity 2, corresponding to a transition to state ({3, 4, 5}, {2}, {0, 1})
and an eNPV at that time for the remainder of the project of −1.06, or

we abandon the project altogether obtaining a current value of 0. The

optimal decision in this case is obviously not to continue the project.

After a successful completion of module 1, two new activities be-

come eligible. The optimal decision is to start both activities 4 and

5, leading to state (∅, {4, 5}, {0, 1, 2, 3}). Two possibilities then arise:

either activity 4 or activity 5 finishes first. Irrespective of which activ-

ity completes first, if either activity 4 or 5 fails then the entire project

fails. If activity 4 (resp. 5) finishes first and succeeds, activity 5 (resp.

4) is still in progress and needs to finish successfully for the project

payoff to be earned. We refer to this optimal policy for exponential

durations by the name �1.

The relevant part of the corresponding decision tree is represented

in Fig. 2, in which the project evolves from left to right. A decision node,

represented by a square, indicates that a decision needs to be made at

that point in the process; a chance node, denoted by a circle, indicates

that a random event takes place. Underneath each decision node, we

indicate the eNPV conditional on an optimal decision being made in

the node, which applies only to the part of the project that remains

to be performed. For each decision node, a double dash // is added to

each branch that does not correspond to an optimal choice in the SDP

recursion.

3.4. Generalization towards PH distributions

We now assume that the durations Dj of the activities j ∈ N \ {0, n}
are mutually independent PH-distributed stochastic variables. PH

distributions were first introduced by Neuts (1981) as a means to

-1.06

-5.55

3.27

{1}

{1,2}

{2}

{2}

{4}

{4,5}

0.00
-1.06

success (1)

116.36

success (4)

success (5)

300.0

0.00

0.00

106.67
{5}

110.00

success (5)

success (4)

fail (
4)

fail (
5)

fail (1)

Decision node
Chance node

Dominated decision
{ j } Decision to start activity j

Project
abandonment

D4>D5

D4<D5

fail (5)

fail (4)

Fig. 2. Optimal paths in the decision tree for the example project.
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approximate general distributions using a combination of exponen-

tials. We will adopt so-called acyclic PH distributions for the activity

durations in order to assess the impact of activity duration variabil-

ity on the eNPV of a project. In this section, we informally describe

PH distributions and show how to determine the optimal eNPV of

a project when activity durations are PH distributed. More details,

including a moment-matching approach, are described in Creemers

et al. (2013).

Due to the properties of the acyclic PH distribution, each activity

j �= 0, n can be seen as a sequence of zj phases where:

• each phase θju has an exponential duration with rate λju,
• each phase θju has a probability τju to be the initial phase when

starting activity j,
• each phase θju is visited with a given probability πjvu when de-

parting from another phase θjv.

Acyclicity of the distribution implies that a state is never visited more

than once. Since the execution of a task is non-preemptive, the exe-

cution of the sequence of phases as well as the execution of a phase

itself should be uninterrupted. Therefore, upon completion of a phase

θju:

• activity j completes with probability πju0 (absorption is reached

in the underlying Markov chain),
• phase v is started with probability πjuv.

The exponential distribution for activity j ∈ N \ {0, n} is then a PH

distribution with zj = 1, τj1 = 1 and λj1 ≡ λj.

Maintaining the definition of Y(t)given in Section 3.2, define Y◦(t)
as the set of phases of the activities in Y(t) that are being executed

at time instant t. Clearly, Y can be obtained from Y◦. The state of the

system is again fully determined by the status of the individual activ-

ities and is now represented by a triplet (I, Y◦, P). The SDP recursion

described in the previous subsection for computing function F is eas-

ily extended to accommodate PH distributions; the most important

modification is in Eq. (4), which becomes

λ̂◦

r + λ̂◦

∑
θju∈Y◦

πju0

pjλju

λ̂◦
F(I \ Ni, Y◦ \ N◦

i )

+ λ̂◦

r + λ̂◦

∑
θju∈Y◦:Ni\{j}�⊂P

πju0

(1 − pj)λju

λ̂◦
F(I, Y◦ \ {θju})

+ λ̂◦

r + λ̂◦

∑
θju∈Y◦

λju

λ̂◦

zj∑
v=1
v �=u

πjuvF(I, Y◦ ∪ {θjv} \ {θju}), (7)

with j ∈ Ni, λ̂
◦ = ∑

θkv∈Y◦ λkv and N◦
i

= {θku : k ∈ Ni}. We use the result

that the probability that phase θju ∈ Y◦ completes first among the

active phases equals λju/λ̂◦ and that the expected time to the first

completion is λ̂◦ −1
time units.

4. Computational performance

In this section, we will briefly evaluate the computational perfor-

mance of the SDP algorithm. Our experiments are performed on an

AMD Phenom II with 3.21 gigahertz CPU speed and 2 gigabytes of

RAM. To investigate the impact of variability, we use PH distributions

to model the activity durations, which will allow us to increase or

decrease the variability and examine its impact on the project’s eNPV

by changing the Squared Coefficient of Variation (SCV) of the activ-

ity durations (for simplicity, we assume all activity durations to have

equal SCV). Setting SCV = 1 corresponds to exponentially distributed

activity durations, SCV = 0 coincides with deterministic durations.

We borrow the datasets that were generated by Coolen et al.

(2011): these consist of 10 instances for each of various values of

Table 2

Number of successfully analyzed networks out

of 10.

n OS = 0.8 OS = 0.6 OS = 0.4

11 10 10 10

21 10 10 10

31 10 10 10

41 10 10 7

51 10 10 5

61 10 6 3

71 9 5 3

81 10 4 1

91 9 4 0

101 10 1 0

111 9 1 0

121 8 0 0

Table 3

Average size of the state space (|Q|) for analyzed networks.

n OS = 0.8 OS = 0.6 OS = 0.4

11 74 248 628

21 396 4, 303 29, 793

31 2, 174 192, 984 911, 558

41 15, 871 1, 619, 351 25, 051, 988

51 98, 559 1, 940, 598 90, 057, 422

61 177, 916 29, 540, 126 278, 145, 443

71 2, 260, 271 85, 611, 285 82, 971, 948

81 2, 070, 967 34, 261, 271 176, 976, 352

91 23, 128, 416 145, 911, 293

101 24, 804, 064 165, 306, 852

111 67, 477, 195 56, 193, 712

121 69, 245, 416

the number of activities n and for OS = 0.4, 0.6 and 0.8, with ‘order

strength’ OS the number of comparable activity pairs according to the

induced order B∗, divided by the maximum possible number of such

pairs (this value is only approximate). Average activity durations are

not used by Coolen et al. (2011) and are additionally generated for

each activity, for each instance separately; each such average dura-

tion is a uniform integer random variate between 1 and 15. In the

generated instances, all activities apart from the final one have neg-

ative cash flows and the final activity has a positive payoff (which is

also significantly larger in absolute value); we refer to the appendix

of Coolen et al. (2011) for more details.

For exponential durations, an upper bound on |Q| is 3n. Enumer-

ating all these 3n states is not recommended, as the majority of the

states typically do not satisfy the precedence constraints. For PH du-

rations, the bound becomes
∏

j∈N 3zj . In order to minimize storage and

computational requirements, we adopt the techniques proposed by

Creemers et al. (2010): as the algorithm progresses, the information

on the earlier generated states will no longer be required for further

computation and therefore the memory occupied can be freed. This

procedure is based on a partition of Q , allowing for the necessary

subsets to be generated and deleted when appropriate.

In our implementation, the storage requirement for 600, 000

states amounts to a maximum of 4.58 megabytes; we only gen-

erate feasible states. On our computer, a maximum state space of

268, 435, 456 states can be stored entirely in memory. Our results

with exponential durations are presented in Tables 2–4, gathered per

combination of values for OS and n (all runtimes are reported in sec-

onds). The discount rate r equals 10 percent. The tables show that

networks of up to 40 activities are analyzed with relative ease. When

n = 51, however, the optimal solution of most networks with low

order strength (OS = 0.4) is beyond reach when the system memory

is restricted to 2 gigabytes. When OS = 0.6, the performance is lim-

ited to networks with n = 71 or less. We observe that the density of

the induced order B∗ is a major determinant for the computational ef-

fort: order strengths and computation times clearly display an inverse



S. Creemers et al. / European Journal of Operational Research 242 (2015) 465–476 471

Table 4

Average CPU time (in seconds) required to find an

optimal policy.

n OS = 0.8 OS = 0.6 OS = 0.4

11 0 0 0

21 0 0 0.03

31 0 0.3 1.77

41 0.02 3.54 70.93

51 0.15 5.12 298.41

61 0.32 128.31 2, 397.93

71 17.53 469.34 27, 065.53

81 5.7 1817.54 15, 605.91

91 107.61 1, 322.77

101 105.66 894.61

111 283.57 10, 540.86

121 528.81

relation. Additionally, the real bottleneck for the algorithm turns out

to be memory space rather than CPU time: projects with n = 81 and

OS = 0.4 require less than 5 hours runtime on average (the high-

est runtime over all the tested settings), which is still practical for

industrial-type projects, but larger instances with OS = 0.4 cannot be

analyzed anymore due to memory limits. From Tables 3 and 4, it may

appear that sometimes the instances become easier as the number

of jobs increases. This, however, is merely a result of the fact that for

larger n not all instances can be solved and therefore the reported

averages are essentially truncated, with the largest values not being

included.

As a side note, we observe that given the number of states gener-

ated, approximation techniques might be useful, either by restricting

to ‘classic’ scheduling heuristics such as list policies, or by resorting

to more mainstream approximation techniques for Markovian deci-

sion processes (see for instance Powell, 2009; Puterman, 1994). This

option is not further pursued in this article.

5. Impact of activity duration variability

In this section, we examine the impact of different degrees of vari-

ability of the activity durations on a project’s value. We do this for the

example project instance in Section 5.1, and we generalize by testing

with a larger-scale experimental setup in Section 5.2.

5.1. Impact of duration variability in the example instance

The policy �1 described in Section 3.3 is optimal for exponential

durations; its objective value is 3.27 for the example. The quality of

the policy changes when the variability level is different, however.

Fig. 3(a) illustrates the functioning of policy �1 with deterministic

durations: the policy first executes only activity 1, and then starts

both activity 4 and 5 if 1 succeeds, otherwise the project is abandoned.

deterministic exponential
Π1 −1.26 3.27
Π2 1.50 −1.06

−−−−−−−−−−→
variability increases

Fig. 4. eNPV for policies �1 and �2.
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Fig. 5. The effect of activity duration variability on the optimal eNPV for the example

project.

The objective function value for �1 with deterministic durations is

E[f (�1)] = c1 + p1e−rE[D1]
(

c4 + c5 + p4p5Ce−rE[D5]
)

= −1.26.

An optimal policy �2 for this setting is described by Fig. 3(b), with

eNPV

E[f (�2)] = c2 + p2e−rE[D2]
(

c4 + c5 + p4p5Ce−rE[D5]
)

= 1.50.

Here, activity 2 is started at the project’s initiation, and activity 1

is never selected (i.e., upon failure of activity 2 the project is aban-

doned). With exponential durations, on the other hand, �2 has an

objective value of −1.06, significantly lower than the optimal value

of 3.27 achieved by �1. Interestingly, the inferior policy in the case

of exponential durations becomes optimal when activity durations

are deterministic. Also, the effect of variability on the eNPV associ-

ated with a policy is not monotonic; the eNPV of policy 1 increases,

whereas the eNPV of policy 2 decreases. Of particular interest is the

fact that the eNPV can actually increase when variability is intro-

duced, which is quite counterintuitive. Note also that for each of the

two variability settings, the sign of the objective of two policies is

different (one policy achieves a negative NPV while the other one has

positive NPV); we summarize these values in Fig. 4. This is a strong

case for incorporating all variability information into the computa-

tions and not only ‘plugging in’ the expectations into a deterministic

model, since a good project might be cut from the portfolio based

only on expected values, whereas it would be able to add value with

a carefully selected scheduling strategy.

Define policy �0 as the immediate abandonment of the project,

with zero objective value. Fig. 5 depicts the eNPV of the optimal pol-

icy for each level of duration variability; for any value of SCV , either

0 1 2 3 4 5 6 7 8 9 10 11 12 13 Time10

11 12 13 Time10

1-20

0 Project
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300

5-10

4-10
100%
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3 4 5 Time2
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(b) Policy Π2

Fig. 3. Policies with deterministic durations.
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Fig. 6. cdf of NPV associated with policies �1 and �2 for various activity duration distributions and various levels of variability.

�0, �1 or �2 is optimal. In particular, for a specific range of SCV

values, policy �0 (not executing the project) is preferable, while dif-

ferent optimal policies appear for other ranges. We observe that eNPV

decreases with SCV for policy �2. Policy �1, on the other hand, ex-

hibits a U-shaped relationship between SCV and project eNPV. In this

particular instance, the eNPV of the project is largest when activity

durations are highly uncertain (exponentially distributed). This con-

trasts with the intuition that an increase in uncertainty necessarily

entails a decrease of system performance. These findings are further

explored in Section 5.2 by means of experiments on a larger set of

instances.

Even with exponential durations, it is not a trivial matter to an-

alytically evaluate the entire distribution of a project’s NPV; in fact,

we are not aware of any studies that have attempted to achieve this

directly. More work is available on the analytical evaluation of project

makespan in the context of the PERT problem. It turns out that, with

discrete independent durations, computing the expected makespan,

and computing a single point of the distribution function, are both #P-

complete (any #P-complete problem is polynomially equivalent to

counting the number of Hamiltonian cycles of a graph and thus in par-

ticular NP-complete) (Hagstrom, 1988; Möhring, 2001). Since project

NPV is a function of project makespan, this is at least a clear indica-

tion that evaluating NPV analytically is probably highly intractable for

general duration distributions, and we therefore resort to simulation

as a means to approximate the NPV distribution.

For policies �1 and �2 for the example instance, Fig. 6 shows the

NPV distribution (cdf) for a number of different values for SCV; these

plots were obtained via simulation. From module 1, policy �1 only

executes activity 1 while �2 only executes activity 2, which is longer

but less expensive, and has a slightly higher success probability. We

observe that �2 has both a higher upside potential (higher probability

of achieving high NPV) as well as a higher downside risk (larger chance

of low NPV realizations); the net effect of this comparison is favorable

towards policy �1 when SCV goes beyond the value of 0.2 (approxi-

mately). Apparently, the higher success probability and lower cost of

activity 1 become more attractive (compared to activity 2) when the

duration variability is higher, such that low duration realizations for

D1 can also be achieved, while higher-than-average realizations of D1
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(b) OS = 0.8 and n = 21
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(c) OS = 0.6 and n = 11
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(d) OS = 0.6 and n = 21
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(e) OS = 0.4 and n = 11
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(f) OS = 0.4 and n = 21

Fig. 7. Boxplots of eNPV for different values of SCV , n and OS with r = 0.1.

will probably not affect the eNPV with the same magnitude because

of the concave and non-increasing dependence of the discount factor

with time. In other words, this example indicates that the interplay

between activity costs, success probabilities, average durations and

the discount factor induces the different dependence of �1 and �2

on SCV .

5.2. Impact of variability: experiments

Ward and Chapman (2003) argue that all current project risk-

management processes induce a restricted focus on the management

of project uncertainty. In part, this is because the term ‘risk’ encour-

ages a ‘threat’ perspective: we refer the reader to the examples of

risk events in the model for variability reduction by Ben-David and

Raz (2001) and Gerchak (2000). Ward and Chapman state that a focus

on ‘uncertainty’ rather than risk could enhance project risk manage-

ment, providing an important difference in perspective, including, but

not limited to, an enhanced focus on opportunity management, an

‘opportunity’ being a ‘potential welcome effect on project perfor-

mance.’ Ward and Chapman suggest that management strive for a

shift from a threat focus towards greater concern with understand-

ing and managing all sources of uncertainty, with both up-side and

down-side consequences, and explore and understand the origins

of uncertainty before seeking to manage it. They suggest using the

term ‘uncertainty management,’ encompassing both ‘risk manage-

ment’ and ‘opportunity management.’ See also Loch, DeMeyer, and

Pich (2006) for examples of how downside risks can sometimes be

turned into upside opportunity (e.g., p. 5 and p. 20).

In order to examine the impact of duration variability on the value

of a project in a more structured fashion, we have generated new
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(a) OS = 0.8 and n = 11
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(b) OS = 0.8 and n = 21
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(c) OS = 0.6 and n = 11
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(d) OS = 0.6 and n = 21
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(e) OS = 0.4 and n = 11
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(f) OS = 0.4 and n = 21

Fig. 8. Boxplots of eNPV for different values of SCV , n and OS with r = 0.01.

instances in line with Coolen et al. (2011), with n ∈ {11, 21} and

OS ∈ {0.4, 0.6, 0.8} but now we generate 100 instances per combina-

tion of parameter settings, and there is no activity failure nor modular

completion of the project (each activity constitutes a separate mod-

ule). The payoff value C is (uniform) randomly chosen from interval

[0.9C0; 2C0], where C0 is the payoff value that associates objective

value 0 (break-even) with the early-start policy �ES for SCV = 1. We

consider a wide range of SCV values; for more details on the gen-

eration of the duration distributions, see Creemers et al. (2013). The

results are graphically summarized in Fig. 7 for r = 10 percent and

in Fig. 8 for r = 1 percent. We investigate the effect of different vari-

ability levels (different values of SCV) on the value of the project.

We observe that variability reduction is systematically not beneficial

for the project’s value as measured by eNPV in the cases where the

precedence network is rather dense and the discount rate is high; this

corresponds with Fig. 7(a)–(c).

These results may be explained by: (1) the likelihood of serial ex-

ecution, and (2) the concaveness of the discount function e−rt . With

high OS, the precedence network is close to serial, and an increase in

duration variability results in an increase in the probability of com-

pleting the activity after a short amount of time. Due to the concave

shape of the discount function, the gain in the objective associated

with low duration realizations can offset the loss associated with

higher duration realizations, and this is more pronounced for higher r.
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Table 5

Comparison of policy classes: average difference in eNPV as a proportion of the payoff.

SCV

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

OS = 0.8 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

n = 11 OS = 0.6 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000

OS = 0.4 0.003 0.002 0.002 0.001 0.002 0.001 0.001 0.000

OS = 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n = 21 OS = 0.6 — 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OS = 0.4 — — 0.000 0.000 0.000 0.000 0.000 0.000

Low OS, by contrast, will imply that activities are more often executed

in parallel, and then the start of new activities is more frequently

defined by the maximum of multiple activity durations, the so-called

merge (bias) effect (Klingel, 1966). This merge effect is less likely to give

rise to short completion times even in the event that some activity

durations are low, and thus reduces the benefits associated with the

concave discount function. Optimal scheduling policies will indeed

tend to execute some of the activities in parallel rather than serially

when possible (low OS), because this reduces the project makespan

and thus leads to earlier project payoff.

Thus, investing in variability reduction becomes more interesting

if: (1) r is low, (2) OS is low, and (3) variability can almost be elimi-

nated. With a higher number n of activities, ceteris paribus, the project

duration will typically also be higher and there will be more chances

for merge bias, so we would expect variability reduction to be more

beneficial; this is also confirmed by the experimental results. The

figures also show that very high variability often exhibits increased

eNPV, but this phenomenon only occurs for unrealistically high SCV

values (SCV = 10) in some of the settings. Similar patterns arise when

activity failures are included and when there may be more than one

activity in the same module (which is not the case in the datasets to

which the plots pertain). The effects are also not dependent on the

PH-type character of the distributions: we have found comparable

behavior in simulations with lognormal and gamma distributions. As

a final remark, we underline that all the observations made in this sec-

tion pertain exclusively to expected NPV; obviously, lower duration

variability is likely to induce lower variability in the NPV realizations

as well, which may or may not be of significant importance to man-

agement, depending for instance on whether an entire portfolio of

projects or rather only one individual project is being managed.

6. Policy class: experiments

Following up on the discussion in Section 3.1, we further ex-

amine the possible choices for the policy class. Table 5 contains

the results for an experiment with which we evaluate whether

the consideration of policies that start activities only at the end

of other activities, is very restrictive. The experiments were run

on the datasets with n = 11 and 21 that were used in Section 5.2.

We consider SCV ∈ {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1}. For

n = 21 and OS = 0.4, we do not report results for networks with

SCV ∈ {0.125, 0.25}, and we also do not cover the combination n = 21,

OS = 0.6 and SCV = 0.125. The reason for excluding some combina-

tions is that lower SCV requires more phases to model the activity

durations: SCV = 0.25, for instance, requires four phases for each ac-

tivity, which results in a network of 4n phases. With r = 0.1 and for

each value of SCV and OS, Table 5 reports the decrease in the objective

value by optimizing over the restricted policy class as compared to

the more general class that also considers starting new activities after

the completion of each phase of each ongoing activity; the decrease is

expressed as a proportion of the payoff C and averaged over the 100

instances.

We conclude that the benefits of allowing activity start also at

other times than only at the completion of other activities are minor,

and nowhere higher than around 0.3 percent of the payoff. The bene-

fits are higher especially when variability is low; this is logical, since

there are more phases and hence more decision times with lower

SCV . The observation is also in line with the fact that for determinis-

tic durations, late-start scheduling is optimal (see Section 3.1). When

SCV = 1, the two classes coincide. At the same time, there were no sig-

nificant differences in the computational effort for finding an optimal

member in the larger policy class. In other words, from a computa-

tional viewpoint, there is no real downside to allowing decisions to

be made during the execution of activities, but the benefits are also

quite limited. Other values of r have also been tested, with similar

findings.

7. Summary and outlook on research perspectives

Project planning with traditional tools typically ignores technolog-

ical and duration uncertainty. In this article, we have explained how

to model scheduling decisions in a practical environment with con-

siderable uncertainty, and we have illustrated how decision making

based only on expected values can lead to inappropriate decisions.

We have developed a generic model for optimally scheduling R&D

projects with stochastic activity durations, possible activity failures

and modular project completion. We have assessed the effect of dif-

ferent degrees of activity duration variability on the expected NPV

of a project. Finally, we have illustrated that higher operational vari-

ability does not always lead to lower project values, meaning that

(sometimes costly) variance reduction strategies are not always ad-

visable. This contradicts the intuition that an increase in uncertainty

necessarily entails a decrease of system performance.

For future research, there are a number of topics that have been

brought up in this article and that deserve further exploration. In par-

ticular, an analytical study of the different determinants of the effect of

varying duration variability on the expected NPV would be highly in-

teresting; in this article, this analysis was mainly computational. This

pertains to project characteristics such as network density, which in-

fluences the importance of phenomena such as the merge bias effect,

but it can also include the impact of the discount factor. Additionally,

higher moments of the duration distributions, such as skewness and

kurtosis, might also play a role. As a final interesting research avenue,

we mention the study of the variability of a project’s NPV rather than

only the expected value.
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