
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

10-2021 

Revocable policy-based Chameleon hash Revocable policy-based Chameleon hash 

Shengmin XU 
Fujian Normal University 

Jianting NING 

Jinhua MA 
Singapore Management University, jinhuama@smu.edu.sg 

Guowen XU 

Jiaming YUAN 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Information Security Commons 

Citation Citation 
XU, Shengmin; NING, Jianting; MA, Jinhua; XU, Guowen; YUAN, Jiaming; and DENG, Robert H.. Revocable 
policy-based Chameleon hash. (2021). Computer Security: ESORICS 2021: 26th European Symposium on 
Research in Computer Security, Darmstadt, Germany, October 4-8: Proceedings. 12972, 327-347. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6741 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6741&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6741&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Shengmin XU, Jianting NING, Jinhua MA, Guowen XU, Jiaming YUAN, and Robert H. DENG 

This conference proceeding article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/6741 

https://ink.library.smu.edu.sg/sis_research/6741


Revocable Policy-Based Chameleon Hash

Shengmin Xu1,2, Jianting Ning1,3(B), Jinhua Ma1,2, Guowen Xu4,
Jiaming Yuan5, and Robert H. Deng2

1 College of Computer and Cyber Security, Fujian Normal University,
Fuzhou 350117, China
jtning@fjnu.edu.cn

2 School of Computing and Information Systems, Singapore Management University,
Singapore 188065, Singapore

{smxu,robertdeng}@smu.edu.sg
3 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China
4 School of Computer Science and Engineering, Nanyang Technological University,

Singapore 639798, Singapore
guowen.xu@ntu.edu.sg

5 Computer and Information Science Department, University of Oregon, Eugene,
OR 97403, USA

jiamingy@uoregon.edu

Abstract. Policy-based chameleon hash (PCH) is a cryptographic
building block which finds increasing practical applications. Given a mes-
sage and an access policy, for any chameleon hash generated by a PCH
scheme, a chameleon trapdoor holder whose rewriting privileges satisfy
the access policy can amend the underlying message without affecting the
hash value. In practice, it is necessary to revoke the rewriting privileges
of a trapdoor holder due to various reasons, such as change of positions,
compromise of credentials, or malicious behaviours. In this paper, we
introduce the notion of revocable PCH (RPCH) and formally define its
security. We instantiate a concrete RPCH construction by putting for-
ward a practical revocable attribute-based encryption (RABE) scheme
which is adaptively secure under a standard assumption on prime-order
pairing groups. As application examples, we show how to effectively inte-
grate RPCH into mutable blockchain and sanitizable signature for revok-
ing the rewriting privileges of any chameleon trapdoor holders. We imple-
ment our RPCH scheme and evaluate its performance to demonstrate its
efficiency.

Keywords: Policy-based chameleon hash · Revocable attribute-based
encryption · Mutable blockchain · Sanitizable signature

1 Introduction

Policy-based Chameleon Hash (PCH) generalizes the notion of chameleon hash
by giving one the ability to compute a chameleon hash and associate an access
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12972, pp. 327–347, 2021.
https://doi.org/10.1007/978-3-030-88418-5_16



328 S. Xu et al.

policy to the hash. Chameleon trapdoor holders are issued rewriting privileges
based on their attributes. A chameleon trapdoor holder whose rewriting privi-
leges satisfy the access policy of a chameleon hash can find arbitrary collisions of
the hash. Since PCH was proposed, it has found increasing applications in muta-
ble blockchain and sanitizable signature to support fine-grained and controlled
modifiability.

Mutable Blockchain. Most existing blockchains are designed to be immutable
such that transactions in a block cannot be altered once they are confirmed.
However, in many practical application scenarios, blockchain rewriting is nec-
essary for reasons such as removing inappropriate contents [27,28] and com-
plying legal obligations [1]. A mutable blockchain allows a certain party, called
transaction modifier [4] who holds a chameleon trapdoor to process blockchain
rewriting in a controlled way. By applying traditional asymmetric-key encryption
and chameleon hash [24], Ateniese et al. [4] introduced the notion of mutable
blockchain and proposed a construction that realizes block-level rewriting. Derler
et al. [16] introduced the first construction of PCH, which supports transaction-
level rewriting in a fine-grained way. Deuber et al. [17] later proposed a permis-
sionless transaction rewriting mechanism based on consensus-based e-voting [23].
Recently, Tian et al. [36] considered the accountability in PCH-based mutable
blockchain.

Sanitizable Signature. As a variant of digital signatures, sanitizable signatures
allow a signer and a signer designated party, called sanitizer [3], to hold a
chameleon trapdoor for rewriting signed messages in a controlled way. By replac-
ing the traditional hash with chameleon hash [24], Ateniese et al. [3] introduced
the notion of sanitizable signature and proposed a construction that realizes
unforgeability, privacy, transparency, immutability and accountability. Saniti-
zable signature with unlinkability was proposed by Fleischhacker et al. [19].
Camenisch et al. [14] introduced chameleon hash with ephemeral trapdoor
(CHET) to realize invisibility. However, the aforementioned sanitizable signa-
tures and some following works [8,13,18] mainly concentrated on investigating
additional security requirements, the sanitizer cannot be managed efficiently and
flexibly. In particular, the signer needs to know the sanitizer before the signature
generation phase, and sanitizing capabilities are controlled in a coarse-grained
way. To address this problem, a PCH-based sanitizable signature [34] is pro-
posed to allow the signer to define multiple sanitizers for a signed message in a
fine-grained way.

Motivation. In practice, a chameleon trapdoor holder may abuse her/his rewrit-
ing privileges, maliciously rewrite the hashed objects (e.g., transaction contents
in mutable blockchain and messages in sanitizable signature) to spread inap-
propriate/incorrect contents, or even sell the rewriting privileges to gain illegal
profits. Such abused privileges must be revoked as the actions of trapdoor holders
impact the security, reputation, and robustness of the entire system. However,
to the best of our knowledge, current PCH proposals [16,34,36] cannot provide
revocability toward rewriting privileges.



Revocable Policy-Based Chameleon Hash 329

To control rewriting privileges in a versatile way, fast attribute-based mes-
sage encryption (FAME) [2], as a variant of attribute-based encryption (ABE),
has been used as the underlying building block of PCH [16,34,36]. However, a
PCH built on standard FAME does not support user revocation. To address this
issue, revocable ABE (RABE) can be used to replace the underlying FAME and
realize PCH with revocability. However, one cannot naively employ the exist-
ing direct/indirect RABE to replace FAME without sacrificing the security or
performance of PCH. Specifically, direct RABE incurs large overhead and is
impractical in real-world scenarios while indirect RABE suffers from weak secu-
rity or poor performance compared to FAME.

Direct RABE [6,7,12,26]. There are two strategies in direct revocation. The first
strategy is mainly built on the key generation center (KGC) who broadcasts an
updated secret key for each non-revoked user via a secure channel periodically.
The secret key is bound to attributes appending a timestamp, i.e., att‖t, where
att is an attribute and t is timestamp updated in each time epoch. This approach
is impractical since a ciphertext would contain a long policy to cover all possible
t values and the secure channels for a periodic secret key update to all non-
revoked users are expensive. The other approach is embedding identities of all
the revoked users in the ciphertexts, which is also impractical since data owners
must keep the revocation list update to date and the revocation list will grow
longer as time goes by.

Indirect RABE [15,31,33,37–41]. To address the problem in direct revocation,
indirect revocation divides a user’s decryption privilege into a secret key and a
public key-updating material. A KGC issues a secret key to a user when she/he
joins the system and broadcasts the key-updating material to all users period-
ically over a public channel. Only non-revoked users can combine their secret
keys and the key-updating material to obtain decryption privileges at each time
period.

Although RABE1 offers a potential solution to realize PCH with revocation,
how to realize RABE based on FAME is an open problem. FAME [2], as a
basic building block for PCH [16,34,36], is an adaptively secure ABE on prime-
order groups. Previous RABE solutions generally rely on the property of linear
master secret sharing, named ElGamal-type ABE [40], such as adaptively secure
ABE (on composite-order groups) [25] used in [33] and selectively secure ABE
(on prime-order groups) [32] used in [15,31,37,39,40]. In ElGamal-type ABE,
the master secret key and ciphertext are in the form of α and m · e(g, g)αs,
respectively. By dividing α into α − β and β, the KGC applies α − β to issue
secret keys to users and uses β to generate the public key-updating material.
A revoked user cannot erase β in her/his secret key to process data decryption,
and a non-revoked user can easily combine the secret key and the key-updating
material to erase β to reveal the sealed message. However, FAME [2] is not an
ElGamal-type ABE and cannot follow this strategy. The following problem arises
naturally:

1 In the rest of the paper, unless otherwise specified, RABE represents indirect RABE.



330 S. Xu et al.

“Can RABE be built from FAME and further be integrated into PCH to
revoke rewriting privileges?”

Our Contributions. In this paper, we give an affirmative answer to the above
problem by introducing the first formal treatment for revocability to PCH,
dubbed revocable policy-based chameleon hash (RPCH). We present a new revo-
cable attribute-based encryption, which is adaptively secure under a standard
assumption on prime-order pairing groups, and then based on it we realize a
practical construction of RPCH. The major contributions of the paper are three-
fold.

– Formal definition of RPCH. RPCH extends PCH with revocability. We give
a formal definition of RPCH and propose the notions of fully indistinguisha-
bility, collision-resistance and uniqueness in presence of attackers.

– Adaptively secure RABE. RABE serves as the fundamental building block to
offer the properties of policy-based access control and revocability simultane-
ously. To instantiate an efficient RPCH construction, we present an adaptively
secure RABE under a standard assumption on prime-order pairing groups.2

– Practical RPCH construction. We provide a concrete construction of RPCH
with performance evaluation. Compared to PCH [16], our RPCH achieves
revocability with negligible overhead. Specifically, our RPCH takes one extra
exponentiation (around 3.83 ms) for hashing, and one more multiplication
and pairing (around 21.19 ms) for collision finding. We also show that our
RPCH is practical when integrating it into mutable blockchain and sanitizable
signature.

2 Overview

In this section, we give an overview of the proposed RABE and RPCH, and the
design intuitions behind them.

Overview of RABE Technique. We resort to the techniques in indistinguisha-
bility under chosen plaintext attacks (IND-CPA) secure FAME [2] and IND-CPA
secure revocable identity-based encryption (RIBE) with decryption key3 expo-
sure resistance [35], where key exposure resistance guarantees that the exposed
short-term decryption key does not affect the security of any other time peri-
ods. In our solution, the secret key follows the structure of FAME and imitates
the form of a second-level secret key of the hierarchical identity-based encryption

2 As explained above, previous RABE solutions are either selectively secure [15,37–41]
or adaptively secure under non-standard assumptions or composite-order groups [33].
Guillevic [22] reported that bilinear pairings are 254 times slower in composite-order
than in prime-order groups for the same 128-bit security. Despite dual pairing vector
space [30] can transfer composite-order groups to prime-order groups, it could be
paramount for enormous encoding schemes [5].

3 In RABE, the decryption privilege is based on the decryption key, which is derived
from the long-term secret key and public key-updating material.



Revocable Policy-Based Chameleon Hash 331

(HIBE) [10] to achieve fine-grained access control and user revocation simultane-
ously. In the following, we describe the intuition behind our RABE construction
from the perspectives of secret key structure and key period management.

– Secret key structure. We modify the structure of the FAME secret key by
removing a random element gθ, where θ is used to manage user revocation.
At the beginning of each period, the key-updating material is published, and
it contains gθ with an additional time-based restriction. A non-revoked user
can update her/his long-term secret key to obtain a FAME secret key with
the time-based restriction, and this secret key can be used for decryption if
the time-based restriction matches the timestamp associated with the cipher-
text. To resist decryption key exposure attacks, we design a decryption key
generation algorithm that derives a probabilistic short-term decryption key.
Thus, by knowing the short-term decryption key and the public key-updating
material, no one can derive the corresponding long-term secret key.

– Key periodical management. We rely on the key-update-nodes KUNodes
algorithm [29] to reduce the size of the key-updating material from lin-
ear to the number of system users to logarithmic. Each chameleon trap-
door holder with an identifier id has log n secret keys that relate to the
path of their positions in the tree-based state st to the tree root node,
denoted as Path(id). The key update generation algorithm outputs a key-
updating material based on KUNodes by inputting a state st, a revocation
list rl, and a timestamp t. Each non-revoked user can find only one node
θ ∈ Path(id) ∩ KUNodes(st, rl, t) to generate a decryption key, while revoked
users cannot find it ∅ ∈ Path(id)∩KUNodes(st, rl, t), hence, they are revoked
implicitly. Although the size of the secret key is increased from constant to
logarithmic, the effect is minimal since the secret key is distributed once and
the key-updating material is broadcast each period.

Overview of RPCH System Model. As shown in Fig. 1, RPCH allows a
party, e.g., a data owner, to compute a chameleon hash associated with an access
policy and a timestamp. Another party, called chameleon trapdoor holder or
modifier, who possesses privileges and valid key-updating materials that satisfy
the access policy and the timestamp in a given hash can then find arbitrary
collisions. RPCH thus supports the modifiability at a fine-grained level and the
revocability of the modifier rewriting privileges.

Fig. 1. System model of RPCH



332 S. Xu et al.

Overview of RPCH Technique. We resort to the techniques in previous
PCH [16], sanitizable signature [34] and our proposed RABE. Our PRCH fol-
lows the previous PCH solutions [16,34] by replacing the underlying FAME
scheme with our proposed RABE, and combining with CHET [14]. In CHET,
two trapdoors are used to guarantee the security of controlled rewriting: a long-
term trapdoor and an ephemeral trapdoor. In RABE, we have an attribute-based
long-term secret key issued when the modifier joins and a key-updating mate-
rial publicly distributed each period. In the following, we describe the intuition
behind our RPCH construction from the perspectives of long-term secret key
and ephemeral trapdoor.

– Long-term secret. The long-term secret key consists of an attribute-based
long-term secret key and a CHET long-term trapdoor, and both of them are
issued when the modifier joins the system. The attribute-based long-term
secret key is used to combine the key-updating material to enable the non-
revoked modifier to derive a short-term decryption key and revoke the invalid
modifier implicitly. The CHET long-term trapdoor cannot work for rewriting
individually and must cooperate with the CHET ephemeral trapdoor.

– Ephemeral trapdoor . Each data owner picks a CHET ephemeral trapdoor
during data hash and encrypts this trapdoor via hybrid encryption, where
symmetric-key encryption to seal this trapdoor and RABE to seal the sym-
metric key. Hence, to operate the rewriting procedure, the modifier must have
an attributed-based decryption key (that satisfies the access policy and the
timestamp associated with the sealed ephemeral trapdoor) and the CHET
long-term trapdoor. In other words, the rewriting privilege is authorized by
the KGC and the data owner simultaneously. Note that, the data owner can-
not process the rewriting procedure alone since the CHET long-term trapdoor
is unknown to him/her.

We propose notions of fully indistinguishability, collision-resistance and unique-
ness as the security requirements for RPCH. Derler et al. [16] introduced the first
PCH, and its security in terms of indistinguishability and collision-resistance.
Samelin and Slamanig [34] improved the security by introducing the notions of
full indistinguishability, collision-resistance, and uniqueness. We refine security
notations in the above works by additionally considering several different types
of adversaries. In particular, in our security model, an adversary could be the
combination of outsiders, insiders without valid secret keys, and insiders with
valid secret keys but being revoked.

3 Preliminaries

In this section, we present the hard assumption, access structure and some build-
ing blocks, which are used in our proposed RABE and PCH schemes.



Revocable Policy-Based Chameleon Hash 333

3.1 Bilinear Map

Let G be an asymmetric prime-order (Type-III) pairing group generator that on
input 1κ, outputs description of three groups G,H,GT of prime order p with a
bilinear map e : G×H → GT , and generators g and h for G and H with following
properties: 1) bilinearity: for all u ∈ G, v ∈ H and a, b ∈ Zp, e(ua, vb) = e(u, v)ab;
2) non-degeneration: e(g, h) �= 1; and 3) computability: it is efficient to compute
e(u, v) for any u ∈ G and v ∈ H.

3.2 Hard Assumption

Definition 1 (DLIN). A bilinear pairing group generator G satisfies the deci-
sional linear assumption (DLIN) if for all probabilistic polynomial time adver-
saries A, AdvDLIN

A (κ) =
∣
∣ Pr[A(1κ, pp,D, T0)] − Pr[A(1κ, pp,D, T1)]

∣
∣ is negli-

gible in the security parameter κ, where pp = (p,G,H,GT , e, g, h) ← G(1κ);
a1, a2 ∈ Z

∗
p; s1, s2, s ∈ Zp; D = (ga1 , ga2 , ha1 , ha2 , ga1s1 , ga2s2 , ha1s1 , ha2s2);

T0 = (gs1+s2 , hs1+s2); and T1 = (gs, hs).

3.3 Access Structure

Definition 2 (Access Structure). Let U denote the universe of attributes. A
collection A ∈ 2U\{∅} of non-empty sets is an access structure on U. The sets in
A are called the authorized sets, and the sets not in A are called the unauthorized
sets. A collection A ∈ 2U \{∅} is called monotone if ∀B,C: if B ∈ A and B ⊆ C,
then C ∈ A.

3.4 Revocable Attribute-Based Encryption

Definition 3 (RABE). Let I be an identifier space, M denote a mes-
sage space and T be a time space. A revocable attribute-based encryption
with decryption key exposure resistance RABE consists of the algorithms
{Setup,KGen,KUpt,DKGen, Enc,Dec,Rev} such that:

– Setup(1κ, n) → (mpk,msk, st, rl): The probabilistic setup algorithm takes a
security parameter κ ∈ N and the number of system users n ∈ N as input,
and outputs a master public key mpk, a master secret key sk, a state st and a
revocation list rl, where 1κ and mpk are implicit input to all other algorithms.

– KGen(msk, st, id,S) → (skid, st): The probabilistic key generation algorithm
takes a master secret key msk, a state st, an identifier id ∈ I and an attribute
set S ⊆ U as input, and outputs a secret key skid and an updated state st.

– KUpt(st, rl, t) → kut: The probabilistic key update generation algorithm takes
a state st, a revocation list rl and a timestamp t ∈ T as input, and outputs a
key-updating material kut. Note that st is kept secret by the KGC.

– DKGen(skid, kut) → dkid,t: The probabilistic decryption key generation algo-
rithm takes a secret key skid and a key-updating material kut as input, and
outputs a decryption key dkid,t.



334 S. Xu et al.

– Enc(m,A, t) → c: The probabilistic encryption algorithm takes a message m ∈
M, an access policy A ∈ 2U and a timestamp t ∈ T as input, and outputs a
ciphertext c.

– Dec(dkid,t, c) → m: The deterministic decryption algorithm takes a decryption
key dkid,t and a ciphertext c as input, and outputs a message m ∈ M.

– Rev(rl, id, t) → rl: The deterministic revocation algorithm takes a revocation
list rl, an identifier id ∈ I and a timestamp t ∈ T as input, and outputs an
updated revocation list rl.

Definition 4 (IND-CPA). The security definition of IND-CPA for RABE
between an adversary A and a challenger C.
Setup. C runs Setup(1κ, n) and gives mpk to A. C keeps msk, st and rl secret.
Phase 1. A adaptively issues a sequence of following queries to C.

– OKGen(·, ·): A issues key generation query on an identifier id ∈ I and a set of
attributes S ⊆ U. C returns a secret key skid by running KGen(msk, st, id,S).

– OKUpt(·): A issues key update query on a timestamp t ∈ T . C returns a key-
updating material kut by running KUpt(st, rl, t).

– ODKGen(·, ·, ·): A issues decryption key generation query on an identifier id ∈
I, a set of attributes S ⊆ U and a timestamp t ∈ T . C returns a decryption key
dkid,t by running DKGen(skid, kut) if the secret key skid and the key-updating
material kut are available. Otherwise, C generates skid and kut first.

– ORev(·, ·): A issues revocation query on an identifier id ∈ I and a timestamp
t ∈ T . C updates the revocation list rl by running Rev(rl, id, t).

A is allowed to query above oracles with the following restrictions:

1. OKUpt(·) and ORev(·, ·) can be queried at the time t ∈ T which is greater than
or equal to that of all previous queries.

2. ORev(·, ·) cannot be queried at the time t ∈ T if OKUpt(·) was queried at the
time t ∈ T .

Challenge. A outputs two messages m0 and m1 of the same size, an access
structure A

∗ and a timestamp t∗ ∈ T . C terminates if the previous queries against
the following restrictions:

3. ODKGen(·, ·, ·) cannot be queried any identifier id ∈ I with any set of attributes
S |= A

∗ at the challenge time t∗ ∈ T .
4. ORev(·, ·) must be queried the identifier id ∈ I associated attributes S |= A

∗

and the timestamp t ≤ t∗ if OKGen(·, ·) was queried any identifier id ∈ I and
any set of attributes S |= A

∗.

C randomly chooses b ∈ {0, 1}, and returns c∗ to A by running Enc(mb,A
∗, t∗).

Phase 2. A continues issuing queries to C with the previous restrictions.
Guess. A makes a guess b′ for b, and it wins the game if b′ = b.
The advantage of A in this game is defined as AdvIND-CPA

RABE,A(κ, n) =
∣
∣ Pr[b =

b′] − 1/2
∣
∣. An RABE is IND-CPA secure if any probabilistic polynomial time

adversary has at most a negligible advantage in κ.



Revocable Policy-Based Chameleon Hash 335

3.5 Tree-Based Structure for User Revocation

The tree-based revocation list has been widely used to reduce the computation
and communication costs of key-updating materials from linear to logarithmic.
The basic idea is to find a minimum of sub-tree roots to cover all non-revoked
users. Specifically, as shown in Fig. 2, each data user is assigned to an individual
leaf node in a binary tree and is issued secret keys from the corresponding leaf
node to the root (see Step 1). To revoke users (see Step 2), we only need to find
sub-tree roots that are exclusive of revoked users to generate key updates (see
Step 3).

Fig. 2. Tree-based revocation structure

The key-update-nodes algorithm KUNodes(st, rl, t) [29] is proposed to process
the above mechanism. It takes a state st denoting the state of the binary tree, a
revocation list rl, and a timestamp t, and outputs a set of nodes, where rl records
a set of identifier and timestamp pairs. When a user joins the system, who will
be labeled a random identifier id and assigned to an undefined leaf node. The
user id will be issued a set of keys related to Path(id), where Path(id) denotes all
nodes in the path from the root node to the leaf node id. The formal definition for
KUNodes algorithm is referred to [9], which first introduced KUNodes algorithm
in the revocable identity-based cryptosystem.

4 Revocable Policy-Based Chameleon Hash

In this section, we present the system model. Then, we present the formal defi-
nition and the security model.

4.1 System Model

PCH is a chameleon hash system with controlled rewriting privilege at a fine-
grained level and involves three types of users: KGC, data owner, and data
modifier. In terms of a decentralized setting, every user can play the role of a
KGC and tag other users with attributes. We use data “owner” and “modifier”
in presenting RPCH. In particular, we assume the number of the modifier is
a small amount since the rewriting privilege should be controlled carefully and
cannot be performed by the majority of users.



336 S. Xu et al.

As shown in Fig. 1, the KGC issues the long-term secret key when the modifier
joins the system via a secure channel and distributes the key-updating material
periodically via a public channel. Each owner is allowed to generate chameleon
hash (h, r) by setting an access policy A and a timestamp t for rewriting the
hashed object. The modifier whose long-term secret key satisfies the policy asso-
ciated with the hashed object S |= A and the valid key-updating material in
period t can operate the rewriting produce by outputting a chameleon collision.

4.2 Formal Definition

Definition 5 (RPCH). A revocable policy-based chameleon hash RPCH con-
sists of the algorithms {Setup, KGen, KUpt, DKGen, Rev, Hash, Verify, Adapt},
where the algorithms Setup, KGen, KUpt, DKGen, and Rev are described in
RABE. The definition for the rest of algorithms Hash, Verify, and Adapt is:

– Hash(m,A, t) → (h, r): The probabilistic hash algorithm takes a message m ∈
M, an access policy A ∈ 2U and a timestamp t ∈ T as input, and outputs a
chameleon hash h and a randomness (sometimes referred to as “check value”)
r.

– Verify(m,h, r) → b: The deterministic verification algorithm takes a message
m ∈ M, a chameleon hash h and a randomness r as input, and outputs a bit
b ∈ {0, 1}.

– Adapt(dkid,t,m,m′, h, r) → r′: The deterministic adaptation algorithm takes
a decryption key dkid,t, a message m ∈ M, a message m′ ∈ M, a chameleon
hash h and a randomness r as input, and outputs a randomness r′.

For each RPCH, it is required that the correctness property holds. In particular,
it is required that for all κ ∈ N, for all (mpk,msk, st, rl) ← Setup(1κ, n), for all
S ⊆ U, for all (skid, st) ← KGen(msk, st, id,S), for all t ∈ T , for all kut ←
KUpt(st, rl, t), for all dkid,t ← DKGen(skid, kut), for all m ∈ M, for all (h, r) ←
Hash(m,A, t), for all m′ ∈ M, for all r′ ← Adapt(dkid,t,m,m′, h, r), we have
1 = Verify(m,h, r) = Verify(m′, h, r′).

4.3 Security Model

Definition 6 (FIND). The security definition of full indistinguishability (FIND)
for RPCH between an adversary A and a challenger C.
Setup. C runs Setup(1κ, n) and gives mpk and msk to A.
Query Phase. C randomly picks b ∈ {0, 1}. A issues the following queries to
C.

– OHashOrAdapt(·, ·, ·, ·, ·): A issues hash or adapt query on two messages m,m′ ∈
M, a decryption key dkid,t, an access policy A ∈ 2U and a timestamp t ∈ T . C
generates (h0, r0) by running Hash(m′,A, t), (h1, r1) by running Hash(m,A, t)
and r1 by running Adapt(dkid,t,m,m′, h1, r1). C returns ⊥ if r0 = ⊥ or r1 =
⊥. Otherwise, C returns (hb, rb).



Revocable Policy-Based Chameleon Hash 337

Guess. A makes a guess b′ for b.
The advantage of A in this game is defined as AdvFIND

RPCH,A(κ, n) =
∣
∣ Pr[b =

b′]− 1/2
∣
∣. An RPCH is FIND if any probabilistic polynomial time adversary has

at most a negligible advantage in κ.

Definition 7 (ICR). The security definition of insider collision-resistance (ICR)
for RPCH between an adversary A and a challenger C.4

Setup. C runs Setup(1κ, n) and gives mpk to A. C keeps msk, st and rl secret.
Query Phase. A adaptively issues a sequence of following queries to C.

– OKGen(·, ·), OKUpt(·), ODKGen(·, ·, ·) and ORev(·, ·) are the same oracles defined
in the IND-CPA security model for RABE with the same restrictions.

– O′
KGen(·, ·): A issues key generation query on an identifier id ∈ I and a set of

attributes S ⊆ U. C runs KGen(msk, st, id,S) and keeps the secret key skid.
– OHash(·, ·, ·): A issues hash query on a message m ∈ M, an access policy

A ∈ 2U and a timestamp t ∈ T . C returns (h, r) by running Hash(m,A, t).
– OAdapt(·, ·, ·, ·, ·): A issues adaption query on two messages m,m′ ∈ M,

an access policy A ∈ 2U, a timestamp t ∈ T and an identifier id ∈ I.
C returns ⊥ if id was not queried to OKGen(·, ·) before and O′

KGen(·, ·), or
id’s corresponding attributes S �|= A. Otherwise, C returns r′ by running
Adapt(dkid,t,m,m′, h, r).

Output. A outputs two different messages m∗,m′∗ ∈ M, two randomnesses
r∗, r′∗, a chameleon hash h∗ and a timestamp t∗ ∈ T , and it wins the game if

– 1 = Verify(m∗, h∗, r∗) = Verify(m′∗, h∗, r′∗),
– h∗ appears in OHash(·, ·, ·) or OAdapt(·, ·, ·, ·, ·) with some A

∗ ∈ 2U and t∗ ∈ T ,
– (h∗,m∗) does not appear in OHash(·, ·, ·) or OAdapt(·, ·, ·, ·, ·),
– any S |= A

∗ and t∗ ∈ T have not been queried to ODKGen(·, ·, ·), and
– any id ∈ I with S |= A

∗ was revoked in t ≤ t∗ or has never been queried to
OKGen(·, ·).

The advantage of A in this game is defined as AdvICR
RPCH,A(κ, n) = Pr[A wins].

An RPCH is ICR if any probabilistic polynomial time adversary has at most a
negligible advantage in κ.

Definition 8 (UNI). The security definition of uniqueness (UNI) for RPCH
between an adversary A and a challenger C.
Setup. C runs Setup(1κ, n) and gives mpk and msk to A.
Output. A outputs a message m∗ ∈ M, two randomness r∗, r′∗ and a chameleon
hash h∗. It wins the game if 1 = Verify(m∗, h∗, r∗) = Verify(m∗, h∗, r′∗) and
r∗ �= r′∗.
The advantage of A in this game is defined as AdvUNI

RPCH,A(κ, n) = Pr[A wins].
An RPCH is UNI if any probabilistic polynomial time adversary has at most a
negligible advantage in κ.
4 To simplicity, the weak model, outsider collision-resistance [16] has not taken into

consideration since ICR covers this weak model as in [34].



338 S. Xu et al.

5 Revocable Policy-Based Chameleon Hash

In this section, we present the concrete constructions of RABE and RPCH,
respectively. Then, we show that RPCH can be effectively integrated into muta-
ble blockchain and sanitizable signature.

5.1 Proposed RABE

Before presenting the construction of RPCH, we introduce the construction of
RABE first, which serves as an important building block to RPCH. Our RABE
uses a hash function H : {0, 1}∗ → G, and it will be modeled as a random
oracle in the security proof. In particular, three types of inputs will be given to
H: inputs of the form (y, �, z), (j, �, z) or t, where y ∈ S, j ∈ N, � ∈ {1, 2, 3},
z ∈ {1, 2} and t ∈ T . For the seek of readability, we represent these three inputs
as y�z, 0j�z and 1t, respectively, appending 0 at the beginning of the second one
and 1 at the beginning of the third one so that it is not confused each other.
We assume that the inputs are appropriately encoded so that no three different
tuples collide. In the following, we present the concrete construction of RABE
and the sketch of the security proof.

Setup(1κ, n): Run (p,G,H,GT , e, g, h) ← G(1κ). Pick a1, a2, b1, b2 ∈ Z
∗
p and

d1, d2, d3 ∈ Zp. Output mpk = (h,H1 = ha1 ,H2 = ha2 , T1 = e(g, h)d1a1+d3 ,
T2 = e(g, h)d2a2+d3 ,H),msk = (g, h, a1, a2, b1, b2, g

d1 , gd2 , gd3), st ← BT and
rl ← ∅, where BT denotes a binary tree with n leaf nodes.

KGen(msk, st, id,S): Pick r1, r2 ∈ Zp and compute sk0 = (hb1r1 , hb2r2 , hr1+r2)
using h, b1, b2 from msk. For all y ∈ S and z = 1, 2:
1. Pick σy, σ′ ∈ Zp.

2. Compute sky,z = H(y1z)
b1r1
az · H(y2z)

b2r2
az · H(y3z)

r1+r2
az · g

σy
az .

3. Compute sk′
z = gdz · H(011z)

b1r1
az · H(012z)

b2r2
az · H(013z)

r1+r2
az · g

σ′
az .

Set sky = (sky,1, sky,2, g
−σy ) and sk′ = (sk′

1, sk
′
2). Pick an unassigned left

node in st and label id to it. For all θ ∈ Path(id):
1. Fetch gθ if available; else pick gθ ∈ G and store gθ in θ to update st.
2. Compute skθ = gd3 · g−σ′

/gθ.
Output skid = (S, sk0, {sky}y∈S , sk′, {θ, skθ}θ∈Path(id)) and st.

KUpt(st, rl, t): For all θ ∈ KUNodes(st, rl, t): Fetch gθ, pick rθ ∈ Zp, and compute
kuθ = (gθ · H(1t)rθ , hrθ ). Output kut = (t, {θ, kuθ}θ∈KUNodes(st,rl,t)).

DKGen(skid, kut): Find θ ∈ Path(id) ∩ KUNodes(st, rl, t). Output ⊥ if θ = ∅,
else pick r′

θ ∈ Zp and compute sk′
3 = skθ · kuθ,1 · H(1t)r′

θ = gd3 · g−σ′ ·
H(1t)rθ+r′

θ and sk0,4 = kuθ,2 · hr′
θ = hrθ+r′

θ , where kuθ,1 and kuθ,2 denote
the first and the second elements of kuθ. Set sk′′ = (sk′

1, sk
′
2, sk

′
3) and sk′

0 =
(sk0,1, sk0,2, sk0,3, sk0,4). Here, sk0,1, sk0,2 and sk0,3 denote the first, second
and third elements of sk0. Output dkid,t = (S, t, sk′

0, {sky}y∈S , sk′′).
Enc(m,A = (M, π), t):

Pick s1, s2 ∈ Zp. Compute c0 = (Hs1
1 ,Hs2

2 , hs1+s2 ,H(1t)s1+s2). Suppose
M has n1 rows and n2 columns. For i = 1, ..., n1 and � = 1, 2, 3, compute



Revocable Policy-Based Chameleon Hash 339

ci,� = H(π(i)�1)s1 · H(π(i)�2)s2 ·
∏n2

j=1 [H(0j�1)s1 · H(0j�2)s2 ]Mi,j . Set ci =
(ci,1, ci,2, ci,3). Compute c′ = T s1

1 ·T s2
2 ·m. Output c = (A, t, c0, c1, . . . , cn1 , c

′).
Dec(dkid,t, c): If S in dkid,t satisfies A = (M, π) in c, then there exist constants

{γi}i∈I that satisfy
∑

i∈I γiMi = (1, 0, . . . , 0). Compute

num = c′ · e
⎛
⎝∏

i∈I

c
γi
i,1, sk0,1

⎞
⎠ · e

⎛
⎝∏

i∈I

c
γi
i,2, sk0,2

⎞
⎠ · e

⎛
⎝∏

i∈I

c
γi
i,3, sk0,3

⎞
⎠ · e (c0,4, sk0,4) ,

den = e

⎛
⎝sk′

1 ·
∏
i∈I

sk
γi
π(i),1

, c0,1

⎞
⎠ · e

⎛
⎝sk′

2 ·
∏
i∈I

sk
γi
π(i),2

, c0,2

⎞
⎠ · e

⎛
⎝sk′

3 ·
∏
i∈I

sk
γi
π(i),3

, c0,3

⎞
⎠

and output num/den. Here, c0,1, c0,2, c0,3 and c0,4 denote the first, second,
third and forth elements of c0.

Rev(rl, id, t): Output rl ← rl ∪ {(id, t)}.

Theorem 1. The proposed RABE is IND-CPA secure if the DLIN assumption is
held in the random oracle model.

We give the sketch of our security proof and details are omitted to conserve
space. Our security proof is based on the proofs in RIBE [35] and FAME [2].
We can construct a simulation B to simulate the security game. B simulates the
public parameters and oracles depending on FAME with two major differences.
One is that B needs to guess the type of A, where A can play non-revoked users
who can get key-updating material in the challenge time, or revoked users who
must be revoked before the challenge time. The other one is that B needs to guess
the challenge time t∗ ∈ T . B can then simulate the IND-CPA game perfectly if
guess correctly. Finally, B can forward the guess of A as the result to break DLIN
assumption, which is also the hard assumption of FAME.

5.2 Proposed RPCH

We present the concrete construction of RPCH directly and the sketch of the
security proof. The generic construction is similar to the previous RPCH [16,34]
except that the underlying ABE is replaced to RABE, and additional algo-
rithms Kupt,DKGen and Rev are used to manage user revocation. In our con-
crete construction, hybrid encryption is considered for the large-size chameleon
trapdoor. In particular, an encoding method encodes a symmetric key to an
RABE message, and a decoding method decodes the RABE message to a sym-
metric key. To simplicity, we represent the encoding and decoding method
as encode : {0, 1}∗ → GT and encode−1 : GT → {0, 1}∗, respectively. Let
RABE = {Setup,KGen,KUpt,DKGen, Enc,Dec,Rev} be an IND-CPA secure
RABE. The constriction of RPCH is described as follows:

Setup(1κ, n): It includes parameter initialization, trapdoor selection, symmetric-
key encryption initialization:
1. Run (mpkRABE ,mskRABE , st, rl) ← RABE .Setup(1κ, n). Pick e1 ≥ N ′

with N ′ = maxr{N ∈ N : (N, ·, ·, ·, ·) ← RSAKGen(1κ; r)}.



340 S. Xu et al.

2. Run (N1, p1, q1, ·, ·) ← RSAKGen(1κ), choose hash functions H1 : {0, 1} →
Z

∗
N1

and H3 : {0, 1}∗ → Zp × Zp. Compute d1 s.t. ed1 ≡ 1 mod (p1 −
1)(q1 − 1).

3. Choose a symmetric-key encryption scheme SE = {KGen,Enc,Dec}.
Output mpk = (mpkRABE , N1, e,H1,H3,SE),msk = (d1,mskRABE), st, rl.

KGen(msk, st, id,S): Run (skRABE,id, st) ← RABE .KGen(mskRABE , st, id,S).
Output skid = (d1, skRABE,id) and st.

KUpt(st, rl, t): Output kut by running kut ← RABE .KUpt(st, rl, t).
DKGen(skid, kut): Run dkRABE,id,t ← RABE .DKGen(skRABE,id, kut). Output

dkid,t = (d1, dkRABE,id,t)
Rev(rl, id, t): Output rl by running rl ← RABE .Rev(rl, id, t).
Hash(m,A, t): It includes chameleon hash parameter initialization, trapdoor

selection, trapdoor encapsulation:
1. Run (N2, p2, q2, ·, ·) ← RSAKGen(1κ), choose a hash function H2 :

{0, 1}∗ → Z
∗
N2

. Compute d2, s.t. ed2 ≡ 1 mod (p2 − 1)(q2 − 1).
2. Choose r1 ∈ Z

∗
N1

, r2 ∈ Z
∗
N2

, compute h1 = H1(m,N1, N2)re
1 mod N1 and

h2 = H2(m,N1, N2)re
2 mod N2. Set h′ = (h1, h2) and r′ = (r1, r2).

3. Choose r ∈ {0, 1}κ, k ← SE .KGen(1κ), cSE ← SE .Enc(k, d2), K ←
encode(k, r). Run cRABE ← RABE .Enc(K,A, t) with the randomnesses
(s1, s2) ← H3(r,A, t).

Output h = (h′, N2,H2, cRABE , cSE) and r = r′.
Verify(m,h, r): Verify r1 ∈ Z

∗
N1

, r2 ∈ Z
∗
N2

and whether h1 = H1(m,N1, N2)re
1

mod N1 and h2 = H2(m,N1, N2)re
2 mod N2. If all checks hold, return 1 and

0 otherwise.
Adapt(dkid,t,m,m′, h, r): It includes chameleon hash verification, symmetric key

revelation, ciphertext verification and trapdoor revelation, message adaptation,
adapted chameleon hash verification:
1. Run b ←Verify(m,h, r) and return ⊥ if b = 0.
2. Run K ′ ← RABE .Dec(dkRABE,id,t, cRABE) and set (k′, r′) ←

encode−1(K ′).
3. Run c′

RABE ← RABE .Enc(K ′,A, t) with the randomnesses (s′
1, s

′
2) ←

H3(r′,A, t). Output ⊥ if cRABE �= c′
RABE . Otherwise, compute d′

2 ←
SE .Dec(k′, CSE) and return ⊥ if d2 = ⊥.

4. Let x1 = H1(m,N1, N2), x′
1 = H1(m′, N1, N2), y1 = x1r

e
1 mod N1 as

well as x2 = H2(m,N1, N2), x′
2 = H1(m′, N1, N2), y2 = x2r

e
2 mod N2.

Compute r′
1 ← (y1(x′−1

1 ))d1 mod N1 and r′
2 ← (y2(x′−1

2 ))d2 mod N2.
5. Return ⊥ if h1 �= H1(m′, N1, N2)r′e

1 mod N1 or h2 �= H2(m′, N1, N2)r′e
2

mod N2.
Output r′ = (r′

1, r
′
2).

Remark. In the above constriction, we apply the well-known Fujisaki-Okamoto
transform [20] to our proposed RABE. Basically, the hash algorithm takes the
randomness (s1, s2) ← H3(r,A, t) based on a sufficiently large randomly sampled
bitstring r to encrypt the ephemeral trapdoor and r. The adaptation algorithm
applies the original decryption algorithm to receive the ephemeral trapdoor and
r′. Then, it re-encrypts the ephemeral trapdoor and r′ based on the randomness
(s′

1, s
′
2) ← H3(r′,A, t) to validate the ciphertext. If the re-encrypted result and

the original ciphertext are different, it outputs ⊥.



Revocable Policy-Based Chameleon Hash 341

Theorem 2. The proposed RPCH is fully indistinguishable, insider collision-
resistant, unique, and correct if the underlying RABE is IND-CPA and correct,
and the underlying CHET is fully indistinguishable, strongly private collision-
resistant, unique, and correct.

All properties, but insider collision-resistance, can be proved by following the
methods used in [34]. In particular, the security of fully indistinguishability and
uniqueness can be reduced to the security of CHET. Only insider collision-
resistance is based on strongly private collision-resistance of the underlying
CHET and the security of the underlying ABE (which is RABE in our pro-
posed RPCH). Our security proof of insider collision-resistance is a sequence
of games that is similar to [34], and the security of insider collision-resistance
can be reduced to the security of IND-CPA RABE and strongly private collision-
resistant CHET.

5.3 Applications

We show two applications of RPCH for mutable blockchain and sanitizable signa-
ture. On a high-level, the blockchain remains intact even if a certain policy-based
mutable transaction has been rewritten and a signature holds integrity when the
admissible blocks of the signed message have been altered.

Fig. 3. RPCH for mutable blockchain

Figure 3 presents the application of RPCH for transaction-level blockchain
rewriting. A block bi has a Merkle root that accumulates four transactions: mi,1,
mi,2, mi,3 and mi,4. mi,1, mi,3 and mi,4 are immutable transactions hashed by
the traditional collision-resistant hash function h. mi,2 is a mutable transaction
associated with an access structure A and a timestamp t. When mi,2 needs
to be altered to m′

i,2, a transaction modifier with PCH-based decryption key
associated with the attributes S and timestamp t′ satisfying S |= A and t′ = t
can compute a valid chameleon randomness r without modifying its hash value,
hence, Merkle root is never modified. The transaction modifier then broadcasts



342 S. Xu et al.

(m′
i,2, r

′) to the blockchain network. All participants verify the correctness of
the new randomness and update their local copy of the blockchain with the new
message and randomness pair (m′

i,2, r
′).

Fig. 4. RPCH for sanitizable signature

Figure 4 is an application of RPCH for sanitizable signatures. A message
m has five blocks m[1], m[2], m[3], m[4] and m[5], where m[1], m[2] and m[5]
are admissible blocks that can be altered. The admissible blocks are hashed
via RPCH hash function hash associated with an access structure A and a
timestamp t. The non-admissible blocks and the information of admissible blocks
((1, 2, 5), 5) are hashed by the traditional collision-resistant hash function h,
where information of admissible blocks ((1, 2, 5), 5) indicates that the 1st, 2nd
and 5th blocks can be altered and the total number of blocks in m is 5. When
the admissible blocks need to be altered, a sanitizer with PCH-based decryption
key associated with attributes S and timestamp t′ satisfying S |= A and t′ = t
can compute a valid chameleon randomness without rewriting its signature. The
sanitizer then broadcasts the randomness and updates admissible blocks. The
verifier then can process the verification of the updated signature.
Remark. We only consider backward secrecy in the term of revocability, where
the modifier cannot alter any message after being revoked. To achieve forward
secrecy, ciphertext delegation [33] can be used, where a (semi-)trusted third party
updates the ciphertext periodically. However, ciphertext delegation is impractical
in the application scenarios of mutable blockchain and sanitizable signature.
It is hard to find a (semi-)trusted third party in the untrusted environment,
and even enable them to process ciphertext update periodically.5 The signature
is hard to trace back and update once it has been released. To remedy this
shortcoming, we consider processing user revocation periodically and require
the mutable transaction owner and the signer of the sanitizable signature to
update the timestamp in each RPCH hash in the same frequency. Hence, the
compromised long-term secret key only affects several periods, and the chameleon
hash under those periods may be updated before key compromization. We leave
the PRCH with forward secrecy, a modifier cannot process rewriting to the
hashed object generated before being revoked, without ciphertext delegation or
a (semi-)trusted third party as interesting future work.

5 Outsourced decryption has also not taken into consideration due to a (semi-)trusted
third party is needed and processes outsourced decryption.



Revocable Policy-Based Chameleon Hash 343

6 Performance Analysis

In this section, we give detailed comparisons of indirect RABE and PCH. Then,
we implement PCH [16] and ours, where PCH [36] only considers accountability,
and no concrete PCH construction is provided in [34].

Table 1. Comparison of RABE schemes

Scheme Group-order Assumption DKE-resistant Security

SSW12 [33] ABE [25] Composite SDP ✗ adaptive

CDLQ16 [15] ABE [32] Prime q-type ✗ selective

QZZC17 [31] ABE [32] Prime q-type ✓ selective

XYMD18 [38] ABE [21] Prime DBDH ✗ selective

XYM19 [37] ABE [32] Prime q-type ✓ selective

XYML19 [39] ABE [32] Prime q-type ✓ selective

Ours FAME [2] Prime DLIN ✓ adaptive

“Scheme” means that on which ABE the RABE is based. “Assumption” means that
on which assumption the RABE is based. “DKE-resistance” means that whether the
RABE is decryption key exposure resistant or not. “DBDH” means Decisional Bilinear
Diffie-Hellman assumption.

Table 2. Comparison of PCH schemes

Scheme Revocability Application

DSSS19 [16] FAME [2] + RSA-Based CH [14] ✗ Blockchain rewriting

TLL+20 [36] ABET [36] + DL-Based CH [14] ✗ Blockchain rewriting

SS20 [34] FAME [2] + RSA-Based CH [14] ✗ Sanitizable signature

Ours RABE + RSA-based CH [14] ✓ Both

“Scheme” means that on which cryptographic primitive the PCH is based.
“Revocability” means that whether the PCH supports rewriting privilege revocation.
“CH” is short for chameleon hash.

Detailed Comparisons. Table 1 compares the classical and recent indirect
RABE schemes [15,31,33,37–39] and ours. The previous RABE schemes, as in
Table 1, are selectively secure except SSW12 [33], where SSW12 is adaptively
secure under Subgroup Decision Problem (SDP) on composite-order groups. Our
RABE is adaptively secure under a standard assumption on prime-order groups.

Table 2 compares the recently PCH schemes [16,34,36] and ours. All of them
are derived from FAME [2], where TLL+20 [36] introduced attribute-based
encryption scheme with traceability (ABET) based on FAME and HIBE [11],
and our RABE based on FAME and RIBE. To the best of our knowledge, our
RPCH is the first PCH with revocability and can be integrated into blockchain
and sanitizable signatures.



344 S. Xu et al.

Implementation and Evaluation. We implement PCH [16] and our RPCH
in Java 8 using the PBC Library. We use MNT224 curve for pairings because
it is the best Type-III curve in PBC and provides 96-bit security level [2]. Our
experimental simulation was measured on a personal laptop with a 3.0 GHz AMD
Ryzen R5 4600 processor and 16 GB RAM. To simplicity, we define the number
of system users n = 210 in our implementation.

Fig. 5. Performance comparison of PCH schemes

Figure 5 compares the running time of key generation, hash and adaption
for PCH schemes we consider. Our solution with a negligible performance over-
head compared to DSSS19. Compared to DSSS19, our RPCH takes additional
log2 n − 1 multiplications (around 0.11 ms) for key generation, additional one
exponentiation (about 3.83 ms) for hash, and additional one multiplication and
pairing (around 21.19 ms) for adaption.

7 Conclusion

In this work, we proposed the notion of revocable policy-based chameleon hash
(RPCH) and illustrated its applications in mutable blockchain and sanitizable
signature. Our RPCH allows a trusted party to effectively revoke the rewrit-
ing privileges of a chameleon trapdoor holder. We gave a practical instantiation
by introducing adaptively secure revocable attribute-based encryption under a
standard assumption on prime-order groups. The future work could be inves-
tigating the usability and security of RPCH, e.g., outsourced decryption and
forward secrecy without any (semi-)trusted third party.

Acknowledgments. This work is supported in part by AXA Research Fund, the
National Natural Science Foundation of China (Grant Nos. 62102090, 62032005,
61972094), the young talent promotion project of Fujian Science and Technology Asso-
ciation, and Science Foundation of Fujian Provincial Science and Technology Agency
(2020J02016).

References

1. General data protection regulation. https://gdpr-info.eu/



Revocable Policy-Based Chameleon Hash 345

2. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: CCS,
pp. 665–682 (2017)

3. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
ESORICS, vol. 3679, pp. 159–177 (2005)

4. Ateniese, G., Magri, B., Venturi, D., Andrade, E.R.: Redactable blockchain - or -
rewriting history in bitcoin and friends. In: EuroS&P, pp. 111–126 (2017)

5. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: ASIACRYPT, pp. 591–623 (2016)

6. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: IMA, pp. 278–300 (2009)

7. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S&P, pp. 321–334 (2007)

8. Bilzhause, A., Pöhls, H.C., Samelin, K.: Position paper: the past, present, and
future of sanitizable and redactable signatures. In: ARES, pp. 87:1–87:9 (2017)

9. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: CCS, pp. 417–426 (2008)

10. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: EUROCRYPT, vol. 3027, pp. 223–238 (2004)

11. Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with con-
stant size ciphertext. In: EUROCRYPT, vol. 3494, pp. 440–456 (2005)

12. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

13. Bultel, X., Lafourcade, P., Lai, R.W.F., Malavolta, G., Schröder, D., Thyagara-
jan, S.A.K.: Efficient invisible and unlinkable sanitizable signatures. In: Lin, D.,
Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 159–189. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17253-4 6

14. Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.:
Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10175, pp. 152–182. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7 6

15. Cui, H., Deng, R.H., Li, Y., Qin, B.: Server-aided revocable attribute-based encryp-
tion. In: ESORICS, vol. 9879, pp. 570–587 (2016)

16. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-grained and controlled
rewriting in blockchains: Chameleon-hashing gone attribute-based. In: NDSS
(2019)

17. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable blockchain in the permis-
sionless setting. In: IEEE SP, pp. 124–138 (2019)

18. Fischlin, M., Harasser, P.: Invisible sanitizable signatures and public-key encryp-
tion are equivalent. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol.
10892, pp. 202–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93387-0 11

19. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 12

20. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34



346 S. Xu et al.

21. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS, pp. 89–98 (2006)

22. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1 22

23. Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S.: Analysis of an electronic
voting system. In: IEEE S&P, p. 27 (2004)

24. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)
25. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure

functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In: EUROCRYPT, vol. 6110, pp. 62–91 (2010)

26. Liu, J.K., Yuen, T.H., Zhang, P., Liang, K.: Time-based direct revocable
ciphertext-policy attribute-based encryption with short revocation list. In: Preneel,
B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 516–534. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 27

27. Matzutt, R., et al.: A quantitative analysis of the impact of arbitrary blockchain
content on bitcoin. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol.
10957, pp. 420–438. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
662-58387-6 23

28. Matzutt, R., Hohlfeld, O., Henze, M., Rawiel, R., Ziegeldorf, J.H., Wehrle, K.:
POSTER: i don’t want that content! on the risks of exploiting bitcoin’s blockchain
as a content store. In: CCS, pp. 1769–1771 (2016)

29. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

30. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

31. Qin, B., Zhao, Q., Zheng, D., Cui, H.: Server-aided revocable attribute-based
encryption resilient to decryption key exposure. In: Capkun, S., Chow, S.S.M. (eds.)
CANS 2017. LNCS, vol. 11261, pp. 504–514. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02641-7 25

32. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: CCS, pp. 463–474 (2013)

33. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 13

34. Samelin, K., Slamanig, D.: Policy-based sanitizable signatures. In: Jarecki, S. (ed.)
CT-RSA 2020. LNCS, vol. 12006, pp. 538–563. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-40186-3 23

35. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36362-7 14

36. Tian, Y., Li, N., Li, Y., Szalachowski, P., Zhou, J.: Policy-based chameleon hash
for blockchain rewriting with black-box accountability. In: ACSAC, pp. 813–828
(2020)



Revocable Policy-Based Chameleon Hash 347

37. Xu, S., Yang, G., Mu, Y.: Revocable attribute-based encryption with decryption
key exposure resistance and ciphertext delegation. Inf. Sci. 479, 116–134 (2019)

38. Xu, S., Yang, G., Mu, Y., Deng, R.H.: Secure fine-grained access control and data
sharing for dynamic groups in the cloud. IEEE Trans. Inf. Forensics Secur. 13(8),
2101–2113 (2018)

39. Xu, S., Yang, G., Mu, Y., Liu, X.: A secure IoT cloud storage system with fine-
grained access control and decryption key exposure resistance. Future Gener. Com-
put. Syst. 97, 284–294 (2019)

40. Xu, S., Zhang, Y., Li, Y., Liu, X., Yang, G.: Generic construction of ElGama-
type attribute-based encryption schemes with revocability and dual-policy. In:
SecureComm, vol. 305, pp. 184–204 (2019)

41. Yang, Y., Liu, J.K., Liang, K., Choo, K.-K.R., Zhou, J.: Extended proxy-assisted
approach: achieving revocable fine-grained encryption of cloud data. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 146–
166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24177-7 8


	Revocable policy-based Chameleon hash
	Citation
	Author

	tmp.1643280754.pdf.KLd0i

