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a b s t r a c t

Managerial flexibility can have a significant impact on the value of new product development projects. We

investigate how the market environment in which a firm operates influences the value and use of development

flexibility. We characterize the market environment according to two dimensions, namely (i) its intensity,

and (ii) its degree of innovation. We show that these two market characteristics can have a different effect

on the value of flexibility. In particular, we show that more intense or innovative environments may increase

or decrease the value of flexibility. For instance, we demonstrate that the option to defer a product launch is

typically most valuable when there is little competition. We find, however, that under certain conditions defer

options may be highly valuable in more competitive environments. We also consider the value associated

with the flexibility to switch development strategies, from a focus on incremental innovations to more

risky ground-breaking products. We find that such a switching option is most valuable when the market is

characterized by incremental innovations and by relatively intense competition. Our insights can help firms

understand how managerial flexibility should be explored, and how it might depend on the nature of the

environment in which they operate.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Any new product development (NPD) project is susceptible to un-

certainty regarding the success of its development. This uncertainty

relates to the quality of the resulting product and to its commer-

cial success, which is influenced by market conditions. An NPD firm

should consider the evolution of both these uncertainties, i.e., its de-

velopment success as well as the state of the market, when deciding

how much to invest in the development, when to launch the prod-

uct, or whether to abandon the development completely. Consider,

for instance, Microsoft’s announcement of postponing the launch of

its Vista operating system for consumers in late 2005 (Lohr & Flynn,

2006). It is likely that this decision, while being influenced by the

success of its development effort, was also influenced by the fact

that Microsoft did not face harsh competition in the operating system

market. A delayed launch of Vista was less likely to have a negative im-

pact on Microsoft’s profitability. Similarly, consider Apple’s decision

to launch a compromised iPhone 4S rather than delaying the launch

of the new iPhone until the iPhone 5 was fully functional, which was
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undoubtedly influenced by the highly intense smartphone market

environment (Blodget, 2011). In patent protected NPD environments

such as pharmaceuticals, firms explicitly consider a set of future sce-

narios associated not only with their own technical success, but also

with the commercial success and market conditions when evaluating

their projects and related launch dates.

It is well known that managerial flexibility, also referred to as real

options, can have a major impact on the value of NPD projects (Dixit

& Pindyck, 1994). Many have explored how this impact depends

on the characteristics of the development process (Cui, Zhao, &

Ravichandran, 2011; Huchzermeier & Loch, 2001; Santiago & Vakili,

2005; Wilhelm & Xu, 2002). What is not yet fully known, however, is

how the value of flexibility in NPD is influenced by the competitive

environment in which a firm operates. Some of the previous works

(Canbolat, Golany, & Mund, 2012; Chronopoulos, De Reyck, & Siddiqui,

2014) have employed game theoretical approaches to account for

the competitive market environment when valuing NPD flexibilities.

While game theoretical approaches can be effective in dealing with

duopoly markets with homogenous players, they may not be easily

extendable for markets with several firms that are heterogeneous

in their development capabilities, assets, and strategic development

goals. In such markets, considering the competitive environment in

aggregate, as a stochastically evolving process, can be useful. This is

the approach that Clark (1985) proposes. There is limited research,

http://dx.doi.org/10.1016/j.ejor.2015.02.016
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however, that does so while focusing on investigating the valuation

and optimal use of NPD flexibilities. Therefore, our main objectives

for this study are to (i) develop modeling tools that allow accounting

for, in aggregate, the stochastically evolving competitive market

environment and (ii) derive insights about the value and optimal use

of the development flexibilities under different competitive market

environments. Thus, we aim to advance the practice and theory of

successful NPD project management (Cooper & Kleinschmidt, 1987).

To achieve the objectives of the study, we develop a stochastic

dynamic programming framework for a single firm. We do this by ex-

panding the model of Huchzermeier and Loch (2001) to incorporate

the stochastic evolution of the competitive market environment. We

are not aware of a similar approach being developed before or used

in the investigation of the value of NPD flexibilities under competi-

tive market environments. Our model accounts for (i) uncertainty in

a firm’s development success and in the competitive market environ-

ment via their stochastic processes, (ii) different market types, such

as a winner-takes-all market where only the best performing product

earns revenues and a shared market where also inferior products can

earn some revenue, and (iii) several types of managerial flexibilities.

Specifically, we consider the following types of flexibility: (i) abandon

the development, (ii) enhance the development, (iii) defer the prod-

uct launch, and (iv) switch the development strategy to pursue more

radical innovation. In next few paragraphs, we review related stud-

ies that investigate the use and value of some of these options. For a

broader review of the NPD literature, see Krishnan and Ulrich (2001).

In previous NPD literature, the use of abandonment option alone

has been investigated by Hsu and Schwartz (2008). They examine the

value created by an option to abandon a two-phased R&D project at

the end of each development phase. Their model incorporates uncer-

tainty in the duration of development, development cost, and quality

of the R&D output. Brandão and Dyer (2011) expand this model by

allowing the option to abandon to be exercised throughout the devel-

opment phase. They show that opportunities to further expand the

product once the development has been successful can significantly

affect the project value and the optimal investment decisions. We

add to this line of investigation by introducing an option to defer the

launch of the product, which allows for additional product improve-

ments during the delay. We explore how the viability of this option

depends on the nature of the market in which the firm operates.

Miltersen and Schwartz (2004) show that competition in R&D

shortens the development time and increases the probability of suc-

cessful development. Their model highlights that for a monopolist,

the value of the R&D investment is higher than the aggregate value

of the R&D investment for both duopolists and that, on average, the

time until the first project is completed is shorter. Souza, Bayus, and

Wagner (2004) consider the impact of industry clockspeed, or the rate

of declining prices of products, on the timing of the introduction of

new products. Using an infinite-horizon Markov process, they show

that it is optimal to introduce products more frequently under faster

clockspeed conditions. Carillo (2005) defines the NPD clockspeed as

the rate of introduction of new products, which is analogous to the

competition’s intensity we employ here. She analyzes optimal firm

level NPD clockspeed and how it depends on whether the firm is the

industry leader, operationally limited, or the industry optimizer. We

add to the research on product introduction timing by showing how

the timing depends also on the market’s radicalness in innovation.

The performance and time-to-market tradeoff is also studied by

several others. Cohen, Eliashberg, and Ho (1996) use a two-stage op-

timization model and show that if competition is either very strong

or very weak, delaying product launch is suboptimal. Armstrong and

Lévesque (2002), Lévesque and Shephard (2002) employ dynamic

programming to characterize the optimal market entry time. The

former study considers uncertainties in funding availability, prod-

uct development success, and the growth in the competition and the

latter study considers uncertainties in the environmental volatility

and market competition. They both show that optimal quality and

time targets can be derived for product launch. Langerak and Hultink

(2006) investigate empirically the impact of product innovativeness

on the link between development speed and new product profitabil-

ity. They show that the profitability is an inverted U-shape function

of the development speed and that the optimal development time

depends on the innovativeness of the product (or the ease by which

it is adapted in a new market). Several others have also considered

the relationship between development speed and NPD success, as an

extensive review of Cankurtaran, Langerak, and Griffin (2013) shows.

Our work advances knowledge in this area by providing thresholds

on the firm’s performance advantage for launching or abandoning

developed products.

Previous studies have analyzed more subtle development flexi-

bilities. For example, Cui et al. (2011) focus on the use and value

of flexibility in adjusting the scope of product launch using a sys-

tem dynamic model. They show that such flexibility is highly valu-

able when the product is new and faces high uncertainty regarding

the prelaunch forecasts. Similarly, Pennings and Lint (2000) analyze

the value of a phased roll-out of a new product to learn about the

market before abandoning the product or launching it globally. They

conclude that a phased roll-out is an effective strategy when the un-

certainty of the product success is high. Carillo and Franza (2004)

assess the linkage between investing in product development and

production capabilities and characterize optimal policies for them.

McCardle (1985) investigates, using a dynamic programming model,

the value gained from acquiring more information about the prof-

itability of a new technology and whether it is optimal to adopt or

reject the technology. He shows that even if the NPD project manager

behaves optimally occasionally unprofitable technologies are adopted

and profitable ones rejected. Yassine, Sreenivas, and Zhu (2008) ana-

lyze using a dynamic programming model the development flexibility

in deciding when to incorporate new information in product devel-

opment. In our study, we investigate also a managerial flexibility that

has gained little attention in previous research, namely the flexibil-

ity to switch a development strategy trading-off some probability of

successful development for pursuing a more innovative product.

2. The problem

2.1. The NPD project

We view an NPD project as composed of three phases: (i) initial

development, (ii) additional development, and (iii) market phases.

The initial development phase corresponds to the time required to

develop a complete product that can be launched. During this phase,

the product performance, reflecting the expected desirability of the

product, can improve or deteriorate, due to uncertainty in the devel-

opment process (Lévárdy & Browning, 2009). At each discrete time

period, dictated by a phase-gate approach commonly used in NPD

projects, the firm can decide whether to continue or abandon the de-

velopment. A firm can also decide to enhance the development at a

certain cost, to include new features or to integrate new innovative

technologies, resulting in an increase in the expected product perfor-

mance with the ultimate aim to maximize the expected net present

value (eNPV) of the product. We assume that the duration of this phase

is fixed, but that the resulting quality of the developed product is not.

Once the initial development is completed, the additional develop-

ment phase begins. Within this phase, the firm can continue the devel-

opment with or without enhancing the product, abandon the devel-

opment, or launch the product. In this phase, however, the product’s

performance can no longer deteriorate, as it is always possible to dis-

regard unsuccessful additional developments and launch the product

as is. The duration of the additional development phase is not fixed,

and terminates when a decision is made to launch the product, or to

abandon the development altogether. Once the product is launched,
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the product’s performance remains constant. We consider upgrades

of products already in the market and new generations of existing

products as new products, with comparable development processes.

2.2. The market environment

The product’s success in the market depends not only on its per-

formance, driven by the capability of the firm to develop a high-

performing product, but also on the competitors’ capability to de-

velop competing products, which we view as the market conditions.

We consider the market to comprise numerous competing firms. With

numerous competing firms, it may not be possible to know the de-

velopment capabilities of all firms, but instead firms can observe the

rate at which new products are launched and the improvement in

performance these products bring. Thus, in our setting, we consider

competitors on aggregate. We introduce the concept of the market’s

performance, interpreted as the current state-of-the-art performance

of the leading competing product on the market. The more a firm’s

new product’s performance exceeds the market’s performance, the

higher the expected revenues will be. The expected revenues also

depend on the market characteristics, represented by different rev-

enue structures. For instance, in a winner-takes-all market, only the

leading product on the market will enjoy positive revenues, while all

others will receive zero revenues, whereas in a shared market inferior

products can still capture some market share.

Over time, the market’s performance evolves. However, it does not

decrease, since it reflects the current leading competing product on

the market. Fig. 1 illustrates the timeline of an NPD project, the deci-

sions available to the firm during each phase, and a possible evolution

of the product’s performance and the competition’s performance over

this timeframe.

The evolution of the competition that a firm encounters is driven

by the intensity of the competitive environment and the degree to

which new products in the market are innovative. The intensity of the

competitive market environment that a firm experiences is the pace

at which new improved products are introduced by the firm’s com-

petitors. This can be modeled as the probability of an improvement

in the performance of competing products. When it is close to zero,

this can be interpreted as a lack of innovation in this product market.

When it is close to one, the competition’s performance increases in

almost every period due to the competitors continuously introduc-

ing improved products on market. The market’s degree of innovation

that a firm faces is the magnitude of a possible improvement that is

expected in upcoming new product launches by competitors.

We will show that these two characteristics of the competitive

market environment and the market type have a different impact on

the value and use of flexibility in NPD. For instance, consider a firm

developing a product that is currently outperforming any existing

competing product on the market. The optimal strategy concerning

whether or not to continue, enhance or abandon the development de-

pends, among other things, on the firm’s expectations concerning the

competitors’ development success. We will show that to be able to

make this decision, the firm needs to know the magnitude of its cur-

rent performance advantage relative to the competitors, how much

the competitors are likely to improve the performance of their prod-

ucts, and how frequent those improvements are likely to be. Fig. 2

represents a conceptual model of the investigated impacts.

Defining the market’s competitive environment as a two-

dimensional construct is consistent with the empirical findings of

Lunn and Martin (1986), who found that two dimensions of com-

petition are significant when predicting R&D expenditures. Boone

(2008) also advocates the use of multi-dimensional competition fac-

tors, criticizing existing one-dimensional measures of competition as

firms are likely to differ in more than one dimension and therefore it

may no longer be possible to summarize their market position with

a single scalar. Other definitions of competition intensity have been

also proposed. De Figueiredo and Kyle (2006) define the intensity

of competition as the number of competing products on the market.

Time

Market’s performance

Performance

Available decisions:
• abandon 
• continue 
• continue and enhance

Phase 1: Initial Development Phase 2: Additional
Development

Performance of product in 
development

Available decisions:
• abandon 
• continue 
• continue and enhance 
• launch product

Performance of 
launchable product

Phase 3: Launched Product

Performance of 
launched product

t=Tt=gt=0

Fig. 1. A multi-phase NPD project.
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Market environment

Competitiveness

Market type

Intensity

Degree of innovation

Winner-takes-all vs. shared

NPD flexibility

Value

Use

Fig. 2. A conceptual model for investigated impacts.

Boone (2001) defines the competition intensity based on the ease with

which customers can switch between competing products. Our defi-

nition of the competition intensity differs from those in the literature,

as (i) we view competition as a stochastic process, and (ii) we measure

it from the perspective of a firm, which enables different firms to expe-

rience competitive pressures differently, e.g. depending on whether

they are market leaders or not. Our definition for the market’s degree

of innovation, however, is consistent with the definitions in the liter-

ature. Manso (2011), for instance, defines an innovation activity to be

radical when there is a high probability of failure, relative to the prob-

ability of failure of a more conventional innovation action. Naturally,

the higher the desired performance improvement, the lower the like-

lihood of success. We will expand on this trade-off in Section 6, when

we consider the flexibility of changing a firm’s development strategy.

3. The model

Let at denote the decision a firm makes regarding an NPD project

at time, t, t = 0, 1, . . . , T , where

at ∈

⎧⎪⎨
⎪⎩

{0, 1, 2} 0 ≤ t < g

{0, 1, 2, 3} g ≤ t < T

{2, 3} t = T

in which at = 0, 1 or 2 denotes the decision to continue, enhance or

abandon the development, respectively, at = 3 represents launching

the product, available only during the additional development phase,

which starts at time g, 0 < g ≤ T.

To capture the key properties of the NPD problem as discussed in

previous section, we define the following parameters:

πt(at−1) product performance at time t, 1 ≤ t ≤ T , with π0 the initial

product performance at time t = 0,

u improvement in product performance during each period,

[t, t + 1], 0 ≤ t < T , with probability p,

d deterioration in product performance during each period

[t, t + 1], 0 ≤ t < g, with probability (1 − p),
i additional improvement in product performance during pe-

riod [t, t + 1],

nt(at) development cost incurred at time t, 0 ≤ t < T ,

ct cost of continuing development at time t, 0 ≤ t < T ,

et cost of enhancing development at time t, 0 ≤ t < T , with

et > ct, 0 ≤ t < T , if at = 1,

γt market’s performance, i.e., performance of the leading com-

peting product on the market, at time t, 0 ≤ t ≤ T ,

v increase in the market’s performance during each period

[t, t + 1], 0 ≤ t < T , with probability q, and (1 − q) is the

probability of market’s performance remaining constant,

�t firm’s performance advantage at time t, πt − γt, 1 ≤ t < T

with �0 = π0 − γ0 being the firm’s initial advantage, and

λ discount rate.

Note that π0, πt(at−1), γt ∈ R, p, q ∈ (0, 1) and all other parame-

ters are defined in R+.

The product performance at time t depends on the previous level

of performance πt−1(at−2) and the decision at−1 as follows:

πt(at−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π0 + u with probability p,

if a0 = 0, t = 1

πt−1(at−2)+ u with probability p,

if at−1 = 0, 1 < t ≤ T

π0 − d with probability (1 − p),
if a0 = 0, t = 1

πt−1(at−2)− d with probability (1 − p),
if at−1 = 0, 1 < t ≤ g

πt−1(at−2) with probability (1 − p),
if at−1 = 0, g + 1 ≤ t ≤ T

π0 + u + i with probability p,

if a0 = 1, t = 1

πt−1(at−2)+ u + i with probability p,

if at−1 = 1, 1 < t ≤ T

π0 − d + i with probability (1 − p),
if a0 = 1, t = 1

πt−1(at−2)− d + i with probability (1 − p),
if at−1 = 1, 1 < t ≤ g

πt−1(at−2)+ i with probability (1 − q),
if at−1 = 1, g + 1 ≤ t ≤ T

0 if at−1 = 2, 1 ≤ t ≤ T

πt−1(at−2) if at−1 = 3, g + 1 ≤ t ≤ T

(1)

The development cost at time t, t = 0, 1, . . . , T − 1, is:

nt(at) =

⎧⎪⎨
⎪⎩

ct if at = 0

et if at = 1

0 if at ∈ {2, 3}
(2)

The market’s performance evolves as follows, t = 1, . . . , T:

γt =
{

γt−1 + v with probability q

γt−1 with probability 1 − q
(3)

As in the problem description in Section 2.2, the evolution of the

market’s performance is characterized by two dimensions, namely

the intensity of the competitive market environment and the market’s

degree of innovation. The first dimension reflects the pace at which

new improved products are introduced by the firm’s competitors. In

our model, this corresponds to the probability of an improvement

in the market’s performance during each period, represented by the

parameter q. The second dimension of the evolution of the market’s

performance is the magnitude of the improvement. In our model,

this is represented by the parameter v. Therefore, we provide the

following formal definitions.

Definition 1. The competitive intensity of the market environment

is captured by q.

Definition 2. The market’s degree of innovation is captured by v.

The combination of the market environment’s competitive inten-

sity and degree of innovation will determine the market’s overall

competitive strength.

Definition 3. The competitive strength of the market is s = qv.

The payoff, obtained once a product is launched, depends on the

product’s performance and the market’s performance at the time of

launch and thereafter. We calculate the discounted total net revenue
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Fig. 3. Revenue function (black solid line).

as follows:

σt(�t, at) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if at ∈ {0, 1, 2},
0 ≤ t < T or aT = 2

T∑
j=t

E[(1 + λ)t−jf (�j)] if at = 3,

g ≤ t ≤ T

(4)

f (�t) : R → R is a non-decreasing revenue function in �t , the dif-

ference in performance between the firm’s product and the leading

product on the market. In order to capture the effect of performance

on revenues, we model the revenue function as an s-curve. As in

Huchzermeier and Loch (2001), such a revenue function is used to re-

flect the fact that the performance improvements have little impact on

revenues when the product’s performance is either very low or very

high compared to the market’s performance, but small improvements

to intermediate performance levels can have a major impact. Our

model also allows capturing the effects of becoming a performance

leader, which we present with a point of discontinuity at �t = r. At

larger advantage levels, the product is perceived by the market as

the dominant leader in product performance, resulting in further rev-

enues due to either a premium price or an increase in demand. Fig. 3

depicts such a revenue function by the black solid line, with:

m ∈ R+ is the maximum possible revenue level, i.e., when capturing

the entire market,

b ∈ R+ the size of the jump in the revenue function, and

r ∈ R+ point of discontinuity.

The eNPV of an NPD project can be maximized using a stochastic

dynamic program, solved with backward induction using the follow-

ing recursive formula:⎧⎪⎪⎨
⎪⎪⎩

Pt(�t) = maxat∈{0,1,2,3}{−nt(at)+ σt(�t, at)
+ (1 + λ)−1E[Pt+1(�t+1)|�t, at ∈ {0, 1}]}

t = 0, . . . , T − 1

PT(�T) = maxaT ∈{2,3}{σT(�T , aT)}.
(5)

The following definitions will be used in Sections 5 and 6:

Definition 4. The eNPV of a project with all options � available is

P(�), where P(�) = P0(�0). The eNPV of a project without develop-

ment options is P(∅), where P(∅) = P0(�0) with at = 0, 0 ≤ t < g and

ag = 3. The eNPV of all options � is V(�) = P(�)− P(∅).
Definition 5. The launch and abandon thresholds are �L

t , t = g, . . . , T ,

and �A
t , t = 0, . . . , T , respectively such that �L

t = L−1
t (0) and �A

t =
A−1

t (0), where

• Lt(�t) = Pt(�t|at = 3)− Pt(�t|at ∈ {0, 1, 2}) is the incremental

value of launching at time t = g, . . . , T , and
• At(�t) = Pt(�t|at ∈ {0, 1, 3})− Pt(�t|at = 2) is the incremental

value of not abandoning at time t = 0, . . . , T.

A launch threshold is defined as the firm’s minimum performance

advantage that will result in launching the product being the opti-

mal strategy. Similarly, an abandon threshold is defined as the firm’s

minimum performance disadvantage that will result abandoning the

product being the optimal strategy.

4. Market environment and NPD flexibility

We can now explore how the market environment influences the

use and value of a firm’s NPD flexibility.

4.1. The thresholds for using flexibility

To best allocate resources and prepare for project execution, NPD

firms must consider the strategies they will adopt, which are also a

function of the market conditions. Proposition 1 formalizes the mono-

tonic increase and decrease in the abandon and launch thresholds,

respectively, caused by an increase in the competition’s intensity or

the market’s degree of innovation.

Proposition 1. As the market’s competitive intensity, q, or market’s

degree of innovation, v, increases then (i) the abandon threshold, �A
t ,

t = 0, . . . , T, increases monotonically and (ii) the launch threshold, �L
t ,

t = g, . . . , T, decreases monotonically.

launch

develop (continue or enhance)

abandon

t=g t=Tt=0
abandon

launch

t=g t=Tt=0

develop (continue or enhance)

A
tΔ

L
tΔ

tΔ
L
tΔ

A
tΔ

tΔ

4a 4b

Fig. 4. The impact of an increase in competition’s intensity on the abandon and launch threshold levels (a) b = 0 and (b) b > 0.
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Table 1

Parameters in the two-period example.

Parameter Value Parameter Value

g, p, � 1 u 0.5

�, π0, γ0 0 i 0.4

ct , t=0,1 4 m 20

et , t=0,1 7 λ 0

r 0.3 b 8

Fig. 5. Piecewise-linear revenue function.

Proofs of all propositions can be found in Appendix A. We illus-

trate Proposition 1 in Fig. 4, which outlines the behavior of the launch

and abandonment thresholds over time. The shift from the solid to

the dashed line indicates the effect of a stronger competition, i.e.,

q or v is increased. Note that the abandonment threshold increases

monotonically over time during the additional development period,

under a non-decreasing cost structure. This means that abandon-

ment becomes more and more likely, as the potential time on the

market decreases (formally expressed in Proposition A.1, found in

Appendix A). This intuition, however, does not necessarily hold dur-

ing the initial development period. When faced by strong competitors

that are expected to catch up or pull further ahead, the abandoning

threshold might decrease as the time remaining until possible launch

decreases. This makes sense as abandoning might be wise earlier on in

the development, when it is clear that there is a high chance that the

competition will have time to surpass the firm’s performance, but not

necessarily the optimal course of action later in the development (for-

mally expressed in Proposition A.3 in Appendix A). The launch thresh-

old, on the other hand, decreases monotonically over time under a

non-decreasing cost structure. This means that launching a product

becomes more and more likely as additional development is carried

out, as is expected (see Proposition A.2 in Appendix A). When the

competition is stronger, illustrated by the shift from the solid to the

dashed lines, the region representing further development becomes

smaller. For products that end up between the solid and dashed lines,

it is then optimal to abandon or launch them. Consequently, due to

competitive pressures, products might be launched even if they still

have some minor shortcomings.

Fig. 4a and b illustrate that when b = 0 (in Fig. 4a), the launch

threshold can be lower than when b > 0 (in Fig. 4b). This is because

when b > 0 there are benefits to invest in further development to pro-

duce a product that the market perceives as the performance leader.

Also, these figures show that the launch threshold is less sensitive to

the increase in the competition’s strength when b > 0, as illustrated

by the smaller gap between the solid and dashed lines. The reason

for this is that the additional revenue, obtained due to developing a

product that is perceived as the performance leader, compensates for

the additional development effort.

4.2. The value of development flexibility

Consider for instance, a two-period example with the parameters

as detailed in Table 1. The parameters are selected, such that the

example is as simple as possible to still illustrate the key results dis-

cussed in this section. In this setting, a firm has the option to abandon

the development, defer the launch by one period, or enhance the de-

velopment. Also, we simplify the launch phase by assuming a fixed

lump sum revenue is received upon launch. We model this with the

following piecewise-linear market revenue function (seen in Fig. 5):

f
(
�t

) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min

{[
(�t − �)

� − �

]+
, 1

}
(m − b) if �t ≤ r

min

{[
(�t − �)

� − �

]+
, 1

}
(m − b)+ b if �t > r

(6)

where � ≤ �. Here, � is the minimum difference in performance

levels, below which no one purchases the firm’s product and � is the

maximum difference in performance levels, above which maximum

revenues are limited to m, due to the decreasing willingness to pay

(Adner & Levinthal, 2001). When a firm’s performance advantage is

between � and r, the market rewards better performing products

with linearly increasing revenues until the firm’s performance ad-

vantage reaches a point r above which the product is perceived by

the market as the dominant leader, resulting in a stepwise incre-

ment in revenues due to either a premium price or an increase in

demand. A performance advantage beyond point r results in a linear

increase in revenues until the maximum difference in performance

levels that rewards further revenues� is reached. When b → m, r = 0,

and � = � = 0, the setting resembles an extreme case of a winner-

takes-all market.

Fig. 6 depicts the project value without options P(∅), the project

value with options P(�), and the options value V(�) as a function of

Fig. 6. Project and option value as a function of the competition’s intensity (left) keeping the market’s degree of innovation constant (v = 0.7) and the competition’s degree of

innovation (right) keeping intensity constant (q = 0.6) and optimal decisions (C = continue, E = enhance, L = launch, and A = abandon).
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either q (competition intensity) when v = 0.7 or v (market’s degree of

innovation) when q = 0.6. The optimal decisions at time t = 0, 1 are

shown at the bottom of the figure. For example, at t = 0, we observe

that if the competition’s intensity is low the optimal course of action

is to continue (C) the project as is. As the competition becomes more

intense, then enhancing (E) the development prevents the competi-

tion from catching up, or getting further ahead. Under highly intense

competition, abandoning (A) the development is optimal. Similarly,

we can observe the optimal development decisions at t = 1 when the

market’s performance did not improve, i.e., γ1 = γ0, or improved, i.e.,

γ1 = γ0 + v, during the previous period.

Whereas P(∅) and P(�) always decrease monotonically as a func-

tion of q and v (see Lemma A.2 in Appendix A), this is not neces-

sarily the case for the value of the options themselves, as shown in

Proposition 2. This result formalizes the impact of market conditions

on the value of flexibility, i.e., on the eNPV of the set of development

options.

Proposition 2. The eNPV of development options, V(�), is not a mono-

tonic function of either market’s competitive intensity, q, or the market’s

degree of innovation, v.

Fig. 6 illustrates Proposition 2. Clearly, V(�) is not necessarily

a monotonic function of q and v. This indicates that the impact of

the market environment on the value of managerial flexibility can

be complex and needs to be taken into account when managerial

flexibilities are valued.

We also find that the non-monotonicity of V(�) w.r.t. q and v

does not always behave as one might expect. For instance, as seen in

Fig. 6, even when the project without options is firmly in or out of the

money (corresponding to low and high values of q and v, respectively),

Table 2

Parameters in three-period factorial experiment.

Parameter Value Parameter Value

π0 − γ0 {0,1} λ {0.05,0.1}

u, d {0.5,4,8} g 2

i {0.5,2,4} ct , t=0,1,2 13, 50, 5

m {25,100} et , t=0,1,2 39, 150, 30

p {0.5,0.8}

flexibility still plays a role and has at times even higher value than

when the project without options is at the money (P(∅) = 0).

4.3. The use of development flexibility

In Section 4.2 we showed that the characteristics of the market

a firm faces impact the value it can gain from flexibility in its NPD

projects and that this change in value is accompanied by a change

in the optimal development policy. To gain further insight, we con-

ducted a full numerical exploration and examined the firm’s optimal

strategies over a wide set of parameters. Table 2 provides details of

the explored settings. In these examples, the development horizon

consists of three periods, and we allow launched products to earn

revenues for up to twenty periods, during which γt evolves according

to (3). Fig. 7 represents the likelihood of the development options

being exercised in the optimal NPD strategy as a function of v and q.

The darker areas represent a higher probability of the option being

exercised. Bold values in Table 2 specify the values of the case for

which Fig. 7 was generated. We have chosen the setting and parame-

ters employed in Fig. 7 such that they still allow us to demonstrate all

the key results from one set of figures. Similar six-period experiments

confirmed the qualitative results discussed here.
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Fig. 7. Probability of abandoning the product (a, d), delaying the launch (b,e), enhancing the development (c, f) at least once according to the optimal policy in a shared market (a,

b, c: � = 3, � = −3, r = 1.5, b = 25) and a winner-takes-all market (d, e, f: � = � = 0, r = 0, b = m).
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Fig. 7 illustrates that (i) the decision whether or not to exercise

each of the options depends on the market’s competitive intensity

and the market’s degree of innovation and (ii) the use of the options

is not symmetric in v and q. For example in Fig. 7b, if q = 0.5 and

v = 0.1 any increase in q will not have an impact on the probability of

using the option to defer a product launch while a minor increase in v

will result in a 100 percent probability of delaying the product launch.

From the patterns observed in Fig. 7, it seems the options interact

in specific ways. The darker area in Fig. 7a and d (top right corner) cor-

responds to the lighter areas in Fig. 7b and c and e and f respectively,

indicating that abandonment serves as a substitute to the enhance

and delay options, which in turn complement each other. Delaying a

product launch provides an opportunity to improve an inferior prod-

uct, which is useful when the competition’s strength is not very high,

allowing for the firm to catch up. Fig. 7b and e illustrate this.

Fig. 7b shows that even if the firm’s development strategy is in-

cremental compared to the market environment, i.e., 0.5 = u < v, and

competition is weak, i.e., competition’s strength is less than that of

the firm (vq < up = 0.4), it may still be optimal to delay the product

launch to try to improve the product’s performance. This is the case in

Fig. 7b and e when v = 0.6 and q = 0.5, for example. Intuitively, a firm

with an incremental development strategy facing weak competition

can benefit from delaying the launch and pursuing a greater advan-

tage in performance and thus an increase in revenues. However, de-

laying is seldom useful when the strength of competition is very low,

e.g. when s = 0 and if the product’s performance is initially signifi-

cantly higher than the market’s performance, �0 > �. This is the case

in Fig. 7e when q = 0 or v = 0 because �0 = 1 > 0 = �. If the compe-

tition strength is increased from low to medium, delaying becomes

more beneficial. Interestingly, this indicates that an increase in com-

petition can in some circumstances actually result in a delayed prod-

uct launch, adding to the results of Miltersen and Schwartz (2004).

5. Switching development strategies

In previous sections, we assumed that the firm’s success probabil-

ity p and the performance increment u remained constant throughout

the development. In this section, we extend our analysis to consider

the case in which a firm can switch its development strategy during

the development to pursue a more or less radical development strat-

egy, depending on the development progress of the firm and the state

of the market.

To model this, we redefine the firm’s success probability and the

performance increments as decision variables in each time period, i.e.,

pt ∈ (0, 1) ut ≥ 0, at time t = 0, . . . , T. To capture the inherent trade-

off that exists between the improvement in performance created by

a radical development strategy and its associated success probabil-

ity, we define a firm’s development capability, κ = ptut . We assume

that a firm’s development capability remains the same throughout

the development, which can be due to financial resource constraints

(Gibbert, Hoegl, & Valikangas, 2014), for example. Therefore, a deci-

sion to pursue a more radical development strategy comes at a price

in terms of a reduced probability of success (Manso, 2011). In other

words, the firm can choose to trade-off some of its success proba-

bility pt in order to increase its performance increment size ut and

vice-versa. We refer to exercising such a trade-off and changing the

development strategy as exercising a switch option.

To analyze the value of being able to switch the development

strategy, we consider a two-period setting consisting of an initial

development phase. We focus here purely on the value of the switch

option and thus consider it without the other managerial flexibilities.

We maintain the relative strength of the competition that the firm

faces the same by keeping firm’s capabilities equal to the strength of

the competition, i.e., κ = s, and setting the firm’s initial development

level on par with the leading competing product on the market, i.e.,

�0 = 0. For simplification, we set the deterioration in performance

during the development if the firm fails to be zero, i.e., d = 0 and

the discount rate and development costs to zero. Including a non-

zero deterioration, discount rate, and development costs, does not

change the overall pattern we derive for the optimal development

strategies and value of flexibility. We focus on a winner-takes-all

market, i.e., b = m/2, r → 0+, and � = � = 0 and analyze the effects

of the competitive environment on the optimal use and value of the

option to switch development strategies. The former is formalized in

Proposition 3 and the latter in Proposition 4.

Proposition 3. At t = 0, the optimal performance increment u∗
0,

which defines the development strategy, decreases as the intensity of

Table 3

Optimal development strategies u∗
0 and u∗

1 depending on q and �1 (the darker the background the more radical the optimal development strategy).
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Fig. 8. The impact of intensity of competitive environment on the value of flexibility in switching development strategy, κ = s.

competition increases from 0 to 0.5, then increases as q increases

from 0.5 to q1, remains constant for q1 < q ≤ q2, and decreases for

q2 < q < 1. At t = 1, u∗
1 is non-increasing in �1, except for �1 = 0 and√

2 − 1 < q ≤ 0.5, when it increases in a singularity.

The optimal development strategies, u∗
0, u∗

1, are reported in Table 3

and q1 and q2 are given in the proof of Proposition 3 in Appendix A.

Proposition 3 says that when the market’s competitive intensity

is relatively low (few new products are launched), it is optimal for

a firm to become less radical as the market’s competitive intensity

increases. However, as q reaches 0.5, i.e., when new product launches

become more frequent (in each period, a new launch is more likely

than not), it is optimal for a firm to become more radical with an

increase in competition’s intensity. When the intensity increases fur-

ther and reaches a specific threshold (q1), it is optimal for the firm

to maintain and then (beyond q2) reduce its radicalness. In the sec-

ond period, the strategy depends on the relative position of the firm

vis-à-vis the market (�1). As �1 is higher, it is optimal for a firm

to choose more and more incremental development strategy, with

a sudden increase in optimal radicalness when a firm’s product and

its competition are exactly aligned in terms of performance (�1 = 0)

and competition’s intensity is low.

Proposition 3 and Table 3 show that the initial development strat-

egy should be adjusted at t = 1 depending on �1, v, and q. Sticking to

the initial development strategy at t = 1 is optimal only when there is

no uncertainty in the competitors’ development outcomes, i.e., when

q → 0 or q → 1, or when 0.5 < q ≤ q1, i.e., when uncertainty regard-

ing the success of the competition is highest. The former is intuitive (if

there is no uncertainty, switching strategies is not required), but the

latter is not, as one would think that if uncertainty regarding possible

competing products is high, switching strategies would be very valu-

able. It turns out, however, that the optimal development strategy

u∗
0 → (vq)+ in this setting is robust with respect to the development

outcomes of the competition. When uncertainty regarding the com-

petition is high, a strategy chosen in period 0 needs to be robust, and

therefore switching is not valuable. But when uncertainty decreases,

a firm can take a risk on the expected outcome, making switching a

valuable option in case the firm ends up lagging behind or leading

its competitors. Therefore, we find that switching strategies becomes

valuable when uncertainty is medium.

The behavior of the value of switching development strate-

gies from incremental to radical and vice-versa is formalized in

Proposition 4, with thresholds q0, q1, and q3 defined in Appendix A.

Proposition 4. The value of flexibility in switching development strate-

gies increases with the market’s competitive intensity for 0 < q ≤ q0,

decreases for q0 < q ≤ 0.5, is constant for 0.5 < q ≤ q1, increases for

q1 < q ≤ q3, and decreases for q3 < q < 1.

Proposition 4, which is illustrated in Fig. 8, confirms that there is

no value to have the flexibility to switch in the region 0.5 < q ≤ q1 and

Fig. 9. The impact of competitive environment on the value of flexibility in switching

development strategy, κ = 0.1.

when q → 0+, 1−. Also, it shows that the flexibility to switch is most

valuable at q0 (exact value is computed in the Proof of Proposition 4).

Fig. 9 shows that when the firm’s capability is no longer equal with

the competition, but instead is a constant κ = 0.1, both dimensions

of the market have an influence on the value of switching option. On

the one hand, a switch option is the most valuable when the market’s

competitive intensity is relatively low or high. On the other hand, the

value of switching option is (i) zero if κ > v because then the firm

can beat competitors by playing safe and choosing u∗
0 = u∗

1 → κ+,

p∗
0 = p∗

1 → 1− and (ii) approaches zero when v → ∞ as the firm has

to trade off its performance increment to deterioration in success

probability. Switching option is most valuable in relatively low or

high levels of market’s competitive intensity q given that the market’s

degree of innovation v is low, such that the firm can effectively react

to the initial period development outcomes.

6. Conclusions

In this work, we have developed modeling tools to characterize

the market environment a firm faces. We have used these tools

to provide insights on how the value and use of development

flexibility is impacted by different market environments. We have

characterized the market environments using two dimensions,

namely the market’s competitive intensity and the market’s degree

of innovation. We have showed that the value of development

flexibility is non-monotonic and non-symmetric in the defined

market environment dimensions. This implies for NPD managers that

modeling both of these dimensions is of importance as otherwise the

development strategies may be suboptimal. Therefore, the developed

NPD valuation framework can help in planning the types of flexibility

that the market conditions require. This alleviates the need to make

unplanned allocation of resources, which typically results in lower

performance (Repenning, 2001).

Our contributions beyond the existing literature are threefold.

First, we have derived boundaries when managerial flexibility to
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delay or abandon product development are optimal to be executed

and how they depend on the competitive market environment.

This expands the results of Armstrong and Lévesque (2002) by (i)

relating the launch threshold to the performance advantage instead

of an absolute performance level accounting hence for the stochastic

evolution in the competitors’ performance and (ii) providing the

performance advantage threshold for the abandonment option.

Furthermore, we have showed that an increase in the market’s com-

petitiveness results in that the optimal course of an action becomes

launching or abandoning the product earlier. This explains why in

more competitive markets products may be optimal to launch even

if they still have some shortcomings. Also, this implies for an NPD

project manager that the development decisions should be assessed

more frequently in more competitive markets as it is more likely that

one of these threshold boundaries is reached. More generally, highly

competitive markets require active project management while in

less competitive markets a passive project management can suffice.

Second, we have provided managerial insights when to use devel-

opment flexibilities depending on market environments. Our results

confirm that the abandonment option is highly beneficial when the

competition on the market is intense and even more so in a winner-

takes-all market. Also, we have demonstrated that the option to defer

a product launch and enhance development are typically valuable

when the competition is weak, as the potential for increased profits

due to producing a better-performing product makes up for the lost

revenues due to the additional cost of delaying or enhancing. Un-

der certain conditions, however, we showed that defer options can

actually be valuable in more competitive environments. This is a sur-

prising result, as a highly competitive environment typically incen-

tivizes firms to try and accelerate their product launches (Miltersen

& Schwartz, 2004). We have showed this in a setting that relates

revenues to time-on-market and to the relative performance of the

launched product. These results advance the investigation of the po-

tential uses and misuses of flexibility in firms (Reuer & Tong, 2007).

Third, our study provides understanding for NPD managers about

the value gained by having the flexibility to switch development

strategies, between more certain and incremental innovations to

more risky and ground-breaking ones, and vice-versa. We found that

such a switch option is not very valuable when there is either no

uncertainty or a high degree of uncertainty as to whether many

new competing products will be launched. Instead, we showed that

switching offers the most value in a competitive environment with

some uncertainty regarding upcoming competing product launches,

corresponding to relatively low or high levels of competition inten-

sity and when the competitive environment is characterized by in-

cremental innovation. In such an environment, an NPD manager can

effectively react to changes in the state of the market and benefit

from the flexibility of changing the development strategy. These re-

sults are useful for academic community and practice by providing

initial understanding of the optimal use of such flexibility.

Our two-dimensional market characterization and the project val-

uation framework is useful as it is flexible enough to be extended, for

instance, to include multiple product generations, where cannibal-

ization effects can be investigated. Further research could also in-

vestigate different cost structures, correlation and mean reversion

in product performance and performance of competitors’ products,

technology jumps, and complicated development option structures

and their effects on the value of flexibility.
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Appendix A

The first section contains proofs for all propositions that ap-

pear in the body of the paper. The second section includes auxil-

iary definitions, lemmas, propositions, and their proofs. Particularly,

Definition A.1, Lemmas A.1–A.4 are used in the proof of Proposition 1,

Propositions A.1–A.3 are referred to when describing the shapes of

abandon and launch thresholds in Section 4.1.

A.1. Proofs for main results

Proof of Proposition 1. As there exist unique abandon and launch

thresholds (Lemma A.3), an increase in q or v results in a monotonic

decrease in project value P′
t(�t) ≤ Pt(�t), t = 0, . . . , T (Lemma A.2).

Furthermore from Lemma A.4, a monotonic decrease in project value

results in a monotonic increase in the abandon threshold level, i.e.,

�A′
t ≥ �A

t , t = 0, . . . , T , and in a monotonic decrease in the launch

threshold levels, i.e., �L′
t ≤ �L

t , t = 0, . . . , g.

Proof of Proposition 2. Assume V(�) is a monotonic function in q

and v. In Fig. 6a V(�) is decreasing over the interval q = [0, 0.1] and

increasing over the interval q = [0.1, 0.6], and in Fig. 6b V(�) is mono-

tonically decreasing over the interval v = [0, 0.18] and increasing over

the interval v = [0.18, 0.2]. Therefore, by counter example, V(�) is not

necessarily a monotonic function of q and v.

Proof of Proposition 3. To solve the optimal development strategies

at t = 0 and t = 1, we solve a dynamic stochastic programming prob-

lem as described in Section 4, except the recursive function is as

follows:{
Pt(�t) = maxut

{(1 + λ)−1E[Pt+1(�t+1)|ut,�t, at = 1]} t = 0, 1

P2(�2) = {σ2(�2, a2 = 3)}.
(A.1)

Therefore, u and p are replaced by their time dependent versions,

which are now decision variables ut , pt . As the firm’s development

capability is assumed to be constant and equal to the strength of

the competition, i.e., κ = ptut = s = qv, it is sufficient to find optimal

u∗
t because p∗

t is a function of it, i.e., p∗
t = κ

u∗
t

= vq
u∗

t
. Also, because the

probability of success pt ∈ (0, 1), we have ut > κ . Here we analyze

the setting (i) �0 = dt = ct = λ = 0, t = 0, 1 and (ii) a winner-takes-

all market, i.e., f (�t) = m if �t > 0, f (�t) = 0.5m if �t = 0, and zero

otherwise.

We solve (A.1) using backward induction starting from t = 1. At

t = 1, there are three possible cases that the firm might find itself

in, either the performance of the firm’s product is (i) ahead of the

leading competing product, i.e., �1 > 0, (ii) on par with the leading

competing product, i.e., �1 = 0, or (iii) behind the leading compet-

ing product, i.e., �1 < 0. In case (i), if �1 ≥ v, the competitors can-

not catch the firm’s performance advantage and the firm can play

safe, i.e., choose an incremental development strategy u∗
1 → κ+ and

p∗
1 → 1−, and obtain full revenue m, case 1 in Table 6. In case (i), when

Table 4

Development outcomes and obtained revenues if 0 < �1 < v.

Development outcome

Firm Competitors Probability u1 Revenue

Succeed Succeed p1q > v − �1 m

= v − �1 m/2

< v − �1 0

Succeed Fail p1(1 − q) Any m

Fail Succeed (1 − p1)q Any 0

Fail Fail (1 − p1)(1 − q) Any m
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Table 5

Expected revenues and optimal u∗
1s if 0 < �1 < v.

Region for u∗
1

0 < u1 < v − �1 u1 = v − �1 u1 > v − �1

Expected revenue p1(1 − q)m + (1 − p1)(1 − q)m = p1qm/2 + p1(1 − q)m + (1 − p1)(1 − q)m = p1qm + p1(1 − q)m + (1 − p1)(1 − q)m =
m(1 − q) mp1q/2 + m(1 − q) = m κ

2u1
q + m(1 − q) mp1q + m(1 − q) = m κ

u1
q + m(1 − q)

Optimal development strategy u∗
1 ∈ (

vq, v − �1

)
u∗

1 = v − �1 if �1 < v − vq, u∗
1 → v − �1

if �1 ≥ v − vq, u∗
1 → (vq)+

Table 6

Optimal decisions at t = 1.

Case # Conditions u∗
1 p∗

1 Expected revenue

1 �1 ≥ v → (vq)+ → 1− m

2 0 < �1 < v, �1 ≥ v − vq → (vq)+ → 1− m

3 0 < �1, �1 < v − vq → (v − �1)+ → vq
(v−�1)+

p∗
1qm + (1 − q)m

4 �1 = 0, q ≤
√

2 − 1 → (vq)+ → 1− (1 − q)m

5 �1 = 0, q >
√

2 − 1 → v+ → q m/2(p∗
1(1 + q)+ 1 − q)

6 �1 < 0, �1 > −vq, �1 < v − vq
1−q

→ (vq)+ → 1− (1 − q)m

7 �1 < 0, �1 > −vq, �1 ≥ v − vq
1−q

→ (v − �1)+ → vq
(v−�1)+

p∗
1m

8 �1 ≤ −vq, �1 > v − v
q

→ (−�1)+ → vq
(−�1)+

p∗
1(1 − q)m

9 �1 ≤ −vq, �1 ≤ v − v
q

→ (v − �1)+ → vq
(v−�1)+

p∗
1m

Table 7

Optimal decisions at t = 0.

Conditions u∗
0 p∗

0 Expected revenue

q ≤
√

2 − 1 → (v − vq)+ →
(

q
1−q

)−
m(−2q3 + 4q2 − 2q + 1)

√
2 − 1 < q ≤ 0.5 → (v − vq)+ →

(
q

1−q

)−
m

(−2.5q3 + 2.5q2 + 0.5q + 0.5 + 1/(2 − 2q)(q4 − q3 + q2 − q)
)

0.5 < q ≤ q1 → (vq)+ → 1− m(1 − q2)

q1 < q ≤ q2 → (v)+ → q− m(1.5q4 − 2.5q3 + 1.5q2 + 0.5)

q > q2 → (2v − vq)+ →
(

q
2−q

)−
m

(
1/(2 − q)(0.5q4 − q3 + 0.5q2 + 0.5q)− 0.5q3 + q2 − 0.5q + 0.5

)

0 < �1 < v, then the firm can obtain revenues that are illustrated in

Table 4 depending on the chosen u1 and how the firm’s and com-

petitors’ development progresses. Based on this, we need to analyze

regions 0 < u1 < v − �1, u1 = v − �1, and u1 > v − �1, because the

function of the expected revenue is different in these cases, and find

the optimal u∗
1 that maximizes the expected revenue.

As showed in Table 5, the optimal development strategy within

region 0 < u1 < v − �1 is u∗
1 ∈ (vq, v − �1) including all feasible val-

ues of u1 due to the expected revenue being independent of u1. At the

region u1 = v − �1, the optimal strategy is trivial, i.e., u∗
1 = v − �1.

Within the region u1 > v − �1, the optimal strategy is to select u1

at the lower bound, i.e., u∗
1 → (v − �1)

+, if feasible, because expected

revenues are decreasing in u1. The feasibility is bounded by constraint

u1 = κ
p1

where p1 ∈ (0, 1). Thus, the lower bound, u1 → (v − �1)
+, is

infeasible if p1 = κ/u1 = vq/(v − �1) ≥ 1 ⇔�1 ≥ v − vq. Therefore, if

�1 ≥ v − vq then the optimal lower bound value is u1 → (κ)+ = (vq)+

and if �1 < v − vq then u∗
1 → (v − �1)

+. Finally, we can show that the

optimal development strategy within the whole region 0 < �1 < v is

u∗
1 → (κ)+ = (vq)+ if �1 ≥ v − vq and u∗

1 → (v − �1)
+ if �1 < v − vq

because the expected revenue obtained from the region u1 > v − �1

is m κ
u1

q greater to what received from the region 0 < u1 < v − �1

and 0.5mκq/u1 greater to what received from the region u1 = v − �1.

These optimal development strategies correspond to cases 2 and 3 in

Table 6. Similarly, we derive optimal decisions at t = 1 for cases (ii)

�1 = 0 and (iii) �1 < 0. Summary of the optimal decisions at t = 1 is

presented in Table 6.

The optimal decisions at t = 0 are derived analogously using the

expected revenues at t = 1, as shown in Table 6, and having no per-

formance advantage at t = 0, i.e., �0 = 0, which is one of the as-

sumptions. Table 7 summarizes optimal u∗
0 and expected revenues.

The threshold level q1 is obtained by finding when the expected

revenues from following the corresponding development strategies

u∗
0 → (vq)+ and u∗

0 → (v)+ are equal, i.e., m(1.5q4
1 − 2.5q3

1 + 1.5q2
1 +

0.5) = m(1 − q1
2). This leads into the following quartic equation

1.5q4
1 − 2.5q3

1 + 2.5q2
1 − 0.5 = 0, which feasible solution, q1 ∈ (0, 1),

is q1 ≈ 0.56. Similarly, we can find the threshold level for q2 from

the following cubic equation 1/(2 − q2)(0.5q3
2 − q2

2 + 0.5q2 + 0.5)−
1.5q3

2 + 2q2
1 − 0.5q2 − 0.5 = 0, which feasible solution is q2 ≈ 0.63.

Based on Table 7, the optimal strategy u∗
1 is decreasing in q on inter-

vals q ∈ (0, 0.5] and q ∈ (q2, 1), increasing in q on interval q ∈ (0.5, q1],

and otherwise constant.

Given optimal decision at t = 0, which depends on q as shown in

Table 7, the outcomes at t = 1 fall into cases 1–6 and 8–9 in Table 6.

Consequently, the optimal strategy u∗
1 is non-increasing in �1 except

if
√

2 − 1 < q ≤ 0.5 (where the constraint q ≤ 0.5 comes from t = 0

period) then u∗
1 has a singularity�1 = 0 when it temporarily increases

from (vq)+ to v+.

Proof of Proposition 4. The value of flexibility is the difference be-

tween the expected revenues of project value with and without

switching option. The revenues of a project without switching flex-

ibility is derived applying the same approach as used to prove

Proposition 3 except we fix u∗ = u∗
0 = u∗

1 and p∗ = p∗
0 = p∗

1. The re-

sulting expected revenues and optimal u∗ are as follows:

(i) (1 − q2)m, u∗ = [vq]+ if q ≤ q0,

(ii) m(1 − q)(10q3 − 4q2 + 1.5q + 0.5), u∗ = [0.5v]+ if q0 < q ≤ 0.5,

(iii) (1 − q)(1 + q)m, u∗ = [vq]+ if 0.5 < q ≤ q1b, and

(iv) m(2.5q4 − 4q3 + 2q2 + 0.5), u∗ = v+ if q > q1b,

where q0 and q1b are feasible solutions, q ∈ (0, 1), to the following cu-

bic and quartic equations 10q3
0 − 4q2

0 + 2.5q0 − 0.5 = 0 and 2.5q4
1b

−
4q3

1b
+ 3q2

1b
− 0.5 = 0. This results q0 ≈ 0.24 and q1b ≈ 0.57. The ex-

act solution for the cubic function is q0 = 8
60 + 3

√
− a

2 +
√

a2

4 + b3

27 +
3

√
− a

2 −
√

a2

4 + b3

27 , when a = − 289
13500 and b = 59

300 .
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The difference between the expected revenues of project value

with and without switching option (using Table 7 and above com-

puted (i)–(iv) expected revenues) results in the option value of

(i) mq2(3 − 2q) if q ≤ q0,

(ii) m(10q4 − 16q3 + 9.5q2 − 3q + 0.5) if q0 < q ≤
√

2 − 1,

(iii) m(10q4 − 16.5q3 + 8q2 − 0.5q + 0.5/(1 − q)(q4 − q3 + q2 − q))
if

√
2 − 1 < q ≤ 0.5,

(iv) 0 if 0.5 < q ≤ q1,

(v) m(1.5q4 − 2.5q3 + 2.5q2 − 0.5) if q1 < q ≤ q1b,

(vi) mq2(−q2 + 1.5q − 0.5) if q1b < q ≤ q2, and

(vii) mq(1/(2 − q)(0.5q3 − q2 + 0.5q + 0.5)− 2.5q3 + 3.5q2 − q −
0.5) if q > q2.

Therefore, the option value is increasing in q on intervals (0, q0]

and (q1, q3], is constant on interval (0.5, q1], and is decreasing on in-

tervals (q0, 0.5] and (q3, 1), where q3 ≈ 0.83 is the solution of the

following equation ∂
∂q3

(mq3[(1/(2 − q3)(0.5q3
3 − q2

3 + 0.5q3 + 0.5)−
2.5q3

3 + 3.5q2
3 − q3 − 0.5)]) = 0.

A.2. Proofs for auxiliary results

Definition A.1. A development strategy A is the set of all de-

velopment decisions made in all outcomes and time periods, A =
{at: ∀πt(at−1), γt , t = 0, . . . , T}. The project value under the develop-

ment strategy A is denoted Pt(�t) |A, t = 0, . . . T , i.e., the recursion in

(5) is solved having only one choice of action available for all possible

at defined by the development strategy A.

Lemma A.1. The project value under a development strategy A,

Pt(�t) |A, t = 0, . . . , T, decreases monotonically in q and v.

Proof. Under development strategy A, an increase in q or v, results

in a monotonic decrease in the expected relative performance E[�t],

t > 0. As the revenue function f
(
�t

)
decreases monotonically in �t ,

a monotonic decrease in E[�t] results in a monotonic decrease in the

total net revenue σt(�t, at). Thus, the project value with increase in

q or v under the development strategy A is P
′
t(�t) |A≤ Pt(�t) |A, t =

0, . . . , T , confirming that Pt(�t) |A, t = 0, .., T decreases monotonically

in q and v.

Lemma A.2. The project value Pt(�t) decreases monotonically in q

and v.

Proof. Consider two development strategies A and B, A �= B and as-

sume that the development strategy A is optimal at the current

level of the competition, i.e., Pt(�t) |A≥ Pt(�t) |B, t = 0, . . . , T. As-

sume an increase in q or v, such that strategy B becomes optimal, i.e.,

P
′
t(�t) |B≥ P

′
t(�t) |A, t = 0, . . . , T , and according to Lemma A.1 we have

P
′
t(�t) |B≤ Pt(�t) |B, t = 0, . . . , T. Hence, the project value with an in-

crease in q or v is P
′
t(�t) |B≤ Pt(�t) |B≤ Pt(�t) |A and hence Pt(�t),

t = 0, . . . , T , decreases monotonically in q and v.

Lemma A.3. There exist unique abandon and launch thresholds �A
t ,

t = 0, . . . , T, and �L
t , t = g, . . . , T.

Proof. Based on Dixit and Pindyck (1994), sufficient conditions for

the existence of unique abandon thresholds are that (i) At(�t) is non-

decreasing in �t and (ii) positive persistence of uncertainty holds,

i.e., cumulative probability distribution 
(�t+1|�t) of future values

�t+1 shifts uniformly to the right when the current value�t increases.

Sufficient conditions for the existence of a unique launch threshold

can be developed similarly.

For the abandon threshold, the first condition is satisfied as an

increase in�t monotonically increases the net revenue and hence also

Pt(�t|at ∈ {0, 1, 3})and At(�t). The second condition follows from the

stochastic processes of product performance and the performance

of competitors’ products. Without loss of generality, consider that

product development is continued and �
′
t = �t + ε, ε > 0. Now if the

firm and competitors succeed it results that �
′
t+1 = �t + ε + u − v

and �t+1 = �t + u − v given �
′
t and �t , respectively. Also, if the firm

succeeds and competitors fail it results that �
′
t+1 = �t + ε + u and

�t+1 = �t + u given �
′
t and �t , respectively. Similarly, when the

firm fails and competitors either succeed or fail the difference in

�
′
t+1 − �t+1 = ε. This together with that success probabilities remain

unchanged p and q proves that cumulative probability distribution


(�t+1|�t) of future values �t+1 shifts uniformly to the right when

the current value �t increases.

For the launch threshold, we need to prove that Lt(�
′
t)−

Lt(�t) ≥ 0 ∀�
′
t > �t , i.e., it is non-decreasing in �t . Because

�
′
t > �t , we have (i) Pt(�

′
t|at ∈ {0, 1, 2}) ≥ Pt(�t|at ∈ {0, 1, 2})

and (ii) Pt(�
′
t|at = 3) ≥ Pt(�t|at = 3) due to monotonic in-

crease in the net revenue caused by the non-decreasing rev-

enue function in (4). Consequently, Lt(�
′
t)− Lt(�t) = Pt(�

′
t|at =

3)− Pt(�
′
t|at ∈ {0, 1, 2})− Pt(�t|at = 3)+ Pt(�t|at ∈ {0, 1, 2}) ≥ Pt

(�
′
t|at = 3)− Pt(�t|at = 3) ≥ 0 due to (i) and (ii). Hence, the first con-

dition is satisfied. The second condition holds as it is same as for the

abandon threshold.

Lemma A.4. A decrease in the project value, i.e., P
′
t(�t) < Pt(�t),

t = 0, . . . , T, increases the abandon threshold levels, i.e., �A′
t > �A

t ,

t = 0, . . . , T, and decreases the launch threshold levels, i.e., �L′
t < �L

t ,

t = g, . . . , T.

Proof. A decrease in the project value, i.e., P
′
t(�t) < Pt(�t),

t = 0, . . . , T , means that also P
′
t+1(�t+1|�t, at ∈ {0, 1}) <

Pt+1(�t+1|�t, at ∈ {0, 1}), t = 0, . . . , T − 1. Hence, the incre-

mental value of not abandoning decreases, i.e., A′
t(�t) < At(�t),

t = 0, . . . , T , resulting in an increase in the abandon thresholds, i.e.,

�A′
t > �A

t , t = 0, . . . , T. Similarly, the incremental value of launching

increases, i.e., L′
t(�t) ≥ Lt(�t), t = g, . . . , T , resulting in a decrease in

the launch thresholds, i.e., �L′
t < �L

t , t = 0, . . . , g.

Proposition A.1. During the additional development, t ≥ g, if the cost

structure is non-decreasing, ct ≤ ct+1 and et ≤ et+1, t = g, . . . , T − 1,

then the abandon threshold �A
t increases monotonically.

Proposition A.2. Under a non-decreasing cost structure, ct ≤ ct+1 and

et ≤ et+1, t = g, . . . , T − 1, the launch threshold �L
t decreases monoton-

ically over time, t = g, . . . , T.

Proof of Propositions A.1 and A.2. The value of the NPD project de-

creases monotonically in time, Pt+1(�)− Pt(�) ≤ 0, t = g, . . . , T −
1, under non-decreasing cost structure, ct ≤ ct+1 and et ≤ et+1,

t = g, . . . , T − 1. This holds because Pt(�) and Pt+1(�), t =
g, . . . , T − 1, depend on (i) the total net revenue, in (4), and

that decreases monotonically in time,
∑T

j=t E[(1 + λ)t−jf (�t)] ≥∑T
j=t+1 E[(1 + λ)t+1−jf (�t+1)] when �t+1 = �t , t = g, . . . , T − 1, and

(ii) the cost structure, which is non-decreasing ct ≤ ct+1 and et ≤ et+1,

t = g, . . . , T − 1. Thus, according to Lemma A.4 the monotonic de-

crease in the NPD project value Pt+1(�)− Pt(�) ≤ 0, t = g, . . . , T − 1,

leads to the abandon threshold level increasing monotonically in time,

�A
t ≤ �A

t+1 and launch threshold level decreasing monotonically in

time, �L
t ≤ �L

t+1.

Proposition A.3. During the initial development, t < g, if Pt+1(�t+1)−
Pt(�t) > 0, when �t+1 = �t , t = 0, . . . , g − 1 then the abandon thresh-

old �A
t decreases monotonically, otherwise the abandon threshold �A

t

increases monotonically.

Proof. When t = 0, . . . , g − 1, there exists the following two cases (i)

Pt+1(�t+1)− Pt(�t) > 0 when �t+1 = �t , which occurs when c = e =
λ = 0 and pu + (1 − p)d + i < qv, for example and (ii) Pt+1(�t+1)−
Pt(�t) ≤ 0 when �t+1 = �t , which occurs when ct = et = λ = 0 and

pu + (1 − p)d + i ≥ qv, for example. According to Lemma A.4, the
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monotonic decrease in the NPD project value Pt+1(�t+1)− Pt(�t) ≤ 0,

when �t+1 = �t , t = 0, . . . , g − 1 results that the abandon threshold

level increases monotonically in time, �A
t ≤ �A

t+1. This proves (ii) and

similar to Lemma A.4, it can be shown that an increase in the project

value Pt+1(�t+1)− Pt(�t) > 0 when �t+1 = �t , t = 0, . . . , g − 1 de-

creases the abandon threshold level in time, �A′
t ≥ �A

t , t = 0, . . . , T ,

proving (i).
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