
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2021

LEAP: Leakage-abuse attack on efficiently deployable, efficiently LEAP: Leakage-abuse attack on efficiently deployable, efficiently

searchable encryption with partially known dataset searchable encryption with partially known dataset

Jianting NING

Xinyi HUANG

Geong Sen POH

Jiaming YUAN

Yingjiu LI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
NING, Jianting; HUANG, Xinyi; POH, Geong Sen; YUAN, Jiaming; LI, Yingjiu; WENG, Jian; and DENG, Robert
H.. LEAP: Leakage-abuse attack on efficiently deployable, efficiently searchable encryption with partially
known dataset. (2021). Proceedings of the 2021 ACM Conference on Computer and Communications
Security (ACM CCS 2021), Virtual Conference, November 15-19. 2307-2320.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6740

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6740&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jianting NING, Xinyi HUANG, Geong Sen POH, Jiaming YUAN, Yingjiu LI, Jian WENG, and Robert H. DENG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/6740

https://ink.library.smu.edu.sg/sis_research/6740

LEAP: Leakage-Abuse Attack on Efficiently Deployable,
Efficiently Searchable Encryption with Partially Known Dataset

Jianting Ning∗
Fujian Normal University &

Singapore Management University
Fuzhou, China

jtning88@gmail.com

Xinyi Huang†
Fujian Normal University

Fuzhou, China
xyhuang81@gmail.com

Geong Sen Poh
S-Lab for Advanced Intelligence,
Nanyang Technological University

Singapore
geongsen.poh@ntu.edu.sg

Jiaming Yuan
University of Oregon
Oregon, United States
jiamingy@uoregon.edu

Yingjiu Li
University of Oregon
Oregon, United States
yingjiul@uoregon.edu

Jian Weng
Jinan University
Guangzhou, China

cryptjweng@gmail.com

Robert H. Deng
Singapore Management University

Singapore
robertdeng@smu.edu.sg

ABSTRACT
Searchable Encryption (SE) enables private queries on encrypted doc-
uments. Most existing SE schemes focus on constructing industrial-
ready, practical solutions at the expense of information leakages
that are considered acceptable. In particular, ShadowCrypt utilizes
a cryptographic approach named “efficiently deployable, efficiently
searchable encryption” (EDESE) that reveals the encrypted dataset
and the query tokens among other information. However, recent
attacks showed that such leakages can be exploited to (partially)
recover the underlying keywords of query tokens under certain
assumptions on the attacker’s background knowledge.

We continue this line of work by presenting LEAP, a new leakage-
abuse attack on EDESE schemes that can accurately recover the
underlying keywords of query tokens based on partially known
documents and the L2 leakage as per defined by Cash et al. (CCS
’15). As an auxiliary function, our attack supports document re-
covery in the similar setting. To the best of our knowledge, this is
the first attack on EDESE schemes that achieves keyword recovery
and document recovery without error based on partially known
documents and L2 leakage. We conduct extensive experiments to
demonstrate the effectiveness of our attack by varying levels of
attacker’s background knowledge.

∗The first author is also with the State Key Laboratory of Information Security (Institute
of Information Engineering, Chinese Academy of Sciences, Beijing 100093).
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484540.

CCS CONCEPTS
• Security and privacy → Management and querying of en-
crypted data; Cryptanalysis and other attacks.

KEYWORDS
Searchable encryption; leakage; attack

ACM Reference Format:
Jianting Ning, Xinyi Huang, Geong Sen Poh, Jiaming Yuan, Yingjiu Li,
Jian Weng, and Robert H. Deng. 2021. LEAP: Leakage-Abuse Attack on
Efficiently Deployable, Efficiently Searchable Encryption with Partially
Known Dataset. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21), November 15–19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3460120.3484540.

1 INTRODUCTION
Encrypted cloud storage systems have been developed to alleviate
the privacy concerns of organisations that outsource their sensitive
data to a third-party storage provider. Searchable encryption (SE)
is one of the key solutions that attempt to preserve retrievability of
encrypted data, without revealing the queried information to the
storage provider. Since the seminal work by Song et al. [40], many
practical SE schemes have been proposed [4, 6, 7, 9, 12, 25, 33, 41].

In order to provide efficient query on encrypted data stored on
a remote cloud server, these practical SE schemes allow certain
leakages of information that are deemed acceptable by users. Cash
et al. [5] characterized the leakage profiles of SE schemes in the lit-
erature and in-the-wild SE products by defining a series of leakage
levels L1-L4. L1 leakage, consisting of the query-revealed occurrence
pattern, has the least amount of leakage. L2 leakage stands for the
leakage of fully-revealed occurrence pattern, which leaks more infor-
mation than L1 but less than L3 and L4. Due to the high efficiency
of SE schemes with L2 leakage, they have been incorporated in
a number of operational prototypes and products. ShadowCrypt
[20] supports end-to-end encryption and SE with L2 leakage for

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2307

https://doi.org/10.1145/3460120.3484540.
https://doi.org/10.1145/3460120.3484540.
https://doi.org/10.1145/3460120.3484540.

web applications, such as Twitter, Facebook and Gmail. Specifically,
ShadowCrypt interposes itself between a human user and the user
interface of a web application. To keep the user’s ability to effi-
ciently search the stored documents, ShadowCrypt employs a type
of SE with L2 leakage called efficiently deployable, efficiently search-
able encryption (EDESE). In a typical implementation of an EDESE
scheme, as used in ShadowCrypt, a list of encrypted keywords (here
after referred to as query tokens) is attached to an encrypted docu-
ment. Each query token q is calculated as a pseudorandom function
F of a keywordw (keyed with a secret key k). To search for a key-
wordw , ShadowCrypt intercepts the search request and replaces
the keyword w with the corresponding query token q = Fk (w).
EDESE schemes have several compelling advantages, including
lower startup costs as compared to other types of SE and allow en-
cryption of communications to be performed immediately without
changing providers or losing familiar application user interfaces.
On the other hand, EDESE schemes suffer from L2 leakage which
could be exploited by an attacker. As the encrypted documents and
the corresponding query tokens are stored on the server side, an
adversarial server could obtain the relationship between each query
token and each encrypted document. Particularly, whether a query
token is contained in an encrypted document is leaked to the server.
During the rest of the paper, we will use EDESE and SE with L2
leakage interchangeably unless otherwise stated.

It has been shown in recent years that the leakages of SE schemes
can be exploited to recover the underlying keywords of query to-
kens, given full or partial background knowledge about the docu-
ments or the keywords contained in the documents. Islam et al. [21]
initiated the investigation through empirical analysis on the secu-
rity of SE and demonstrated that the underlying keywords of queries
can be recovered if given (almost) all the documents. Following
from this, Cash et al. [5] (CGPR) proposed an improved attack that
successfully recovers query keywords using less prior knowledge
about the (plaintext) documents of the user and L1 leakage. Pouliot
and Wright [39] later proposed new inference attacks on EDESE
schemes utilizing L2 leakage, one is based on the Umeyama’s algo-
rithm [42] (PW-U), and the other is based on the PATH algorithm
[43] (PW-P). Independent from the above passive attacks, Cash et
al. [5] also introduced a new type of attack in which an attacker
can induce a user to insert chosen documents, which is essentially
an active attack. A new active attack called file-injection attack was
later proposed by Zhang et al. [44], which injects deliberately cho-
sen documents into the document set of the user. Compared with
active attacks, passive attacks require weaker assumption since the
attacker only needs to observe the leakages of a SE scheme and
hence is easier to launch. This paper focuses on passive attacks.

For passive attacks, a practical assumption could be that it is
unlikely an attacker can obtain all the documents of a target user. On
the other hand, it seems too restrictive to assume that the attacker
knows no plaintext document of the user at all. For instance, a
storage provider can easily learn the nature of a user’s business.
The provider may then construct the common keywords and gather
common documents reflecting the business domain (e.g., finance,
healthcare). It is also over optimistic from a security standpoint to
assume the attacker has no way to learn partial information. Thus,
a more realistic assumption is to assume that the attacker could
obtain a partial set of the documents for a target user. As noted in

[5], “assuming knowledge of no documents is a step too far”, and
an attacker may know that one or more widely-circulated emails
are stored in a user’s repository.

To date, there are only a few works that focus on such practical
scenario where the attacker has only partial knowledge of a tar-
get user’s document set. However, the attack results reported in
these works may contain false positives due to the lack of knowl-
edge of the missing documents. In particular, the PW-U attack
and the PW-P attack (on EDESE schemes) proposed by Pouliot
and Wright [39] are two types of attacks that work with partial
knowledge of a dataset. Both attacks result in false positives. As
the experimental results shown in Section 5, when given 10% of
documents of the dataset with 4,991 keyword universe, the PW-U
attack returns 4,991 (query token, keyword) mappings but only
38 keywords are correctly mapped, and the PW-P attack returns
4,991 (query token, keyword) mappings but only 1,638 mappings
are correct. The main idea of the PW-U attack and the PW-P attack
is to reduce the problem of finding (query token, keyword) map-
ping to well-known combinatorial optimization problems based on
graph matching. However, due to the nature of the combinatorial
optimization problems based on graph matching, the recovered
(query token, keyword) mappings may contain false positives when
the attacker’s knowledge about a target user’s document set is not
complete.

The CGPR attack proposed by Cash et al. [5] is another type of
attack in such partial knowledge setting, which also results in false
positives. The difficulty of accurately recovering the underlying
keywords of query tokens lies in the information loss induced by
missing documents. Due to the missing documents, the attacker
cannot simply recover a query token q by finding a keyword w
with a unique count(w) such that count(q) = count(w), where
count(w) denotes the number of known documents containingw
and count(q) denotes the number of encrypted documents contain-
ing q. This is because the document set corresponding to count(w)
is a subset of the full document set; consequently, count(w) may
be less than the number of documents from the full document set
containingw . As a result, the attack under the partial knowledge
setting in [5] utilizes a guessing strategy to prepare a candidate
keyword set for a query token, which serves as the basis for later
pruning. This is the reason why the attack usually outputs (query
token, keyword) mappings with (high) false positives.

Intuitively, the criterion to measure the effectiveness of an infer-
ence attack on SE scheme is howmany (query token, keyword) map-
pings can be accurately recovered, rather than how many (query
token, keyword) mappings are output by the attack (which may
contain false positives). The following question arises naturally:

Can a passive adversarial server reveal query tokens (i. e., discov-
ering the underlying keywords of query tokens) accurately with only
partial knowledge of the user’s document set?

1.1 Our Contributions
In this paper, we attempt to address the above problem by present-
ing a new leakage-abuse attack on EDESE schemes, named LEAP
(Leakage-abuse attack on efficiently deployable, efficiently search-
able encryption with partially known dataset). Different from the
guessing strategy in [5] and the graph matching approach in [39],

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2308

we introduce a new approachwhich reveals query tokens accurately
with only partial knowledge of the dataset.

In a nutshell, we first accurately recover certain (encrypted doc-
ument, document) mappings. This step relies on two methods (see
Method 1 andMethod 2 described in Section 4.2) and the obser-
vation that them′×n′ document-keyword matrix A′ (derived from
known documents) can be extended to a new m × n′ document-
keyword matrix A′′, where n′ is the number of leaked documents,
m′ is the number of keywords contained in the leaked documents
andm is the number of keywords in the keyword universe. With the
recovered (encrypted document, document) mappings, we can then
recover certain (query token, keyword) mappings without error
based on Method 3 described in Section 4.2. Next, we use a recur-
sive mechanism to recover more (query token, keyword) mappings.
In particular, the recovered (query token, keyword) mappings are
used to discover new (encrypted document, document) mappings
which in turn are used to discover new (query token, keyword) map-
pings. This recursive discovery process is made possible based on a
novel matrix row/column mapping technique we develop, which
utilizes the leakage of EDESE schemes and the partial knowledge
of a user’s document set.

LEAP achieves zero false positives in breaking query token pri-
vacy in the sense that all (query token, keyword) mappings output
by LEAP are correct. As an auxiliary function, it breaks document
privacy without false positives, i.e., all (encrypted document, docu-
ment) mappings output by LEAP are correct. As far as we know,
this is the first attack utilizing only partial knowledge of the docu-
ment set and the L2 leakage of EDESE schemes, yet is capable of
recovering the user’s query tokens and the encrypted documents
accurately (i.e., without false positives).

We conduct extensive experiments to demonstrate the effective-
ness of LEAP as compared to the PW-U attack and the PW-P attack.
Given access to 10% of the dataset, LEAP accurately recovers 4,904
(query token, keyword) mappings out of 4,991 keywords, as com-
pared to 1,638 in the PW-P attack and 38 in the PW-U attack. In
the case where only 0.1% of the dataset is leaked, LEAP accurately
recovers 132 (query token, keyword) mappings out of 1,144 key-
words, as compared to 2 in the PW-P attack and 5 in the PW-U
attack. The experimental results confirm that LEAP is devastating
for the privacy of query tokens. LEAP reveals new risks of using
EDESE schemes given a prior knowledge of the dataset. LEAP also
highlights the importance of minimizing the leakage of a data stor-
age or processing server.

2 PRELIMINARIES
2.1 Notation
Throughout this paper, we use d ,w , ed , and q to denote a document,
a keyword, an encrypted document, and a query token, respectively.
We use di to denote a particular documenti , and use wi , edi , and
qi similarly. Note that d (resp.w) is indexed independently from ed
(resp. q). In other words, edi may not be the encryption of di , and
qi may not be the query token corresponding towi , even though
they share the same subscript. In addition, we use (ed ,d) to denote
a mapping between an encrypted document and the corresponding
plaintext document, and use (q,w) to denote a mapping between a
query token and the corresponding keyword.

We define [n] = {1,2, ...,n} for n ∈ N. For two vectors VA and
VB of the same dimension, we define VA = VB iff VA[i] = VB[i]
for all i . For anm×n matrix T where the (i, j)-th entryTi,j is either
1 or 0, let columnj be the j-th column of T for j ∈ [n], and rowi be
the i-th row of T for i ∈ [m]. For columnj , let T1,jT2,j ...Tm,j be its
bit-string; similarly, for rowi , let Ti,1Ti,2...Ti,n be its bit-string. We
say columnj is unique if the bit-string of columnj is unique among
{bit-string of columnj′ }j′∈[n]; similarly, we say rowi is unique if
the bit-string of rowi is unique among {bit-string of rowi′ }i′∈[m].
Let columnj -sum be the Hamming weight of the j-th column, i.e.,
columnj -sum equals T1,j +T2,j + ... +Tm,j ; similarly, let rowi -sum
be the Hamming weight of the i-th row. We take the following 5× 6
matrix as an example:

*......
,

1 2 3 4 5 6
1 0 1 1 0 0 1
2 1 0 0 1 1 0
3 0 0 1 0 0 0
4 0 1 1 0 0 1
5 1 1 0 1 1 1

+//////
-

, (1)

the bit-string of column3 is 10110, and the bit-string of row4 is
011001. Column3 is unique, and so are row2, row3, row5. The
column3-sum is 1 + 0 + 1 + 1 + 0 = 3, and the row2-sum is
1 + 0 + 0 + 1 + 1 + 0 = 3.

2.2 Background
We first give a general description of SE. In a SE scheme, a user
encrypts her documents and uploads the encrypted documents to
a (untrusted) server. Later, the user can issue a query containing
a keyword (or a set of keywords) by generating and sending a
query token to the server to retrieve the documents containing
this keyword (or these keywords). Based on the query token, the
server searches the stored encrypted documents and returns the
encrypted documents (or the document identifiers) containing the
queried keyword to the user.

The setting that we focus on is similar to the settings discussed
in [5, 39] for EDESE schemes. In this setting, the keywords are
encrypted with keyed pseudorandom function as the query tokens
and appended to the encrypted documents stored on the server side.
Similar to [5, 39], we assume the query of a keyword is processed
as follows: the user first deterministically generates a query token
from the keyword and sends a query request containing the query
token to the server; with the query token, the server returns the
encrypted documents which are attached with the query token in
the query request. Since the encrypted documents and the attached
query tokens are stored on the server, an adversarial server could
obtain (1) the encrypted document universe and the query token
universe, and (2) the relationship between each encrypted document
and each query token, i.e., whether a query token is contained in
an encrypted document. LEAP relies on such leakage. Similar to
[5, 21, 39], only the “one-to-one” setting is considered for simplicity,
where a query token corresponds to a single keyword. We leave the
“one-to-many” setting where one query token may contain multiple
keywords as our future work.

Let F = {d1, . . . ,dn } denote a set of (plaintext) documents of
a target user. Each document di is represented by a set of key-
words,Wi = {wi,1, . . . ,wi,mi }, which can be extracted using an

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2309

extraction algorithm. Let W = {w1, . . . ,wm } denote the set of key-
words appear in F. The relation between F andW is encoded in a
document-keyword matrix A = [Ai j]m×n , where Ai,j equals 1 iff
document dj contains keywordwi , and 0 otherwise. The matrix is
illustrated as follows:

*.....
,

d1 d2 · · · dn

w1 A1,1 A1,2 · · · A1,n
w2 A2,1 A2,2 · · · A2,n
...

...
... · · ·

...

wm Am,1 Am,2 · · · Am,n

+/////
-

, (2)

where document dj is associated with columnj , and keywordwi is
associated with rowi . Columnj -sum of A captures the number of
keywords that are contained in document dj , and rowi -sum of A
captures the number of documents that contain keywordwi .

Let E = {ed1, ...,edn } be the encrypted document set correspond-
ing to F, and let Q = {q1, ...,qm } be the query token set correspond-
ing to W. We further define an encrypted document-query token
matrix B = [Bi j]m×n with entry Bi,j equals 1 iff query token qi is
attached to encrypted document edj , and 0 otherwise. Matrix B is
illustrated as follows:

*.....
,

ed1 ed2 · · · edn

q1 B1,1 B1,2 · · · B1,n
q2 B2,1 B2,2 · · · B2,n
...

...
... · · ·

...

qm Bm,1 Bm,2 · · · Bm,n

+/////
-

, (3)

where edj is an encrypted document associated with columnj , and
qi is a query token associated with rowi . Columnj -sum of B cap-
tures the number of query tokens that are attached to encrypted
document edj , and rowi -sum of B captures the number of encrypted
documents where the sets of attached query tokens contain qi .

If columnj of B matches columnj′ of A, then we say edj is
the encrypted version of dj′ , and we can thus obtain a mapping
(edj ,dj′), where edj is the encrypted document corresponding to
columnj of B, and dj′ is the document corresponding to columnj′
of A; similarly, if rowi of B matches rowi′ of A, then we say the
underlying keyword of qi iswi′ , and we can thus obtain a mapping
(qi ,wi′), where qi is the query token corresponding to rowi of B,
andwi′ is the keyword corresponding to rowi′ of A.

The matrix representation above is similar to that of [5, 21],
which generalises the inverted index used in most high efficiency
SE schemes.

We then define an n×n d-occurrence matrix whose (i, j)-th entry
captures the number of keywords that appear in both di and dj .
We also define an n × n ed-occurrence matrix whose (i, j)-th entry
captures the number of query tokens that are attached to both edi
and edj .

3 ATTACK MODEL
3.1 Attacker Type
As defined in [5, 21, 39], the attacker is an adversarial server who
stores the encrypted documents and the corresponding query to-
kens. The attacker we consider in this paper is passive in the sense
that it faithfully follows the EDESE schemes but attempts to learn

more information than is allowed by examining the information
it can observe. Intuitively, this type of attacker is weaker than the
active attacker addressed in [44], which can trick a user into adding
a document that is (deliberately) chosen by the attacker. In addition,
the attacker has no access to any encryption or decryption oracles.

3.2 Attacker Knowledge
The knowledge of attacker includes the leakage of the EDESE
schemes and the prior knowledge of a target user’s documents.

For the leakage of the EDESE schemes, we consider the informa-
tion leakage from the stored encrypted documents and the attached
query tokens as described in Section 2. In particular, the attacker can
utilize the information leaked by EDESE scheme to obtain the rela-
tionship between each encrypted document and each query token,
i.e., which query token is attached to which encrypted document.

In terms of prior knowledge, we consider partially-known docu-
ment set, which means that a subset of the (plaintext) documents
of a target user is known to the attacker. For example, a set of
widely-distributed emails may exist in the repository of a user and
is known to the attacker, as articulated in [5]. The following is a
scenario cited in [39] which is likely to happen in the real world.
Suppose a user has a large corpus of documents stored on a service
like Gmail, who decides to have all the documents encrypted with
EDESE and uploaded to the server. Clearly, the server has perfect
knowledge of the old plaintext corpus. Over time, new encrypted
documents are uploaded to the server. In this scenario, the server
has partial knowledge of the user’s documents.

Unlike previous inference attacks, our attack does not require
(1) any priori knowledge of the query requests, (2) any prior knowl-
edge of the distribution of queries, and (3) any prior knowledge on
the underlying keywords of any query tokens, i.e., the mapping
between a (plaintext) keyword and the corresponding query token.

3.3 Objective of Attacker
The main objective of the attacker is keyword recovery, which is to
recover the underlying keywords of a user’s query tokens. Another
objective is document recovery, which is to recover the relationship
between known documents and encrypted documents.

4 LEAP
We now present LEAP, a new leakage-abuse attack against EDESE
schemes with partial knowledge of a target user’s document set.

4.1 Knowledge of Attacker
Let F = {d1, ...,dn } denote the full document set andW = {w1, ...,wm }

denote the corresponding set of keywords. Let F′ = {dy1 , ...,dyn′ }
be the partial knowledge of the document set known to the attacker,
andW′ = {wx1 , ...,wxm′ } be the keyword set corresponding to F′,
where {y1, ...,yn′ } ⊂ [n] and {x1, ...,xm′ } ⊂ [m]. Since each docu-
ment consists of a set of keywords, W′ can be easily derived from
F′ by the attacker.

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2310

With F′ andW′, the attacker can derive the followingm′ × n′
document-keyword matrix A′:

*.......
,

dy1 dy2 · · · dyn′

wx1 A′1,1 A′1,2 · · · A′1,n′
wx2 A′2,1 A′2,2 · · · A′2,n′
...

...
... · · ·

...

wxm′ A′m′,1 A′m′,2 · · · A′m′,n′

+///////
-

, (4)

where A′i,j is 1 if wxi is a keyword in document dyj for i ∈ [m′]
and j ∈ [n′], and 0 otherwise.

In addition, the attacker obtains an n′ × n′ d-occurrence matrix
M′ as follows:

*.......
,

dy1 dy2 · · · dyn′

dy1 M ′1,1 M ′1,2 · · · M ′1,n′
dy2 M ′2,1 M ′2,2 · · · M ′2,n′
...

...
... · · ·

...

dyn′ M ′n′,1 M ′n′,2 · · · M ′n′,n′

+///////
-

, (5)

whereM ′i,j is the number of keywords that appear in both dyi and
dyj for i, j ∈ [n′].

Let E = {ed1, ...,edn } be the encrypted document set of F, and
Q = {q1, ...,qm } be the query token set corresponding to W. From
the encrypted documents and the attached query tokens stored on
the server, the attacker can derive the followingm × n encrypted
document-query token matrix B:

*.....
,

ed1 ed2 · · · edn

q1 B1,1 B1,2 · · · B1,n
q2 B2,1 B2,2 · · · B2,n
...

...
... · · ·

...

qm Bm,1 Bm,2 · · · Bm,n

+/////
-

, (6)

where Bi,j is 1 if qi is attached to edj for i ∈ [m] and j ∈ [n], and 0
otherwise.

In addition, the attacker can obtain the following n × n ed-
occurrence matrix M:

*.....
,

ed1 ed2 · · · edn

ed1 M1,1 M1,2 · · · M1,n
ed2 M2,1 M2,2 · · · M2,n
...

...
... · · ·

...

edn Mn,1 Mn,2 · · · Mn,n

+/////
-

, (7)

whereMi,j is the number of query tokens that are attached to both
edi and edj for i, j ∈ [n].

4.2 Technical Intuitions
Our main intuition is that by recursively finding and then sifting
the row and columnmappings betweenA′ andB, we can accurately
recover the underlying keywords of the query tokens as well as the
correspondence between the known documents and the encrypted
documents. First observe that each encrypted document uniquely
corresponds to a (plaintext) document. That is, there exists a subset
Scol ⊂ {ed1, ...,edn } such that {π1 (dy1), ...,π1 (dyn′)} = Scol , where
π1 is a function. Hence, for each column of A′, there must exist

a “matching” column in B 1. Similarly, note that each query token
uniquely corresponds to a keyword. That is, there exists a sub-
set Srow ⊂ {q1, ...,qm } such that {π2 (wx1), ...,π2 (wxm′)} = Srow ,
where π2 is a function. Hence, for each row of A′, there exists a
“matching” row in B 2. Naturally, the goal of LEAP is reduced to
finding the column mapping and row mapping between B and A′.

Now recall the meaning of column-sum and row-sum of B and
A′ defined in Section 2. The columnj -sum of B captures the number
of query tokens that are attached to encrypted document edj . The
columnj -sum of A′ captures the number of keywords that appear in
document dyj . Clearly, one cannot simply match the rows between
B andA′ by finding unique row-summappings between them since
A′ has fewer columns than B. For example, suppose that row4-sum
of B is z, and this value is unique among all row-sums of B. Further
assume that there exists a unique row5-sum of A′ equal to z. One
cannot conclude thatwx5 is the underlying keyword of q4. This is
because the true value of row5-summay exceed z, since the missing
documents may also containwx5 .

Instead, we map the columns between B and A′ by finding
unique column-sum mappings between them. From the encrypted
documents and the attached query tokens stored on the server,
we can derive m distinct query tokens. Since each query token
uniquely corresponds to a keyword, we know that there are to-
tallym keywords corresponding to the full document set (i.e., F).
Let {wxm′+1 , ...,wxm′′

} = {w1, ...,wm } − {wx1 , ...,wxm′ } be the key-
words that do not appear in the partially-known document set F′
(where F′ = {dy1 , ...,dyn′ }); in other words, {wxm′+1 , ...,wxm′′

} are
unknown to the attacker. We can extend them′ × n′ matrix A′ to a
newm × n′ matrix A′′ by setting A′′i,j = 0 for i ∈ {m′ + 1, ...,m′′ }
and j ∈ {1, ...,n′} as follows:

*.................
,

dy1 dy2 · · · dyn′

wx1 A′′1,1 A′′1,2 · · · A′′1,n′
wx2 A′′2,1 A′′2,2 · · · A′′2,n′
...

...
... · · ·

...

wxm′ A′′m′,1 A′′m′,2 · · · A′′m′,n′
wxm′+1 A′′m′+1,1 = 0 A′′m′+1,2 = 0 · · · A′′m′+1,n′ = 0
...

...
... · · ·

...

wxm′′
A′′
m′′,1 = 0 A′′

m′′,2 = 0 · · · A′′
m′′,n′

= 0

+/////////////////
-

, (8)

Let dyj be a document associated with columnj of A′′, wxi be a
keyword associated with rowi of A′′.

For the relationship of A′′ andB, we have {π1 (dy1), ...,π1 (dyn′)} ⊂
{ed1, ...,edn } and {π2 (wx1), ...,π2 (wxm′′)} = {q1, ..., qm }. The goal
of LEAP is now reduced to the task of finding as many unique row
mappings and unique column mappings as possible between B and
A′′.

In more details, LEAP utilizes the following methods to find
unique row mappings and unique column mappings between B
and A′′.
1Here, “matching” denotes that for the document d corresponding to a particular
column of A′, there exists an encrypted document ed corresponding to a particular
column in B such that π1 (d) = ed .
2Here, “matching” denotes that for the keywordw corresponding to a particular row
of A′, there exists a query token q corresponding to a particular row in B such that
π2 (w) = q .

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2311

• Method 1. Since the number of rows in A′′ equals the number
of rows in B, we can find unique column-sum mappings between
B and A′′ as follows: for each columnj -sum of B that is unique
among {columnj -sum of B}j ∈[n], if we can find a columnj′-sum
of A′′ which equals the columnj -sum of B, then we can conclude
that edj is the encrypted version of dyj′ .
• Method 2. Given known column mappings, we employ n × n
ed-occurrence matrixM and n′ × n′ d-occurrence matrixM′ to
find the column mappings between B and A′′ that cannot be
mapped via unique column-sum as described in Method 1. The
detailed algorithm of this method is shown in Algorithm 1. The
intuition behind this algorithm is described as follows. For the
relationship between M and M′, Mi,j equals M ′i′,j′ if edi is the
encrypted version of dyi′ and edj is the encrypted version of
dyj′ . For a known mapping (edk ,dyk′) and a (unmapped) dyj′ ,
we can obtain a new mapping (edj ,dyj′) if there exists only one
edj satisfying Mj,k = M ′j′,k ′ and columnj′-sum of A′′ equals
columnj -sum of B.
• Method 3. Given known (ed ,d) mappings, this method aims
to find (q,w) mappings. Without loss of generality, let Sc =
{(edj1 ,dyj′1

), ..., (edjt ,dyj′t
)} be the set of (ed ,d) mappings that

have been found, where {j1, ..., jt } ⊂ [n] and {yj′1 , ...,yj′t } ⊆
[n′]. We define Sc -column-mapped submatrix pair (Bc ,A′′c) from
(B,A′′) as follows.
Let Bc be a submatrix of B with a rearranged column order as:

*.....
,

edj1 edj2 · · · edjt
q1 B1,j1 B1,j2 · · · B1,jt
q2 B2,j1 B2,j2 · · · B2,jt
...

...
... · · ·

...

qm Bm,j1 Bm,j2 · · · Bm,jt

+/////
-

. (9)

and letA′′c be a submatrix ofA′′ with a rearranged column order
as:

*........
,

dyj′1
dyj′2

· · · dyj′t
w1 A′′1,j′1

A′′1,j′2
· · · A′′1,j′t

w2 A′′2,j′1
A′′2,j′2

· · · A′′2,j′t
...

...
... · · ·

...

wm A′′m,j′1
A′′m,j′2

· · · A′′m,j′t

+////////
-

. (10)

Note that the columns in Bc are arranged according to the order
of (edj1 ,edj2 , ...,edjt), while the columns in A′′c are arranged
according to the order of (dyj′1 ,dyj′2 , ...,dyj′t).
If any rowi of Bc is unique among all rows of Bc , then rowi of
B is unique among all rows of B. The same applies to the case
of A′′c and A′′. Hence, for each rowi of Bc whose bit-string is
unique among all rows of Bc , if there exists a rowi′ of A′′c whose
bit-string is the same as the bit-string of rowi of Bc , then we can
conclude that the underlying keyword of qi iswi′ .
• Method 4. This method is dual toMethod 3. Given known (q,w)
mappings, this method is used to find one or more (ed ,d) map-
pings.Without loss of generality, let Sr = {(qi1 ,wxi′1

), ..., (qit ,wxi′t
)}

be the set of (q,w) mappings that have been recovered, where
{i1, ...,it ,i ′1, ...,i

′
t } ⊆ [m]. We define Sr -row-mapped submatrix

pair (Br ,A′′r) from (B,A′′) as follows:

Br is a submatrix of B with a rearranged row order as:

*.....
,

ed1 ed2 · · · edn

qi1 Bi1,1 Bi1,2 · · · Bi1,n
qi2 Bi2,1 Bi2,2 · · · Bi2,n
...

...
... · · ·

...

qit Bit ,1 Bit ,2 · · · Bit ,n

+/////
-

, (11)

and let A′′r be a submatrix of A′′ with a rearranged row order as:

*........
,

dy1 dy2 · · · dyn′

wxi′1
A′′i′1,1

A′′i′1,2
· · · A′′i′1,n

′

wxi′2
A′′i′2,1

A′′i′2,2
· · · A′′i′2,n

′

...
...

... · · ·
...

wxi′t
A′′i′t ,1

A′′i′t ,2
· · · A′′i′t ,n′

+////////
-

, (12)

The rows inBr are arranged according to the order of (qi1 , ...,qit),
while the rows in A′′r are arranged according to the order of
(wxi′1

, ...,wxi′t
).

If any columnj of Br is unique among all columns of Br , then
columnj of B is unique among all columns of B. The same applies
to the case of A′′r and A′′. Hence, for each columnj of Br whose
bit-string is unique among all columns of Br , if there exists a
columnj′ of A′′r whose bit-string is the same as the bit-string of
columnj of Br , then we know that dyj′ is the plaintext of edj .
• Method 5. This method aims to find more column mappings. We
use a vector VBj (resp. vector VAj′) to record the column-sum
for each columnj of B (resp. columnj′ of A′′) in each iteration.
As the first step, VBj (resp. VAj′) records columnj -sum of B
(resp. columnj′-sum of A′′) as its first element, while the rest
of the elements are set to zero. Without loss of generality, let
{(qa1 ,wa′1

), .., (qat ,wa′t)} be the (q,w) mapping set being found
during the current iteration. With {(qa1 ,wa′1

), .., (qat ,wa′t)}, we
set the entries of rowi of B to 0 for i ∈ {a1, ...,at }, and set
the entries of rowi′ of A′′ to 0 for i ′ ∈ {a′1, ...,a

′
t }. We then re-

compute the column-sum of B (resp. A′′) for the columns that
have not been mapped, and add the computed column-sum to
the corresponding vector as its next element. For each distinct
vector VBj of B, if these exists a vector VAj′ of A′′ that equals
VBj , we can conclude that the plaintext of edj is dj′ . The above
procedure is performed in every iteration, until no more new
(q,w) mappings are found.

4.3 Description of LEAP
LEAP is shown in Figure 1, where theOccurrence(C,M,M′,A′′,B)
algorithm, shown in Algorithm 1, serves as a subroutine of the
attack.

Step 0 initializes several variables that are used in the following
steps. In particular, Cnew is used to record newly found (ed,d)
mappings in Step 6, Step 7 and Step 8; Rnew is used to record
newly found (q,w) mappings in Step 5. C is used to accumulate
(ed ,d)mappings, andR is used to accumulate (q,w)mappings. Step
2 uses Method 1 as described in Section 4.2. Step 3 utilizes the
n × n ed-occurrence matrix M and the n′ × n′ d-occurrence matrix
M′ to find more (ed ,d) mappings based onMethod 2. Step 5, Step

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2312

Algorithm 1: Occurrence(C,M,M′,A′′,B)
Input: A known (ed ,d) mapping setC ; an n ×n ed-occurrence

matrix M and an n′ × n′ d-occurrence matrix M′,
where n′ < n; anm × n′ matrix A′′ and anm × n
matrix B.

Output: A set of (ed ,d) mappings;
1 Initialize a set S = {1} and a set C ′ = ∅;
2 Set C ′ = C;
3 while S , ∅ do
4 Set S = ∅;
5 for each unmapped dyj′ for j

′ ∈ [n′] do
6 Set candidate ED be any unmapped edj for j ∈ [n]

satisfying c ′j′ = c j , where c
′
j′ is the columnj′-sum of

A′′ and c j is the columnj -sum of B;
7 for each edj in ED do
8 for known mappings (edk ,dyk′) in C

′ do
9 if Mj,k , M ′j′,k ′ then

10 remove edj from ED;
11 end
12 end
13 end
14 if only one edj remains in ED then
15 add (edj ,dyj′) to S ;
16 set C ′ = C ′ ∪ S .
17 end
18 end
19 end
20 return S ;

6 and Step 7 are based on Method 3, Method 4, and Method 5
respectively.

We then give the description of Algorithm 1. The main idea is
to utilize known (ed ,d) mappings to find more (ed,d) mappings.
It takes known (ed ,d) mappings as input. This algorithm is based
on Method 2, which is built on the following two observations (as
described in Section 4.2):
• If edk is the encrypted version of dyk′ and edj is the encrypted
version of dyj′ , then the equationMj,k = M ′j′,k ′ holds. However
Mj,k = M ′j′,k ′ does not imply that edk is the encrypted version
of dyk′ and edj is the encrypted version of dyj′ .
• For a known (edk ,dyk′) mapping and a (unmapped) dyj′ , we
can obtain a new mapping (edj ,dyj′) if edj is the only candidate
satisfying (1) Mj,k = M ′j′,k ′ , and (2) c ′j′ = c j , where c ′j′ is the
columnj′-sum of A′′ and c j is the columnj -sum of B.

The first observation is utilized in Lines 7-13 in Algorithm 1 to filter
some edj from the candidate set. The second observation is utilized
in Lines 14-16 in Algorithm 1 to obtain the (edj ,dyj′) mapping.

4.4 Analysis of LEAP
Step 2 is the starting point of LEAP. The (ed ,d) mappings found
in this step serve as initial (ed ,d) mappings to bootstrap Step 3.

Step 3 aims to find more (ed ,d) mappings based on the n × n ed-
occurrence matrixM and the n′×n′ d-occurrence matrixM ′, which
crucially relies on the (ed ,d) mappings found in Step 2. The more
(ed ,d) mappings are found in Step 2, the more (ed ,d) mappings
would be found in Step 3.

The task of Step 5 is to find (q,w) mappings. This is the only
step that aims to recover (q,w) mappings. The effectiveness of
this step depends strongly on the size of the (ed ,d) mapping set C
accumulated in Step 2 and Step 3, which is used to generate the
C-column-mapped submatrix pair (Bc ,A′′c) from (B,A′′). If more
(ed ,d) mappings are accumulated in C , Bc (resp. A′′c) is wider, and
the probability of finding unique rows in it becomes higher. Hence,
it is important to find as many (ed ,d) mappings as possible before
executing Step 5.

On the other hand, the (q,w) mappings found in Step 5 are
utilized to find more (ed ,d) mappings in Step 6. Similarly, a larger
size of R leads to higher Br (resp. A′′r), and a higher probability of
finding unique columns in it.

Step 8 is similar to Step 3, which employsM andM′ to findmore
(ed ,d) mappings. A larger size of C leads to more (ed ,d) mappings
to be found.

We define keyword recovery rate as the percentage of keywords
fromW′ (whereW′ = {wx1 , ...,wxm′ } is as defined Section 4.1) that
have been mapped to the query tokens. In other words, keyword
recovery rate is the percentage of rows of A′′ that can be uniquely
mapped to the rows of B. We further define accuracy rate of recov-
ered keywords as the percentage of recovered keywords that are
correctly mapped to query tokens, and correct keyword recovery rate
as the percentage of keywords fromW′ that have been accurately
mapped to the query tokens.

Similarly, we define document recovery rate as the percentage of
known documents which are mapped to their encrypted versions.
Document recovery rate is the percentage of columns of A′ that
can be uniquely mapped to the columns of B. We further define
accuracy rate of recovered document as the percentage of recovered
documents that are correctly mapped to encrypted documents,
and correct document recovery rate as the percentage of known
documents that have been accurately mapped to the encrypted
documents.

We take the following example to demonstrate the differences of
the above definitions. For a known document set with 100 keywords,
suppose there exists an attack that returns 80 (q,w) mappings with
40 correct mappings. In this case, the keyword recovery rate is 80%,
the accuracy rate of recovered keywords is 50%, and the correct
keyword recovery rate is 40%. Intuitively, keyword recovery rate
alone cannot reflect the power of an attack, since the result may
contain false positives. With the accuracy rate of recovered key-
words, one can see how “good” the result is. The correct keyword
recovery rate reflects how effective of an attack. The same holds
for the case of document recovery.

5 EXPERIMENTS
Here we report the experimental results of LEAP, which is the first
attack that targets exact recovery of (q,w) mappings and (ed,d)
mappings from partially-known documents and information leak-
age of EDESE schemes.

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2313

Input: Anm′ × n′ document-keywrod matrix A′ and anm × n encrypted document-query token matrix B, wherem′ < m and n′ < n.
Output: A set of (q,w) mapping and a set of (ed ,d) mapping.

• Step 0 (Initialization): Initialize a counter ct = 1, four sets Cnew = ∅, Rnew = ∅, C = ∅, R = ∅, and two matrices Bmap and A′′map .

• Step 1 (Extend A′): Extend them′ × n′ matrix A′ to anm × n′ matrix A′′ with the new entries A′′i,j = 0 for i ∈ {m′ + 1, ...,m′′} and
j ∈ [n′]. Set Bmap = B and A′′map = A′′.

• Step 2 (Find (ed ,d) mappings): For each j ∈ [n], do: (1) Initialize a vectorVBj for columnj of B; (2) Compute columnj -sum as c j , and
set VBj [1] = c j . Similarly, for each j ′ ∈ [n′], do: (1) Initialize a vector VAj′ for columnj′ of A′′; (2) Compute the columnj′-sum as
c ′j′ , set VAj′[1] = c ′j′ . For each VBj that is unique among {VBj }j ∈[n], if there exists a VAj′ such that VBj = VAj′ (where j ′ ∈ [n′]),
add (edj ,dyj′) into C .

• Step 3 (Find more (ed ,d) mappings): Compute the n × n ed-occurrence matrix M and the n′ × n′ d-occurrence matrix M′, run
Occurrence(C,M,M′,A′′map ,Bmap) to obtain a (ed ,d) mapping set S . Add S into C .

• Step 4: Set ct = ct + 1, and Rnew = Cnew = ∅.
• Step 5 (Find (q,w) mappings): Generate C-column-mapped submatrix pair (Bc ,A′′c) from (Bmap ,A′′map). For rowi of Bc that has
unique bit-string among all the rows, find rowi′ of A′′c that has the same bit-string as the rowi of Bc . If found, add (qi ,wxi′) into
Rnew and R respectively;
• Step 6 (Find more (ed ,d) mappings): Generate R-row-mapped submatrix pair (Br ,A′′r) from (Bmap ,A′′map). For columnj of Br that
has unique bit-string among all the columns, find columnj′ of A′′r that has the same bit-string as the columnj in Br . If found, add
(edj ,dyj′) into Cnew and C respectively;

• Step 7 (Find more (ed ,d) mappings): Set the entries of all the matched rows in B and A′′ to 0. For each columnj of B that hasn’t
been mapped, (re-)compute its columnj -sum as c j , and setVBj [ct] = c j . Similarly, for each columnj′ of A′′ that hasn’t been mapped,
compute its columnj′-sum as c ′j′ , set VAj′[ct] = c j′ . For each VBj that is unique among {VBj }j ∈Sup , if there exists a VAj′ such that
VBj = VAj′ (where j ′ ∈ S ′up), add (edj ,dyj′) into Cnew and C respectively, where Sup , S ′up are the index sets of the unmapped
columns in B and A′′ respectively;
• Step 8 (Find more (ed ,d) mappings): Run Occurrence(C,M,M′,A′′map ,Bmap) to obtain a (ed ,d) mapping set S ′. Add S ′ into Cnew
and C respectively.
• Step 9: If (Rnew , ∅ or Cnew , ∅), execute Step 4; otherwise, execute Step 10.
• Step 10: Output R as the set of recovered (q,w) mappings and C as the set of recovered (ed,d) mappings.

Figure 1: Description of LEAP

5.1 Setting
In our experiments, we use the Enron email database [13] as in
previous studies [5, 39, 44]. The database consists of 30,109 emails
of 150 employees from the Enron corporation, which were sent
between 2000-2002. We treat each email as a single document. The
document universe consists of all 30,109 emails. We adopt the same
method as in [5, 44] to extract keywords from the emails. In partic-
ular, all words are first processed according to the standard Porter
stemming algorithm [38] so as to generate a keyword set, and the
stop words (such as “a”, “the”, “to”, etc.) are removed from the key-
word set. Similar to [5, 44], in our experiments, we chose the top
5,000 most frequent keywords from the keyword set as the keyword
universe for each case in our experiments. For the case where the
number of keywords of the leaked documents is less than 5,000, we
choose all the keywords as the keyword universe corresponding to
the known documents. The documents known to the attacker are
chosen uniformly from the document universe (i.e., 30,109 emails in

the Enron email dataset), and the percentage of leaked documents
varies from 100% to 0.1%.

5.2 Keyword Recovery
In our experiments for keyword recovery, we compare with the
PW-U attack, the PW-P attack, the CGPR attack and the attack in
[2] (BKM). The PW-U attack and the PW-P attack target EDESE
schemes and are based on L2 leakage. These are the most relevant
attacks to LEAP. As noted in [39], the PW-U attack and the PW-P
attack can also work without the prior knowledge of the dataset
3. However, they need an extra dataset as the training set. In or-
der to make the attacks effective, the extra dataset needs to share
similar property as the target dataset. The CGPR attack is another
attack that recovers query token with partial known document
set. In contrast, it mainly utilizes L1 leakage, rather than L2 leak-
age. The BKM attack is the state-of-the-art in keyword recovery

3Indeed, the attacks can tolerate imperfect auxiliary information.

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2314

TABLE II: Comparison with the CGPR attack [5], the attacks in [39] and the BKM attack [2] 1

Dataset
Knowledge

No. of Recovered Keywords
(Keyword Recovery Rate)

No. of Correctly Recovered Keywords
(Accuracy Rate of Recovered Keywords)

(Correct Keyword Recovery Rate)
N-LD
(P-LD)

No. of
KW

CGPR
PW

BKM LEAP CGPR
PW

BKM LEAP
U P U P

30
(0.1%)

1,144 1
(0.09%)

1,144
(100%)

1,144
(100%)

0
(0%)

132
(11.54%)

0 5 2 0 132
(0%) (0.44%) (0.17%) (0%) (100%)
(0%) (0.44%) (0.17%) (0%) (11.54%)

150
(0.5%)

2,315 5
(0.22%)

2,315
(100%)

2,315
(100%)

1
(0.04%)

860
(37.15%)

1 7 21 1 860
(20%) (0.3%) (0.91%) (100%) (100%)
(0.04%) (0.3%) (0.91%) (0.04%) (37.15%)

301
(1%)

3,318 4
(0.12%)

3,318
(100%)

3,318
(100%)

2
(0.06%)

1,754
(52.86%)

2 15 51 2 1,754
(50%) (0.45%) (1.54%) (100%) (100%)
(0.06%) (0.45%) (1.54%) (0.06%) (52.86%)

1505
(5%)

4,889 10
(0.2%)

4,889
(100%)

4,889
(100%)

56
(1.15%)

4,540
(92.86%)

5 27 621 53 4,540
(50%) (0.55%) (12.7%) (94.64%) (100%)
(0.1%) (0.55%) (12.7%) (1.08%) (92.86%)

3,010
(10%)

4,991 21
(0.42%)

4,991
(100%)

4,991
(100%)

699
(14.01%)

4,904
(98.26%)

7 38 1,638 671 4,904
(33.33%) (0.76%) (32.82%) (95.99%) (100%)
(1.4%) (0.76%) (32.82%) (13.44%) (98.26%)

6,021
(20%)

5,000 42
(0.84%)

5,000
(100%)

5,000
(100%)

3,532
(70.64%)

4,957
(99.14%)

7 82 2,322 3,513 4,957
(16.67%) (1.64%) (46.44%) (99.46%) (100%)
(0.14%) (1.64%) (46.44%) (70.26%) (99.14%)

9,032
(30%)

5,000 68
(1.36%)

5,000
(100%)

5,000
(100%)

4,468
(89.36%)

4,961
(99.22%)

7 93 2,441 4,458 4,961
(10.29%) (1.86%) (48.82%) (99.78%) (100%)
(0.14%) (1.86%) (48.82%) (89.16%) (99.22%)

12,043
(40%)

5,000 83
(1.66%)

5,000
(100%)

5,000
(100%)

4,527
(90.54%)

4,965
(99.30%)

8 148 2,469 4,520 4,965
(9.64%) (2.96%) (49.38%) (99.85%) (100%)
(0.16%) (2.96%) (49.38%) (90.4%) (99.3%)

15,054
(50%)

5,000 97
(1.94%)

5,000
(100%)

5,000
(100%)

4,592
(91.84%)

4,966
(99.32%)

8 219 2,948 4,587 4,966
(8.25%) (4.38%) (58.96%) (99.89%) (100%)
(0.16%) (4.38%) (58.96%) (91.74%) (99.32%)

30,109
(100%)

5,000 4,611
(92.22%)

5,000
(100%)

5,000
(100%)

4,916
(98.32%)

4,973
(99.46%)

4,610 4,979 3,169 4,916 4,973
(99.98%) (99.58%) (63.38%) (100%) (100%)
(92.2%) (99.58%) (63.38%) (98.32%) (99.46%)

1 “L1” indicates that the attack is based on L1 leakage, “L2” indicates that the attack is based on L2 leakage. “N-LD” denotes the number of leaked documents of the dataset, “P-LD”
denotes the percentage of leaked documents of the dataset. “No. of KW ” denotes the top 5,000 most frequent keywords corresponding to the leaked documents (if the total number
of keywords is less than 5,000, we take all the keywords as the keyword universe, as in the cases where only 10%, 5%, 1%, 0.5% and 0.1% of documents are leaked). “No. of Recovered
Keywords” denotes the number of recovered keywords, “Keyword Recovery Rate” denotes the percentage of keywords that are mapped to query tokens. “No. of Correctly Recovered
Keywords” denotes the number of correctly recovered keywords out of the recovered keywords, “Accuracy Rate of Recovered Keywords” denotes the percentage of correctly
recovered keywords from the recovered keywords. “Correct Keyword Recovery Rate” denotes the percentage of correct recovered keywords out of the keyword universe
corresponding to the known documents. “U” stands for the PW-U attack which is based on the Umeyama’s algorithm [39], “P” stands for the PW-P attack which is based on the
PATH algorithm [39].

attack that assumes exact knowledge of a subset of the documents.
Here, we compare with the CGPR attack and the BKM attack for
completeness.

Table II shows the comparison among the CGPR attack, the PW-
U attack, the PW-P attack, the BKM attack and LEAP in terms of
recovered keywords. We evaluate the number (resp. percentage) of
recovered keywords, the number of correctly recovered keywords,
the accuracy rate of recovered keywords, and the correct keyword
recovery rate by varying the percentage of documents known to
the attacker from 100% to 0.1%. As noted in Section 4.4, the key-
word recovery rate reflects how many keywords from the keyword
universe corresponding to the known documents could be recov-
ered. The accuracy rate of recovered keywords reflects how many

recovered keywords are correct. The correct keyword recovery rate
reflects how many keywords can be recovered correctly.

The PW-U attack recovers all the keywords in the keyword uni-
verse corresponding to the leaked documents no matter how many
documents are leaked. In terms of accuracy rate of recovered key-
words, 99.58% of the (q,w) mappings are correctly recovered by the
PW-U attack when given the entire database. However, the accuracy
rate of recovered keywords of the PW-U attack drops dramatically
when the percentage of leaked documents are less than 50%. As
shown in Table II, only 4.38% of the recovered (q,w) mappings
are correct with the PW-U attack even given 50% of the dataset.
When given 10% of the dataset, only 0.76% of the (q,w) mappings
recovered by the PW-U attack are correct. This shows that though
the keyword recovery rate of the PW-U attack is 100%, however,

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2315

most of the recovered (q,w) mappings are not correct when only
partial knowledge of the dataset is available to the attacker.

The PW-P attack, similar to the PW-U attack, recovers 100% the
keywords when the percentage of the leaked documents varies
from 100% to 0.1%. For 100% leaked documents, the accuracy rate of
recovered keywords is 63.38%, which is less than that of the PW-U
attack. When given partial knowledge of the dataset, however, the
PW-P attack performs better than the PW-U attack in terms of
accuracy rate of recovered keywords. Given 50% of the documents,
the accuracy rate of recovered keywords of the PW-P attack is
58.96%, compared to 4.38% of the PW-U attack. For the case where
10% of the documents are leaked, the accuracy rate of recovered
keywords of the PW-P attack is 32.82%, compared to 0.76% of the
PW-U attack.

In terms of keyword recovery rate, the CGPR attack recovers
92.22% of the keywords when given the entire dataset; however,
the rate drops dramatically as the fraction of leaked documents
decreases. In particular, 1.94% of the keywords are recovered by the
CGPR attack when given 50% of the documents. The CGPR attack
can only recover 0.42% of the keywords given 10% of the dataset. In
terms of correctly recovered keywords, when give the entire dataset,
99.98% of the (q,w) mappings recovered by the CGPR attack are
correct. In other words, 92.2% of the keywords can be accurately
recovered. When the percentage of leaked documents are less than
50%, however, only very few keywords are correctly recovered by
the CGPR attack. This indicates that the CGPR attack does not
perform well when the attacker has only partial knowledge of the
document set.

For the BKM attack, in terms of keyword recovery rate, it recov-
ers 98.32% of the keywords when given 100% dataset. The keyword
recovery rate drops dramatically when the percentage of leaked
documents are less than 20%. When given 10% of the dataset, 14.01%
of the keywords are recovered by the BKM attack. It only recovers
0.06% of the keywords given 1% of the dataset. In terms of correctly
recovered keywords, all of the (q,w) mappings recovered by the
BKM attack are correct when give the entire dataset. The number
of correctly recovered keywords drops dramatically when the per-
centage of leaked documents are less than 10%. This shows that the
BKM attack does not perform well when given partial knowledge
of the document set.

The keyword recovery rate of LEAP varies from 99.46% to 11.54%
with the percentage of leaked documents varying from 100% to
0.1%. For each case that we test, LEAP achieves 100% accuracy rate
of recovered keywords, indicating that every recovered (q,w) map-
ping is correct. In particular, given 10% of the dataset, the number
of correctly recovered keywords of LEAP is 4,904, as compared to
1,638 of the PW-P attack and 38 of the PW-U attack. When given
0.1% of the dataset, LEAP correctly recovers 132 (q,w) mappings,
as compared to 2 of the PW-P attack and 5 of the PW-U attack. This
demonstrates that LEAP is significantly more powerful than the
PW-P attack and the PW-U attack in terms of correctly recovered
keywords. Though the PW-P attack and the PW-U attack could
recover 100% the keywords, most of the recovered (q,w) mappings
of the PW-U attack and less than half of the recovered (q,w) map-
pings of the PW-P attack are wrong. In this sense, LEAP is the most
powerful among these attacks.

5.3 Document Recovery
Since LEAP achieves keyword recovery and document recovery
simultaneously, we record the experimental results of document
recovery when carrying out our experiments, which are shown in
Table III. We record the number (resp. percentage) of recovered
documents, the number of correctly recovered documents, the accu-
racy rate of recovered documents, the correct document recovery
rate, the number of recovered documents using only recovered
keywords, by varying the percentage of documents known to the
attacker from 100% to 0.1%. Table III shows that LEAP recovers
most of the encrypted documents for each case. In addition, LEAP
achieves 100% accuracy rate of recovered documents in the sense
that all of the recovered documents are correct. Specifically, when
given only 10% of the entire dataset, 92.16% of the 3,010 encrypted
documents can be accurately recovered by LEAP. Given only 0.5%
of the dataset, LEAP still recovers 91.33% of the 150 encrypted docu-
ments. This demonstrates that LEAP is very powerful in recovering
the mapping between (plaintext) documents and the encrypted
documents.

We also compare the number of recovered documents using
our document recovery method with that using only recovered
keywords. As shown in Table III, for the cases where 5%, 1%, 0.5%
and 0.1% of the dataset is leaked, our document recovery method
recovers more documents than that using only recovered keywords.
This demonstrates that our document recoverymethodworks better
than purely using recovered keywords when the number of leaked
documents is small.

5.4 Property of Uniqueness
LEAP crucially relies on the uniqueness of the columns and rows
in B and A′′ in finding unique row mappings and unique column
mappings between B and A′′. Such uniqueness property of the
columns and rows in B andA′′ mainly relies on the following three
factors: (1) column-sum, (2) d-occurrence matrix and ed-occurrence
matrix, and (3) bit-string of column and bit-string of row. In par-
ticular, the number of (ed ,d) pairs found in Step 2 determines the
effectiveness of LEAP. This is so because the (ed ,d) pairs found in
Step 2 serve as an input to subsequent steps. The more such (ed,d)
pairs exist, the more (q,w) mappings and (ed,d) mappings can be
recovered in subsequent steps.

To see how the number of leaked documents affect the unique-
ness of the columns and rows inB andA′′, we record the number of
unique columns found in Step 2 (denoted as initial unique column),
the number of unique columns found once Step 9 finished (denoted
as final unique column), and the number of unique rows found in
Step 5 (denoted as unique row), respectively. Table IV shows the
numbers of the initial unique columns, final unique columns and
unique rows, respectively, found by LEAP. It demonstrates that
the more leaked documents, the more initial unique columns, final
unique columns and unique rows can be found. The initial unique
columns are the starting point of LEAP, only 11 initial unique
columns are found for 10% leaked documents and 1 for 1% leaked
documents; nevertheless they are enough for “bootstrapping” the
subsequent steps.

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2316

TABLE III: Document Recovery 1

No. of Leaked Doc.
/(Per. of Leaked Doc.)

No. of Recovered Documents
/Document Recovery Rate

No. of Correctly Recovered Documents
/Accuracy Rate of Recovered Documents

/Correct Document Recovery Rate

No. of Recovered
Documents using RK

30 / (0.1%) 29 / 96.66% 29 / 100% / 96.66% 28
150 / (0.5%) 137 / 91.33% 137 / 100% / 91.33% 134
301 / (1%) 273 / 90.69% 273 / 100% / 90.69% 269
1,505 / (5%) 1,394 / 92.62% 1,394 / 100% / 92.62% 1,392
3,010 / (10%) 2,774 / 92.16% 2,774 / 100% / 92.16% 2,774
6,021 / (20%) 5,548 / 92.14% 5,548 / 100% / 92.14% 5,548
9,032 / (30%) 8,340 / 92.34% 8,340 / 100% / 92.34% 8,340
12,043 / (40%) 11,132 / 92.43% 11,132 / 100% / 92.43% 11,132
15,054 / (50%) 13,915 / 92.43% 13,915 / 100% / 92.43% 13,915
30,109 / (100%) 27,808 / 92.35% 27,808 / 100% / 92.35% 27,808

1 “No. of Leaked Doc.” and “Per. of Leaked Doc.” hold the same meaning as that in Table II. “No. of Recovered Documents” denotes the number of recovered documents, “Document
Recovery Rate” denotes the percentage of encrypted documents that are recovered. “No. of Correctly Recovered Documents” denotes the number of correctly recovered encrypted
documents out of the encrypted documents, “Accuracy Rate of Recovered Documents” denotes the percentage of correctly recovered documents from the recovered documents.
“Correct Document Recovery Rate” denotes the percentage of correct recovered documents out of the encrypted document universe. “No. of Recovered Documents using RK”
denotes the number of recovered documents purely using the knowledge of recovered keywords (i.e., not applying our document recovery method).

TABLE IV: Uniqueness of the columns and rows in matrices B and A′′ 1

Dataset Knowledge
No. of Initial Unique Col.

/(Per. of Initial Unique Col.)
No. of Final Unique Col.

/(Per. of Final Unique Col.)
No. of Unique Rows

/(Per. of Unique Rows)
No. of Leaked Doc.

/(Per. of Leaked Doc.)
No. of
KW

30 / (0.1%) 1,144 1 / 3.33% 29 / 96.66% 132 / 11.54%
150 / (0.5%) 2,315 1 / 0.66% 137 / 91.33% 860 / 37.15%
301 / (1%) 3,318 1 / 0.33% 273 / 90.69% 1,754 / 52.86%
1,505 / (5%) 4,889 8 / 0.53% 1,394 / 92.62% 4,540 / 92.86%
3,010 / (10%) 4,991 11 / 0.36% 2,774 / 92.16% 4,904 / 98.26%
6,021 / (20%) 5,000 17 / 0.28% 5,548 / 92.14% 4,957 / 99.14%
9,032 / (30%) 5,000 27 / 0.29% 8,340 / 92.34% 4,961 / 99.22%
12,043 / (40%) 5,000 33 / 0.27% 11,132 / 92.43% 4,965 / 99.3%
15,054 / (50%) 5,000 38 / 0.25% 13,915 / 92.43% 4,966 / 99.32%
30,109 / (100%) 5,000 73 / 0.24% 27,808 / 92.35% 4,973 / 99.46%

1 “No. of Leaked Doc.”, “Per. of Leaked Doc.” and “No. of KW” hold the same meaning as that in Table II. “ No. pf Initial Unique Col.” denotes the number of columns that are found
as initial unique column, “Per. of Initial Unique Col.” denotes the percentage of columns that are found as initial unique columns. “No. of Final Unique Col.” denotes the number of
columns that are found as final unique columns, “Per. of Final Unique Col.” denotes the percentage of columns that are found as final unique columns. “No. of Unique Rows” denotes
the number of unique rows, “Per. of Unique Rows” denotes the percentage of rows that are found as unique rows.

5.5 Scalability
LEAPmainly relies on matrix operations. To deal with larger matrix
as the document set size increases, we mainly utilize the follow-
ing two approaches. First, we cache the intermediate results when
preparing B, A′′ and M, which could be reused for each case of
our experiments. During the preparation, the following procedures
can be parallelized: (1) the extraction for the relationship between
encrypted documents and query tokens from L2 leakage; (2) the
relationship between documents and keywords from leaked docu-
ments. Second, we divide one matrix into submatrices during the
execution of LEAP. In particular, before starting Step 2, we divide B
andA′′ into a set of submatrices while keeping the number of rows
unchanged. These submatrices can be parallelized during Step 2.
Similar divide-and-parallelize idea for matrix operations can be
applied in subsequent steps.

6 COUNTERMEASURES
In this section, we discuss possible countermeasures against our
attack. LEAP crucially relies on Step 2 and Step 3 in Figure 1,
which is the starting point of this attack. In these steps, the initial

tuples of known (ed ,d)mappings are prepared so as to bootstrap the
subsequent steps (i.e., from Step 5 to Step 8) in Figure 1. The (ed,d)
pairs found in Step 2 serve as an input (i.e., C) to the subroutine
Occurrence(C,M,M′,A′′,B) in Step 3, which aims to find more
(ed ,d) mappings. The (ed ,d) pairs found in Step 2 are derived
from (VBj ,VAj′) pairs where VBj is unique among its peers and
VBj = VAj′ . The more such (VBj ,VAj′) pairs exist, the more (q,w)
mappings and (ed ,d)mappings can be recovered. On the other hand,
if no such (VBj ,VAj′) pair exists, LEAP would fail to find any (q,w)
or (ed ,d) mappings. Hence, the number of such (VBj ,VAj′) pairs
found in Step 2 determines the effectiveness of LEAP. This means
an effective countermeasure against LEAP would be to reduce or
even eliminate the existence of such (VBj ,VAj′) pairs. One possible
solution is to add keywords from W to existing documents that
each query token is attached to more encrypted documents than it
should be (i.e., it turns some entries of B from 0 to 1). These extra
dummy encrypted documents can be filtered out by the user after
data decryption. This method is similar to the padding solution
in [5]. If the dummy documents are added to the point that there
exists no unique VBj , then LEAP would fail. This is because there

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2317

is no initial (ed ,d) mappings to bootstrap the subsequent steps of
LEAP.

However, one can use a modified attack similar to the generalized
count attack described in [5] to partially alleviate the above padding
countermeasure. Specifically, we can adopt the modifications as
introduced in [5]: (1) for the n × n ed-occurrence matrixM and the
n′ × n′ d-occurrence matrixM′, we modify Line 9 of Algorithm 1
by letting M[j,k] not equal to M ′[j ′,k ′] but within a window as
large as the maximum number of false co-occurrences; (2) We can
make an initial guess for the (VBj ,VAj′) pair in Step 2 to start
Algorithm 1. If later the algorithm detects an inconsistency, we can
guess another (VBj ,VAj′) pair. As a result, there is no guarantee
that we can achieve keyword recovery and document recovery
accurately. In other words, the recovered results may result in false
positives.

7 RELATEDWORK
The first practical searchable encryption scheme was introduced by
Song, Wagner and Perrig [40]. Subsequently, many variants were
proposed to improve on performances, security and functionali-
ties [1, 4, 6–12, 15, 16, 22–25, 29, 30, 32, 33, 37, 41]. Most, if not
all, SE schemes are designed based on the assumption that certain
leakage of information (e.g. L1 leakage, L2 leakage) is acceptable as
a trade-off for high efficiency as required for practical usage. An
overview of searchable encryption schemes is given in [3].

Various leakage-based attacks have been discovered recently
that successfully compromise some of the existing SE schemes
[2, 5, 21, 35, 39]. Islam et al. [21] demonstrated how access pattern
can be used to recover the underlying keywords and documents in
SE assuming that an attacker knows either all plaintext documents
or keyword distribution. Cash et al. [5] categorised SE leakages into
different levels, and improved Islam et al.’s attack by presenting
a more effective leakage-based attack that could work with less
knowledge about the user’s documents. An active attack that in-
duces a user to insert chosen documents was also introduced in [5].
Pouliot and Wright [39] later proposed new inference attacks on
EDESE schemes that demonstrate the consequence of the informa-
tion leakage of EDESE schemes. Zhang et al. [44] later presented a
file-injection attack, in which an attacker selectively injects certain
documents so as to recover underlying keywords and documents.
Our work is closely related to and improves on the inference attacks
proposed by Pouliot and Wright [39] in the sense that our attack
is the first attack (as far as we know) achieving accurate keyword
recovery and document recovery with only partial knowledge of a
user’s documents and L2 leakage. The passive attack proposed in
[35] is also closely related to ours, however, it does not work under
the setting we consider in this paper. Recently, Blackstone et al.
[2] revisited the attacks in [5, 21] and proposed new leakage-abuse
attacks. They assumed that the attacker knows the universe of key-
words from which the queries are drawn. This is different from our
assumption in this paper where we do not require the knowledge
of keyword universe.

Kellaris et al. [26] stated that access pattern leakage is unavoid-
able and introduced an attack on keyword recovery based on range
queries. Following from Kellaris et al.’s attacks, there have also
been recent works focusing on reconstruction attacks on range

queries [17–19, 28, 31, 34] and k-NN queries [27, 28]. Lacharité et
al. [31] proposed new attacks with the assumption that the database
is dense, while subsequent attacks proposed by Grubbs et al. [17]
make no such assumption. However, these attacks assume that the
queries are either uniformly distributed (as in the Kellaris et al.’s
attacks), or that the query and approximation of the data distribu-
tions are known. Gui et al. [19] proposed attacks based on Kellaris et
al.’s work, but require fewer queries and do not assume uniformly
distributed queries. Nevertheless, there are other assumptions such
as queries for all possible volume must be observed at least once.
Independently, Kornaropoulos et al. [27] proposed reconstruction
attacks for k-nearest neighbor (k-NN) queries, which are widely
used in spatial data databases. The proposed attacks also assume
uniformly distributed queries. More recently, Kornaropoulous et
al. [28] propose attacks that work against both k-NN queries and
range queries, and is agnostic to query distribution. The attacks
leverage on both the search and access pattern leakages, as opposed
to previous attacks that leverage on access pattern leakage only.
Poddar et al. [36] proposed a new reconstruction attack that uti-
lizes common characteristics in practical applications, that is, file
injection and automatic query replay, in conjuction with volume
leakage. This means the attack assumes an adversary is able to
inject files and replay a query. The attack was tested on Gmail.
Recently, Falzon et al. [14] explored the threat in two dimensions
databases that support range queries and presented a full database
reconstruction attack.

8 CONCLUSIONS
In this work, we proposed a new leakage-abuse attack on EDESE
schemes termed LEAP. Through LEAP we demonstrated that the
underlying keywords of query tokens can be recovered accurately,
even with partial knowledge of the document set. Rigorous experi-
ments illustrate that LEAP achieves high correct keyword recovery
rate and correct document recovery rate, as compared to the PW-U
attack and the PW-P attack. Our findings show that even if a small
portion of a document set is known to an attacker, the information
leakage (e. g., L2 leakage) of EDESE schemes can be very damaging.

ACKNOWLEDGMENTS
We thank anonymous reviewers for helpful comments. Research
supported in part by AXA Research Fund, the National Natural
Science Foundation of China (Grant Nos. 62032005, 61972094), the
Science Foundation of Fujian Provincial Science and Technology
Agency (2020J02016), and the young talent promotion project of
Fujian Science and Technology Association. Jian Weng was sup-
ported by Major Program of Guangdong Basic and Applied Re-
search Project (Grant No. 2019B030302008), National Key Research
and Development Plan of China (Grant No. 2020YFB1005600), Na-
tional Natural Science Foundation of China (Grant Nos. 61825203,
U1736203 and 61732021), and Guangdong Provincial Science and
Technology Project (Grant No. 2017B010111005). Yingjiu Li was
supported in part by the Ripple University Blockchain Research
Initiative.

REFERENCES
[1] Gilad Asharov, Moni Naor, Gil Segev, and Ido Shahaf. 2016. Searchable Symmetric

Encryption: Optimal Locality in Linear Space via Two-Dimensional Balanced

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2318

Allocations. IACR Cryptology ePrint Archive (and STOC 2016) 2016/251 (2016),
1–34.

[2] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage
Abuse Attacks. In 27th Annual Network and Distributed System Security Sympo-
sium, NDSS 2020. The Internet Society.

[3] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. 2014. A Survey
of Provably Secure Searchable Encryption. ACM Comput. Surv. 47, 2, Article 18
(2014), 51 pages.

[4] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and Backward
Private Searchable Encryption from Constrained Cryptographic Primitives. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu (Eds.). ACM, 1465–1482.

[5] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
Abuse Attacks Against Searchable Encryption. In ACM CCS 2015, Indrajit Ray,
Ninghui Li, and Christopher Kruegel (Eds.). ACM, 668–679.

[6] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption
in Very Large Databases: Data Structures and Implementation. In NDSS 2014,
Vol. 2014. Internet Society.

[7] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-
tion with Support for Boolean Queries. In CRYPTO 2013 (LNCS, Vol. 8042), Ran
Canetti and Juan A. Garay (Eds.). Springer, 353–373.

[8] David Cash and Stefano Tessaro. 2014. The Locality of Searchable Symmetric En-
cryption. In EUROCRYPT 2014 (LNCS, Vol. 8441), Phong Q. Nguyen and Elisabeth
Oswald (Eds.). Springer, 351–368.

[9] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,
and Rasool Jalili. 2018. New Constructions for Forward and Backward Private
Symmetric Searchable Encryption. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2018, David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM, 1038–1055.

[10] Yan-Cheng Chang and Michael Mitzenmacher. 2005. Privacy Preserving Key-
word Searches on Remote Encrypted Data. In ACNS 2005 (LNCS, Vol. 3531), John
Ioannidis, Angelos D. Keromytis, and Moti Yung (Eds.). Springer, 442–455.

[11] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled
Disclosure. In ASIACRYPT 2010 (LNCS, Vol. 6477), Masayuki Abe (Ed.). Springer,
577–594.

[12] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-
able Symmetric Encryption: Improved Definitions and Efficient Constructions. In
ACMCCS 2006, Ari Juels, Rebecca N.Wright, and Sabrina De Capitani di Vimercati
(Eds.). ACM, 79–88.

[13] Enron email dataset. 2019. https://www.cs.cmu.edu/~./enron/. Accessed: 2019-
11-23.

[14] Francesca Falzon, Evangelia Anna Markatou, Akshima, David Cash, Adam
Rivkin, Jesse Stern, and Roberto Tamassia. 2020. Full Database Reconstruc-
tion in Two Dimensions. In CCS ’20: 2020 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, USA, November 9-13, 2020. 443–460.
https://doi.org/10.1145/3372297.3417275

[15] Ben A. Fisch, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir
Kolesnikov, Tal Malkin, and Steven M. Bellovin. 2015. Malicious-Client Security
in Blind Seer: A Scalable Private DBMS. In IEEE S & P 2015. IEEE Computer
Society, 395–410.

[16] Eu-Jin Goh. 2003. Secure Indexes. IACR Cryptology ePrint Archive, Report
2003/216. http://eprint.iacr.org/2003/216/.

[17] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.
2018. Pump up the Volume: Practical Database Reconstruction from Volume
Leakage on Range Queries. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM, 315–331.

[18] Paul Grubbs, Marie-Sarah Lacharité, BriceMinaud, and Kenneth G. Paterson. 2019.
Learning to Reconstruct: Statistical Learning Theory and Encrypted Database
Attacks. In 2019 IEEE Symposium on Security and Privacy, S&P 2019. IEEE, 1067–
1083.

[19] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:
New Volume Attacks against Range Queries. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz (Eds.). ACM, 361–378. https://doi.org/10.1145/3319535.3363210

[20] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn Xiaodong Song.
2014. ShadowCrypt: Encrypted Web Applications for Everyone. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014. 1028–1039.

[21] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
PatternDisclosure on Searchable Encryption: Ramification, Attack andMitigation.
In NDSS 2012. The Internet Society.

[22] Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. 2013. Outsourced symmetric private information retrieval. In

ACM CCS’13, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM,
875–888.

[23] Seny Kamara and Tarik Moataz. 2019. Computationally Volume-Hiding Struc-
tured Encryption. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11477), Yuval
Ishai and Vincent Rijmen (Eds.). Springer, 183–213.

[24] Seny Kamara, Tarik Moataz, and Olga Ohrimenko. 2018. Structured Encryption
and Leakage Suppression. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 10991), Hovav Shacham and Alexandra Boldyreva (Eds.). Springer,
339–370.

[25] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic
searchable symmetric encryption. In ACM CCS’12, Ting Yu, George Danezis, and
Virgil D. Gligor (Eds.). ACM, 965–976.

[26] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic
Attacks on Secure Outsourced Databases. In ACM CCS 2016, Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi
(Eds.). ACM, 1329–1340.

[27] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2019. Data Recovery on Encrypted Databases with k-Nearest Neighbor Query
Leakage. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019. IEEE, 1033–1050. https://doi.org/10.1109/SP.2019.00015

[28] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2020. The State of the Uniform: Attacks on Encrypted Databases Beyond the
Uniform Query Distribution. In 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1223–1240. https:
//doi.org/10.1109/SP40000.2020.00029

[29] Kaoru Kurosawa. 2014. Garbled Searchable Symmetric Encryption. In FC 2014
(LNCS, Vol. 8437), Nicolas Christin and Reihaneh Safavi-Naini (Eds.). Springer,
234–251.

[30] Kaoru Kurosawa and Yasuhiro Ohtaki. 2012. UC-Secure Searchable Symmetric
Encryption. In FC’12 (LNCS, Vol. 7397), Angelos D. Keromytis (Ed.). Springer,
285–298.

[31] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. 2018. Improved
Reconstruction Attacks on Encrypted Data Using Range Query Leakage. In 2018
IEEE Symposium on Security and Privacy, S&P 2018, Proceedings. IEEE Computer
Society, 297–314.

[32] Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep Mukhopad-
hyay, Ron Steinfeld, Shifeng Sun, Dongxi Liu, and Cong Zuo. 2018. Result Pattern
Hiding Searchable Encryption for Conjunctive Queries. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.).
ACM, 745–762.

[33] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. 2014. Dynamic
Searchable Encryption via Blind Storage. In IEEE S&P 2014. IEEE Computer
Society, 639–654.

[34] Jianting Ning, Geong Sen Poh, Xinyi Huang, Robert Deng, Shuwei Cao, and
Ee-Chien Chang. 2020. Update recovery attacks on encrypted database within
two updates using range queries leakage. IEEE Transactions on Dependable and
Secure Computing, DOI: 10.1109/TDSC.2020.3015997 (2020).

[35] Jianting Ning, Jia Xu, Kaitai Liang, Fan Zhang, and Ee-Chien Chang. 2019. Passive
Attacks Against Searchable Encryption. IEEE Transactions Trans. Information
Forensics and Security 14, 3 (2019), 789–802.

[36] Rishabh Poddar, Stephanie Wang, Jianan Lu, and Raluca Ada Popa. 2020. Practical
Volume-Based Attacks on Encrypted Databases. In IEEE European Symposium
on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020. IEEE,
354–369. https://doi.org/10.1109/EuroSP48549.2020.00030

[37] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrish-
nan. 2011. CryptDB: protecting confidentiality with encrypted query processing.
In SOSP 2011, Ted Wobber and Peter Druschel (Eds.). ACM, 85–100.

[38] Martin F. Porter. 2006. An algorithm for suffix stripping. Program 40, 3 (2006),
211–218. https://doi.org/10.1108/00330330610681286

[39] David Pouliot and Charles V. Wright. 2016. The Shadow Nemesis: Inference At-
tacks on Efficiently Deployable, Efficiently Searchable Encryption. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016. 1341–1352. https://doi.org/10.1145/2976749.
2978401

[40] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical Tech-
niques for Searches on Encrypted Data. In IEEE S&P ’00. IEEE Computer Society,
44.

[41] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-
namic Searchable Encryption with Small Leakage. In NDSS 2014. The Internet
Society. http://www.internetsociety.org/events/ndss-symposium-2014

[42] Shinji Umeyama. 1988. An Eigendecomposition Approach to Weighted Graph
Matching Problems. IEEE Trans. Pattern Anal. Mach. Intell. 10, 5 (1988), 695–703.
https://doi.org/10.1109/34.6778

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2319

https://www.cs.cmu.edu/~./enron/
https://doi.org/10.1145/3372297.3417275
http://eprint.iacr.org/2003/216/
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1109/SP.2019.00015
https://doi.org/10.1109/SP40000.2020.00029
https://doi.org/10.1109/SP40000.2020.00029
https://doi.org/10.1109/EuroSP48549.2020.00030
https://doi.org/10.1108/00330330610681286
https://doi.org/10.1145/2976749.2978401
https://doi.org/10.1145/2976749.2978401
http://www.internetsociety.org/events/ndss-symposium-2014
https://doi.org/10.1109/34.6778

[43] Mikhail Zaslavskiy, Francis R. Bach, and Jean-Philippe Vert. 2009. A Path Follow-
ing Algorithm for the Graph Matching Problem. IEEE Trans. Pattern Anal. Mach.
Intell. 31, 12 (2009), 2227–2242. https://doi.org/10.1109/TPAMI.2008.245

[44] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your
Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable

Encryption. In 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016. 707–720. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/zhang

Session 7D: Privacy for Distributed Data
and Federated Learning

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2320

https://doi.org/10.1109/TPAMI.2008.245
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang

	LEAP: Leakage-abuse attack on efficiently deployable, efficiently searchable encryption with partially known dataset
	Citation
	Author

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Background

	3 Attack Model
	3.1 Attacker Type
	3.2 Attacker Knowledge
	3.3 Objective of Attacker

	4 LEAP
	4.1 Knowledge of Attacker
	4.2 Technical Intuitions
	4.3 Description of LEAP
	4.4 Analysis of LEAP

	5 Experiments
	5.1 Setting
	5.2 Keyword Recovery
	5.3 Document Recovery
	5.4 Property of Uniqueness
	5.5 Scalability

	6 Countermeasures
	7 Related Work
	8 Conclusions
	References

