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We study the multi-item capacitated lot sizing problem with setup times. Based on two strong reformula-
tions of the problem, we present a transformed reformulation and valid inequalities that speed up column
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several solution methods and propose a new efficient hybrid scheme that combines column generation and
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1. Introduction
Lot sizing problems have been studied extensively by
the operations research community in the past five
decades. Despite the vast progress of mixed-integer
programming (MIP) theory and software, many lot
sizing problems remain computationally challenging
to solve in practice. In this paper, we study a classical
lot sizing problem, namely the multi-item capacitated
lot sizing problem with setup times (CLST). Given
a discrete time horizon, the objective of CLST is to
find a minimum cost production plan that satisfies
the demand for all items and respects the per-period
capacity constraints. A setup operation is necessary
whenever a positive amount is produced in a period.
Such a setup entails a cost and consumes capacity.
Moreover, production is done on a single machine
that can produce many items in any given period,

and no dependencies among items exist other than
the single-machine capacity restriction. CLST is clas-
sified as a multi-item, single-machine, single-level,
big-bucket capacitated lot sizing problem. Despite
the simple problem statement and formulation, CLST
instances can be computationally challenging even
for modern mixed-integer programming software. In
particular, obtaining tight lower bounds and good
feasible solutions requires considerable effort, if at all
possible, even for instances with a few hundred inte-
ger variables.

The aim of this paper is to design a fast heuris-
tic procedure for CLST that provides good solutions
and a strong lower bound used to assess the solution
quality. Period Dantzig-Wolfe decompositions of two
network reformulations of CLST are proposed. The
main advantage of the proposed decompositions is
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that they provide a lower bound that is stronger than
those of the standard and network formulations. The
potential downside is their computational tractabil-
ity: when computed with column generation, the
already large number of variables of the network
formulations and their inherent degeneracy could
lead to long solution times for the restricted master
(RM) programs and only minor bound improvements
per iteration. Although there exists limited compu-
tational experience with decompositions of extended
formulations on this problem, evidence suggests that
simplex-based solvers do not exhibit good conver-
gence behavior (Jans and Degraeve 2004). We pro-
pose a novel, considerably faster subgradient-based
hybrid scheme that combines Lagrange relaxation and
column generation. This scheme gives valid lower
bounds of excellent quality and outperforms pure
simplex-based column generation, Lagrange relax-
ation, and subgradient-based column generation (in
which the RM programs are solved with subgradient
optimization). Further, we enhance the performance
of our algorithm by utilizing two new dual-space
reduction techniques. First, we show how a primal
space reformulation can lead to improved perfor-
mance of dual-based algorithms during column gen-
eration. Second, we employ a class of valid inequal-
ities introduced by Wolsey (1989) in the context of
single-item problems with startup costs and show
how this corresponds to adding dual-optimal inequal-
ities in the dual space of the RM program (Ben Amor
et al. 2006). The new subproblems remain tractable
and the performance of the hybrid column generation
scheme is improved further.

The new hybrid scheme is embedded in a heuris-
tic branch-and-price framework, designed specifically
to obtain good feasible solutions fast. To achieve
this, we recover a primal solution of the RM using
the volume algorithm of Barahona and Anbil (2000)
and branch on the resulting fractional setup vari-
ables. Moreover, we integrate in a customized fash-
ion recent MIP-based heuristic approaches, such as
relaxation induced neighborhoods and selective dives
(Danna et al. 2005), with established ones such as the
forward/backward smoothing heuristic of Trigeiro
et al. (1989). Extensive computational experiments
show that the branch-and-price heuristic performs
very well against other competitive approaches.

The remainder of this paper is organized as fol-
lows. Section 2 provides a brief literature review.
Section 3 describes CLST formulations and §4 their
Dantzig-Wolfe decompositions. Section 5 describes
customized procedures for solving the subproblems.
Section 6 describes the hybrid scheme and §7 the
branch-and-price heuristic. Finally, §8 presents com-
putational results and §9 concludes with comments
and directions for future research.

2. Literature Review
The literature on capacitated lot sizing problems
is vast. A broad categorization would distinguish
research related to exact and heuristic methods.
We review both streams of literature, because our
approach utilizes exact methods but also constructs
heuristic solutions.

With respect to the more recent research on exact
approaches, Van Vyve and Wolsey (2006) suggest
an approximate extended formulation based on the
network reformulation of Eppen and Martin (1987)
that uses a single parameter to control the trade-
off between the number of variables and the lower
bound strength. They show that selecting small val-
ues of that parameter is sufficient to solve hard prob-
lems, especially when a redundant row that facil-
itates the solver to generate cuts is added in the
formulation. Degraeve and Jans (2007) discuss the
structural deficiency of the decomposition proposed
by Manne (1958), which only allows the computa-
tion of a lower bound for the problem. Furthermore,
they show the correct implementation of the Dantzig-
Wolfe decomposition principle for CLST and develop
a branch-and-price algorithm. Pimentel et al. (2010)
propose three Dantzig-Wolfe decompositions of the
standard formulation of CLST, and compare the per-
formance of the corresponding branch-and-price algo-
rithms. Specifically, they describe and compare the
item, period, and the simultaneous item and period
decompositions. Belvaux and Wolsey (2000) devel-
oped BC-PROD, a specialized branch-and-cut system
for generic lot sizing problems. Some of the corner-
stone work that is less recent include the variable
redefinition approach of Eppen and Martin (1987),
the use of valid inequalities (Barany et al. 1984), and
the simple plant location reformulation of Krarup
and Bilde (1977). Recently, many authors (Alfieri
et al. 2002, Pochet and Van Vyve 2004, Denizel et al.
2008 and Süral et al. 2009) have used such alter-
native formulations with stronger linear relaxations
for the CLSP. Finally, Miller et al. (2000b, 2003) also
derive strong valid inequalities from simplified mod-
els, which are single-period relaxations with preced-
ing inventory. The single-period models contain the
capacity constraint and demand constraints for mul-
tiple items taking into account only the preceding
inventory level.

Heuristic approaches have also received consider-
able attention. The seminal paper of Trigeiro et al.
(1989) proposed a per item Lagrange relaxation and
presented a smoothing heuristic (TTM) that was able
to find good feasible solutions quickly. Heuristics that
use several iterations of solving a reduced problem
such as relax-and-fix and relax-and-optimize, have
been successfully used by a number of researchers
(Pochet and Wolsey 2006, Stadtler 2007, Helber and
Sahling 2010). Süral et al. (2009) designed a Lagrange
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relaxation-based heuristic that outperforms TTM for
problems without setup costs. Other recent heuris-
tic approaches include, among others, the cross-
entropy Lagrange hybrid algorithm (Caserta and Rico
2009), the adaptive large neighborhood search algo-
rithm (Müller et al. 2012), the LP-based heuristic
and curtailed branch and bound (Denizel and Süral
2006), and the iterative production estimate (IPE)
heuristic (Pochet and Van Vyve 2004). A notable
recent approach is that of Tempelmeier (2011), who
uses a set-partitioning approximation and column
generation-based heuristic to solve a multi-item capac-
itated model with random demands and a fill-rate
constraint. A very comprehensive review of heuristic
approaches can be found in Buschkühl et al. (2010).

Relevant to the current work is also the decomposi-
tion approach proposed in Jans and Degraeve (2004).
The authors propose a period decomposition of a
strong reformulation proposed in Eppen and Martin
(1987). They obtain improved lower bounds, but their
computational experiments show that standard com-
putation schemes may be very time consuming for
hard problems. Finally, Fiorotto and de Araujo (2014)
build upon and extend the Lagrange relaxation pre-
sented in Jans and Degraeve (2004) by developing a
heuristic for the capacitated lot sizing problem with
parallel machines.

The main contributions of the present work are
(a) the development and comparison of two period
Dantzig-Wolfe network reformulations for CLST;
(b) the development of a methodology that circum-
vents the computational difficulties of extended for-
mulations through the design of a stabilization algo-
rithm, and the use of problem-specific inequalities in
the customized algorithm that solves the subprob-
lems; (c) the development of a state-of-the-art branch-
and-price heuristic that integrates and customizes
several recent advances such as the volume algorithm
(Barahona and Anbil 2000), relaxation induced neigh-
borhoods, and selected dives (Danna et al. 2005); and
finally, (d) the presentation of computational results
that suggest the competitiveness of the proposed
scheme against other approaches.

Section 3 gives an overview of several formulations
that are used throughout the paper.

3. Formulations for the Capacitated
Lot Sizing Problem

In this section we present different formulations for
the capacitated lot sizing problem: the regular formu-
lation (CL), the shortest path formulation (SP) pro-
posed in Eppen and Martin (1987), a transformed
shortest path formulation (SPt), the facility location
formulation (FL) studied in Krarup and Bilde (1977),
and the facility location formulation with precedence

constraints (FLp). The notation conv4P5 of problem P
signifies the convex hull of the polyhedron defined by
the set of constraints of problem P .

3.1. The Regular Formulation (CL)
The regular formulation for the capacitated lot sizing
problem with setup times is described by the follow-
ing sets, parameters, and decision variables (Trigeiro
et al. 1989).

Sets
I 2 set of items, = 811 0 0 0 1 �I �9
T 2 set of time periods, = 811 0 0 0 1 �T �9

Parameters
dit2 demand of item i in period t, ∀ i ∈ I , ∀ t ∈ T

sditk2 sum of demand of item i, from period t until
k, ∀ i ∈ I , ∀ t1 k ∈ T 2 k ≥ t

hcit2 unit holding cost for item i in period t, ∀ i ∈ I ,
∀ t ∈ T

scit2 setup cost for item i in period t, ∀ i ∈ I , ∀ t ∈ T
vcit2 variable production cost for item i in period t,

∀ i ∈ I , ∀ t ∈ T
fci2 unit cost for initial inventory for item i, ∀ i ∈ I
stit2 setup time for item i in period t, ∀ i ∈ I , ∀ t ∈ T
vtit2 variable production time for item i in period t,

∀ i ∈ I , ∀ t ∈ T
capt2 time capacity in period t,∀ t ∈ T

Decision variables
xit2 production quantity of item i in period t, ∀ i ∈ I ,

∀ t ∈ T
yit = 1 if setup for item i in period t, 0 otherwise,

∀ i ∈ I , ∀ t ∈ T
sit2 inventory for item i at the end of period t, ∀ i ∈ I ,

∀ t ∈ T
si02 amount of initial inventory for item i, ∀ i ∈ I

The mathematical formulation of CLST is then as
follows:

min
{

∑

i∈I

fcisi0

+
∑

i∈I

∑

t∈T

4scityit+vcitxit+hcitsit5

}

4CL5 (1)

s0t0 si1 t−1 +xit =dit+sit ∀ i∈ I1∀ t∈T (2)
∑

i∈I

4stityit+vtitxit5≤capt ∀ t∈T (3)

xit ≤min
(

capt−stit
vtit

1sdit�T �

)

yit

∀ i∈ I1∀ t∈T (4)

yit ∈801191xit ≥01sit ≥01si0 ≥01si�T � =0

∀ i∈ I1∀ t∈T 0 (5)

The objective function (1) minimizes the setup cost,
variable production cost, inventory holding cost, and
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initial inventory cost. Constraints (2) are the demand
constraints: inventory carried over from the previous
period and production in the current period can be
used to satisfy current demand and build up inven-
tory. As in Vanderbeck (1998), we deal with possible
infeasible problems by allowing for initial inventory
(si0), which is available in the first period at a large
cost, fci. There is no setup required for initial inven-
tory. Next, there is a constraint on the available capac-
ity in each period (3). Constraint (4) forces the setup
variable to one if any production takes place in that
period. Finally, we have the nonnegativity and inte-
grality constraints (5) and the ending inventory is set
to 0.

3.2. The Shortest Path Formulation (SP)
Next, model (1)–(5) is reformulated using the variable
redefinition approach of Eppen and Martin (1987).
Define the following parameters:

cvitk2 total production and holding cost for pro-
ducing item i in period t to satisfy demand
for the periods t until k, cvitk = vcitsditk +
∑k

s=t+1
∑s−1

u=t hciudis3
ciit2 total production and holding cost for ini-

tial inventory for item i to satisfy demand
from period 1 up to period t, ciit = fcisdi1t +
∑t

s=2
∑s−1

u=1 hciudis0

We also have the following new variables:

zitk2 fraction of the production plan for item i,
where production in period t satisfies demand
from period t to period k, xit =

∑�T �

k=t sditkzitk,
∀ i ∈ I1 ∀ t ∈ T 3

pit2 fraction of the initial inventory plan for item i,
where demand is satisfied for the first t periods,
si0 =

∑�T �

t=1 sdi1tpit , ∀ i ∈ I .

The network reformulation is then as follows:

min
{

∑

i∈I

∑

t∈T

4scityit+ciitpit5

+
∑

i∈I

∑

t∈T

�T �
∑

k=t

cvitkzitk

}

4SP5 (6)

s0t0
�T �
∑

k=1

4zi1k+pik5=1 ∀ i∈ I (7)

t−1
∑

j=1

zijt−1 +pit−1 =

�T �
∑

k=t

zitk ∀ i∈ I1∀ t∈T \819 (8)

∑

i∈I

stityit+
∑

i∈I

�T �
∑

k=t

vtitsditkzitk ≤capt ∀ t∈T (9)

�T �
∑

k=t

zitk ≤yit ∀ i∈ I1∀ t∈T (10)

yit ∈801191pit ≥0 ∀ i∈ I1∀ t∈T (11)

zitk ≥0 ∀ i∈ I1∀ t∈T 1∀k∈T 1 k≥ t0 (12)

The objective function (6) minimizes the total costs.
Constraints (7) and (8) define the flow balance con-
straints of each node (i1 t), which ensure that demand
is satisfied. For each item, a unit flow is sent through
the network, imposing that its demand has to be satis-
fied without backlogging. The capacity constraints (9)
limit the sum of the total setup times and production
times to the available capacity in each period. Con-
straint (10) defines the setup forcing for each item.
Finally, setup decisions are binary (11).

3.3. Transformed Shortest Path Formulation (SPt)
We reformulate constraints (7) and (8) of SP in a way
that reduces the dual feasible region of its LP relax-
ation. The aim is to achieve a better convergence for
algorithms that operate in the dual space. The idea
is to substitute, for each item, the demand balance
constraint of period t with the sum of the demand
balance constraints of the first t periods. Doing so,
constraints (7) and (8) are replaced with

�T �
∑

k=t

pik +

t
∑

j=1

�T �
∑

k=t

zijk = 1 ∀ i ∈ I1 ∀ t ∈ T 0 (13)

We denote the resulting transformed formulation
SPt. Eppen and Martin (1987) showed that their net-
work reformulation corresponds to a shortest path
problem defined on an acyclic graph. The demand
constraints (7) and (8) express the flow balance in
each node of this graph. Equation (13) imposes that
the flow of the cut set defined by the s − t cut Ct =

4801 0 0 0 1 t − 19 ∪ 8t1 0 0 0 1 �T �95 is equal to one. Figure 1
illustrates a single-item four-period example with no
initial inventory. Equation (8) for period 3 reads z12 +

z22 = z33 + z34, which corresponds to the flow balance
of node 2. For the same period, (13) sets the total
flow through the edges connecting the sets of nodes
{0, 1, 2} and {3, 4} equal to one, i.e., 1 = z13 +z14 +z23 +

z24 + z33 + z34.
The idea behind this transformation is that of dual

space reduction. Let D be the feasible dual space asso-
ciated with constraints (7) and (8), and D′ the one
associated with constraints (13). If vi1 and vit are the

1 0

Z12 Z13
Z14

Z11 Z22
Z23

Z24

Z33 Z44

Z34

1 2 3 4

Figure 1 A Single-Item Four-Period Example with No Initial Inventory
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dual values of (7) and (8) and v̄it the dual values of
(13), then

D=







































vit ∈<

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

vit−vi1k+1 ≤cvitk

∀ i∈ I1 t1k∈T 2 t≤k< �T �

vi1 −vit+1 ≤ciit ∀ i∈ I1t∈T \8�T �9

vit ≤cvit�T �1 ∀ i∈ I1 t∈T

vi1 ≤cii�T �1 ∀ i∈ I







































3

D′
=























v̄it ∈<

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∑

l=1

v̄il ≤min8ciit1cvi1t9 ∀ i∈ I1 t∈T

k
∑

l=t

v̄il ≤cvitk ∀ i∈ I1 t1k∈T 2 k≥ t0























Theorem 1. D′ ⊆D.

Proof. See the online supplement (available as
supplemental material at http://dx.doi.org/10.1287/
ijoc.2014.0636). �

For the numerical example illustrated in Figure 1,
we observe from the definitions of D and D′ for
�T � = 4 and �I � = 1 that if we define �= cv11, the point
4v11v21v31v45 = 4cv11 + �1�1�1�5 is feasible for D but
infeasible for D′.

Transformed formulations like the SPt imply a
denser form of the constraint matrix, which, in the
context of the simplex method, might result in more
pivots and therefore be less efficient. Since our algo-
rithm works in the dual space, it is interesting to
investigate computationally if the dual space reduc-
tion of subsystem (7) and (8) is beneficial.

3.4. Facility Location Formulation (FL)
CL can be reformulated using variables originally
employed in facility location problems. To the best of
our knowledge, the first paper that used facility loca-
tion variables to formulate lot sizing models was the
work of Krarup and Bilde (1977). The resulting model
(FL) is described as follows.

Parameters
csitk2 total production and holding cost for produc-

ing item i in period t to satisfy demand of
period k, csitk = 4vcit +

∑k−1
u=t hciu5dik;

cuit2 initial inventory and holding cost for item
i, to satisfy demand in period t, cuit =

4fci +
∑t−1

u=1 hciu5dit .

We also define the following variables:

witk2 fraction of demand for item i in period k that
is satisfied by production in period t, xit =
∑�T �

k=t dikwitk, ∀ i ∈ I1 ∀ t ∈ T ;

spit2 fraction of demand for item i in period k that
is satisfied by initial inventory, si0 =

∑�T �

t=1 spitdit ,
∀ i ∈ I .

The facility location reformulation is then as
follows:

min
{

∑

i∈I

∑

t∈T

4scityit + cuitspit5

+
∑

i∈I

∑

t∈T

�T �
∑

k=t

csitkwitk

}

4FL5 (14)

s0t0 spit +
t
∑

k=1

wikt = 1 ∀ i ∈ I1 ∀ t ∈ T (15)

∑

i∈I

stityit +
∑

i∈I

�T �
∑

k=t

vtitdikwitk ≤ capt ∀ t ∈ T (16)

witk ≤ yit ∀ i ∈ I1 ∀ t ∈ T 1 ∀k ∈ T 1 k ≥ t (17)

yit ∈ 801191 spit ≥ 0 ∀ i ∈ I1 ∀ t ∈ T (18)

witk ≥ 0 ∀ i ∈ I1 ∀ t ∈ T 1 ∀k ∈ T 1 k ≥ t0 (19)

The objective function (14) minimizes the total cost,
which consists of the setup cost, the aggregated pro-
duction and holding costs, and the initial inven-
tory and holding costs. Equation (15) corresponds to
the demand constraints (2) and state that period t
demand must be covered by a combination of initial
inventory and production in periods 811 0 0 0 1 t9. The
capacity constraints (14) are in exact correspondence
with (4). The setup constraints (17) do not allow any
production in period t unless a setup is done and the
non-negativity conditions (18) and (19) complete the
FL formulation.

3.5. Facility Location Formulation with
Precedence Constraints (FLp)

Many extended formulations are often degenerate or
have multiple optimal solutions. The decision vari-
ables of formulation (14)–(19) indicate not only the
amount of production of each item in each period,
as the original decision variables, but also allocate
each production amount to forward demands. Mul-
tiple alternative solutions of (14)–(19) arise when the
allocation of a given production amount to forward
demands is not unique. The existence of multiple
alternative solutions in the extended formulation may
degrade the efficiency of column generation. Hence,
the addition of valid inequalities in the subprob-
lem that cut off some of the primal space con-
taining alternative optimal solutions, may lead to
improved convergence, as it prevents the subprob-
lem from generating columns that describe alterna-
tive solutions. A class of such valid inequalities is
described next.

Observation 1. There exists an optimal solution of
FL with wit1 k−1 ≥ witk for all i ∈ I, t, k ∈ T 2 t + 1 ≤ k ≤

�T � and spi1 t−1 ≥ spit for all i ∈ I and t ∈ T \819.



de Araujo et al.: Period Decompositions for the CLST
436 INFORMS Journal on Computing 27(3), pp. 431–448, © 2015 INFORMS

We will refer to the above valid inequalities as prece-
dence constraints. Observation 1 is used in Wosley’s
Wolsey (1989) study of the facility location formula-
tion in the context of lot sizing problems with startup
costs and no capacity constraints. A short proof can be
found in the online supplement. FL is not a minimal
image of the conv(CL) in the sense that there exists
a subset of conv(FL) that is the image of all extreme
points of conv(CL). A key insight is that not all feasible
points of FL are necessary for an accurate representa-
tion of the original feasible space of the problem (CL).
This is important from a computational perspective,
because columns whose convex combination repre-
sents redundant points need to be generated on the fly,
resulting in more column generation iterations and in
a possibly amplified tailing-off effect.

The precedence constraints wit1 k−1 ≥ witk can be
used alongside the setup, forcing witt ≤ yit in place of
witk ≤ yit for all i ∈ I , t, k ∈ T 2 t+ 1 ≤ k. The FL formu-
lation with the primal valid inequalities is written as

min
{

∑

i∈I

∑

t∈T

4scityit+cuitspit5+
∑

i∈I

∑

t∈T

�T �
∑

k=t

csitkwitk

}

4FLp5

s0t0 witt ≤yit ∀ i∈ I1∀ t∈T (20)

wit1k−1 ≥witk ∀ i∈ I1∀ t∈T 1∀k∈T 1 k>t0 (21)

4155–41651 4185–4195

The idea behind the inclusion of constraints (21) is
that of primal space reduction. Although it is reason-
able to assume that a decomposition scheme that uses
(21) in the subproblem would deliver an improved
lower bound compared to not including them, we
show that this is not the case. This is because the
objective function cost depends on the setup deci-
sions and the amount produced of each item, which
remains the same after the inclusion of constraints (21).
Rather, (21) accelerates the column generation conver-
gence because the feasible space of eligible columns is
reduced.

4. Period Dantzig-Wolfe
Decompositions

4.1. Formulations
We formulate period decompositions of the CLST
starting from formulations SP, SPt, FL, and FLp. We
denote each decomposition formulation by append-
ing /P to the original notation. For example, SP/P
denotes the period decomposition of the shortest path
formulation. The demand balance constraints of each
formulation are the complicating constraints, and the
capacity and setup forcing constraints of each period
form the subproblems. We focus on period decom-
positions of network formulations because their lin-
ear programming (LP) relaxations provide improved
lower bounds compared to the LP relaxation of the

corresponding extended formulations, since the sub-
problems do not have the integrality property (Geof-
frion 1974). Note that an item decomposition of any of
the above extended formulations would lead to sub-
problems that have the integrality property. Therefore
the decomposition lower bound would be the same as
the one obtained by the LP relaxation of the original
extended formulation (Jans and Degraeve 2004).

The formulation of the period decomposition of SP,
SP/P, is described in detail in Jans and Degraeve
(2004). The formulation of the period decomposi-
tion of SPt, SPt/P is very similar to SP/P and we
skip it for brevity. Instead, we present the period
decompositions of FL and FLp. To this end, let
us define by St the index set of extreme point
production plans of the subproblem for period t,
i.e., St 2=8q∈extr4conv84witk1yit5i∈I1k≥t � 4165–4195959. We
associate a decision variable �tq with the fraction of
the extreme point q of subproblem t that is used in a
feasible solution. If we denote by 4w̄

q

itk1ȳ
q
it5 the com-

ponents of point q, its cost can be written as cttq =
∑

i∈I 4scit ȳ
q
it+

∑�T �

k=t csitkw̄
q

itk5. Then the master program
can be formulated as follows:

min
{

∑

t∈T

∑

q∈St

cttq�tq +
∑

i∈I

∑

t∈T

cuitspit

}

4FL/P5 (22)

s0t0 spit+
t
∑

l=1

∑

q∈Sl

w̄
q

itk�lq =1 ∀ i∈ I ∀ t∈T 6�it7 (23)

∑

q∈St

�tq =1 ∀ t∈T 6�t7 (24)

yit =
∑

q∈St

ȳ
q
it�tq ∀ i∈ I ∀ t∈T (25)

�tq ≥01 yit ∈801191 spit ≥0

∀ i∈ I1∀q∈St1∀ t∈T 0 (26)

The objective function (22) minimizes the total cost
of the initial inventory and the cost of the production
plans chosen in each period. Constraints (23) model
demand and correspond to constraints (15) in the
standard formulation. The convexity constraints (24)
and the non-negativity constraints (26) enforce a con-
vex combination. The setup variables definition is
given in (25). The integrality must be imposed on the
original setup variables (26). The constraint coefficient
parameters 4w̄

q

itk1ȳ
q
it5 are defined by the subproblem

extreme points. The subproblem objective function
minimizes the reduced cost over the extreme points.
Specifically, the period t subproblem reads:

min
{

∑

i∈I

scityit+
∑

i∈I

�T �
∑

k=t

4csitk−�ik5witk

}

4SUB5 (27)

s0t0
∑

i∈I

stityit+
∑

i∈I

�T �
∑

k=t

vtitdikwitk ≤capt (28)
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witk ≤yit ∀i∈ I1∀k∈T 2 k≥ t (29)

yit ∈801191witk ≥0 ∀i∈ I1∀k∈T 2 k≥ t0 (30)

The period decomposition of the formulation FLp
has the same master problem. However, the subprob-
lem, denoted SUBp, is different because it includes the
precedence constraints (20) and (21) in place of (29).

4.2. Lower Bounds
It is interesting to investigate the lower bound qual-
ity of the proposed decompositions. To this end, let
v̄FL/P be the optimal objective value of the linear relax-
ation of the decomposed model FL/P (22)–(26). Also,
let v̄FLp/P 1v̄SP/P and v̄SPt/P be the corresponding lower
bounds obtained by the linear relaxation of FLp/P,
SP/P, and SPt/P, respectively. To obtain a first result,
we will need the following definition and lemma.

Definition 1 (Ben Amor et al. 2006). Let D be
the dual space polyhedron of a linear program and
D∗ be the set of its optimal solutions. Also, assume
a new set of constraints ET�≤e that cuts off part of
the dual space. If D∗ ⊆8�2 ET�≤e9, then ET�≤e is
called a set of dual-optimal inequalities. If ET�≤e cuts
off a nonempty set of dual-optimal solutions but is
still satisfied by at least one dual-optimal solution, it
is called a set of deep dual-optimal inequalities.

Lemma 1. Using subproblem SUBp is equivalent to
using subproblem SUB and imposing constraints

4csitk−�ik5di1k+1 ≥ 4csit1k+1 −�i1k+15dik

∀i∈P1t1k∈T 2 t≤k≤�T �−1 (31)

in the dual space of the LP master of FL/P. Moreover, these
constraints are deep dual-optimal inequalities.

Proof. It suffices to show that SUB has the same
optimal solution as SUBp whenever (31) holds. Note
that vtit can be added to both sides of the inequality,
but is omitted since they cancel each other out. There-
fore, (31) states that the profit-to-weight ratio of witk

should be greater than that of wit1k+1. It follows that
there exists an optimal solution of the LP relaxation
of SUB when (31) holds, which is also optimal for
the LP relaxation of SUBp. Also, SUB has the same
structure after branching, so if (31) holds, the prece-
dence constraints hold at any node of the branch-
and-bound tree, and therefore at an integer optimal
solution. Hence, from construction, (31) implies the
precedence constraints, that do not cut off all opti-
mal solutions. Their equivalence with the precedence
constraints and Definition 1 imply that they are deep
dual-optimal inequalities. �

The next proposition states that all formulations
deliver the same lower bound.

Proposition 1. v̄SP/P = v̄SPt/P = v̄FLp/P = v̄FL/P .

Proof. First, note that v̄SP/P = v̄SPt/P because the cor-
responding subproblems have the same set of extreme
points, and the linking constraints of SPt/P are lin-
ear combinations of those of SP/P. Second, con-
sider the subproblem SUBp. The linear transformation
zitt =wtt3zitk =wit1k−1 −witk1k>t maps every extreme
point 4yit1witk5 of SUBp to a unique extreme point
4yit1zitk) of the SP/P subproblem. Using this trans-
formation in FLp/P, the resulting model is exactly
SPt/P. On the other hand, every feasible solution
of the SPt/P subproblem can be mapped to FLp/P
with the inverse transformation, i.e., witt =ztt3witk =
∑k

l=tzitl. Hence, v̄SPt/P = v̄FLp/P . Finally, we show that
v̄FLp/P = v̄FL/P . To this end, notice that v̄FLp/P ≥ v̄FL/P ,
since adding constraints to the subproblem can never
lead to a worse bound. Denote by v̄′

FL/P the opti-
mal value obtained when solving the dual of FL/P
amended with the dual restrictions (31). Then v̄′

FL/P =

v̄FLp/P from Lemma 1 and v̄′
FL/P ≤ v̄FL/P , since adding

cuts to the dual of a primal minimization prob-
lem can never increase its optimal value. The result
follows. �

Interestingly, the above lower bound is stronger
than the one obtained by the simultaneous item and
period decomposition of formulation CL studied by
Pimentel et al. (2010). Let us denote the latter lower
bound by v̄CL/P/I .

Proposition 2. v̄CL/P/I ≤ v̄SP/P .

Proof. See the online supplement. �

5. Solving the Subproblems
This section describes two fast customized algorithms
used to solve subproblems SUB and SUBp. Note that
since the feasible solutions of FLp are in exact corre-
spondence with those of SPt, and the subproblem of
SP and SPt is common, solving SUB and SUBp implies
a solution for all four subproblems.

5.1. A Customized Algorithm for SUB
For SUB, the following simple observation plays a key
role in the subsequent solution approach.

Observation 2. In an optimal solution of the LP
relaxation of SUB there exist some ki ≥ t such that
witki

=yit , ∀i∈ I .

This implies that the subset of tight inequalities (29)
can be used to substitute out the yit variables in (28).
As a result, the LP relaxation of SUB reduces to a lin-
ear knapsack problem, which admits a greedy solu-
tion similar to the one proposed in Holmberg and
Yuan (2000). It follows that an optimal solution of SUB
has fractional continuous variables for at most one
item. The following algorithm identifies the subset of
tight inequalities in Phase I and solves a regular linear
knapsack problem in Phase II.
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Algorithm (SUB (for period t))
Phase I

ritk ←
csitk−�ik

vtitdik
1 ∀k∈T �k≥ t1∀i∈ I . Ki ←Ø,

P ←8t10001�T �9, Besti ←False1 ∀i∈ I
For each i∈ I :
While Besti =False:
rit ←mink∈P\Ki

8ritk93 ki ←argrit
//min ratio calculation

Ki ←Ki∪8ki93 Replace

rit ←
scit+

∑

k∈Ki
4csitk−�ik5

stit+
∑

k∈Ki
vtitdik

//Update set and ratio of
If rit>mink∈P\Ki

8ritk9 or Ki =P then
//periods merged so far

Besti =True
//If ratio of merged periods is not min, exit

If rit>mink∈P\Ki
8ritk9 then Ki ←Ki\8ki9

//Retain best set of merged periods
vcmit ←scit+

∑

k∈Ki
4csitk−�ik5

vtmit ←stit+
∑

k∈Ki
vtitdik

//Define cost and weight of merged periods
End If

End While
End For
Phase II
Solve a linear knapsack with weights

8vtmit3vtitdik ∀kyKi1i∈ I9 and costs
8csmit3csitk ∀kyKi1i∈ I9.

Let 8wmit3witk ∀kyKi1i∈ I9 denote the optimal
solution.

Set yit ←wmit1 ∀k∈Ki1i∈ I .
Return 4yit1witk5 ∀i∈ I1∀k≥ t.

Phase I identifies which of the variable upper bound
constraints (29) are satisfied as equalities. Then, the
value of the setup variable is set equal to the value
of the production variable with the most attractive
cost-to-weight ratio. If the new ratio is still the most
attractive after the substitution, Phase I terminates for
that item. If it is not, another constraint (29) is tight
for the same item, and the corresponding substitution
is made. Phase II solves a linear knapsack problem
where all witk with k∈Ki are equated with yit and
substituted out. Note that adjusting the algorithm to
tackle items with zero setup time or cost is straightfor-
ward. Due to Observation 2, algorithm SUB produces
an optimal solution of the SUB linear relaxation.

After solving the relaxation, a depth-first branch-
and-bound algorithm is implemented. Branching is
needed only when some wmit is the last variable to
enter the knapsack at fractional level, and therefore
yit<1. Thus, at most one setup variable is fractional.
In addition, branching does not change the problem
structure because it either fixes witk to zero when
yit =0 or reduces the problem capacity by stit and

fixes scit in the objective, when yit =1. For this rea-
son, algorithm SUB can be called at each node of
the branch-and-bound tree, with different input data.
Computational experiments confirm the superiority
of this approach compared to simplex-based branch
and bound.

5.2. A Customized Algorithm for SUBp
The addition of the precedence constraints changes
the structure of subproblem SUB and the previous
algorithm cannot be employed. However, we can take
advantage of the fact that each solution of SUBp corre-
sponds to a solution of the SP/P subproblem (9)–(12),
whose relaxation is a linear multiple choice knap-
sack problem (Jans and Degraeve 2004) that can be
solved efficiently using the sorting algorithm of Sinha
and Zoltners (1979). Therefore, we solve the subprob-
lem (9)–(12) and then map back the solution to SUBp.
Sinha and Zoltners (1979) call a variable dominated if
there exists another variable, or a convex combina-
tion of other variables, that has a smaller or equal
weight and a smaller or equal cost. Dominated vari-
ables can be eliminated, and the remaining variables
enter the knapsack under a greedy sorting criterion. It
is important to observe that the nondominated vari-
ables form the convex envelope of all variables when
graphed in the (weight, cost) space. We use the pro-
cedure of Sinha and Zoltners (1979) to solve the lin-
ear relaxations of (9)–(12) and develop a customized
depth-first branch-and-bound algorithm. The multi-
ple choice knapsack structure is preserved in every
node of the branch-and-bound tree, but the cost coef-
ficients of some variables change as the setup costs
change with branching. This means that the convex
envelopes do not need to be fully reconstructed in
each node, because only a few variables change posi-
tions. We use a variant of the algorithm suggested
by Graham (1972) to construct and update the con-
vex hulls. Graham’s algorithm determines the convex
envelope of a set of n points in O4nlogn5 time. This
implies that solving the linear relaxation of (9)–(12)
in every node takes O4nlogn5 time, and therefore this
method has better complexity compared to using the
simplex algorithm.

6. Solving the RM Problem: A New
Hybrid Algorithm

Huisman et al. (2005) discuss how exploiting the rela-
tionship between Dantzig-Wolfe decomposition and
Lagrange relaxation can lead to the development of
improved algorithms that combine the strengths of
both methods. They explore two different ways to
combine column generation and Lagrange relaxation.
First, Lagrange relaxation can be used to solve the RM,
by dualizing the linking constraints, and the result-
ing near-optimal dual values can be used to price out
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the subproblems. Second, Lagrange relaxation on the
original formulation can be employed within column
generation, exploiting the fact that both methods solve
the same subproblem. Specifically, the RM programs
are solved with simplex, and next the RM dual prices
are used as a starting point for a number of Lagrange
relaxation iterations, during which several negative
reduced cost columns can be found and added to the
RM at once. We propose a new method, which is a
combination of the two previously discussed meth-
ods. Specifically, it uses Lagrange relaxation of the RM
to solve this RM program, and it also uses Lagrange
relaxation on the original formulation to generate new
columns. Figure 2 gives a schematic representation of
the algorithm. Implementation details can be found in
the online supplement.

We initialize the column generation process using
the heuristic of Trigeiro et al. (1989). This is a fast
heuristic that performs several rounds of smooth-
ing and rounding operations. For the instances that
Trigeiro et al. (1989) generated, their heuristic can
find high-quality feasible solutions, giving integrality
gaps lower than 3% on most problems. This heuris-
tic returns a feasible solution, a lower bound, and
a set of Lagrange dual prices of the capacity con-
straints. Using the dual of the relaxation of SP or
FL, we can then calculate the starting dual prices �it .
Also, the feasible solution 4yit1xit5

F is split into per-
period columns of the SPt or FLp RM programs. To
perform this operation, it is necessary to transform the
4yit1xit5

F solution to the space of the extended formu-
lation variables. This can be done by fixing the setup
variables to their given values and solving the corre-
sponding formulation, which is a shortest path prob-
lem. Next, the Lagrange relaxation subroutine uses
the modified subgradient method of Crowder (1976)
to update the dual prices �it . The modified subgradi-
ent method is a variant of the traditional subgradient

0. Initialization:
Call TTM. Add feasible solution
to master. Initialize �t, �it,
vLB, vUB.

1. Lagrange relaxation:
Col = FALSE. Call subgradient.
If a column prices out: {Return
vLB, �it, Col = TRUE; store
columns that price out.}

3. Solve restricted master:
Call subgradient to solve
restricted master.
Return vM, �it, �t.

2. Update pool:
Enter new columns to
master. Move columns
with high reduced cost
to pool.

Col = FALSE?

Call volume to obtain a primal solution
Return: max (vLB, vM), yit.

No

Yes

Figure 2 The Main Building Blocks of the New Hybrid Algorithm

method that incorporates past history in each itera-
tion by searching in a direction that is the weighted
average of the current vector of violations and the pre-
vious searched direction. Computational experiments
in Barahona and Anbil (2000) show that the conver-
gence of this variant is a lot faster compared to the
regular subgradient method. For each updated set of
dual prices �it we check if the subproblem solutions
price out, using the last obtained dual prices of the
convexity constraints, �t . The columns that price out
are added to the RM. Existing columns with a high
reduced cost are removed from the RM and kept in a
separate column pool. Then, the RM problem is solved
using subgradient optimization by relaxing the link-
ing constraints (23) (Huisman et al. 2005). Specifically,
the dualization of constraints (23) decomposes the RM
into separate subproblems per period, each of which is
of the form min8

∑

i∈I

∑

q∈St
cttq4�it5�tq+

∑

i∈I 4cuit+�it5·
spit−

∑

i∈I�it �
∑

q∈St
�tq =13�tq ≥01spit ≥09. These prob-

lems are trivially solved by setting the �tq variable that
has the minimum cost coefficient to one, and all other
variables to zero. The scheme iterates until no column
prices out. We then invoke the volume algorithm to
obtain an approximate primal solution. In this way,
we are able to make better informed branching deci-
sions in the subsequent branch-and-price phase. An
alternative implementation would be to use the inter-
mediate dual prices of the subgradient optimization of
the RM problem to price out new columns. Our exper-
iments with this strategy revealed that the generated
columns are not of good quality, because the interme-
diate dual prices of the RM problem price out many
columns that do not price out with its terminal dual
prices. Instead, using the near-optimal dual prices to
warm start the Lagrange relaxation produced better
results and resulted in fewer iterations of the hybrid
scheme.
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Contrary to existing hybrid algorithms (Bara-
hona and Jensen 1998, Degraeve and Peeters 2003,
Degraeve and Jans 2007), this scheme relies exclu-
sively on Lagrange relaxation. It has the benefits that
it (a) avoids the degeneracy issues of the simplex
method and therefore exhibits faster convergence and
(b) returns good-quality dual prices that help the col-
umn generation convergence. Note that the interme-
diate value of the RM programs vM is not necessarily
a valid upper bound of the column generation lower
bound, because it is calculated using Lagrange relax-
ation. It is a valid lower bound (Huisman et al. 2005)
when no column prices out, and therefore the scheme
returns the best bound that is obtained by the RM and
by Lagrange relaxation.

7. A Branch-and-Price Heuristic
We have combined the hybrid column generation
algorithm with heuristic techniques and integrated
them in an enumeration scheme, using formula-
tion FLp. The goal is to find good feasible solutions
fast by exploiting the structure of the network formu-
lation and its subproblem. Section 7.1 describes the
heuristics employed in each node of the tree.

7.1. Node Heuristics
We employ a successive rounding heuristic that uses
a smoothing subroutine, which in turn employs some
operations of the heuristic of Trigeiro et al. (1989). The
successive rounding heuristic gets as input the setup
variables produced by the volume algorithm, deter-
mines a threshold level, and fixes the setup variables
below and above that threshold to 0 and 1, respec-
tively. The process iterates for increasing threshold
values. Typically, the objective function values of
the feasible solutions obtained in this way follow a
U -shaped fashion (Degraeve and Jans 2007). There-
fore, when the solution quality starts to degrade, the
heuristic terminates. Starting from this solution, the
smoothing heuristic that searches for an improved
feasible solution is applied. The smoothing part starts
from the last period and tries to push production
backward, such that the Lagrange costs are mini-
mized. This is done iteratively until the first period,
and if any capacity constraints are violated it per-
forms a similar forward operation to recover feasibil-
ity. Thus, the rounding/smoothing heuristic scheme
searches the feasible space by modifying incremen-
tally the proposed setup schedules and produc-
tion plans and can be classified as an exploitation
heuristic.

7.2. Node Lower Bounds
At each node we solve the RM problem using subgra-
dient optimization, without generating any columns.
If its objective value is lower than the incumbent

value, we recover an approximate primal solution
using the volume algorithm and use that solution
to branch. Else, if the RM objective value is higher
than the incumbent value, the hybrid algorithm is
invoked to generate columns. During the hybrid algo-
rithm iterations, a nondecreasing node lower bound
is recorded. If that lower bound comes to exceed
the incumbent value, the node is pruned. When the
hybrid algorithm terminates and the lower bound is
below the incumbent value, the volume algorithm is
invoked to recover an approximate primal solution
of the RM, which is then used for branching. When
the volume algorithm returns all-integer setup vari-
ables, we fix these variables and solve the resulting
LP problem using formulation CL, which is a general-
ized network flow problem for fixed setups (Degraeve
and Jans 2007). More details about this procedure can
be found in the online supplement of this paper.

7.3. Tree Exploration Strategies
Algorithm HBP summarizes the main building blocks
of the heuristic branch-and-price algorithm.

Algorithm (HBP)
Input: LowerBound, UpperBound, CGSolution 4yr

it1x
r
it5,

Incumbent 4yh
it1x

h
it5

Output: LowerBound, UpperBound, Incumbent 4yh
it1x

h
it5

Pass←0; NodeLimit←100
B←84i1t5�4yh

it =1∧yr
it ≥0085∨4yh

it =0∧yr
it ≤00259

//RINS initialization of explored space
Do While Time<TimeLimit

and LowerBound<UpperBound
R=Ø; Pass←Pass+1;

NodeLimit←NodeLimit+4Pass−15∗50
ForEach i∈ I1t∈T
if 4i1t5∈B then yit ←yh

it

Call Branch_and_Price 4yit1NodeLimit5
Update UpperBound, yit1y

h
it

//yit describes the state of the
last explored node

ForEach i∈ I1t∈T
if yit ∈80119 then //Integral setup is due to

if 84i1t59∈B then //000 fixing or RINS:
unfix it for the next pass

B←B\84i1t59
else //000branching or by chance:

fix it for the next pass
B←B∪84i1t59

Loop
Return LowerBound, UpperBound, 4yh

it1x
h
it50

The exploration of the search space is done in
two ways. First, we employ the concept of relax-
ation induced neighborhoods search (RINS) (Danna et al.
2005). Although other MIP-based techniques could be
employed, such as local branching (Fischetti and Lodi
2003), most of them destroy the subproblem structure.
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After solving the root node, a variable fixing phase
follows. We fix to 1 (0) the setup variables that are
1 (0) in the incumbent and more (less) than 0.8 (0.2) in
the approximate primal solution of the RM program,
given by the volume algorithm. Then branching is
applied. We branch on the earliest period and on the
most fractional item, because branching decisions in
earlier periods are likely to influence the subsequent
production flow and therefore have a bigger impact
on the objective. During the first pass, we branch to 0
if both the incumbent has the branching variable at 0
and its fractional value at the root node is less than
0.2, else we branch to 1.

Notice that if a better feasible solution exists, it
is likely to be found at the early levels of the sub-
tree from the rounding/smoothing heuristic. For this
reason, we explore the subtree induced by the RINS
heuristic only partially, by imposing a node limit.
A potential downside of exhaustively exploring this
subtree, is that if some of the fixing decisions are
not part of the optimal solution, the algorithm could
stall or terminate without a significant improvement.
Hence, it is necessary to modify the search space. To
do this, we note that at each node the fixed vari-
ables are either fixed by the RINS fixing decisions,
or by branching. To explore a different but promising
part of the setup variable space, we free the variables
fixed by RINS and fix the variables that were fixed
by branching to the values of the incumbent solution.
The variables that were free at the last explored node
of the previous pass also remain free in the new pass.
In a sense, this scheme tries to replace dive decisions
with branching decisions, while remaining close to
the neighborhood of the incumbent. The same idea is
applied iteratively: a number of nodes in each subtree
is explored, the variables fixed early up in the tree
become free and the variables fixed from branch and
price are fixed again to the value of the incumbent.

8. Computational Results
Computational experiments were performed on a
2.0 GHz/2 GB machine. The CPU times listed in
all tables for our heuristic refer to the time that
the incumbent was found. To better understand
the contribution of the developed methodology to
the current literature, we have compared our algo-
rithm with other approaches found in the literature.
The data sets that appear in the lot sizing litera-
ture and are used in this paper have time-invariant
setup, holding and production costs, and therefore
are special cases of our formulations that also cap-
ture time-varying costs. We find that our approach
computes strong lower bounds fast and delivers high-
quality feasible solutions, when compared with other
approaches. However, since other approaches have

different implementations and run under different
machines, the results have to be taken with a grain
of salt. It is inevitable some authors use more or less
powerful machines, and different versions of commer-
cial software, such as CPLEX, which could introduce
some bias in the result. We note however, that the
quality of the lower bound we obtain is implementa-
tion independent and that our algorithm uses a com-
mercial package to solve linear programs only. To the
best of our knowledge, all lower bounds obtained by
the methods considered in this section are also inde-
pendent of the solver used. An example of a solver-
dependent lower bound can be found in Van Vyve
and Wolsey (2006). The authors let the XPRESS-MP
solver generate additional cuts by adding redun-
dant inequalities in their formulation, and therefore
the lower bound quality depends on the underlying
technology being used. We believe that the obtained
results offer some insight on how strong the obtained
lower bound is, and how efficiently it can be utilized
in the search of feasible solutions. Detailed results of
all experiments can be found in the online supple-
ment of this paper.

8.1. Solving the Root Node

8.1.1. Benchmarking of Formulations and Solu-
tion Methods. To demonstrate the strength of the
lower bound of the proposed hybrid scheme, we
employ a subset of instances from Trigeiro et al.
(1989), which has been extensively tested in the litera-
ture (Belvaux and Wolsey 2000, Van Vyve and Wolsey
2006, Degraeve and Jans 2007, Jans and Degraeve
2004 and Pochet and Van Vyve 2004). We use four
different formulations and three solution methods.
Table 1 shows the nomenclature of different combi-
nations of formulations (period decomposition of the
facility location formulation—FL/P, period decompo-
sition of the facility location formulation with prece-
dence constraints—FLp/P, period decomposition of
the shortest path formulation—SP/P, and period
decomposition of the transformed shortest path
formulation—SPt/P) and solution methods (Lagrange
relaxation—LR, approximate column generation—
ACG, and the hybrid algorithm—HB). In ACG, the
RM is solved with subgradient optimization. Each

Table 1 Nomenclature of Combinations of Formulations and
Solution Methods

Method used to calculate the lower bound

Formulation LR ACG HB

FL/P LR ACG HB
FLp/P LRp ACGp HBp
SP/P SPP-LR SPP-ACG SPP-HB
SPt/P SPtP-LR SPtP-ACG SPtP-HB
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subproblem returns one column per iteration, as in
standard column generation. Lagrange relaxation and
column generation are textbook approaches and we
employ them to illustrate how the hybrid algorithm
performs against them. ACG is listed to demonstrate
how the hybrid scheme performs against a Lagrange-
based implementation of column generation.

Table 2 compares the CPU time in seconds of
combinations of formulations and solution methods.
Because the difference in lower bound values that
each method returned is small, we compare the time
needed to calculate that lower bound only, listing the
time each method takes relative to the best imple-
mentation, which is the hybrid method applied to
the FLp/P formulation, called HBp. In addition to
CPU times, we also list the maximum absolute vio-
lation of the linking constraints obtained by the vol-
ume algorithm in column 2. In column 3, we report
the time in seconds that HBp needs to calculate the
lower bound. Columns 4–8 and 11 show the time
ratio between each algorithm and HBp. Columns 9
and 10 refer to the shortest path formulation and are
therefore compared with the best implementation of
the shortest path formulation SPtP-HB. Both SPtP-
HB and HBp use the hybrid scheme and solve the
same subproblem. Finally, the last column JD refers to
the CPU times obtained by Jans and Degraeve (2004),
who utilized decomposition SP/P and implemented
a standard simplex-based column generation algo-
rithm. The results we report for JD are based on their
implementation run on our machine, and therefore
the differences in time performance can be attributed
to the relative efficacy of our new hybrid methodol-
ogy. Note that for G57 and G72, we compare to their
Lagrange relaxation times (2,000 iterations), as they
were not able to solve these instances with simplex-
based column generation. For the sake of brevity, we
do not present full results for formulations SP/P and
SPt/P, because their behavior is very similar to that of
FL/P and FLp/P, respectively. However, we do show
that the hybrid solution method HB is superior to
Lagrange relaxation LR and that LR applied to the
transformed formulation SPt/P is much faster than
when applied to the standard formulation SP/P.

The comparison of the different approaches sug-
gests some interesting conclusions. First, the small
violations in column 2 suggest that the approximate
primal solution recovered by the volume algorithm is
very close to the exact primal solution. Second, the
addition of the precedence constraints to the facil-
ity location formulation (column 4), and the trans-
formation of the shortest path formulation (column 9
versus column 10) enhance the computational perfor-
mance of LR and HB. We see that on average HB
needs 1.7 times the time of HBp to converge (col-
umn 4). Further, in columns 5–8 it is evident that the Ta
bl
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effect of the precedence constraints is much stronger
when using LR instead of ACG. When comparing
columns 5 and 6, we see that LRp is approximately
three times faster than LR, whereas columns 7 and 8
reveal that the performance of ACG and ACGp is
approximately the same. The precedence constraints
influence the structure of the solutions returned by
the subproblems. These solutions are used by LR to
update the dual prices in every iteration, and there-
fore have a direct effect on the performance of the
LR algorithm. ACG however, uses the subproblem
solutions as additional columns, and therefore they
have an influence only if they are active in an opti-
mal solution of the restricted master problem. This
might explain why the precedence constraints lead
to a big, medium, and minimum improvement when
applied to LR, HB, and ACG, respectively. In addi-
tion, columns 9 and 10 reveal that the Lagrange relax-
ation of the shortest path formulation is approxi-
mately three times slower, on average, compared to
its transformed version. Algorithms SPP-ACG, SPtP-
ACG, and SPP-HB showed similar behavior as ACG,
ACGp, and HB, respectively, and are not reported.
The hybrid scheme outperforms all approaches. On
average, HBp is five times faster than the other algo-
rithms. Finally, it is interesting to note that for JD, an
implementation of simplex-based column generation,
the CPU times are disproportionally larger, indicat-
ing the poor performance of simplex-based column
generation.

8.1.2. Comparison of Lower and Upper Bounds
with Other Approaches. On assessing the lower
bound quality obtained by SP/P, Jans and Degraeve
(2004) give evidence that for the seven instances
of Table 2, this lower bound is stronger than the
one obtained by Trigeiro et al. (1989), Degraeve and
Jans (2007), Belvaux and Wolsey (2000) and Miller
et al. (2000a), whereas the bound from Van Vyve and
Wolsey (2006) seems to be stronger for most instances.
Note however that there is no theoretical ground to
support arguments that one bound dominates another
bound, with the exception of the bound given by
Trigeiro et al. (1989), which is not better than the
bound of Jans and Degraeve (2004). Therefore, the
performance of each methodology is data dependent.
Intuitively, the period decomposition should perform
well when the capacity constraints are tight, because
it takes advantage of the extreme points of the single-
period polytopes, and when the number of items is
small, which is likely to make the subproblems easier.

In another experiment, we compared the perfor-
mance of our algorithm to the results obtained by
Süral et al. (2009). They design a Lagrange-based
heuristic for a reformulation of the capacitated prob-
lem with setup times but without setup costs. The
demand constraint is relaxed. They modify the data

from Trigeiro et al. (1989) as follows. First, they set
all setup costs to zero. Second, they increase zero
demands to two units. Third, they construct new
instances by reducing the number of periods of some
existing ones. Finally, they construct instances with
unit inventory costs for all items, called homogeneous
(denoted “hom”). Instances with the original inven-
tory cost are called heterogeneous (denoted “het”).
In total, 100 instances are generated. Because their
approach usually terminates in a few seconds, we
have chosen to compare it with our hybrid procedure
only. Specifically, we use the hybrid process to obtain
a lower bound, recover an approximate primal solu-
tion with the volume algorithm, fix the setup vari-
ables to 0 or 1 (as described in the diving heuristic),
and call the successive rounding/smoothing heuris-
tic once. In particular, no branching is performed,
and the algorithm is actually the procedure that is
performed at the root node of the branch-and-price
tree. We call this procedure the restricted hybrid
heuristic (RHB). Table 3 displays the average duality
gaps and the average CPU time for the best heuris-
tic approach of Süral et al. (2009) (SDW) and our
restricted hybrid heuristic (RHB). SDW was run on an
Intel Pentium 4 machine, and the subproblems were
solved with CPLEX 7.0. Detailed results can be found
in the online supplement that accompanies this paper.

It is interesting to notice the large gaps that result
from problems without setup cost. Clearly, RHB out-
performs SDW, both in terms of gap quality and
CPU time, for both homogeneous and heterogeneous
problems.

We also run RHB using the F and G instances from
Trigeiro. The average gaps were 2.43% and 2.51%, and
the average CPU times 0.25 and 2.14 seconds, respec-
tively. Note that Degraeve and Jans (2007) cite an
average gap of 2.87% for the F instances, after explor-
ing 2,000 nodes in their branch-and-price tree.

Table 3 Comparison of RHB with the Lagrange-Based Heuristic of
Süral et al. (2009)

Gap RHB Gap SDW
Category (%) (%) CPU RHB (s) CPU SDW (s)

12×10 het 18043 31073 0034 3006
24×10 het 11014 18007 1062 4079
12×15 het 19025 25095 1040 6007
24×15 het 13044 21026 6037 15033
12×30 het 21092 28068 3027 24001
24×30 het 23044 32035 19072 38093
12×10 hom 22097 42008 0053 2069
24×10 hom 14006 20088 1077 4045
12×15 hom 18044 28000 1019 5064
24×15 hom 14096 20056 3046 11014
12×30 hom 21068 24033 2099 19010
24×30 hom 21035 30026 7095 22091
Average het 17094 26034 5045 15037
Average hom 18091 27069 2098 10099
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Table 4 Comparison of RHB Against the IPE Heuristic

Best incumbent CPU time (s)

Data set Optimal IPE RHB IPE RHB

G30b (6–15) 371721 381976 381162 1031 0027
G53 (12–15) 741634 781098 751035 3053 104
G57 (24–15) 1361509 1371153 1361884 6001 7021
G62 (6–30) 611746 631073 631018 107 0067
G69 (12–30) 1301596 1311988 1311668 6003 3038
G72 (24–30) 2871929 2901006 2881313 21015 1505

Note. A boldface item denotes the best-performing entry for each data
instance.

We also tested RHB against the best implementa-
tion of the iterative production estimate (IPE) heuris-
tic of Pochet and Van Vyve (2004). They run their
experiments on a 350 MHz machine and list results
on the six instances from the G data set of Trigeiro
et al. (1989) described in Table 4 (IPE was not tested
on G30). The optimal value is listed to facilitate the
comparisons. Table 4 presents the results.

Although a comparison of CPU times is hard be-
cause different machines were used, it is clear that
the quality of feasible solutions is much better for
RHB. Note that the above IPE results are the best that
Pochet and Van Vyve cite, based on the BC-PROD cut
generator. Also, despite that RHB seems to find a bet-
ter feasible solution than IPE, more space for improve-
ment exists, as shown by the optimal solutions. The
branch-and-price heuristic performs RHB at the root
node and tries to approach the optimal solution. Its
computational performance is described in §8.2.

8.2. Comparison of Heuristic
Branch and Price with Other Approaches

8.2.1. Upper Bounds for the Trigeiro et al. (1989)
Instances. We compared our approach with the most
recent and successful heuristic and exact approaches
found in the literature and with our own implemen-
tation of relax-and-fix heuristic (Pochet and Wolsey
2006). To perform the comparison, we employed
the seven instances taken from Trigeiro et al. (1989)
described in part 8.1.1. A comparison based on seven
instances is limited. However, these seven instances

Table 5a Comparison of Branch and Price with Other Approaches

Best incumbent CPU time (s) Gaps (%)

Data set Optimal MS DJ BW HB&P DJ BW HB&P DJ BW HB&P

G30 (6–15) 371809 — 371809 — 371809 33 — 5 1090 — 1000
G30b (6–15) 371721 37177604 381162 371721 371721 29 — 2 2051 1035 0090
G53 (12–15) 741634 74172008 751035 741752 741634 66 189 9 1061 1033 0093
G57 (24–15) 1361509 1361675 1361860 1361509 1361509 44 55 101 0036 0010 0007
G62 (6–30) 611746 61179202 621644 611746 611746 359 55 140 2079 1024 0088
G69 (12–30) 1301596 1301675 1311234 1301599 1301599 215 102 131 0081 0032 0020
G72 (24–30) 2871929 2871966 2881383 2871950 2881016 306 298 46 0022 0007 0007

Note. A dash (—) denotes lack of data. A boldface item denotes the best-performing entry for each data instance.

are specifically tested in many other papers and there-
fore allow us to compare our results to various oth-
ers reported in the literature. For the relax-and-fix
heuristic, we impose integrality restrictions in periods
8t10001min4�T �1t+359, and after solving the relaxed
problem we fix the variables of period t to their
best values and iterate for each t∈8110001�T �9. For the
Trigeiro instances under consideration, imposing inte-
grality restrictions in four consecutive periods pro-
duced good solutions. Table 5a presents results of the
following studies: Müller et al. (2012) (MS), Degraeve
and Jans (2007) (DJ), Belvaux and Wolsey (2000) (BW),
and our approach (HB&P). Table 5b presents Trigeiro
et al. (1989) and the relax-and-fix heuristic (RnF). For
Trigeiro et al. (1989) we have obtained the original
code from the authors and ran it on our machine, and
we report the corresponding CPU times. The optimal
solution of each instance is also listed to facilitate the
comparisons. MS is a randomized heuristic, so it does
not provide any lower bounds and gaps.

Before analyzing the relative performance of each
approach, some implementational details are pre-
sented. Müller et al. (2012) use a hybrid adaptive
large-scale neighborhood search strategy. They run
their experiments on a 2.66 GHz/8 GB RAM machine
and use CPLEX 10.2 to create repair neighborhoods.
Since their approach is randomized, the listed val-
ues are based on an average of 100 runs, where each
run lasts for 60 seconds. Degraeve and Jans (2007)
develop an exact branch-and-price algorithm. They
pose a limit of 2,000 nodes and run their experiments
on a 750 MHz processor. Finally, Belvaux and Wolsey
(2000) use a relax-and-fix heuristic that they incorpo-
rate within BC-PROD, a customized branch-and-cut
system for production planning problems. They use a
200 MHz machine to perform their computations.

In terms of quality of feasible solutions, it seems
that the two most competitive approaches are BW
and HB&P. It is interesting to note that, although
BW is the oldest approach and runs are made on a
slow machine, it seems to provide much better fea-
sible solutions compared to most other approaches.
When compared to HB&P, it finds solutions of similar
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Table 5b Comparison of Branch and Price with Other Heuristic Approaches

Best incumbent CPU time (s) Gaps (%)

Data set Optimal TTM RnF HB&P TTM RnF HB&P TTM RnF HB&P

G30 (6–15) 371809 391197 371997 371809 001 32066 5 3067 0050 0000
G30b (6–15) 371721 381162 371767 371721 0009 36054 2 1017 0012 0000
G53 (12–15) 741634 751035 741752 741634 002 851005 9 0054 0016 0000
G57 (24–15) 1361509 1361885 1361509 1361509 0037 658083 101 0028 0000 0000
G62 (6–30) 611746 631018 621011 611746 0047 56003 140 2006 0043 0000
G69 (12–30) 1301596 1311668 1301666 1301599 0093 21835094 131 0082 0005 0000
G72 (24–30) 2871929 2881313 2871950 2881016 109 71584047 46 0013 0000 0000

Note. Gaps are reported using the optimal solution as lower bound. A boldface item denotes the best-performing entry for each data instance.

quality. CPU times are not directly comparable. HB&P
produces a better gap because the lower bound is
stronger and the solution quality similar. HB&P gives
a stronger bound because most separation routines
of BC-PROD use flow-based inequalities that incor-
porate information mainly from the convex hulls of
the single-item uncapacitated polytopes. HB&P gives
a lower bound that describes the intersection of the
capacity and single-item uncapacitated polytopes and
therefore it tends to be stronger for tightly constrained
problems. DJ is outperformed both in terms of time
and solution quality. Finally, Table 5b shows that TTM
is very fast but finds solutions of inferior quality,
whereas RnF is very slow but finds better solutions.
Our approach outperforms RnF both in terms of solu-
tion quality and CPU time. Because we use TTM
to warm start our algorithm, it is expected that we
obtain better solutions at a higher CPU time.

To the best of our knowledge, the best exact ap-
proach found in the literature for the above instances
from a lower bound perspective, is the approximate
extended formulation of Van Vyve and Wolsey (2006).
Unfortunately, the authors do not cite the CPU time at
which they obtain the lower bound at the root node,
and a comparison with our approach is not possible.
However it is expected that a heuristic implementa-
tion of their approach would work better for prob-
lems with a short time horizon, whereas our approach
is better for long horizon problems. For example,
they solve G62 (six items, 30 periods) to optimality
after 220,400 nodes and 1,078 seconds on a 1.6 GHz
machine, whereas we need 4,212 nodes and 140 sec-
onds to find the optimal value (on a 2 GHz machine).

8.2.2. Comparison of Gaps Obtained with Branch
and Price and Branch and Cut. Next, we compared
our approach with the best branch-and-price algo-
rithm of those suggested by Pimentel et al. (2010)
(PAV). They used the Trigeiro et al. (1989) sets X11117–
X12429. Each X set comprises of five instances and
there are 30 X sets, giving a total of 150 instances.
They applied a period, item, and simultaneous period
and item decomposition, solved the subproblems with
CPLEX 8.1, and performed their computations on a

Pentium 4 machine with 1 GB RAM. Table 6 presents
results for the 10 hardest sets, i.e., those for which their
algorithm gives the largest gaps. The bottom line lists
average results for all 150 instances. Detailed results
can be found in the online supplement.

Note that HB&P outperforms PAV in all of the
above sets except one. Moreover, HB&P terminated
within the time limit of 150 seconds in 149 of 150
instances. Also, the average gap and CPU times are
much better for HB&P. An interesting observation is
that Pimentel et al. (2010) do not get their best gaps
from their simultaneous item/period decomposition,
which theoretically gives a stronger bound compared
to both their item and period decompositions, but
from the item decomposition. This is because the RM
problems of the simultaneous item/period decom-
position are very degenerate and time consuming.
Therefore, they may not be able to obtain good feasi-
ble solutions and improve their gap within their time
limit.

In a final round of trials, we tested our algorithm
on some new hard data sets against the CPLEX v12.2
solver (CPX), using the regular formulation CL. The
purpose of this comparison is to give evidence on the
relative strengths and weaknesses of a decomposition
approach against a modern off-the-shelf branch-and-
cut software. To this end, we constructed new harder

Table 6 Comparison with Pimentel et al. (2010)

CPU time CPU time Gap PAV Gap B&P
PAV (s) HB&P (s) (%) (%)

X11419 31600 96006 100367 70069
X11429 31600 106030 90599 40993
X12429 31600 110015 70999 30650
X12419 31600 84007 50967 40250
X11428 31600 68042 40777 00951
X12428 31600 61083 30908 10563
X12229 31600 29093 30236 10924
X11229 31600 66001 30045 20071
X12219 31600 62096 20745 20507
X11129 31600 63037 20525 20874
Average 31600 74091 50417 30185

(150 instances)

Note. A boldface item denotes the best-performing entry for each data
instance.
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Table 7 Integrality Gaps of Heuristic Branch and Price and
CPLEX v12.2

CPX gap (%) HB&P gap (%) Gap closed (%)

6–60 average 2029 2044 17090
6–60 median 1086 1097 9051
12–60 average 1079 1057 12058
12–60 median 1071 1057 9073
Total average 2014 2018 15029
Total median 1085 1078 9057

Note. A boldface item denotes the best-performing entry for each data
instance.

instances by modifying the Trigeiro data set. Specif-
ically, we replicated the demand patterns to 60 peri-
ods, and reduced the capacity to 95% of its original
value. We focused on instances with six and 12 items
because the integrality gap of the extended formu-
lations improves as the number of items increases,
therefore problems with fewer items are more chal-
lenging to solve. Finally, we excluded instances that
were infeasible without initial inventory because their
gap was sensitive to the initial inventory cost.

The process described led to the creation of 30 new
60-period instances, 21 of which have six items, and
nine with 12 items. Table 7 shows the computational
results. Both algorithms used 100 seconds of CPU
time. This time limit is deemed appropriate for our
approach, which can be used (i) in a practical produc-
tion environment, for fast generation of good-quality
production plans, or (ii) as a warm-start method of an
exact approach, such as branch and cut or branch and
price.

The computational experiments show that both
algorithms achieve good performance in terms of
integrality gaps. However, no instance was solved to
optimality after 100 seconds. The total median gaps
show that heuristic branch and price performs better
overall, but the average gaps are slightly higher than
those of CPLEX. We observed that the lower bound
obtained by the period decomposition was always
better. To demonstrate the efficiency of the lower
bound, we calculated all gaps using the best feasible
solution and report the amount of gap that is closed
with our branch-and-price algorithm. The amount of
gap closed is the difference between the CPX gap and
HB&P gap, divided by the CPX gap, where all gaps
are calculated using the best feasible solution. The last
column indicates the superiority of the lower bound
obtained by the period decomposition, because the
average gap improvement is about 15%. The lower
bound obtained by CPLEX is weak, even after explor-
ing a large part of the branch-and-bound tree. Specif-
ically, CPLEX explores more than 28,000 nodes on
average, whereas we explore an average of 644 nodes
with our approach. The fact that CPLEX explores such
a large part of the tree allows it to find better feasible

solutions in most instances, therefore its integrality
gaps are competitive to branch and price. In conclu-
sion, the two approaches give similar results in terms
of gap quality, but our approach dominates CPLEX in
lower bounds, since it takes advantage of the special
structure of the single-period polytopes.

9. Conclusions and Future Research
We have presented period decompositions of the
facility location and shortest path formulations of
the capacitated lot sizing problem with setup times.
The subproblem polytopes do not have the inte-
grality property, and therefore an improved lower
bound is obtained. Customized branch-and-bound
algorithms are developed to solve the single-period
subproblems. In addition, a novel, subgradient-based
algorithm is developed, that combines column gener-
ation with Lagrange relaxation, and uses the volume
algorithm to recover an approximate primal solu-
tion of the RM problem. The performance of the
hybrid scheme is enhanced further with the proposi-
tion of a transformed shortest path formulation and
with the addition of a class of valid inequalities in
the subproblem. The resulting subproblem is still
tractable with a fast customized branch-and-bound
algorithm. Finally, a branch-and-price-based heuristic
is designed that integrates relaxation induced neigh-
borhoods, selective diving, and successive rounding/
smoothing within a novel strategy of node explo-
ration. Computational results show that the proposed
approach outperforms or compares favorably with
the most recent and successful approaches found in
the literature.

The period decomposition formulations that we
employ can be readily applied to lot sizing prob-
lems with richer structure, such as backlogging, over-
time, and startup times. The subproblem algorithms
can also be adapted in a straightforward manner so
that they incorporate these features. The application
of period decompositions to multilevel problems is
straightforward, but solving problems with multiple
resources, such as those introduced by Stadtler (2003),
is computationally more challenging. Although the
period-by-period decomposition structure is retained
when the demand constraints are dualized, the result-
ing subproblems may not preserve the structures we
studied in this paper and new algorithms that solve
their LP relaxations need to be devised. In particular,
whenever an item needs a setup or production time
with respect to more than one resource per period,
the per-period subproblem involves multiple capac-
ity constraints, and its linear relaxation is no longer
a linear multiple choice knapsack problem. Given the
strong lower bounds that we obtained for the CLST,
an application to the multilevel instances is a promis-
ing area for future research, especially because the
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best-known lower bounds of these instances can be
improved considerably.

With respect to the developed methodology, there
are several directions that deserve further research.
The implementation of standard stabilization tech-
niques (e.g., du Merle et al. 1999) to extended for-
mulations may make them more tractable computa-
tionally. Also, it could lead to the development of an
exact approach, for which an exact representation of
the primal solution of the RM is needed. On a differ-
ent line, the integration of approximate schemes such
as the volume algorithm could lead to enhanced MIP-
based heuristics that can tackle very large instances
efficiently and give a good dual bound, used to
assess their performance. Finally, the period decom-
position could lead to the development of success-
ful approximation algorithms. Recently, Levi et al.
(2008) used the simple plant location formulation
with added flow cover inequalities to derive the first
two-approximation algorithm for a variant of CLST
without setup times. It would be interesting to explore
whether a column generation-based relaxation would
lead to similar approximation schemes for CLST.
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