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We introduce horizon decomposition in the context of Dantzig-Wolfe decomposition, and apply it to the
capacitated lot-sizing problem with setup times. We partition the problem horizon in contiguous overlapping

intervals and create subproblems identical to the original problem, but of smaller size. The user has the flexibility
to regulate the size of the master problem and the subproblem via two scalar parameters. We investigate
empirically which parameter configurations are efficient, and assess their robustness at different problem classes.
Our branch-and-price algorithm outperforms state-of-the-art branch-and-cut solvers when tested to a new data set
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1. Introduction
Since the seminal work of Dantzig and Wolfe (1960),
Dantzig-Wolfe decomposition has been applied success-
fully to solving linear, integer, and mixed-integer linear
programming problems and a variety of applications of
increasing complexity (Lübbecke and Desrosiers 2005).
The implementation of the Dantzig-Wolfe decompo-
sition principle involves the recognition of a part of
the constraint matrix that has block diagonal structure,
where each block is associated with a subset of vari-
ables. The variables that appear in each block should
not appear in other blocks, and if so, the corresponding
constraints are treated as “complicating.” This explains
why most research and practical applications are usu-
ally problem specific. In addition, although for certain
large-scale problems, branch-and-price algorithms may
have superior performance against branch-and-cut
software, the range of applications is limited by the
block diagonal structure that is in place, and by how
exploitable this structure is. The competitive advantage
of Dantzig-Wolfe reformulations stems from exploit-
ing these substructures to obtain an improved dual
bound. This occurs in cases where the subproblem
does not have the integrality property (Geoffrion 1974),
which means that its linear relaxation does not have
all integral extreme points. The backbone of the most

successful applications is usually a specialized algo-
rithm that solves the subproblem efficiently.

In this paper, we introduce a novel Dantzig-Wolfe
decomposition scheme that, contrary to the existing
ones, does not rely on any exploitable subproblem
structure. The methodology and subsequent computa-
tional study are in the context of capacitated lot sizing,
but the developed approach is applicable to any mixed-
integer linear program (MIP). A distinct characteristic
of our method is that it regulates the size of the master
problem and the subproblem independently, by intro-
ducing two scalar parameters. This flexibility suggests
that one can experiment with alternative decomposi-
tions and address the trade-off between subproblem
difficulty and dual bound strength directly. Extensive
computational experiments that analyze the efficiency
of the horizon decomposition approach indicate that
certain decomposition configurations can tackle some
particularly hard instances far more efficiently than
modern branch-and-cut solvers.

We introduce the main idea in the context of the
capacitated lot-sizing problem with setup times (CLST)
because it constitutes one of the simplest but yet
most computationally challenging problem structures.
Trigeiro et al. (1989) introduced the problem and con-
structed a data set of 540 instances, the hardest of which
remained unsolvable until the last decade. Although
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today all instances can be solved within a few sec-
onds, several researchers (Süral et al. 2009, Müller
et al. 2012, de Araujo et al. 2015) have constructed
instances with long horizons, tight capacity constraints,
or without setup costs that remain intractable. Further,
the multiperiod nature of lot-sizing problems and the
complicating structure of the capacity constraints pro-
vide an excellent ground to demonstrate the horizon
decomposition principle. Based upon this setting, the
generalization of our approach comes naturally. Finally,
CLST is well studied in the literature and therefore we
can benchmark the efficiency of our approach against
other techniques, such as valid inequalities, extended
formulations, and alternative decomposition schemes.
In addition, in some special cases it is possible to
establish which approach gives the best bound or to
draw correspondences across methodologies.

The principal aim of this work is to illustrate that the
application of horizon decomposition to the CLST has
at least two important benefits. First, one can exploit the
technology of modern solvers in solving subproblems
of manipulable size and strength. Since the subproblem
size is controlled independently from the size of the
master problem, it is possible to find a balance between
dual bound quality and subproblem tractability. Second,
our computational experiments show that in practice
the method shows excellent behavior in perhaps the
most challenging class of problems, namely, instances
with low ratio of items over periods and tight capacity
constraints.

The remainder of this paper is organized as follows.
Section 2 gives a brief literature review on column gen-
eration methodologies and on CLST-specific research.
Section 3 introduces the problem formulation. Sec-
tion 4 applies horizon decomposition. A comparison
and correspondences with other lower bounds are
demonstrated. Section 5 describes a branch-and-price
algorithm that uses horizon decomposition. Section 6
presents computational experiments and Section 7
presents two ways the horizon decomposition principle
can be generalized to generic MIPs. Finally, Section 8
concludes the paper with suggestions for future work.

2. Literature Review
Since the early days of column generation, many
authors have used it either as a stand-alone technique
to solve large linear programs (Elhallaoui et al. 2005),
or as a bounding technique within branch-and-bound
algorithms (Degraeve and Jans 2007), a scheme also
known as branch and price. On the theoretical side, there
are works that examine the efficient convergence of
column generation and the branching rules used in
branch and price. Ben Amor et al. (2006) show that
reducing the feasible dual space of the master program
leads to faster convergence. Degraeve and Jans (2007)

demonstrate how the Dantzig-Wolfe decomposition
principle is applied to MIPs with an application to
the CLST and Vanderbeck and Savelsbergh (2006)
develop a theoretical framework. Vanderbeck (2011)
explores the issue of branching in branch and price
when the subproblems are identical, and Villeneuve
et al. (2005) construct a compact formulation and use
the corresponding variables for branching. The reviews
of Lübbecke and Desrosiers (2005) and Barnhart et al.
(1998) describe plenty of applications and discuss in
detail technical issues of column generation and branch
and price, respectively.

Lagrange relaxation is a related reformulation that, in
theory, gives the same dual bound as column generation.
Fisher (2004) gives an overview of Lagrange relaxation
and describes early applications. The strong dual bound
and the relative speed of Lagrange relaxation have
led to the development of efficient exact and heuristic
methods. Lagrangian decomposition is a generalization
of Lagrange relaxation that yields stronger lower bounds.
Guignard and Kim (1987) were the first to introduce it in
the context of MIPs that have two sets of constraints.
The main idea is to introduce “copy” constraints for
the original variables and dualize them in the objective
function. Our implementation can be seen as a case
of Lagrange decomposition since we also introduce
copies of variables and explore the convex hull of the
corresponding subproblems. It is more versatile however
in that it can be tailored to each instance, it avoids
unnecessary variable copying, and performs a systematic
reformulation that creates a decomposable structure.

The literature in capacitated lot-sizing problems is
vast. In their seminal paper, Wagner and Whitin (1958)
introduced the single-item uncapacitated version of
the problem and solved it using a dynamic program-
ming recursion. Trigeiro et al. (1989) were the first to
examine a multiitem problem with capacity constraints
and setup times. They showed experimentally that
setup times make the problem harder and developed
a Lagrange-based smoothing heuristic whose perfor-
mance remains competitive up to date. An earlier result
by Kleindorfer and Newson (1975) proves that the prob-
lem is strongly NP-hard. To obtain an improved lower
bound, Eppen and Martin (1987) reformulated the prob-
lem with shortest-path variables that describe the convex
hull of the single-item uncapacitated polyhedron. Simi-
larly, Barany et al. (1984) describe the same polyhedron
using valid inequalities. In more recent advancements,
Degraeve and Jans (2007) develop an exact branch-and-
price algorithm using a per-item decomposition and
Jans and Degraeve (2004) describe a decomposition of
the shortest path formulation that leads to an improved
lower bound. The most recent work that applies Dantzig-
Wolfe decomposition to the CLST is Pimentel et al. (2010).
They develop three alternative decompositions and
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branch-and-price algorithms and compare their perfor-
mance. Finally, another stream of research focuses on
finding good feasible solutions with heuristics. Süral
et al. (2009) develop a Lagrange-based heuristic for a
variant of the CLST without setup costs. They used the
subproblem solutions to construct incumbents during
the subgradient optimization process and obtained small
integrality gaps over a set of hard instances. Similarly,
Müller et al. (2012) use large-scale neighborhood search
combined with strong formulations and report results
on new hard instances. Finally, Akartunal and Miller
(2012) give insights on which lot-sizing substructures
are computationally challenging, and Akartunali et al.
(2016) use column generation to generate cuts from a
two-period relaxation of CLST. In the latter work, the
authors use several distance functions, by which they are
able to generate valid inequalities that cut off the linear
programming relaxation solution, when this solution
has a positive distance from a predefined two-period
lot-sizing set.

Our work has contributions in both the Dantzig-
Wolfe decomposition and lot-sizing research streams.
First, we show how Dantzig-Wolfe decomposition can
be applied in a novel way, such that MIPs can be
decomposed in subproblems that preserve the struc-
ture of the original problem, but are of smaller size.
Second, we demonstrate the applicability of this idea
in lot sizing and investigate under which conditions it
is advantageous against competitive methodologies.
Third, we show experimentally that a class of CLST
instances, namely, those with tight capacity constraints
and small ratios of items over periods, are time consum-
ing to solve with modern branch-and-cut software. We
develop a branch-and-price approach based on horizon
decomposition and demonstrate its efficiency against
competitive approaches. Finally, we demonstrate the
extension of our idea to generic MIPs.

3. Problem Description and
Formulation

3.1. Original Formulation
The capacitated lot-sizing problem with setup times
generalizes the basic single-item uncapacitated lot-sizing
problem studied by Wagner and Whitin (1958). Specifi-
cally, it models a multi-item setting with one capacity
constraint per period and item-specific setup times and
production times. It can be used in production planning
for determining the production and setup decisions of an
MRP system by taking into consideration one bottleneck
resource (Pochet and Wolsey 2006). We formulate the
problem using the following notation:

Sets

I = 811 0 0 0 1n9: set of items, indexed by i.
T = 811 0 0 0 1m9: set of periods, indexed by t.

Parameters

dit : demand of item i in period t, i ∈ I1 t ∈ T .
sditk: sum of demand of item i from period t to

period k, i ∈ I , t1 k ∈ T 2 t ≤ k.
hcit : cost of holding inventory for item i from period

t − 1 to period t, i ∈ I1 t ∈ T .
scit : setup cost of item i in period t, i ∈ I1 t ∈ T .
vcit : production cost of item i in period t, i ∈ I1 t ∈ T .
stit : setup time of item i in period t, i ∈ I1 t ∈ T .
vtit : variable production time of item i in period t,

i ∈ I1 t ∈ T .
capt : time capacity in period t, t ∈ T .
Mit : big-M quantity, defined as

Mit = min8sditm1 4capt − stit5/4vtit591 i ∈ I1 t ∈ T .

Decision Variables

xit : production quantity of item i in period t,
i ∈ I1 t ∈ T .

sit : inventory quantity of item i at the beginning of
period t, i ∈ I1 t ∈ T ∪ 8m+ 19.

yit : equals 1 if a setup occurs for item i in period t, 0
otherwise, i ∈ I1 t ∈ T .

The mathematical formulation of CLST is then as
follows:

min
{

∑

i∈I

∑

t∈T

scityit +
∑

i∈I

∑

t∈T

vcitxit +
∑

i∈I

∑

t∈T

hcitsit

}

(1)

s0t0 sit + xit = dit + si1 t+1 ∀ i ∈ I1 ∀ t ∈ T (2)

xit ≤Mityit ∀ i ∈ I1 ∀ t ∈ T (3)
∑

i∈I

stityit +
∑

i∈I

vtitxit ≤ capt ∀ t ∈ T (4)

xit1 sit ≥ 01 si1m+1 = 01yit ∈ 80119

∀ i ∈ I1 ∀ t ∈ T 0 (5)

The objective function (1) minimizes the total cost,
which consists of the setup cost, the production cost,
and the inventory holding cost. To model problems
that are infeasible without initial inventory, we allow
for initial inventory at a high cost (Vanderbeck 1998).
Constraints (2) indicate that demand in each period is
covered by initial inventory and by production, and
that the remaining quantity is transferred to the next
period. Constraints (3) link the setup and production
decisions and (4) describe the per-period capacity
constraints. Finally, constraints (5) pose nonnegativity
and integrality restrictions to the problem variables.
We use vCLST to denote the optimal objective value
of (1) over constraints (2)–(5) and v̄CLST to denote
optimal objective value of its LP relaxation. The next
paragraph describes a family of reformulations that
allow a generic decomposition scheme for the CLST.
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Lu:= Hu Hu+1

Hu+1:= {m0(u + 1),… ,m1(u + 1)}

Hu:= {m0(u),… ,m1(u)}

1 … …

Hu:= Hu\{m1(u)}
–

Lu:= Lu\{m1(u)}
–

t
… m1(u)m0(u + 1) … |T |m1(u + 1)m0(u)…

Figure 1 Notation Used in Horizon Covering
Note. Each black bullet indicates a discrete time period t ∈ T .

3.2. Horizon Reformulation
The fundamental idea of horizon decomposition is
to reformulate the problem so that it decomposes in
subproblems of identical structure but of shorter hori-
zons. Modern MIP solvers can solve small subproblems
efficiently, and the fact that small problems do not
have the integrality property (Geoffrion 1974) implies
that column generation can lead to an improved lower
bound. A question that arises naturally in this context
is whether defining subproblems over overlapping or
nonoverlapping horizons has an impact on the lower
bound quality. In our formulation, two consecutive sub-
problems with nonoverlapping horizons share common
inventory variables. Specifically, the ending inventory
of the earlier subproblem and the starting inventory
of the later subproblem have costs that are adjusted
jointly by the dual prices of some master problem
constraints. As a result, from a qualitative perspective,
subproblems defined over nonoverlapping horizons
share information only by the cost of their initial and
ending inventory variables; the production and setup
variables of each subproblem are disjoint, and this can
have a negative impact on the lower bound quality.
One way of increasing communication among sub-
problems is by introducing horizon overlaps, which
lead to some setup and production costs to be adjusted
jointly; this, in turn, can give an improved lower bound.
However, horizon overlaps also introduce additional
linking constraints in the master problem, which can
cause degeneracy and poor convergence of column
generation. Therefore, depending on the size of each
instance, zero overlaps might be beneficial because
the column generation inhibits better convergence,
but might also lead to poor lower bounds, because
limited information is shared across subproblems. An
important contribution of our computational study is
to gain insights on when overlapping horizons can
lead to improved performance. We next provide some
technical definitions that facilitate the exposition of the
horizon reformulation.

We define a horizon cover P as a set whose elements
are horizons H of the form H = 8m01m0 +11 0 0 0 1m19⊆ T ,
with m1 >m0. Therefore, each horizon consists of a

certain number of consecutive periods, starting at m0
and ending at m1, and the horizon cover is the union
of possibly overlapping horizons. To characterize the
horizon cover set, we introduce the following notation
(see also Figure 1):

Index set of the horizon cover P: U 2= 811 0 0 0 1 �P�9.
uth horizon: Hu 2= 8m04u51 0 0 0 1m14u591 where

m04u51m14u5 ∈ T 1∀u ∈U .
uth core horizon: H̄u 2=Hu\8m14u591 ∀u ∈U .

Horizon intersection: Lu 2=Hu ∩Hu+11 ∀u ∈U .
Core horizon intersection: L̄u 2= Lu\8m14u591 ∀u ∈U .
Boundary conditions: m14�P�5=m+ 1, and

H0 =H�P�+1 = �.

For convenience, we assume throughout the paper
that whenever a set that defines a constraint is empty,
then the constraint is not defined. Note that some
periods can be common in two or more horizons. The
case where a period is common in more than two
horizons is not of practical interest in our context.
Therefore, we impose the condition Hu−1 ∩Hu+1 = �

for each u ∈U . Finally, we assume that two contiguous
horizons Hu and Hu+1 have at least one common period,
which implies that m14u5 ∈Hu+1, for all u ∈U .

Next, we define production, setup, and inventory
variables for each u-horizon. Note that the last period
of each horizon is used to define the inventory variable
only:

xu
it : production quantity of item i in period t in

horizon Hu, ∀ i ∈ I1 ∀ t ∈ H̄u1 ∀u ∈U .
suit : starting inventory quantity of item i in period t in

horizon Hu, ∀ i ∈ I1 ∀ t ∈Hu1∀u ∈U .
yu
it : equals 1 if a setup occurs for item i in period t in

horizon Hu, 0 otherwise, ∀ i ∈ I1 ∀ t ∈ H̄u1 ∀u ∈U .

In addition, let �tu = 1, if t ∈Hu\Lu−11�tu = 0 other-
wise, for all t ∈Hu1u∈U . Using the above notation,
problem (1)–(5) can be reformulated as follows:

min
{

∑

i∈I

∑

u∈U

∑

t∈H̄u

�tu4scity
u
it+vcitx

u
it5

+
∑

i∈I

∑

u∈U

∑

t∈Hu

�tuhcits
u
it

}

(6)
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s0t0 suit+xu
it =dit+sui1t+1 ∀ i∈ I1∀ t∈H̄u1∀u∈U (7)

xu
it ≤Mity

u
it ∀ i∈ I1∀ t∈H̄u1∀u∈U (8)

∑

i∈I

stity
u
it+

∑

i∈I

vtitx
u
it ≤capt ∀ t∈H̄u1∀u∈U (9)

suit =su+1
it ∀ i∈ I1∀ t∈Lu1∀u∈U (10)

xu
it =xu+1

it ∀ i∈ I1∀ t∈ L̄u1∀u∈U (11)

yu
it =yu+1

it ∀ i∈ I1∀ t∈ L̄u1∀u∈U (12)

xu
it ≥01yu

it ∈80119 ∀ i∈ I1∀ t∈H̄u1∀u∈U (13)

suit ≥0 ∀ i∈ I1∀ t∈Hu1∀u∈U0 (14)

Constraints (7)–(9) and (13)–(14) define a CLST over
the uth core horizon H̄u. This implies that the corre-
sponding inventory variables suit are defined over the
uth horizon Hu = H̄u ∪ 8m14u59. Therefore, period m14u5
is used to associate the ending inventory variables of
each CLST defined over a uth core horizon H̄u, exactly
as period m+ 1 is used to set the ending inventories
to zero in formulation (1)–(5). Constraints (10)–(12)
impose that variables indexing the same period in
two horizons should attain the same values. Finally,
objective function (6) considers the setup, inventory,
and production costs of all horizons. Parameter �tu

is an indicator used for the appropriate allocation of
costs: if a variable is defined in two horizons, then
its cost is allocated to the earliest horizon. Like in
Lagrange decomposition (Guignard and Kim 1987), it
is straightforward to see that the variables indexed
within horizon overlaps can be allocated any fraction
of the original cost, without loss of generality.

Note that a benefit of the above reformulation is its
flexibility. By selecting the parameters m04u5 and m14u5
for each u∈U , one can regulate the number of sub-
problems, subproblem length, and periods of overlap.
Moreover, the formulation remains valid when no over-
lap between horizons exists, i.e., when H̄u ∩ H̄u+1 = �.
In this case L̄u = �, and there are no linking constraints
for the production and setup variables. Finally, the
original formulation (1)–(5) can be considered as a
special case of (6)–(14), where the horizon cover is
a singleton with m0 = 1 and m1 = m + 1. The next
section describes how the above structure can be used
in Dantzig-Wolfe reformulations.

4. Horizon Decomposition
4.1. Initial Formulation
Formulation (6)–(14) decomposes per horizon, with
the exclusion of constraints (10)–(12). Let us note with
(f̄u) the subset of a block of constraints (f ) that refer
to a specific horizon Hu1u ∈ U . Also let 4x1y1 s5u =

44xu
it1y

u
it52 i ∈ I1 t ∈ H̄u3 s

u
it2 i ∈ I1 t ∈Hu5. We then define

the single horizon polyhedron as Wu 2= 84x1y1 s5u � 47̄5u–
49̄5u1 41̄35u–41̄45u1 suim14u5

≤ sdim14u51m
1 ∀ i ∈ I9 and let Eu be

the set of extreme points of conv4Wu5, for each u ∈U .
Note that we bound the ending inventory variables
with the remaining item demand in order to avoid the
use of extreme rays and to tighten the subproblem
formulation. Each extreme point e = 4x̄1 ȳ1 s̄5ue ∈Eu is
associated with the following elements:

cue: total cost of production, setup, and inventory of
horizon Hu according to production plan e, i.e.,
∑

i∈I

∑

t∈H̄u

�tu4scit ȳ
u
ite + vcit x̄

u
ite5+

∑

i∈I

∑

t∈Hs

�tuhcit s̄
u
ite3

zue: fraction of production plan e that is used for
actual production.

The Dantzig-Wolfe reformulation is then as follows:

6˜DW7

min
∑

u∈U

∑

e∈Eu

cuezue (15)

s0t0
∑

e∈Eu

s̄uitezue =
∑

e∈Eu+1

s̄u+1
ite zu+11 e

∀ i ∈ I1 ∀ t ∈ Lu1∀u ∈U\8�P�9 (16)
∑

e∈Eu

x̄u
itezue =

∑

e∈Eu+1

x̄u+1
ite zu+11 e

∀ i ∈ I1 ∀ t ∈ L̄u1 ∀u ∈U\8�P�9 (17)
∑

e∈Eu

ȳu
itezue =

∑

e∈Eu+1

ȳu+1
ite zu+11 e

∀ i ∈ I1 ∀ t ∈ L̄u1 ∀u ∈U\8�P�9 (18)
∑

e∈Eu

zue = 1 ∀u ∈U (19)

sit =
∑

e∈Eu

s̄uitezue

∀ i ∈ I1 ∀ 4t1u5 ∈Hu ×U2 �tu = 1 (20)

xit =
∑

e∈Eu

x̄u
itezue

∀ i ∈ I1 ∀ 4t1u5 ∈ H̄u ×U2 �tu = 1 (21)

yit =
∑

e∈Eu

ȳu
itezue

∀ i ∈ I1 ∀ 4t1u5 ∈ H̄u ×U2 �tu = 1 (22)

zue ≥ 0 ∀ e ∈Eu1 ∀u ∈U (23)

sit ≥ 0 ∀ i ∈ I1 t ∈ T (24)

yit ∈ 801191 xit ≥ 0 ∀ i ∈ I1 t ∈ T 0 (25)

Formulation 6˜DW7 is equivalent to the original for-
mulation, in the sense that they both attain the same
optimal solution. However, the optimal linear program-
ming relaxation objective of 6˜DW7 is always at least
as large as that of the original formulation, because
the subproblems do not have the integrality property
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(Geoffrion 1974). Constraints (16)–(18) correspond to
(10)–(12) and denote that in any period common to
two horizons, the production, setup, and inventory
quantities should attain the same value in both hori-
zons. Constraints (19) together with the nonnegativity
constraints (23) impose that each decision variable
is a fraction of an extreme production plan. Equa-
tions (20)–(22) define the variables of the original
formulation as convex combinations of extreme pro-
duction plans. Although the number of variables and
constraints is large, there are certain reductions that
can be performed, which are described in Section 4.2.

4.2. Model Reductions
6˜DW7 is a valid reformulation of the CLST. Without
loss of generality, constraints (17) and (20)–(21) can be
eliminated. The elimination of the latter is straightfor-
ward because they only map the solution to the original
variable space. To see that (17) is redundant, note that
x̄u
ite = dit + s̄ui1 t+11 e − s̄uite for each e ∈Eu. This implies that
∑

e∈Eu
x̄u
itezue = dit +

∑

e∈Eu
s̄ui1 t+11 ezue −

∑

e∈Es
s̄uitezue = dit +

∑

e∈Eu+1
4s̄u+1

i1 t+11 e − s̄u+1
ite 5zu+11 e =

∑

e∈Eu+1
x̄u+1
ite zu+11 e. We

have shown the following result.

Corollary 1. Constraints
∑

e∈Eu+1

x̄u+1
ite zu+11 e

=
∑

e∈Eu

x̄u
itezue1 ∀ i ∈ I1 ∀ t ∈ L̄u1 ∀u ∈U\8�P�9

are redundant.

We denote 6DW7 the model resulting from (15)–(25)
with the exclusion of redundant constraints.

Note that one cannot eliminate the setup definition
constraints and impose the integrality restrictions on
the extreme production plan variables zse (Degraeve
and Jans 2007, Vanderbeck and Savelsbergh 2006). A
correct reformulation would define, for each extreme
point, a binary variable that describes the setup config-
urations and a continuous variable with the associated
production decisions. However, the usability of this
reformulation is restricted, because the resulting branch-
and-bound tree is unbalanced (Vanderbeck 2011). In
our implementation, we branch on the original setup
variables by fixing them at the subproblems and by
removing the generated columns that do not adhere to
the node branching decisions, therefore using (22) only
implicitly.

4.3. Strength of the Lower Bound
In this section, we investigate the strength of the lower
bound obtained by horizon decomposition. Since an
explicit description of the convex hull of CLST is not
known, we can compare the lower bound strength
with lower bounds obtained by other approaches. The
fact that the subproblems do not have the integrality

property implies that the lower bound obtained by
the LP relaxation of (1)–(5), v̄CLST , cannot be better
than that obtained by 6DW7, v̄DW (Geoffrion 1974).
More interesting is the comparison with the bound
obtained when the 4l1 S5 inequalities (Barany et al.
1984, Miller et al. 2000) are appended to the original
formulation (1)–(5). If we denote this bound by v̄lS , we
can state the following proposition.

Proposition 1. The lower bound v̄DW does not domi-
nate v̄lS , or vice versa.

Proof. Consider an instance with capt ≥
∑

i∈I 4sditm +

stit5 for each t ∈ T . This condition makes the capacity
constraints redundant and the problem decomposes in
a series of single-item uncapacitated problems. Since the
4l1 S5 inequalities describe the convex hull of the single-
item uncapacitated problems, v̄lS ≥ v̄DW . Moreover, this
inequality can be strict. To see this, consider without
loss of generality an instance for which the inequality
sik +

∑

t∈8k10001l9\S xit +
∑

t∈S sditlyit ≥ sdikl is binding for
some fixed i1 k and l such that k < l, and the associated
part of the optimal solution is xik = sdikl3yik = 1, with
all other variables in 8k1 0 0 0 1 l9 being zero. We can then
construct a horizon cover with two subproblems, i.e.,
S = 81129 and let L be the index set of overlapping
periods such that k ∈H1\L, and l ∈H2\L. Then it follows
that v̄lS > v̄DW because the production quantity xik
in subproblem S1 will never be sdikl, because xik =

sdikl does not have the Wagner-Whitin property of
optimality (Wagner and Whitin 1958), and therefore
is not an extreme point of S1. Next, consider a single-
item instance with binding capacity constraints, and
sk = 0 for some period k at an optimal solution. A
horizon decomposition with H1 = 811 0 0 0 1 k− 19 and
H2 = 8k1 0 0 0 1m9 will deliver an optimal solution of the
original problem, so v̄DW = vCLST . However, v̄lS ≤ vCLST

because the (l1 S) inequalities do not suffice to describe
the convex hull of the capacitated problem. �

We can use similar arguments to show that there is no
strict dominance between horizon decomposition and
the decomposition considered by Jans and Degraeve
(2004) and de Araujo et al. (2015). Note that the lower
bound of the latter is at least as strong at v̄lS , since they
apply decomposition to the network reformulation of
Eppen and Martin (1987), which describes the same
convex polyhedron as the 4l1 S5 inequalities. Finally,
v̄DW is at least as strong as the lower bound obtained by
the per period decomposition of Pimentel et al. (2010),
since their per period decomposition formulation is a
special case of a horizon decomposition, where each
horizon defines a single-period subproblem for each
period.

5. A Branch-and-Price Algorithm
Although the relaxation of 6DW7 can give a strong
lower bound in most problems, the setup variables,
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defined by (22), can be fractional, and therefore a
branch-and-price approach is necessary. We first employ
a simple heuristic that constructs good quality fea-
sible solutions. Then, we do column generation to
find a lower bound for the MIP optimal solution.
Finally, we embed column generation in a branch-and-
bound scheme, thereby developing a branch-and-price
algorithm. This section describes the most important
components of our algorithm and outlines the most
crucial implementation decisions.

5.1. Initialization
The column generation procedure has finite conver-
gence and gives a lower bound only if the restricted
master problem is initialized so that it has a feasible
solution (Lübbecke and Desrosiers 2005). The most
common approach to initialize the master problem
is to introduce columns with high cost that render it
feasible. However, this might result in a large number
of iterations, thereby reducing computational efficiency
(Vanderbeck 2005). To tackle this issue, we employ the
lot elimination heuristic (LEH) utilized by Degraeve
and Jans (2007) on top of introducing high cost columns.
LEH starts by fixing all setup variables to 1 and pro-
gressively eliminates them using some priority rules.
LEH terminates when all setup variables are considered
for elimination. Every time LEH finds an improved
solution, we add it as columns to the restricted master
problem. These columns, in general, do not correspond
to subproblem extreme points, but provide a good
family of points to warm-start the column generation
process. In addition, LEH outputs an initial upper
bound, which is used in later stages of column gen-
eration. Algorithm 1 shows the design of the LEH
procedure.

Algorithm 1 (Lot elimination heuristic)

Input: Problem Data
Output: Feasible solution

[vUB3y
f
it ∈ 801191 xf

it ≥ 01∀ i ∈ I1 t ∈ T ]
1: v̄ ← 8Optimal solution of (1)–(5)2

yit = 11 ∀ i ∈ i1 t ∈ T 93y
f
it ← 11 ∀ i ∈ I1 t ∈ T

2: for t∗ ∈ 8m1 0 0 0 119 do
F Start from last period, try to eliminate

expensive setups
3: Is ← 8i11 0 0 0 1 in92 sci11 t∗ ≥ sci21 t∗1 0 0 0 1≥ scin1 t∗

F Sort items in descending setup costs
4: for i∗ ∈ Is do
5: y

f
i∗t∗ ← 0

6: v̄1 x̄ ← 8Optimal solution of (1)–(5)2
yit = y

f
it1 ∀ i ∈ I1 t ∈ T 9

7: if v̄ < vUB then
8: vUB ← v̄3 x

f
it ← x̄it1∀ i ∈ i1 t ∈ T

F Store improved solution
9: AppendToMaster(yf

it1x
f
it)

10: else
11: y

f
i∗t∗ ← 1

F No improvement, keep setup open
12: end if
13: end for
14: end for
15: return vUB3y

f
it1x

f
it1 ∀ i ∈ I1 t ∈ T

5.2. Hybrid Column Generation and Stabilization
5.2.1. Subproblem Formulation. After initializing

the restricted master program, we start generating
columns. Specifically, from each subproblem we add
the column that has the minimum reduced cost. The
problem of finding the minimum reduced cost can be
formulated as a CLST defined over each subproblem
horizon. We denote by usitu, uyitu, and dcu the dual
values of (16), (18), and (19), respectively, and define
the indicator variable

�tu =











1 if t ∈ Lu−11

−1 if t ∈ Lu1

0 else0

The subproblem is then formulated as follows:

6SPu7 minimize vu=
∑

i∈I

∑

t∈H̄u

4�tuscit+�tuuyitu5y
u
it

+
∑

i∈I

∑

t∈H̄u

�tuvcitx
u
it

+
∑

i∈I

∑

t∈Hu

4�tuhcit+�tuusitu5s
u
it

−dcu (26)

s.t.
suit + xu

it = dit + sui1 t+1 ∀ i ∈ I1 ∀ t ∈ H̄u (27)

xu
it ≤Mity

u
it ∀ i ∈ I1 ∀ t ∈ H̄u (28)

∑

i∈I

stity
u
it +

∑

i∈I

vtitx
u
it ≤ capt ∀ t ∈ H̄u (29)

xu
it1 s

u
it ≥ 01yu

it ∈ 80119 ∀ i ∈ I1 ∀ t ∈ H̄u (30)

0 ≤ sui1 m14u5
≤ sdim14u51 m

∀ i ∈ I 0 (31)

Although 6SPu7 is a CLST itself, it has smaller dimen-
sion than the original CLST (1)–(5) and it is usu-
ally easier to solve efficiently. Despite the fact that
a smaller problem dimension does not necessarily
imply increased efficiency, there are two arguments
that justify this claim in the present context. First, given
that the problem structure is the same, instances of
small dimension will, on average, be solved to opti-
mality faster than larger ones. Second, an early result
by Manne (1958) implies that when the number of
items is large compared to the number of periods,
the single-item uncapacitated lot-sizing convex hull
relaxation of CLST gives an optimal solution that is a
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good approximation of the problem with integrality
constraints, in the sense that the number of fractional
variables that should be binary is limited. The latter
convex hull is described by the 4l1 S5 inequalities of
Barany et al. (1984). Since most modern solvers are
able to add the violated 4l1 S5 inequalities as cutting
planes (Belvaux and Wolsey 2000), problems of short
periods have tight LP relaxations and can be solved
efficiently. These observations are confirmed by our
computational experiments, where subproblems were
solved efficiently by a modern MIP solver.

5.2.2. Column Generation. When the optimal objec-
tive function value vu is negative, we append the
corresponding optimal solution vector as a column to
the restricted master problem 6DW7. Next, we resolve
6DW7 and use the resulting set of optimal dual val-
ues to resolve subproblems 6SPu7. This procedure
terminates when no columns price out, i.e., when
∑

u∈U min4vu105 = 0. It is worth noting that a valid
lower bound on the original problem objective value
is at hand throughout column generation. If vr

RMP is
the optimal objective value of the restricted master
problem at iteration r , then a valid lower bound is
vr
LB = vr

RMP +
∑

u∈U min4vu105.

5.2.3. Stabilization and Algorithmic Refinements.
It has been observed by many researchers that the
primal solutions of the restricted master problem are
usually degenerate (Vanderbeck 2005, Lübbecke and
Desrosiers 2005, du Merle et al. 1999). This degeneracy
harms the efficiency of column generation: it implies
that the dual restricted master problem has multiple
optimal solutions and therefore the dual optimal solu-
tion at hand might not be an accurate representation of
the optimal dual space. If a dual optimal solution of
bad quality is used to price out columns in the subprob-
lems, then the generated columns may not be used in
the optimal solution of the subsequent restricted master
problem. In this case, column generation takes a degen-
erate step. This phenomenon has severe impact on the
algorithmic performance, and it is usually magnified
as the final optimal solution is approached, thereby
called the tailing-off effect (Vanderbeck 2005).

We employ several techniques to stabilize column
generation. During early iterations, we use a hybrid
column generation-Lagrange relaxation scheme, similar
to those described in Degraeve and Peeters (2003).
More specifically, after using the dual values of the
restricted master to price out new columns, we do
not add the new columns to the master immediately
but generate a new set of dual values via subgradient
optimization (Fisher 2004). This updating process is
deemed to lead to better quality dual prices, and it has
the added benefit that no LP solution is required. It is
called whenever column generation takes a degenerate
step, i.e., when the optimal master objective remains

the same in two consecutive iterations. We also adopt a
two-phase approach, using both approximate and exact
solutions. During phase I, we restrict the dual space of
the restricted master program 6DW7 by introducing arti-
ficial variables on the primal space, as described in du
Merle et al. (1999). This technique reduces the number
of degenerate iterations via reducing the feasible dual
space. In addition, during the early stages of column
generation the aim is to generate columns that describe
progressively more accurate inner representations of
the primal space of 6DW7. Toward this end, we solve
the subproblems to feasibility, and we also append all
feasible solutions that price out. Throughout phase I,
valid lower bounds are calculated using the subprob-
lem lower bounds: vr

LB = vr
RMP +

∑

u∈U min4v̄u105 at
iteration r , where v̄u is a lower bound of 6SPu7. When
�vr

RMP − vr
LB� ≤ � for some given � > 0, we switch to

phase II, where we apply standard column generation.
In our implementation, � = 0005% was found to strike
a good balance of time allocated to fast approximate
pricing and to exact pricing. Algorithm 2 outlines the
steps of the hybrid column generation algorithm.

Algorithm 2 (Hybrid column generation)

Input: Problem Data, feasible solution
[vUB3y

f
it ∈ 801191 xf

it ≥ 01 ∀ i ∈ I1 t ∈ T ]
Output: If vLB <vUB: Node relaxation

[vLB3y
r
it ∈ 601171 xr

it ≥ 01 ∀ i ∈ I1 t ∈ T ],
otherwise vLB

1: InitializeMaster
F Adds stabilization variables and feasible

solutions from LEH
2: v0

M ← vUB3 c ← 13 solutionMode = Feasiblity
3: loop
4: (vc

M , duals) ← SolveMaster
F Store the objective value and the

dual prices
5: if �vc−1

M − vc
M �> � then

F If step is not degenerate, solve
subproblems

6: (pricedOut, vLB, columns)
← SolveSubproblems(duals,

solutionMode)
7: else F Otherwise, solve Lagrange relaxation,

store multiple columns
8: (pricedOut, vLB, columns)

← LagrangeRelaxation(duals,
solutionMode)

9: end if
10: if vLB >vUB then

F Exit, the node will be pruned
11: return vLB

12: end if
13: if pricedOut or �vc

M − vLB�< � then
F Because of stabilization, vLB >vc

M

is possible
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14: if solutionMode=Optimality then
15: return vLB3y

r
it1x

r
it calculated

from (21),(22)
16: else
17: RemoveStabilizationFromMaster

F After this step vc
M >vc−1

M is likely
18: solutionMode=Optimality
19: end if
20: end if
21: UpdateMaster(columns)

F Add new columns to the master problem
22: c ← c+ 1
23: end loop

5.3. Branching
We branch on the original setup variables using (18)
implicitly. Specifically, we impose the branching restric-
tions at the subproblem level, and we remove existing
columns that do not adhere to the branching con-
figuration of each node. We branch on the earliest
fractional variable, which is an efficient selection rule
for most lot-sizing problems (Van Vyve and Wolsey
2006). Branching occurs only when the node lower
bound is lower than the incumbent value, otherwise we
terminate column generation prematurely and prune
the node. Finally, we adopt a best-first approach, i.e.,
we explore the node with the weakest lower bound
first. This strategy is beneficial when the time spent at
each node is large, because it minimizes the number of
nodes explored in the branch-and-bound tree. In our
computational experiments, we select horizon decom-
positions that deliver very strong lower bounds but the
solution time of each node is rather large. Therefore,
the combination of best-first search and tight lower
bounds constitutes an efficient enumeration procedure.

The algorithm consists of three main parts: branching,
column generation, and pruning. Whenever a node
lower bound is lower than the incumbent upper bound
vUB, we branch and apply column generation to its
children. If during column generation we calculate a
lower bound greater than vUB, we prune the node and
delete the generated columns. This is in contrast with
columns that do not adhere to branching decisions:
we keep the latter in a pool and add them back when
solving nodes in which they are feasible.

5.4. Heuristic Solutions
After employing the LEH procedure that gives a set
of progressively better feasible solutions, we exploit
the root node optimal solution to construct heuristic
solutions using the concept of relaxation induced
neighborhoods (RINS) of Danna et al. (2005). RINS is a
versatile procedure that can be embedded easily in our
scheme, and when the lower bound is strong, it tends
to provide good quality feasible solutions. Specifically,
we formulate the problem on the original space (1)–(5),

select some 005 < l < 1 and set yit = 1 if ȳit > l, yit = 0
if ȳit < 1 − l and yit ∈ 80119 if 1 − l ≤ ȳit ≤ l, where
4ȳit5i∈I1t∈T are the fractional setup variables obtained
by column generation. We search aggressively for a
feasible solution for 100 nodes and if we find one, we
update the incumbent. This is an efficient strategy, but
it can be time consuming if it is applied at every node.
To account for this, we use it every 10 nodes, and
employ a simple rounding heuristic at every other node.
The latter rounds the fractional setup variables to the
closest integer value and solves the resulting extended
network flow problem in the continuous variables. It
was observed that a strong lower bound at the root
node usually leads to a high quality incumbent solution.
This is in line with the theory developed in Larsson and
Patriksson (2006) that argues that heuristic solutions
constructed by near-optimal Lagrange relaxations are
also near optimal. Algorithm 3 outlines the details of
the RINS procedure.

Algorithm 3 (Relaxation-induced neighbourhood
heuristic (Danna et al. 2005))

Input: Problem Data, feasible solution
[vUB3y

f
it ∈ 801191 xf

it ≥ 01 ∀ i ∈ I1 t ∈ T ],
fractional solution
[vr3yr

it ∈ 601171 xr
it ≥ 01 ∀ i ∈ I1 t ∈ T ]

Output: Feasible solution
[vUB3y

f
it ∈ 801191 xf

it ≥ 01 ∀ i ∈ I1 t ∈ T ]
1: for 4t1 i5 ∈ T × I do
2: if yr

it ∈ 601 l7 and y
f
it = 0 then

3: ȳit ← 0
4: else if yr

it ∈ 61 − l117 and y
f
it = 1 then

5: ȳit ← 1
6: else
7: ȳit ∈ 80119
8: end if
9: end for

10: vUB1yf 1xf ← 8Incumbent solution of (1)–(5)2
yit = ȳit1 ∀ i ∈ I1 t ∈ T 3objective value ≥ vr9

11: return vUB3y
f
it1x

f
it1 ∀ i ∈ I1 t ∈ T

6. Computational Experiments
In this section, we aim to shed light on four aspects.
First, we investigate the trade-off between solution qual-
ity and CPU (central processing unit) time by exploring
the efficiency of various combinations of subproblem
sizes and horizon overlaps. To this end, we perform a
full factorial experiment that delivers empirical insights
on which configurations are efficient for which classes
of problems. Second, we compare the strength of the
lower bound obtained by a horizon decomposition to
that of other approaches. Third, we devise a heuristic
implementation based upon a horizon decomposi-
tion and show that it achieves competitive upper and
lower bounds when compared to the best heuristic
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approaches found in the literature. Finally, we bench-
mark a branch-and-price algorithm that implements
horizon decomposition against a recent branch-and-
price algorithm and a state-of-the-art branch-and-cut
solver. All formulations were coded in C++ and the
mixed-integer and linear programs were solved with
CPLEX v12.6. We use a common subproblem size and
horizon overlap, i.e., Hu =H and Lu = L for all u ∈U
with the only possible exception the last subproblem,
which consists of the remaining periods to the end
of the horizon. Experiments were run on a Linux
workstation running a single processor Intel® Xeon®

X5675 @ 3.07 GHz with 96 GB memory. To devise a
fairer comparison with alternative implementations, we
report the relative speed of our machine, according to
Standard Performance Evaluation Corporation (SPEC;
http://www.spec.org). Summary tables, detailed com-
putational results, and all data instances can be found
in the online supplement (available as supplemental
material at http://dx.doi.org/10.1287/ijoc.2016.0691).

6.1. Subproblem Length and Overlap
The usefulness of a horizon decomposition depends
heavily on the subproblem size and on the horizon
overlap. Long-horizon subproblems have the potential
to lead to an improved lower bound, but it may be
time consuming to solve these to optimality. Likewise,
large horizon overlaps can also lead to improved lower
bounds, but render the master programs degenerate
and amplify the tailing-off effect (Vanderbeck 2005). We
assess which configurations of horizon decompositions
are efficient in solving challenging CLST problems. The
criterion used to assess efficiency is the integrality gap,
and time efficiency is measured by average CPU time.

6.1.1. Data Instances. Tuning and testing the algo-
rithm in separate data sets is necessary to avoid any
favorable bias during testing. Since the main focus of
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Figure 2 Sensitivity Analysis for Subproblem Size and Overlap Length
Note. Each point denotes the average measure obtained from 90 instances.

the paper is problems with few items and long horizons,
we generated instances with two, six, and 10 items and
15, 30, and 60 periods, respectively, based on problems
G30 and G30b from Trigeiro et al. (1989), which have
six items and 15 periods. First, we created instances
with 30 and 60 periods by replicating the demand of
each item, and made the capacity constraints harder,
so that the average lot-for-lot capacity utilization was
about 120%. Problems with high capacity utilization are
usually challenging to solve in practice, and therefore
constitute a good test bed for our approach. Using this
utilization level we generated new instances with two,
six, and 10 items, and 15, 30, and 60 periods. Two new
instances were generated for problems with 15 periods
and six items, a total of four, together with G30 and
G30b, and four instances for problems with 30 and 60
periods and two or 10 items. In total, 36 instances, four
for each of the nine (item, period) combinations, were
utilized and 684 runs were performed. We imposed
a time limit of 20,000 seconds after which we kept
the best lower bound if column generation was not
completed.

6.1.2. Subproblem Length and Overlap. The first
round of experiments aimed at identifying the influ-
ence of subproblem length and horizon overlap on
the integrality gap and on CPU time. To this end,
Figures 2(a) and 2(b) show the average integrality gap,
calculated using the best upper bound found and the
root node lower bound in all trials for each instance,
and the average CPU time, respectively.

Some useful preliminary insights can be drawn
from these figures. With respect to the integrality
gaps, both large subproblems and more periods of
overlap improve the solution quality. However, the
three-period overlap configurations deliver larger gaps
when compared to configurations with one or two
periods of overlap. This happens because using a three-
period overlap renders the restricted master programs
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Figure 3 Pareto-Optimal Subproblem Size and Overlap Configurations for Various Item-Period Combinations
Note. The horizontal axis denotes the CPU time and the vertical axis the integrality gap.

degenerate, and therefore more simplex pivots are
necessary to solve them to optimality, and also a larger
number of column generation iterations. As a result,
column generation may fail to terminate before the
imposed time limit and the intermediate lower bound
can be weaker than that obtained with fewer periods of
overlap. The impact of subproblem size seems higher
when no overlap exists and is smaller with two or
three periods of overlap. Interestingly, one period of
overlap leads to drastic reduction of integrality gaps,
whereas a second period of overlap offers a significant
improvement only when the subproblem size is small
(three periods). In other cases, the gap improvement
obtained by a second period of overlap is marginal.
This leads to the conclusion that one period of over-
lap with a medium subproblem size, such as seven
periods, constitutes a good configuration. Considering
CPU times, there is an evident interaction between
subproblem size and overlap length, which is revealed
in configurations with two or three periods of overlap.
Specifically, larger overlaps and subproblems lead to
higher CPU times in general, but there are cases where

small subproblems combined with large overlaps lead
to poor column generation convergence and thereby
high CPU times. This is the case for five period subprob-
lems combined with two or three periods of overlap.
On the one hand, larger subproblems imply fewer
linking constraints for a given overlap and therefore
better convergence, but on the other hand it may be
time consuming to solve them optimally. This evidence,
combined with the marginal gap increase from the
inclusion of a third period of overlap, suggests that a
third overlapping period may not lead to an efficient
computation scheme.

We also investigated which horizon configuration
achieves the best performance in which instances. To
this end, Table A.1 (in the online supplement) and
Figure 3 display a breakdown of the configurations that
deliver the best performance in each instance category,
characterized by the number of items and the number
of periods.

Table A.1 in the online supplement, shows that
nonoverlapping horizons induce better convergence
behavior of column generation and therefore lead to
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faster termination. To perform a more refined analysis,
we consider the trade-off between the integrality gap
and CPU time for various combinations of items and
periods. We call a point Pareto optimal if there exists no
convex combination of other points that has both a
smaller gap and smaller CPU time. Figure 3 graphs the
integrality gap and CPU time of each (length, overlap)
configuration for various instance families, categorized
upon their number of items and time periods. Moreover,
it displays the (length, overlap) configurations that are
Pareto optimal for each family of instances. In terms of
integrality gaps, it is evident that large subproblem
horizons achieve the best performance in all cases, with
the only exception the bottom right graph, that refers to
instances with 10 items and 60 periods, and a medium-
sized subproblem delivered the best average gap. We
also observe that the Pareto-optimal configurations of
Figure 3 are relatively insensitive to the number of
items or the number of periods. For all instance families,
the leftmost part of the lower envelope is very steep,
which means that there are certain configurations that
yield significant gains in gaps, with a minor increase
of CPU time. This is the case when one overlapping
period is introduced, as, for example, in families (�I � = 2,
�T � = 15) and (�I � = 6, �T � = 30), or a larger subpbroblem
is selected, as in families (�I � = 10, �T � = 15) or 4�I � =
10, �T � = 60). In addition, the rightmost part of most
graphs is very also steep, implying that improving
the integrality gap after a certain threshold requires a
lot more CPU time. This is an important observation,
especially for instances with 10 items, in which the
CPU time of configurations with large overlaps or large
subproblems becomes disproportionately large, and
the gap improvement is often marginal.

An interesting question is to which extent our find-
ings generalize to instances with a larger number of
items and periods. To shed light on this, we note that
configurations with three periods of overlap are not
Pareto optimal for families with 10 items and 30 or 60
periods. In addition, many configurations with three-
period overlaps took as much as 20,000 seconds of CPU
time to converge when applied to instances with 10
items, and some did not converge even then, regardless
of the selected subproblem size. This is because of the
large number of linking constraints that are introduced
in the master problem and degrade the convergence
of column generation. Therefore, a computationally
efficient approach would not employ three or more
periods of overlap to instances with 10 or more items.
In fact, Figure 2(a) shows that a three-period overlap
does not generate the best integrality gaps, exactly
because column generation was not able to terminate,
even after 20,000 seconds of CPU time, and returned
the best lower bound at hand. With respect to the
subproblem size, we found that subproblems of 10
items and 20 or more periods could be time consuming

to solve to optimality repeatedly within column genera-
tion. Thus, in our computational experiments, we select
subproblems of at most 20 periods. We should note that,
instances with very long horizons and a small number
of items could have other efficient configurations that
were not revealed by our computational experiments.
For example, an instance with 300 periods and four
items could be solved efficiently with a subproblem
size of 40 periods, if the MIP solver is able to solve
these large subproblems efficiently. Finally, other factors
beyond the number of items and periods contribute to
whether a specific decomposition configuration delivers
strong or weak lower bounds. For example, an instance
in which all items have zero starting inventory in peri-
ods t11 t21 0 0 0 1 tk in an optimal solution, can be solved
optimally if we select subproblems with horizons
811 0 0 0 1 t1 − 191 8t11 0 0 0 1 t2 − 191 0 0 0 1 8tk1 0 0 0 1m9, because
extreme points of these subproblems can reconstruct
the optimal solution.

Despite the aforementioned limitations, the computa-
tional study validates the importance of overlapping
horizons and of large size subproblems. We use qualita-
tive insights from this experiment to select appropriate
horizon configurations in our subsequent experiments.
Specifically, it is desirable to select Pareto-optimal
configurations that lie on the lower left part of the
efficient frontier, because they strike a good balance
between CPU time and integrality gap. In practice,
for hard problems we might want to sacrifice CPU
time in order to improve the lower bound quality.
Thus, when the number of items is small, we utilize
horizon covers with large subproblems and overlaps.
For a medium number of items, such as six items, it
is preferable to select large subproblems and one or
two periods of overlap. For problems with a larger
number of items, medium subproblems and one period
of overlap seem to constitute a good choice, unless the
problem horizon is short, in which case it might also
be efficient to select large subproblems. Finally, we note
that for problems with more than 15 items, introducing
one period of overlap can improve the integrality gap,
but it also increases the CPU time disproportionally.
For such problems, we select configurations without
any overlap.

6.2. Lower Bounds
In this section, we compare the lower bounds obtained
by horizon decomposition to that obtained by other
approaches.

6.2.1. Trigeiro Instances. We use the seven instances
of Trigeiro et al. (1989) that have been used by several
other authors to demonstrate the strength of the lower
bounds generated by horizon decomposition. To select
a horizon configuration that delivers competitive lower
bounds, we devise selection rules based on the conclu-
sions of Section 6.1. To this end, we utilize single-period
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overlaps for instances with six and 12 items, as Figure 3
suggests they are efficient, and no overlaps for instances
with 24 items, since overlaps would introduce a large
number of linking constraints that might lead to slow
convergence. Since these problems have relatively short
horizons, and instances with up to 15 periods are easy
to solve, we select �H � = �T /2� as subproblem horizons.
Alternatively, one could select from the configurations
displayed in Figure 3. However, even simple selection
policies have the potential to lead to competitive lower
bounds. It is worth noting that �H � = �T /2� might not
be a good selection policy for instances with longer
horizons because the resulting subproblems might be
hard to solve. Table A.2 in the online supplement com-
pares the lower bound obtained by horizon (HD), item
(DJ) (Degraeve and Jans 2007) and period decomposi-
tions (PD) (de Araujo et al. 2015, Jans and Degraeve
2004), and the approximate extended formulation (AEF)
approach of Van Vyve and Wolsey (2006).

The comparison of lower bounds confirms the conclu-
sions of our previous experiments. Specifically, horizon
decomposition gives excellent lower bounds for prob-
lems with a relatively small number of items. For
instance, for G30 in particular we are able to close
the gap and obtain an integral solution using horizon
decomposition. To the best of our knowledge, the lower
bounds for five out of seven instances are the best
known in the literature, and for the remaining two
instances AEF obtains a better bound. However, any
conclusions based on seven instances might be of lim-
ited validity. Therefore, the next paragraph considers a
larger set of instances, namely, the challenging data set
of Süral et al. (2009).

6.2.2. Süral. Süral et al. (2009) constructed a new set
of challenging CLST instances by modifying the Trigeiro
et al. (1989) test problems. Specifically, they used 20
problems with 12 and 24 items and 15 and 30 periods,
and constructed new instances with 10 and 15 periods
by truncating the horizons of the original problems.
Further, they set the setup costs to zero for all problems
and created two versions of each instance: a homogeneous
version, in which holding costs are equal to 1, and a
heterogeneous version, that uses the original holding
costs. In total, 50 homogeneous and 50 heterogeneous
instances were created. Süral et al. (2009) observed that,
perhaps surprisingly, problems without setup costs but
with setup times seem to be a lot more challenging
to solve compared to their counterparts with positive
setup costs. Specifically, they show that the algorithm
of Trigeiro et al. (1989) delivers an average gap of 0.97%
for problems with both setup times and setup costs,
and a gap of 33.86% on problems with setup times but
without setup costs. Further, they explain that much
of this gap is due to poor lower bounds, and not so
much due to bad feasible solutions. In their paper,
Süral et al. (2009) obtain a lower bound by applying

Lagrange relaxation to an extended formulation of the
problem. The study of Müller et al. (2012) also uses
these instances to investigate the performance of a large-
scale neighborhood search heuristic. Although their
focus is on upper bounds, they are able to obtain good
quality lower bounds by iteratively feeding incumbent
solutions to CPLEX (v12.1) and letting it solve the
root node, exploiting that improved incumbents may
lead to an improved lower bound during presolve.
This is possible because some reduced cost fixing
operations of the presolve phase make use of the
structure of the incumbent. Table A.3 in the online
supplement shows the CPU time and integrality gap
for the horizon decomposition (HD), the neighborhood
search heuristic of Müller et al. (2012) (ALNS), and
the Lagrange-relaxation-based heuristic of Süral et al.
(2009) (SDW). The integrality gap is measured using
the best upper bound found by all approaches, and
therefore constitutes a measure of the lower bound
quality.

A first conclusion is that although HD requires
more CPU time, the lower bound quality it delivers
is superior to that obtained by SDW and ALNS. In
particular, the average gap of HD is 33% and 50% less
than that of SDW and ALNS, respectively, whereas
this difference is amplified for problems with 10 or 15
periods. Because our implementation uses 150 seconds
of CPU time, we need to strike a fine balance between
the obtained lower bound quality and the CPU time
used. To this end, Figure 3 shows that increasing the
subproblem size while maintaining a zero overlap
leads to improved lower bounds without consuming
too much CPU time, for instances with 10 items. This
is contrary to introducing a single period of overlap, in
which case the CPU time increases considerably. For
this reason, we have decided to select configurations
with zero overlap and relatively large subproblems
with �H � = T /2.

6.2.3. Müller. The study by Müller et al. (2012)
extends the instances of Süral et al. (2009) to problems
with longer horizons. In particular, the authors replicate
the horizon of each of the original instances that Süral
et al. (2009) used and construct (i) instances of 30 and
45 periods, by replicating the demand of the original
15 period instances, and (ii) instances of 60 and 90
periods, by replicating the demand of the original 30
period instances, for both homogeneous and heteroge-
neous cases. In total, they construct 80 more instances.
Table A.4 in the online supplement reports the average
integrality gap calculated by taking into account the
best upper bound found by both approaches when the
time limit for horizon decomposition is 300 (HD300)
and 600 (HD600) seconds, respectively.

Table A.4 in the online supplement shows that HD
attains systematically lower bounds of better quality,
even when the number of periods is large, the only
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exception being heterogeneous instances with 24 items
and 30, 60, or 90 periods. A more general conclusion
from the study of lower bounds is that some horizon
decompositions are able to obtain very competitive
lower bounds, even if the selection of subproblem size
and overlap is made based on simple qualitative rules.

6.3. A Heuristic Implementation
In some production planning environments, it is useful
to employ heuristics that find solutions of guaranteed
quality in a short amount of time. In this section, we
implement a heuristic version of our approach and
compare it to the results of Müller et al. (2012), whose
approach is the most competitive in the CLST literature.
In our implementation, we stop the column generation
after 300 or 600 seconds and apply the relaxation
induced neighborhood heuristic, which then runs for
at most 50 seconds. When column generation is not
complete at the root node, we use the best lower bound
obtained by Lagrange relaxation. As our objective is to
generate good lower and upper bounds within a tight
time limit, we do not use overlapping horizons in our
heuristic implementation. We also report results on
instances with 30 or more periods, since on problems
with smaller horizons, both approaches produce results
of similar quality. For instances with 30 periods, we use
two subproblems of size 20 and 10 periods, respectively.
For all other instances, we use a subproblem length
of 30 periods, with only a possible exception of the
last subproblem, which accommodates the remaining
periods. Table A.5 in the online supplement shows
the integrality gaps obtained by ALNS and horizon
decomposition after 300 (HD300) and 600 (HD600)
seconds, respectively. The integrality gap reported for
each method is calculated using the best upper and
lower bound of which that method returned and is
used as a measure of overall performance. To indicate
clearly the upper bound quality, Table A.6 in the online
supplement reports the integrality gap calculated when
the best lower bound is used, thereby providing a
measure that directly assesses the upper bound quality.

The comparison suggests that HD delivers overall
better integrality gaps, both for homogeneous and
heterogeneous instances. Table A.5 in the online sup-
plement shows that HD300 gives significantly better
gaps than ALNS for all 12 item instances, whereas it
also gives better gaps for some of the 24-item instances.
HD600 always gives the best gaps, with the hetero-
geneous 24-item 60-period instances being the sole
exception, in which ALNS is only marginally better.
On the upper bound quality, Table A.6 in the online
supplement shows that both HD approaches com-
pare very favorably with ALNS, with HD300 being
marginally worse and HD600 marginally better than
ALNS. This result seems striking at first, because ALNS
is a sophisticated heuristic designed specifically to

obtain good quality upper bounds. However, it is in
line with a result of Larsson and Patriksson (2006), that
incremental heuristics that start from a near-optimal
lower bound provide solutions of good quality.

6.4. Comparison with an Alternative
Branch-and-Price Implementation

Pimentel et al. (2010) employ formulation (1)–(5) to
formulate and compare three different decomposi-
tion schemes for capacitated lot sizing: (i) the item
decomposition, where the capacity constraints (4) are
considered as linking constraints and each subproblem
is a singe-item uncapacitated lot-sizing problem; (ii) the
period decomposition, where the demand balance
constraints (2) are considered as linking constraints,
and each subproblem is defined over a single period;
and (iii) a multiple decomposition, in which they apply
both (i) and (ii) simultaneously. In their computational
experiments, the period decomposition was the most
competitive branch-and-price implementation, despite
the fact that multiple decomposition gives a better
lower bound. Table A.7 in the online supplement com-
pares the results of their product decomposition with
a horizon decomposition implementation that uses
zero overlap and 10-period subproblems. Pimentel
et al. (2010) run their algorithms with a 3,600 CPU
time limit, and used a Pentium IV to perform their
experiments. According to SPEC (http://www.spec.org)
our machine is about 70% faster, and we therefore pose
a time limit of 1,000 seconds, to ensure that our results
are comparable.

Table A.7 in the online supplement shows that
horizon decomposition achieves a better performance
in most cases, even when the selected configuration
does not contain any overlaps, which could improve the
lower bound. Specifically, the product decomposition
delivers integrality gaps of better quality in eight of
36 instances, the horizon decomposition in 26 of 36
instances, and both implementations solve all instances
of x11117 and x11127 to optimality. Pimentel et al. (2010)
do not report individual lower and upper bounds for
each instance, and therefore separate comparisons of
upper and lower bounds are not possible. It should be
noted that alternative configurations could possibly
deliver better integrality gaps in the same amount of
time. However, a zero overlap with a large subproblem
size strikes a good balance between obtaining a good
quality lower bound and directing the heuristics to
obtain a good quality upper bound.

6.5. Comparison with Branch and Cut
We also compared horizon decomposition against
CPLEX v12.6. The purpose of this comparison is to
investigate whether a horizon decomposition approach
delivers competitive results against a state-of-the-art
commercial solver for certain classes of problems. Since
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our algorithm uses CPLEX to solve the subproblems,
the interpretation of our results should be that in some
classes of hard problems it is more efficient to use
branch-and-cut technology within a carefully selected
branch-and-price horizon decomposition rather than as
a stand-alone solver. Since the suggested methodology
delivers a lower bound, the main focus on our exper-
iments is the strength of the lower bound obtained
by each approach. However, we also assess the final
integrality gap by taking into account the best feasible
solution that each method finds.

6.5.1. Data. We focus on problems with small items
to periods ratios, since they seem to be the most chal-
lenging ones (see also Müller et al. 2012). Specifically,
we generated sets of 10 problem instances, each with 2,
4, 6, 8, and 10 items and 100 periods. In total, 50 new
problems were constructed. The average capacity uti-
lization was 120%, with some instances that need initial
inventory for feasibility. To the best of our knowledge,
this is the first data set that includes instances that need
initial inventory. Although it is well known that high
capacity utilizations characterize hard problems, it is
usually the case that the resulting data set is infeasible
without initial inventory. Trigeiro et al. (1989, p. 359),
who constructed the most widely used CLST data set,
write the following:

Rather than solve the NP complete feasibility test for
each problem, we simply threw out problems for which
no feasible solution was found by the heuristic. (0 0 0)
This results in an unavoidable and unmeasurable bias
in problem generation. It occurs mostly for tightly
constrained problems.

Since then, the assessment of this class of problems
has been neglected. Figure 4 graphs the average root
gap of CPLEX v12.6 and the number of nodes explored
in 3,600 seconds against the number of items �I �.

Two useful conclusions can be drawn. First, the
root node integrality gaps are between 25% and 39%,
suggesting that solving these instances to within an
acceptable tolerance may be challenging. To put these
numbers in perspective, for the seven instances from
Trigeiro’s G data set that are supposed to be among
the hardest (Van Vyve and Wolsey 2006), CPLEX v12.6
has an average root gap of 2.54% and needs an aver-
age 60,000 nodes and 200 seconds to solve them to
optimality. Moreover, for the instances examined in
Müller et al. (2012) and Süral et al. (2009) the average
gaps vary between 14% and 20%. Second, the average
number of nodes explored generally decreases as the
number of items increases, since the linear programs
at each node become larger. This is not the case for
10-item instances, possibly because CPLEX might adopt
a different branch selection strategy. With these conclu-
sions at hand, it is useful to explore the performance
of a horizon decomposition approach.
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Figure 4 Average Root Integrality Gap and Number of Nodes
Explored by CPLEX

Note. Time limit is 3,600 seconds.

6.5.2. Selection of a horizon configuration. To
devise a good horizon configuration, we use insights
from the computational experiment of Section 6.1. Our
intention is to utilize configurations that achieve a
good lower bound at the root node of the branch-
and-bound tree. We utilize simple qualitative rules to
determine a well-performing configuration, suggesting
that horizon decompositions can achieve competitive
performance without sophisticated selection rules. From
our computational experiments, we observe that two-
period overlaps achieve the smallest, overall, integrality
gaps. To this end, for instances with a small number of
items, namely, two or four items, we devise two-period
overlaps, combined with a large subproblem size,
namely, 12 periods. We choose 12 periods instead of 10
so that all subproblems have equal length. For problems
with 6, 8, and 10 items, we select smaller subproblems
and overlaps. In particular, we use medium-sized
subproblems, with six periods, and a single period of
overlap.

6.5.3. Horizon decomposition and branch and cut.
Table A.8 in the online supplement reports the relative
performance of CPLEX and horizon decomposition at
the aforementioned problems. In particular, the small
integrality gaps indicate that horizon decomposition
constitutes a promising approach, particularly for
problems with a small number of items. It is worth
noticing that although CPLEX explores more nodes
and therefore it is more likely to find good heuristic
solutions, the final average gaps are in favor of horizon
decomposition, due to the stronger lower bounds that
it obtains. Finally, the maximum benefit of horizon
decomposition is demonstrated in instances with two
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items. Specifically, we were able to solve to optimality
seven of 10 instances, three of which at the root node.
The average CPU time for these 10 instances is 89
seconds. For the same instances, CPLEX obtained an
average gap of 3.7% after one hour of CPU time.

7. Generalizations
In this section we demonstrate potential generalizations
of the horizon decomposition approach. First, we
present an extension that stems naturally from our
work in the CLST that fits well to problems with sparse
constraint matrices. Then, we consider an alternative
approach that is deemed more appropriate for problems
with dense constraint matrices. Both methods are
applicable to generic mixed-integer linear programs,
which we consider in the following form:

6P7 min cT x (32)

s0t0 Ax = b (33)

x ∈X0 (34)

The set X describes trivial restrictions such as integrality
constraints and range bounds on single variables. We
let I 2= 811 0 0 0 1 c9 be the variable index set and R 2=
811 0 0 0 1 r9 be the row index set. For notational simplicity,
we interpret indexing of a vector or matrix over a set
as a reference to the quantities defined over this set.
We show that each of the following generalizations
takes advantage of different structural characteristics in
order to decompose the problem efficiently.

7.1. Extension of the Horizon Decomposition
Principle: Row Partitioning

The essence of horizon decomposition is about replicat-
ing variables that are in multiple constraints in such a
way that the problem matrix is decomposed. We parti-
tion the row index set R into two mutually exclusive
and exhaustive sets R1 and R2, i.e., R=R1 ∪R2 and
R1 ∩R2 = �. The extension to more sets, and also the
case with R1 ∩R2 6= � are straightforward and are omit-
ted to ease the exposition. It is of interest to identify
which variable indexes are common in sets R1 and R2.
To this end, we define V̄s = 8i ∈ I 2 ∃j ∈Rs with aij 6= 09
for s ∈ 81129, the index set of variables that appear in
Rs , V = V̄1 ∩ V̄2, the index set of variables that appear
both in R1 and R2, and Vs = V̄s\V for s ∈ 81129, the
index set of variables that appear exclusively in Vs.
Using this notation and selecting a � ∈ 40115, we can
recast problem [P] as follows:

6P17 min
{

cTV1
xV1

+ cTV2
xV2

+�cTV x
1
V + 41 −�5cTV x

2
V

}

(35)

s0t0 AR1V1
xV1

+AR1V x
1
V = bR1 (36)

AR2V2
xV2

+AR2V x
2
V = bR2 (37)

x1
V − x2

V = 0V (38)

xV 1 ∈XV 1 xV 2 ∈XV 2 x1
V 1x

2
V ∈XV 0 (39)

[P] has structure that is amenable to Dantzig-Wolfe
decomposition, and it constitutes a generalization of the
lot-sizing formulation (6)–(14) presented in Section 3.2.
Specifically, in our application sets R1 and R2 capture
rows indexed over periods 811 0 0 0 1 k9 and 8l1 0 0 0 1m9,
respectively, for some k1 l ∈ T with l ≤ k+ 1. Set V1 cap-
tures the indexes of variables found exclusively in the
first subproblem, i.e., 4xi11yi11 si11 0 0 0 1 xil−11yil−11 sil−15
for each item i ∈ I , and similarly set V2 those found
only in the second subproblem. Set V models the
indexes of variables defined over the overlap, i.e.,
4xil1yil1 sil1 0 0 0 1 xik1yik1 sik1 sik+15 for each item i ∈ I .

In classes of problems where the constraint matrix has
an obvious block diagonal substructure, implementing
a row partition is relatively straightforward: one has
to regulate the subproblem size and horizon overlap
based on empirical data. For problems with sparse
matrices but no obvious structure, an issue that arises
naturally in formulating 6P17 is that of row partition
selection. There is a stream of literature that considers
the problem of rearranging the constraint matrix in such
a way that it exhibits a block-triangular substructure.
To the best of our knowledge, Martin (1999) was the
first to formulate the problem of rearranging a matrix
to decomposable format as a MIP. Specifically, he
introduced the matrix decomposition problem as that
of decomposing a matrix in bordered diagonal form,
given the number of blocks and the size of each block.
The recent work of Martin et al. (2011) formulates the
same problem as a hypergraph partitioning problem.
Moreover, they use the resulting solution within an
automatic Dantzig-Wolfe reformulation approach and
show experimentally that their approach delivers high-
quality dual bounds for some challenging MIPLIB
2003 and MIPLIB 2010 instances. A key difference with
our approach is that the algorithm they devise tries
to identify hidden structures and come up with one
decomposition, whereas the horizon decomposition
approach utilizes a family of reformulations, from
which the user can select the most suitable one for any
particular instance. Although our formulation of 6P17
does not require any structure, one can use the two
aforementioned approaches to construct decomposable
index sets and decide on the size of the overlaps
accordingly.

7.2. An Alternative Generalization: Column
Partitioning

The partitioning approach developed in Section 7.1 is
well suited to problems with sparse constraint matrices.
This is because the number of linking constraints is
small and the column generation process exhibits better
numerical properties (Martin et al. 2011). This section
aims to present an alternative formulation that is well
suited to problems with dense constraint matrices, such
as set-partitioning problems. Again, we let I be the
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variable index set, and consider variable index sets
H11H2, and L such that H1 ∪H2 = I and H1 ∩H2 = L.
The extension to more partitions is straightforward.
For ease of notation, let xi1 ci1Ai and Xi denote the
components of each entity that refer to indexes in set Hi,
and xl1 cl1Al the components of each entity that refer
to indexes in set L. Then 6P7 can be reformulated such
that it is amenable to Dantzig-Wolfe decomposition as
follows:

6P27 min
{

cT1 x1 + c̄T2 x2

}

(40)

s0t0 A1x1 −�Alx
1
l +s1 =b/2 (41)

A2x2 −41−�5Alx
2
l −s2 =b/2 (42)

x1
l =x2

l (43)

s1 =s2 (44)

x1 ∈X11 x2 ∈X21 x
1
l 1x

2
l ∈Xl1 s11s2 ∈�r 0(45)

The variables s1 and s2 are continuous and their
dimension equals the number of rows of matrix A.
Also, � is a fixed scalar and c̄2i = 0 if i ∈ L, and c̄2i = c2i
otherwise. By dualizing constraints (43) and (44) 6P27
decomposes in two subproblems, defined over the
index sets H1 and H2, respectively. This decomposition
can be beneficial for problems with a large number of
variables and relatively few constraints, or problems
that exhibit structure over index sets of variables. The
issue of selecting a suitable partition is relevant in
this formulation as well. One needs to partition the
variables in such a way that those with similar row
coefficients belong to the same index set H . To the
best of our knowledge, this problem has not been
tackled in the literature, but variants of the methods
of Martin (1999) and Martin et al. (2011) can also be
applied for column partitioning. The effectiveness of
such methods remains to be explored and benchmarked
against alternative approaches.

8. Conclusions and Future Research
We present a horizon decomposition implementation
to the multi-item capacitated lot-sizing problem with
setup times. The problem is decomposed in contiguous
horizons of smaller size, and the subproblems are
of the same type as the original, but have smaller
dimension. The developed methodology suggests a
family of reformulations, which offer flexibility to
regulate the master problem and subproblem size
almost independently. A computational study gives
empirical evidence on which configurations lead to
efficient reformulations. Computational experiments
show that the approach delivers strong lower bounds,
and it outperforms one of the best heuristics in the
literature and another state-of-the-art branch-and-price
algorithm. Further experiments on generated data

sets show its competitive performance against the
branch-and-cut solver CPLEX v12.6. Moreover, the
horizon decomposition methodology is generalizable
and applicable to other classes of mixed-integer linear
programs.

It is only recently that some researchers have started
exploring horizon-like decompositions, and there exist
many directions for future research. The study of
Caprara et al. (2013) applies a similar form of horizon
decomposition to the temporal knapsack problem, and
Bergner et al. (2014) attempt to devise an automatic
reformulation method that identifies hidden structures
in the constraint matrix of each instance and performs
a Dantzig-Wolfe decomposition with striking results
for certain problem classes. The identification of classes
of problems where horizon decomposition can be a
viable alternative to branch and cut remains an open
question. Moreover, an automatic procedure that selects
the member of a family of decompositions that strikes
the best balance between bound quality and CPU time
performance is an area that has not been explored
yet on its entirety. Finally, an alternative scheme that
generates cutting planes from problem substructures,
such as the one devised by Akartunali et al. (2016), is
a promising direction that generates cuts from lower
dimensional projections of the initial formulation and
yet does not require an inner approximation of the
feasible region, which is the case for column generation-
based approaches.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.2016.0691.
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