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a b s t r a c t

Dimensionality reduction aims at reducing redundant information in big data and hence
making data analysis more efficient. Resource-constrained enterprises or individuals often
outsource this time-consuming job to the cloud for saving storage and computing
resources. However, due to inadequate supervision, the privacy and security of outsourced
data have been a serious concern to data owners. In this paper, we propose a privacy-
preserving and verifiable outsourcing scheme for data dimension reduction, based on
incremental Non-negative Matrix Factorization (NMF) method. We emphasize the impor-
tance of incremental data processing, exploiting the properties of NMF to enable data
dynamics in consideration of data updating in reality. Besides, our scheme can also main-
tain data confidentiality and provide verifiability of the computation result. Experiment
evaluation has shown that the proposed scheme achieves high efficiency, saving about
more than 80% computation time for clients.

� 2021 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, big data has attracted people’s attention with the development of the Internet and information technol-
ogy. Companies in all trades and fields are more interested in harnessing big data to conduct business, such as personalized
recommendations, intelligent text input, and intelligence vision surveillance, etc [1,2]. However, due to the large volume and
diversity, big data requires enormous storage resources. Besides, irrelevant or redundant attributes also increase the diffi-
culty of data processing and computational consumption. Therefore, before mining valuable knowledge and hidden informa-
tion, small companies with limited storage and computational capabilities are more likely to outsource data to the cloud
server to perform data dimension reduction [3].

However, the exposure of original data to the cloud server has caused clients’ concerns for data security and privacy [4,5].
Although the cloud server with powerful computing and storage capacity can provide a solid foundation for the rise of out-
sourcing computing, it is also a profit-seeking and unsupervised business [6]. More specifically, once a client outsources his
data to a cloud for completing the calculation, he also loses direct control of the data [7]. On the one hand, the outsourced
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data and final results may contain private information, such as medical records, facial features, consumer information, which
has significant commercial value in targeted advertising. Therefore, the cloud server may retain the data furtively for com-
mercial use without clients’ permission [8,9]. On the other hand, computation-intensive tasks often require more computa-
tional resources. Lack of supervision, the cloud may slack off and return error results for saving costs [10]. If there is not an
effective way to detect the cloud’s misbehaviors, it will cause a loss for the data owner [11]. Therefore, the challenging prob-
lem is how to enable privacy-preserving dimension reduction over mass data while ensuring that the computing results meet cli-
ents’ requirements.

Non-negative Matrix Factorization (NMF) is an important data integration algorithm in multivariate analysis. Compared
with the traditional methods, such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA), NMF
not only can lower data space dimensions but also retain interpretation of the original data when processing non-negative
data. Specifically, traditional methods can approximate a high dimensional matrix X 2 Rn�m with two low-rank matrices
W 2 Rn�r and H 2 Rr�m, where r � n;m, while NMF also puts the nonnegativity constraints on both factors, which means
W P 0 and H P 0. Due to its ability to automatically extract sparse and easily interpreted factors, NMF can be used for
large-scale non-negative data to effectively decrease resource waste in subsequent machine learning algorithm processing,
such as image processing, neural computing, speech recognition, and computational biology [12,13]. Considering the non-
negative of real data, in this paper, we are interested in security issues of outsourcing incremental Non-negative Matrix Fac-
torization to a public cloud.

Many works have been done to address data security concerns in outsourcing computing, which ranges from different
fundamental mathematical functions to application-oriented tasks, such as matrix computation [14], machine learning
[15–17]. In recent years, some studies [18,19] have researched the secure problems of outsourcing NMF to a public cloud.
However, their proposed schemes only focus on conventional NMF, which handles static data. At the same time, big data
is often thought of as a data stream, moving at very high transmission speeds. Thus, data outsourced to the cloud in reality
tend to be dynamic rather than static, which means incremental data is more common in data processing [20]. When dealing
with incremental data, the conventional NMF method needs to decompose historical data and newly added data, consume a
large amount of computing and storage resources, and significantly reduce the method’s efficiency. Considering the storage
and computing overhead, clients prefer to real-time data processing to periodically collect data and discard part of the data
to save service costs rather than store large amounts of data for a long time. Therefore, in this paper, we investigate secure
issues faced by outsourcing incremental NMF to a public cloud. We will address two main issues. The first one is how to pre-
serve data privacy while enabling the cloud server to perform incremental NMF. The other is how to achieve results verifi-
ability, which protects clients from fraud.

1.1. Contributions

Focusing on the above challenges, we design a new secure dynamic data outsourcing scheme for incremental NMF. In the
proposed scheme, a resource-constrained client can hand over incremental NMF computing to the cloud server, without the
fear of privacy leaks and deceptive results. The main contributions are summarized below:

� We propose a secure and efficient outsourcing scheme for incremental NMF. The proposed scheme is equipped with easy-
to-implement encryption and verification mechanisms, which can not only preserve data privacy but also provide veri-
fiability of the result returned by the cloud server.
� Our scheme exploits the properties of incremental NMF to support data dynamics in the outsourcing process. To the best
of our knowledge, this is the first effort on dynamic data processing in outsourced NMF.
� Extensive experiments on real-world and synthetic datasets confirm that our scheme achieves a high efficiency for cli-
ents, saving about more than 80% computation time.

1.2. Organization

The rest of the paper is organized as follows. Section 2 gives an overview of related works. Some preliminaries of this
paper are briefly introduced in Section 3. Section 4 outlines the system model and security requirements. Then we go into
details about our scheme in Section 5. Security analyses and performance evaluation are assessed in Section 6 and Sections 7.
Finally, we conclude our paper in Section 8.

2. Related work

Data security research on outsourced computing has been conducted for a long time. At present, most of the research
focuses on the design of applicability solutions for specific computing problems, which can be roughly divided into two cat-
egories: basic computing operations and application-specific computing [21].
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2.1. Outsourcing basic computing operations

The outsourcing research of basic operations mainly involves that how to conduct some basic mathematical operations
under encryption, such as rational number calculation, matrix operation, linear equation, and mathematical optimization.
Typically, cryptography is used to convert outsourced data into encrypted ones, such as homomorphic encryption. Liu
et al. [22] proposed an efficient and privacy-preserving framework for outsourcing rational number calculation, called POCR.
Their scheme utilizes additive homomorphic property to achieve rational number calculation without privacy leakage. Ben-
jamin et al. [23] designed a protocol for secure outsourcing multiplication of matrices, which is also based on additive homo-
morphic cryptosystem. However, due to homomorphic encryption’s computational complexity, it is not a good choice for
extensive data, especially high-dimensional matrices. Therefore, Wang et al. [24] later applied matrix transformation to hide
data privacy, which achieves appropriate security/efficiency tradeoffs. After that, matrix transformation technique is widely
used in the outsourcing matrix research, such as matrix multiplication [25], matrix inversion [26], matrix decomposition
[27] and so on. Duan et al. [18] first considered secure problems in outsourcing NMF. They also employed a matrix transfor-
mation technique to construct outsourcing protocols for NMF. Later, Pan et al. [19] pointed out that their scheme has design
flaws that cannot preserve data privacy and proposed a new framework for outsourcing NMF with enhanced privacy protec-
tion. However, both proposed schemes are only designed for static data and overlooked the importance of the initial value of
matrix factors to the final result.

2.2. Outsourcing application-specific computing

Application-specific computing outsourcing research involves how to design outsourcing solutions for complex applica-
tion scenarios, such as support vector machines (SVM), Bayesian classification, artificial neural network, and optimization
algorithms [28]. Homomorphic encryption is an essential technique used to preserve data privacy. Rahulamathavan et al.
[15] proposed the first outsourcing protocol of SVM, which is based on Pailler homomorphic encryption and secure two-
party computation. Their protocol achieves the same classification accuracy as the ordinary non-encrypted domain. Li
et al. [29] constructed a privacy-preserving outsourcing scheme for the Naive Bayes classification. Later studies focused more
on neural network algorithms, which have a further wide field of application. These works put emphasis on model training
security while others are more concerned with cooperation training with multi-party. For example, Li et al. [30] proposed
two privacy-preserving deep learning schemes based on multi-key fully homomorphic encryption. Their schemes focus
on data privacy during the model training. Phong et al. [31] also paid attention to the model security, which was guaranteed
by homomorphic encryption in their proposed scheme. Esposito et al. [32] targeted at internal security issues for multiple
users in collaborative deep learning and used game theory to solve the interaction problem between users and the cloud.
However, currently due to the limitations of the cryptographic algorithm, works on outsourcing machine learning can
achieve data confidentiality but cost large computation and communication, not practical in application.

3. Preliminaries

In this section, we will introduce the preliminaries related to our work. Before that, we first illustrate some symbols used
in this paper. All processed data is presented in the form of a matrix, which is denoted by capital letters such as A. The aug-

mented matrix is represented by AB½ �. A matrix or vector transpose is represented by �ð ÞT . We denote encrypted A by eA, and
A kð Þ as the result in the k-th iteration. Besides, there is no operator sign in matrix products.

3.1. Incremental NMF

NMF is a new matrix decomposition method, which is inconspicuous by Lee and Seung’s non-negative matrix research in
Nature [33]. Similar to other matrix decomposition methods, it decomposes a high-dimensional matrix into two low-rank
matrices. Specifically, given an original large non-negative matrix X 2 Rn�m

þ , NMF algorithm decomposes it into matrices
W 2 Rn�r

þ and H 2 Rr�m
þ , which is

X �WH: ð1Þ
The column vector in the original matrix X can be interpreted as a weighted sum of all column vectors in the left matrix

W, called base vectors, and the weight coefficients are the corresponding column vector in the right matrix H.
Incremental NMF algorithm involves new data processing. Specifically, matrix A 2 Rn�m

þ and B 2 Rn�p
þ are both non-

negative. Assume that A has been decomposed by NMF, i.e., A �W1H1, while B is the incremental part. We want to update
the matrix factors after adding the incremental part B, which can be view as a new matrix C ¼ AB½ �. Incremental NMF algo-
rithm will exploit the basis matrix W1 to obtain the new basis matrix of C rather than performing NMF on C again.

As illustrated in Fig. 1, the target of Incremental NMF is to find appropriate W and H to minimize the loss function

f W;Hð Þ ¼ 1
2 jjC �WHjj2. The method to obtain W and H follows the idea in [34], which is described as following:
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a) Let W1 and H1 be the matrix factors of A, which is obtained by NMF;
b) Joint the basis matrix W1 with the increment matrix B as D ¼ W1B½ �, then perform NMF on the matrix D to obtain new
basis matrix W. Denote the first r columns of the coefficient matrix as Y1 and the last p columns as Y2, then D �W Y1Y2½ �.
c) Computing new coefficient matrix of A under the new basis matrix using the transformation matrix Y1, which is
Z ¼ Y1H1. Then we can obtain the coefficient matrix H ¼ ZY2½ � of C when joining the matrix Z and Y2. Finally, we get final
results of incremental NMF, which is C �WH.

There are many different NMF algorithms to get two non-negative matrices [35–37]. In this paper, we present multipli-
cation iterative update algorithm for Euclidian distance measure as follows, more details of which can be referred to in [38].

H  H
WTX

WTWH
ð2Þ

W  W
XHT

WHHT ð3Þ

3.2. Matrix transformation

In this paper, we use matrix transformation technology to protect data by balancing practicality and security. In general,
matrix transformation can be achieved by multiplying left or right by an invertible sparse matrix, where each row and col-
umn of the matrix have only one element. The matrix is generated based on two mathematical functions:

Kronecker delta function: is a function of two variables. Given two input numbers x and y, the output value is 1 if the
two values are equal; otherwise, it is 0. Formally, a Kronecker delta function is

dij ¼
1 if x ¼ y;

0 otherwise:

�
ð4Þ

Permutation: is a bijective function that maps all elements of a set to other elements in the set. Denote u : S! S, where
S ¼ s1; s2; . . . ; snf g. u actually rearrange the order of the elements in the set, which is written as

s1; s2; . . . ; sn
s01; s

0
2; . . . ; s

0
n

� �
: ð5Þ

where S ¼ s01; s
0
2; . . . ; s

0
n

� �
. Namely, u sið Þ ¼ sj. Its inverse permutation is u�1 sj

� � ¼ si. A permutation matrix in our scheme can
be constructed by following steps:

a) Taken a parameter k, generate a species space K on a non-empty finite field F, and a random permutation u of the
integers 1;2; � � � ; nf g;
b) Select a set of non-null random number a from K where a ¼ a1;a2; � � � ;anf g;
c) Get a permutation matrix like M i; jð Þ ¼ aidu ið Þ;j, and its inverse is M�1 i; jð Þ ¼ du�1 jð Þ;i=aj.

Fig. 1. Incremental NMF.
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4. Problem statement

In this section, we first formulate the problem in the architecture of our outsourced scheme, then identify adversary
threats and design goals.

4.1. Problem definition

To better illustrate our scheme, we consider a scenario where a client want to perform the NMF method on a non-
negative dataset, while the processed data is continuously updated. In order to save computing overhead, the client decides
to outsource this task to a cloud service provider for processing. Thus, our system consists of two entities: a client CL and a
cloud service provider CSP, as illustrated in Fig. 2.

Driven by some economic motivations, CSP may behave as a malicious party who is not only interested in inferring sen-
sitive information from outsourced data but also tries to cheat in computation to save cost. As illustrated in Fig. 2, to preserve
data privacy, CL will encrypt data before outsourcing to CSP, and carry out verification after obtaining returned results.
Details of each entity are described as follows.

� CL: launches the outsourced scheme, leveraging cloud computing resources to solve problems. To protect data privacy, CL
will encrypt its original data set before outsourcing and check on the validity of the results returned by the CSP.
� CSP: provides CL with unlimited storage space and massive computing power. Upon receiving computing task, CSP per-
forms the calculation as requested by CL and returns the result. Actually, driven by some economic advantages, CSP may
behave as a malicious attacker which not only steals private data but also compromises the computational integrity.

4.2. Adversary threats

In this paper, we assume that CSP is malicious. A malicious CSP can be viewed as an active adversary A. Threats from A

are as follows:

� A can access all ciphertext data sent by CL, and is interested in obtaining all plaintexts, including inputs and final results.
� There is no way to ask A to expose computing details. Thus, A can skip necessary calculations and fake final results to
save computing cost.

In this system, we only focus on secure challenges issued by CSP. External attacks, such as attacking CL directly, refer to
hardware and system security, which is out of the scope of this work. Besides, the communication channels are reliable in
our system.

4.3. Design goals

Considering the mentioned threats, we present three main design goals essential for outsourced computing in this paper.

� Correctness. As long as CL and CSP both follow the computing steps correctly can the final results obtained by CL be
correct.
� Input/Output Privacy. The data outsourced by CL usually contains a large amount of private information. When uploaded
to CSP, CL lose control of the data, but there is no guarantee that the sensitive information will not be abused by CSP.
Therefore, CL needs to encrypt the data to ensure that CSP cannot get any sensitive information from the outsourced data.
In addition, CSP should not have access to any information about the execution results, including intermediate and final
results.

Fig. 2. Architecture of our outsourced scheme.
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� Cheating Resistance. Ensuring that CSP returns the correct results is one of the most important aspects of outsourced
computing services. If CSP returns the correct result, the validation passes. Conversely, the likelihood of any erroneous
outcome passing validation is negligible.

5. Proposed outsourcing scheme

In this section, we construct a privacy-preserving scheme for incremental NMF to process dynamic data.

5.1. System architecture

Assuming that a matrix A composed of m samples has been decomposed by NMF algorithm, CL already gets the matrix
factors W1 and H1. Suppose CL gathers new dataset B after outsourcing A to CSP for NMF, and he wants to update the base
matrix W1. Thus, we can construct the new processed data W1B½ � according to the incremental NMF algorithm. The overall
procedure is depicted in Fig. 3 and the simplified overview is outlined below, which mainly consists of the following four
phases: Preparing, Data uploading, Computing and Results Verification.

� Preparing. This phase contains two steps. First, the client CL outsources encrypted matrix eA to CSP and obtains the final
results W1 and H1. Next, CL generates some secret key matrices for the incremental matrix B and other data to protect
privacy.
� Data uploading. In this phase, CL encrypts all inputs into ciphertexts, then uploads them to CSP to process.
� Computing. This phase is conducted on CSP side. When receiving the encrypted data, CSP runs the NMF algorithm to obtain
the encrypted output and sends them to CL.
� Results Verification. In this phase, upon receiving returned results, CL conducts verification mechanism to detect its cor-
rectness and decrypts results to obtain the plaintext result if the verification is positive; otherwise it rejects them.

5.2. Detailed description

In this section, we will present details of these four phases.

5.2.1. Preparing
In this phase, CL obtains matrix factors W1 and H1 of matrix A (Step 1) and prepares some secret key matrices to protect

data privacy (Step 2).
Step 1. To outsource data A, CL generates three permutation matrices P;Q and R and keeps them as secret encryption/de-

cryption keys SK ¼ P;Q ;Rf g. Then choosing an appropriate r, CL initializes W 0ð Þ
1 P 0;H 0ð Þ

1 P 0 and transforms data into
encrypted form, which are

a.eA �PAQ�1
b.fW 0ð Þ

1  �PW 0ð Þ
1 R�1

c.eH 0ð Þ
1  �RH 0ð Þ

1 Q�1.

CL sends these encrypted data to CSP for NMF, and obtains final results gW1 and fH1 . Because our scheme focus on incre-

mental NMF outsourcing rather than NMF, we skip verification in this step and assume that gW1 and fH1 is correct. Note that if
CL keeps sending incremental data to CSP for process, this step can be skipped.

Step 2. CL constructs three new permutation matrices S and T and adds them into the secret encryption/decryption keys
SK. Then CL initializes W 0ð Þ P 0;H 0ð Þ P 0. To be clear, W 0ð Þ 2 Rn�r

þ and H 0ð Þ 2 Rr� rþpð Þ
þ . We also denote the first r columns of

H 0ð Þ as Y 0ð Þ
1 and the last p columns as Y 0ð Þ

2 .

Fig. 3. The overall procedure of our scheme.
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5.2.2. Data uploading
After Preparing, CL first encrypts all data that needs to be send to CSP using SK, including

a. eB �PBS�1
b.fW 0ð Þ �PW 0ð ÞT�1

c.fY1
0ð Þ �TY 0ð Þ

1 R�1

d.fY2
0ð Þ �TY 0ð Þ

2 S�1

Next, before sending to CSP, CL needs to join the block matrices into the augmented matrix:

a.eH 0ð Þ � fY1
0ð ÞfY2

0ð Þ
h i

b.U�1 � Q�1 0
0 S�1

	 


Then, CL sends eB;fW 0ð Þ; eH 0ð Þ to CSP.

5.2.3. Computing

This phase takes place in CSP. Because CSP keeps gW1 in case CL sends new data for process. Thus, after receiving encrypted

data from CL, CSP joints gW1 and eB as eD ¼ gW1
eBh i

. Then CSP will runs NMF algorithm to decompose the matrix eD with

fW 0ð Þ; eH 0ð Þ, and obtain optimal solution fW ; eH and return the final results to CL. Besides, CSP keeps fW for another incremental
data processing.

5.2.4. Results verification
To verify the correctness of the results, we put forward an algorithm which incorporates the stop condition in ANLS

method [36]. Generally, fW kð Þ ¼ fW k�1ð Þ and eH kð Þ ¼ eH k�1ð Þ imply the solution are found. However, due to the particularity of
iterative method, a dishonest CSP may reply the result of the previous k� 1ð Þ-th iteration for the k-th iteration to save com-

putation cost. This misbehaviour cannot be detected by only checking whether fW kð Þ ¼ fW k�1ð Þ and eH kð Þ ¼ eH k�1ð Þ are hold.

Besides, keD �fW eHk < �is often used to detect forged results, but this condition does not reveal whether a solution is close
to a stationary point. It fails to detect results that are not fully calculated. This defect can be rectified by the stop condition in
ANLS method, which is

kr�f fW ; eH� �
kF 6 �kr�f fW 0ð Þ; eH 0ð Þ

� �
kF ð6Þ

where fW and eH are the final solutions. Therefore, our verification steps can be concluded as shown in Algorithm 1.

Algorithm1: Results Verification
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6. Analysis on the proposed scheme

In this section, we will show that our proposed scheme has achieved all design goals with the theoretical analysis.

6.1. Correctness guarantee

Theorem 1. In our scheme, as long as CL and CSP both follow the scheme honestly, the final results W ;H satisfy C �WH.

Proof. When CSP runs NMF algorithm to decompose the matrix eD amd obtain fW and fY1
fY2

h i
, we have

gW1
eBh i
� fW fY1

fY2

h i
: ð7Þ

Thus,

gW1 ¼ fWfY1 : ð8Þ

Since eA �gW1
fH1 , we have

eA � fWfY1
fH1 ; ð9Þ

which implies

eAeBh i
� fW fY1

fH1
fY2

h i
¼ fW eZfY2

h i
¼ fW eH: ð10Þ

After decryption, we can obtain

C � P�1fWTT�1 eHU ¼WH � ð11Þ

6.2. Privacy preserving

Definition 1. Let f x; yð Þ ¼ f CL x; yð Þ; f CSP x; yð Þð Þ be the protocol outputs of CL and CSP who run the protocol p, respectively,
where x is the private input of CL and y is the private input of CSP. The view of CL during an execution of p is denoted by
VIEWp

CL x;mCL
1 ; . . . ;mCL

t

� �
is and that of CSP is VIEWp

CSP y; mCSP
1 ; . . . ;mCSP

l

� �
, where mj represents the jth message CL or CSP

received. We say that the protocol p is securely computes f against semi-trusted adversaries if there exist polynomial time
simulators SCL and SCSP such that

SCL x; f CL x; yð Þð Þ 	 VIEWp
CLð12Þ

SCSP x; f CSP x; yð Þð Þ 	 VIEWp
CSPð13Þ

where the symbol 	 represents computational indistinguishability.

Theorem 2. (Input/Output Privacy) Our scheme is secure in the semi-trusted model.

Proof. We present the security proof of Data uploading and Computing due to page limitation. Security proof for Preparing
can be obtained similarly, while security proof for Results Verification is presented in Theorem 3.

There is non-interactive between CL and CSPwhen CL encrypts all data and CSP joints gW1 and eB, and matrix encryption is
secure under brute-force attack (the probability is 1

jj jn!r!. Then we first create simulator for CL. The view of CL is

VIEWCL ¼ B;W 0ð Þ;H 0ð Þ
� �

;mCL
1

� �
, where mCL

1 is the message received from CSP in Computing. To simulates the view VIEWCL of

CL, we need to construct the simulator SCL
eB;fW 0ð Þ; eH 0ð Þ

� �
; fW ; eH� �� �

. According to Theorem 1, SCL can construct the

simulator to simulate mCL
1 . Therefore, SCL 	 VIEWCL. Similarly, the view of CSP is VIEWCSP ¼ gW1 ;mCSP

1

� �
wheremCSP

1 is the

message received from CSP in Data uploading. To simulates the view VIEWCSPof CL, we need to construct the simulator

SCSP
gW1 ; eB;fW 0ð Þ; eH 0ð Þ

� ��
. Because the output f CSP x; yð Þ is fW ; eH� �

;SCSP can construct the simulator to simulate mCSP
1 , which

meansSCSP 	 VIEWCSP . According to Definition 1 and the above analysis, we prove that our scheme is secure in the presence
of semi-honest adversaries. h
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6.3. Cheating resistance

Definition 2. Let f x; yð Þ ¼ f CL x; yð Þ; f CSP x; yð Þð Þ be the protocol outputs of CL and CSP who run the protocol p, respectively,
where x is the private input of CL and y is the private input of CSP. Let A be a non-uniform probabilistic polynomial-time
adversary (control CSP) for the real world, and the real execution of p is denoted by REALA Zð Þ x; yð Þ. Let S be a non-uniform
probabilistic polynomial-time adversary for the ideal world, and the ideal execution of p is denoted by IDEALS Zð Þ x; yð Þ. We
say that the protocol p is securely computes f against malicious adversaries (CSP) if there exist a non-uniform probabilistic
polynomial-time adversary S such that for CSP,

IDEALf ; S Zð Þ;CSP x; yð Þx;y 	 REALp;A Zð Þ;CSP x; yð Þx;y ð14Þ

Theorem 3. (Cheating resistance) Our scheme is secure in the malicious model.

Proof. Due to CSP is the malicious party in our scheme, we focus on the security proof of Results Verification (Algorithm 1),
which is related to the malicious behavior of CSP.

Suppose CSP is corrupted by A. According to the stop condition in ANLS method, the output of the real world is

continuing when fW ; eH� �
is correct and reject when A chose a valid result fW ; eH� �

to reply CL. In the ideal world, there is a

trusted party. CL sends gW 0ð Þ ; gH 0ð Þ to the trusted party. Assume there is a non-uniform probabilistic polynomial-time

adversary S invokes A and internally receives the message fW ; eH� �
that A sends to CL. S to the trusted party fW ; eH� �

. If A

sends correct fW ; eH� �
, the trusted party computes f fW 0ð Þ; eH 0ð Þ

� �
; fW ; eH� �� �

¼ kr�f fW eH� �
kF 6 �kr�f fW 0ð Þ eH 0ð Þ

� �
kF , and

outputs continue to CL and S ; If A chose a valid result fW ; eH� �
to reply, the trusted party outputs reject to CL and S. Thus,

IDEALf ; S;CSP
fW 0ð Þ; eH 0ð Þ

� �
; fW ; eH� �� �

eW 0ð Þ ;eH 0ð Þ
� �

; eW ;eH� �
	 REALp;A;CSP

fW 0ð Þ; eH 0ð Þ
� �

; fW ; eH� �� �
eW 0ð Þ ;eH 0ð Þ

� �
; eW ;eH� � ð15Þ

h

7. Performance evaluation

In this section, we present experimental results to show the practicability and efficiency of our new scheme. Our exper-
iment environment includes CL side and CSP side. CL side is conducted on a laptop with an Intel Core i7-8565U 1.8 GHz CPU
and 8 GB memory, while CSP side is conducted on a computer with an Intel Core i7-4790 3.6 GHz CPU and 16 GB memory.

7.1. Practicability analysis

As discussed before, our scheme can preserve the privacy of CL’s outsourced data. To illustrate this fact more intuitively,
we first conduct the experiment on AT&T database [39] to evaluate security performance, using Python programming
language.

AT&T database contains 400 images, and each of them has 92 � 112 pixels. Nine images are randomly selected to display
in Fig. 4(a). According to our scheme, CL encrypts these images before outsourcing. After receiving returned results, CL can
also recover images by WH. We choose half the images as experimental data and another half as the incremental data to

conduct our scheme. We use fW eH as the encrypted images, which is shown in Fig. 4(a) and the corresponding encrypted
and reconstructed images of those 9 images are and Fig. 4(c). It is quite clear that compared to the original images, images
in CSP are totally masked after encryption, which indicates that the data privacy is well preserved.

Comparing Fig. 4(a) and (c), it is observed that the overall structure and appearance of the faces are well maintained,
which also indicates that CSP can obtain correct solutions when performing NMF on encrypted data.

7.2. Efficiency analysis

As presented in the scheme, the data matrix is n�m, and the incremental matrix is n� p, while the dimension of the
basis matrix W is r. The maximum size of data need to be processed using NMF is n� mþ pð Þ, while that for incremental
NMF is n� r þ pð Þ. Considering that r is much less than n and m, it saves considerable storage resources during operation.
This superiority also can be observed in computing cost.
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In order to confirm this claim, we conduct simulation experiments and compare the time cost of our scheme and Pan’s
scheme [19] with the different number of samples. We set m ¼ 5000 and increase sample size p. To be clear, the sample size
in Pan’s scheme is equal to the sample size mþ p in our scheme. The comparison of time cost with n ¼ 5000;8000;10;000 is
depicted in Fig. 5. The comparison results suggest that compared to the computation cost of Pan’s scheme, that of ours is
much less no matter how big n is. Especially, with the increase of data size, the superiority is even more apparent.

Additionally, in our scheme, the most time-consuming phase is Computing. Fortunately, this phase occurs in CSP side.
Thus, CL only needs to conduct some simple computation. To demonstrate clearly that CL can save computing overhead

Fig. 4. Randomly selected 9 images of dataset.

Fig. 5. Time cost Comparison with different n.

Fig. 6. Time cost Comparison in local.
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when outsourced data to CSP, we compare the computation CL solving NMF problem in local and the computation CL spend
in outsourcing. We also set m ¼ 5000 and increase sample size p. In order to have a better presentation of the efficiency, we
depict the results with a histogram in Fig. 6. Numerical results are also presented in Table 1. As expected, the computation
cost for CL in our scheme is much less than that of CL solving NMF problem locally, which can save about more than 80%
computation time. Significantly, the dominance is more evident with the increase of p and n, which indicates that it can save
lots of time and computational resources for CL, especially when the data gets to the thousands or even millions.

8. Conclusion

Privacy-preserving outsourcing of data dimension reduction can help resource-constrained clients to use cloud resources
for data integration without exposing data privacy. Aiming at the dynamic characteristics of data in reality, in this paper, we
proposed a secure and efficient outsourcing scheme for data dimensions reduction, based on incremental NMF. Exploiting
the properties of NMF, our scheme is capable of supporting dynamic data processing while maintaining data privacy and
resisting cheating by malicious CSP. Without employing any cryptography algorithms, our scheme also achieves a high effi-
ciency for CL.
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