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Decision Trees to Model the Impact of Disruption and Recovery in Supply Chain 
Networks 

 
L. Ponnambalam1,*, L. Wenbin2, X. Fu1, X.F. Yin1, Z. Wang1, R.S.M. Goh1 

1Computing Science, Institute of High Performance Computing, A*STAR, Singapore 
2National University of Singapore, Singapore 

(*ponnaml@ihpc.a-star.edu.sg) 
 

Abstract – Increase in the frequency of disruptions in the 
recent times and their impact have increased the attention in 
supply chain disruption management research. The objective 
of this paper is to understand as to how a disruption might 
affect the supply chain network – depending upon the 
network structure, the node that is disrupted, the disruption 
in production capacity of the disrupted node and the period 
of the disruption – via decision trees. To this end, we first 
developed a 5-tier agent-based supply chain model and then 
simulated it for various what-if disruptive scenarios for 3 
different network structures (80 trials for each network). 
Decision trees were then developed to model the impact due 
to varying degrees of disruption, and the recovery time from 
these disruptions. Visual outputs of the developed decision 
trees are presented to better interpret the rules. Supply 
chain managers can use the approach presented in this work 
to generate rules that can aid their mitigation planning 
during future disruptions. 
 

Keywords – Disruptions in supply chain, network 
structure, impact due to disruption, recovery time, decision 
tree, agent-based model. 

 
I. INTRODUCTION 

Supply chains of modern era are dynamic, complex 
and highly interdependent in nature [ 1 ]. With the 
introduction of increased product/service/process 
complexity, inter-dependency among the entities and 
outsourcing of supply networks across international 
borders, risk associated with supply chain management 
due to disruptions is growing [2] [3]. Disruptions, a type 
of risk, comprise the deletion of ties/nodes from the 
network (permanently or temporarily) as a consequence of 
some unexpected event like an earthquake and have the 
potential to disrupt the whole supply chain network if ill-
managed [4]. Hence, there is a need for understanding the 
effect of disruptions for a given network structure and 
evaluating as to how the disruption effect varies for 
different network structures [5].   

The structure of a supply chain network plays a vital 
role in both the evolution of the network and its response 
to disruptions [6]. The network structure’s influence in 
determining the severity of a disruption, and the time 
taken by the network to recover are key components to be 
addressed in risk management associated with disruptive 
events. Greening and Rutherford (2011) summarized as to 
how a network will respond to disruption, and the time it 
takes for the network to recover through a conceptual 
framework and hypothesized that each of the network 
attributes has a specific implication in the way the 

networks respond to disruption. Such assessment process 
typically asks the following questions: (i) what are the 
consequences if the disruption occurs, the “impact”? , and 
(ii) how long does the supply chain network take to 
recover from the disruption, the “recovery time”?  

The objective of this paper is to quantify the effect of 
disruptions for a given network structure and differentiate 
the impact that a disruption has on various network 
structures, via decision trees. In particular, understand as 
to how a disruption, as and when it happens, affects the 
supply chain network – depending upon the network 
structure in which the disruption is simulated, the node 
that is disrupted during the disruption, the disruption in 
production capacity of the disrupted node and the period 
of the disruption. To this end, we developed a 5-tier 
agent-based supply chain model, hypothetically simulated 
various disruptive scenarios for each of the 3 different 
network structures, and developed decision trees for the 
impact due to varying degrees of disruption and the 
recovery time. 

II. METHODOLOGY 
 

2.1. Agent Based Simulation Model 
 
A 5-tier agent-based supply chain model was 

developed in AnyLogic. The model was then simulated 
for various what-if scenarios to aid our understanding in 
predicting the impact and recovery time during a 
disruption for a given supply chain network.  

 
2.1.1. Agent-based model design 

 
Agent based modeling involves entities, called 

agents, which communicate and transfer goods with one 
another in a virtual environment. The 5-tier agent-based 
supply chain model used in our study models the laptop 
manufacturing network. The supply chain network 
includes pre-defined entities of laptop component 
suppliers (Tier II and Tier I), assembly plants (producers), 
distribution hubs, retailers and consumers (the number of 
entities in each tier varying for the 3 different networks 
considered). Producer agents are the direct downstream 
entities in the network. In our model, producer agents 
order and receive the laptop components before 
assembling them and then delivering the laptops to the 
distributors. Distributor agents are responsible for sending 
these laptops to the retailer agents, which in turn sell the 
laptops to the consumers.   
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The individual agent’s attributes describe its states at 
any given instant of time. These attributes include the 
inventory level, the expected quantity of goods destined 
for arrival and the amount of goods the agent has shipped 
in and out. These attributes are dynamic and hence, 
change over time responding to shipment from other 
agents. Every agent has its own parameters, such as fleet 
size and production capacity. This will define the 
characteristics of the entity in its ability to produce and 
deliver the goods with respect to time. Agent interactions 
refer to the communication mechanism between the 
agents. These communications come in the form of 
“messages”, which may either be an order or a shipment. 
These messages trigger events that will then change the 
agent’s attributes which in turn reacts accordingly and 
propagate the changes downstream throughout the 
network. The goal of each agent is to be able to meet the 
demand of its downstream entities and all goods 
eventually end up with the consumer agents on time. In 
our model, all entities use the distance as a measure to 
decide their upstream supplier. The (s, S) inventory policy 
is used in the model.  

 
2.2. Supply Chain Network characteristics 

The node-level and network-level metrics for the 3 
agent-based supply chain network structures used in our 
study were calculated based on the literature [5], as shown 
in Table I, and the values are summarized in Table II : 

TABLE I 
NODE-LEVEL AND NETWORK-LEVEL METRICS USED TO 

DEFINE THE NETWORK  
Metric Formula used  
Network 
density 

ݏ݁݅ܶ ݂݋ ݎܾ݁݉ݑܰ ൈ ݁ݖ݅ܵ ݇ݎ݋ݓݐ݁ܰ݇ݎ݋ݓݐ݁ܰ ݄݁ݐ ݊݅ ሺܰ݁݁ݖ݅ܵ ݇ݎ݋ݓݐ െ 1ሻ 

 
In-degree 
centrality 

݋ݐ ݏ݁݅ܶ ݂݋ ݎܾ݁݉ݑܰ ݇ݎ݋ݓݐ݁ܰݏ݁݀݋ܰ ݉ܽ݁ݎݐݏ݌ܷ ݁ݖ݅ܵ െ 1  

Out-degree 
centrality 

݋ݐ ݏ݁݅ܶ ݂݋ ݎܾ݁݉ݑܰ ݇ݎ݋ݓݐ݁ܰݏ݁݀݋ܰ ݉ܽ݁ݎݐݏ݊ݓ݋ܦ ݁ݖ݅ܵ െ 1  

Average 
degree 
centrality 

݊ܫ െ ൌ    ݁݁ݎ݃݁ܦ  ∑ ݊ܫ െ ݁ݖ݅ܵ ݇ݎ݋ݓݐ݁ܰݕݐ݈݅ܽݎݐ݊݁ܥ ݁݁ݎ݃݁ܦ ݐݑܱ  െ ൌ ݁݁ݎ݃݁ܦ  ∑ ݐݑܱ െ ݁ݖ݅ܵ ݇ݎ݋ݓݐ݁ܰݕݐ݈݅ܽݎݐ݊݁ܥ ݁݁ݎ݃݁ܦ  

Centralization ݊ܫ െ ൌ ∑ሺெ஺௑ ூ௡஽௘௚ ஼௘௡௧௥௔௟௜௧௬ି ݁݁ݎ݃݁ܦ ூ௡஽௘௚ ஼௘௡௧௥௔௟௜௧௬ሻሺே௘௧௪௢௥௞ ௌ௜௭௘ିଵሻሺே௘௧௪௢௥௞ ௌ௜௭௘ିଶሻ ݐݑܱ   െ ൌ ݁݁ݎ݃݁ܦ  ∑ሺݕݐ݈݅ܽݎݐ݊݁ܥ ݃݁ܦݐݑܱ ܺܣܯ െ ݃݁ܦݐݑܱ  ݁ݖ݅ܵ ݇ݎ݋ݓݐሻሺܰ݁ݕݐ݈݅ܽݎݐ݊݁ܥ െ 1ሻሺܰ݁݁ݖ݅ܵ ݇ݎ݋ݓݐ െ 2ሻ  

 
From Table II, it can be seen that Network 3 is the 

biggest, followed by Network 2 and Network 1. For all 3 
networks, the number of ties in the network is 
approximately the same as the network size. However, 
there is a significant difference in network density with 
Network 1 being the densest. The differences in density 
are also evident in the average centralities. A distinct 
feature of Network 1 is that it has a low In-Degree 
Centralization of 0.0762, but, a fairly high Out-Degree 

Centralization of 0.3048. This shows that all nodes 
receive materials from approximately the same number of 
sources but there is a common node that provides 
materials to many of the downstream nodes. Network 2 is 
a very balanced network with an equal value for both in-
degree and out-degree centralization. This implies that the 
nodes in the network have approximately the same 
number of ties. The same can also be said for Network 3, 
although the out-degree centrality is slightly higher than 
the in-degree centralization. The topologies of the supply 
chain networks used in our study are shown in Figure 1. 

 
TABLE II  

NETWORK CHARACTERISTICS OF THE 3 SUPPLY CHAIN 
NETWORK USED IN THE STUDY 

Metric Network 
1 

Network 
2 

Network 
3 

Number of Firms 
(Network Size) 16 24 32 

Number of Linkages 16 26 33 
Network Density 0.0667 0.0471 0.0333 
Average In-Degree 
Centrality 6.6667 4.7101 3.3266 

Average Out-Degree 
Centrality 6.6667 4.7101 3.3266 

Maximum In Degree 
Centrality 2 4 3 

Maximum Out 
Degree Centrality 5 4 4 

Centralization (In-
Degree) 0.0762 0.1383 0.0677 

Centralization (Out-
Degree) 0.3048 0.1383 0.1022 

 
2.3. Simulation of disruption 
 

The disruption was introduced in each of the 3 
networks based on the following 4 parameters: 

 Starting time of a disruption  
 Period of the disruption 
 Producer node(s) that will be disrupted, and 
 Percentage that the disrupted node(s)’s capacity 

will be restricted to 
A control run in which no disruption occurs is then 

used as the baseline scenario for comparing the impact 
and recovery time due to the disruption. Multiple 
simulation trials (80 trials) were then run for each network 
type, for varying disruptive parameters. The data samples 
collected were then used to develop decision trees to 
model the impact and recovery time based on these 
predictors. 

 
2.4. Decision trees  
 

Modeling with decision trees results in a pictorial 
representation comprising of a series of if-then rules to 
predict the impact and recovery time due to disruption. 
Construction of such decision trees can aid in the 
illustration of certain “rules” governing the impact and 
recovery time for varying degree of disruptions. Supply 
chain managers can use these rules as the basis to 
strategize mitigation planning for future disruptions.
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Fig. 

The three basic steps of building a 
(1) the overall study group is divided in
using the most dominant predictor 
variable, (2) this division into two gr
within the subgroups until no further sig
found. At this point, a terminal node is c
results are then presented in the form
structure, which can be pruned to obtai
with the least misclassification. Here, 
reduction in production due to disruptio
time’ as the target variables and built de
the predictors. The 10-fold cross-valida
used as the tree testing option to select
Pruning was done to avoid over-fittin
described here was coded in MATLAB
80 samples were used for developing the
the individual networks and 240 samp
developing the decision trees for unders
of network structure on the impact and 
addition to the predictors used fo
network’s analysis. 

 
III. RESULTS AND DISCUSS

 
This section will present the dec

impact of disruption (% reduction in ove
the supply chain at the retailer’s level), 
due to the disruption, first for one of th
in the study (Network 1) and then t
developed including the network struct
as well. The % reduction in overall p
supply chain at the retailer’s level is ca
the sum of the difference in the number
at the retailer’s level between the
undisrupted scenarios divided by the sum
scenario, over the recovery period. The% ܴ݁݀݊݋݅ݐܿݑ ൌ ∑ ொ௧௬ ሺ௎௡ௗ௜௦௥௨௣௧௘ௗ ௦௖௘௡௔௥௜௢ሻି ொ௧௬ ሺ஽௜௦∑ ொ௧௬ ሺ஽௜௦௥௨௣௧௘ௗ ௦௖௘௡௔௥

   
3.1. Decision trees for ‘Network 1’ 
 

The decision tree for % redu
production at the retailer’s level due to 
‘Network 1’ is shown in Figure 2. From

1. Topologies of the supply chain networks used in the study 

decision tree are: 
nto two subgroups 

of the response 
roups is repeated 
gnificant splits are 
created, and (3) the 

m of a binary tree 
in the optimal tree 
we have used ‘% 
on’ and ‘recovery 
ecision trees using 
ation method was 
t the best tree [7]. 

ng. The procedure 
B 7.8.0 (R2009a). 
e decision trees for 
les were used for 
standing the effect 

recovery time, in 
or the individual 

SION 

cision tree on the 
erall production of 
and recovery time 
e 3 networks used 
the decision trees 
ture as a predictor 
production of the 

alculated by taking 
r of units received 
e disrupted and 
m for the disrupted 
e formula used is: ௦௥௨௣௧௘ௗ ௦௖௘௡௔௥௜௢ሻ௥௜௢ሻ כ 100. 

uction in overall 
the disruption for 

m Figure 2, it can 

be inferred that the first variab
the working production capac
during disruption. Among the s
the analysis, for those which
(0%), a further split was obs
nodes disrupted.  

 The simulation trials with 
have the greatest reduction in p
For those with either node 1 o
split according to the perio
observed. When either of the n
14 or 28 days, there is a reduc
disruption period is longer (
reduction increases to 93.67%.
be seen that when the producti
disruption period is 7 or 28 da
15.24%. When the disruption p
(45 or 90 days), it results in
Whereas, when the disruption 
node 2 or both nodes (45 or 
reduction by over 4 times, to 66

The decision tree for r
disruption for ‘Network 1’ is s
there are 9 terminal nodes, a
weeks to 13.6 weeks. From F
that the first variable selected f
disruption. Among the simula
analysis, those which are disru
further split was observed wi
production capacity of the no
capacity of 75% and 80% hav
weeks. On the contrary, those
25% and disrupted for 90 days
time of 13.6 weeks. If the peri
days and the working capacity 
recovery time is almost neglig
the results, the disruption per
factor in determining the length

Similar qualitative trends w
2’, however, with a quantitativ
2, the % reduction ranges fr
when the capacity is more th
181.19%, when node 2 or 
completely for more than 45 da

ble selected for splitting is 
city of the node disrupted 
simulation trials included in 
h are disrupted completely 
served depending upon the 

 both nodes being disrupted 
production levels, 221.90%. 
or 2 disrupted, an additional 
od of the disruption was 
nodes is disrupted at 0% for 
ction of 54.72%. When the 
(45, 60 or 90 days), the 
. From Figure 2, it can also 
ion capacity is 25% and the 
ays, there is a reduction of 
period is longer for node 1 
n a reduction of 16.79%. 
period is longer for either 
90 days), it increases the 

6.98%. 
recovery time due to the 
shown in Figure 3. In total, 
and they range from 0.33 

Figure 3, it can be inferred 
for splitting is the period of 
ation trials included in the 
upted from 45 to 90 days, a 
ith respect to the working 
de disrupted. Trials with a 
ve a recovery time of 3.17 
e with a capacity of 0% or 
s have a maximum recovery 
iod of disruption is 7 or 14 
is 50%, 75% and 80%, the 

gible, at 0.33 weeks. From 
riod seems to be a critical 
h of recovery period. 
were observed for ‘Network 
ve difference. For Network 
rom a minimum of 3.41% 
han 50% to a maximum of 

both nodes is disrupted 
ays. 
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Fig

Fi

The recovery time ranges from a
weeks when the capacity is more than 90
of 17 weeks when the capacity is capped
more than 90 days. Since the decision
different networks, we included the netw
predictor and developed decision trees f
recovery time. 
 
3.2. Decision trees including the netwo
predictor 

 
The decision tree for % reductio

production at the retailer’s level due to
shown in Figure 4. In total, there are 8 te
they range from to 2.76% to 165.78%. T

. 2. Decision tree for % reduction in overall production 

ig. 3. Decision tree for recovery time for ‘Network 1’ 

a minimum of 0 
0% to a maximum 
d at 0% to 25% for 
n trees varied for 
work structure as a 
for the impact and 

ork structure as a 

on in the overall 
o the disruption is 
erminal nodes, and 
The first predictor 

used in splitting is the wor
Among the trials, those which 
more than 37.5% have the le
2.76%.  The trials in which ‘n
working capacity between 1
disruption period longer than
reduction of 14.64%. Howev
occurs in node 2 or both 
reduction increases significant
shows that the effect of disru
and its subsequent impact on
nodes being disrupted are eithe
disrupted, we observe a furt
structure type. 

 

 

rking production capacity. 
have a working capacity of 

east impact, a reduction of  
node 1’ is disrupted, with a 
12.5% and 37.5% and a 
n 36.5 days results in a 

ver, if a similar disruption 
nodes are disrupted, the 

tly to 63.21%. This clearly 
uption on the critical nodes 
n overall production. If the 
er node 2 or both nodes are 
ther split by the network 
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Fig. 4.  Decision tree for % reduction including th
a predictor 

For network 3, if node 2 or both no
to a capacity less than 12.5%, the redu
For network 1 or 2, if node 1 or 2 
capacity less than 12.5%, there is a redu
This reduction increases to the ma
165.78% if both nodes are disrupted. Sim
significance of the node disrupted, type
clearly evident with the recovery time f
well, as illustrated in Figure 5. The first
splitting the decision tree is the disrupt
disruption period of 90 days and a wo
0% or 25%, if only node 1 is disrup
period is 13.67 weeks. If node 2 or
disrupted for network 3, the recovery p
23.1 weeks. For network 1 and networ
period is slightly shorter at 15.79 weeks.

 
IV. CONCLUSION 

 
Risk associated with supply chain m

disruptions is on the rise and has the p
the whole supply network if not man
Hence, there is an immediate need for a
of disruptions for a given supply chain 
to facilitate better supply chain managem
disruptions. To this end, we develope
based supply chain model, simulated v
scenarios for 3 different network 
developed decision trees for the impac
degrees of disruption and the recovery
demonstrates the quantification 
incapacitation of the node disrupted du
period of the disruption, criticality of th
and the effect of network structure on 
the disruption and recovery time. Th
study provides the decision trees gove
and recovery time for varying degree o
given supply chain network, a first of
chain managers can use these decision ru

 
he network structure as Fig. 5.  Decision tree for recovery tim

as a pred

odes are disrupted 
uction is 80.17%.  
is disrupted to a 

uction of 110.36%. 
aximum value of 
milar effects of the 
e of the network is 
from disruption as 
t predictor used in 
tion period. For a 

orking capacity of 
pted, the recovery 
r both nodes are 
eriod is longest at 
rk 2, the recovery 
. 

management due to 
potential to disrupt 
naged effectively. 

assessing the effect 
network structure, 
ment during future 
ed a 5-tier agent-
various disruptive 

structures, and 
ct due to varying 
y time. Our study 
of degree of 

ue to a disruption, 
he node disrupted 
the impact due to 

his comprehensive 
erning the impact 
f disruptions for a 
f its kind. Supply 
ules as the basis to 

strategize mitigation plannin
supply chain network structure
capability to understand the 
structure in the context of
managers to respond appropr
chain events. Such efforts wo
supply chain risk management 
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