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a b s t r a c t

Fine-grained, unobtrusive monitoring of gym exercises can help users track their own
exercise routines and also provide corrective feedback. We propose W8-Scope, a system
that uses a simple magnetic-cum-accelerometer sensor, mounted on the weight stack
of gym exercise machines, to infer various attributes of gym exercise behavior. More
specifically, using multiple machine learning models, W8-Scope helps identify who is
exercising, what exercise she is doing, how much weight she is lifting, and whether she
is committing any common mistakes. Real world studies, conducted with 50 subjects
performing 14 different exercises over 103 distinct sessions in two gyms, show that
W8-Scope can, at the granularity of individual exercise sets, achieve high accuracy—e.g.,
identify the weight used with an accuracy of 97.5%, detect commonplace mistakes with
96.7% accuracy and identify the user with 98.7% accuracy. By incorporating an additional,
simple IR sensor on the weight stack, the exercise classification accuracy (across the 14
exercises) further increases from 96.93% to 97.51%. Moreover, by adopting incremental
learning techniques, W8-Scope can also accurately track these various facets of exercise
over longitudinal periods, in spite of the inherent natural changes in a user’s exercising
behavior. Our comprehensive analysis also reveals open challenges, such as adapting to
the expertise level of individuals or providing in-situ, early feedback, that remain to be
addressed.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

There is strong interest in developing pervasive sensing technologies to derive fine-grained & individualized insights
into a person’s gym exercise activities. By subsequently enabling personalized feedback, such monitoring can help support
practically important objectives, such as preventing injuries [1] and curbing the propensity of early drop out among
gym-goers [2]. Most approaches for gym exercise monitoring employ either body-worn, wearable devices (e.g., [3,4]),
infrastructure-based video sensing [5] or the instrumentation of individual gym equipment [6,7]. Each approach has its
own drawbacks: (a) usability: wearable devices may not be popular with the casual gym-going population (specifically,
our survey with 107 users in a public gym revealed that over 59% were not in favor of using wearables), especially as a
single wearable may not be sufficient (e.g., arm-worn sensors cannot help track leg or hip exercises); (b) privacy: video
capture of workouts may be viewed as overly intrusive in public gym environments; and (c) high deployment complexity:
approaches such as Jarvis [7] attach multiple sensors to different parts of an individual gym equipment, and additionally
also instrument individuals with wearable sensors. Moreover, the efficacy of such approaches has typically been evaluated
over relatively short observational periods (e.g., 1-2 gym sessions).
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Fig. 1. Multi-purpose cable pulley machine and proposed sensor placement on the weight stack.

In this paper, we propose and evaluate a novel technique for wearable-free and non-intrusive monitoring of gym
exercises performed using weight stack-based machines (which are widely used to perform activities for a variety of
muscle groups). Our approach requires no user instrumentation and utilizes novel machine learning-based inferencing,
over data from a single inexpensive accelerometer and magnetic sensor mounted on the weight stack (as illustrated in
Fig. 1), to infer various individual-specific, exercise-related attributes.

Given our minimalist approach (a single sensor, mounted at a single point and capturing just the vertical motion of the
weight stack), we explore two fundamental research questions: (1) Can data from only one simple weight-stack mounted
sensor provide meaningful, fine-grained insights into the underlying exercise routine, such as ‘amount of weight lifted’ or
‘which exercise is performed?’ while accommodating exercise-and-user specific variations? And, how does our accuracy
compare with a wearable-based alternative? (2) Can the inferencing logic, typically built through supervised learning
based on labeled activity data collected over 1–2 sessions, be made robust enough to capture the medium-term evolution
in an individual’s gym activities?

Key contributions: We demonstrate the following key innovations and results:

• Novel ‘Weight-Stack Sensor’-based Inferencing for Exercise Monitoring: We propose the use of a simple device, mounted
rigidly to the top plate of a weight stack (illustrated in Fig. 1) to obtain fine-grained insights about the different
exercises being performed. The device combines a 3-axis accelerometer and 3-axis magnetometer sensor, which
capture distinct facets of the motion dynamics of the weight stack. Based on observed characteristics of these
sensors, we develop a multi-stage pipeline (called W8-Scope1) that infers multiple novel facets of exercises, including
(i) weight used; (ii) the type of exercise performed; (iii) the individual performing the exercise and (iv) common
mistakes made.

• Real-world Demonstration of W8-Scope: We conduct real world (in-the-wild) studies with regular gym-goers at two
separate gyms: (a) a University gym with a single multi-exercise cable pulley machine, and (b) a Community gym
(open to the public) with 6 individual weight machines. Across these two gyms, using 1728 distinct sets of exercise
data from 50 participants, we show thatW8-Scope can (1) identify the weight usedwith 97.5% accuracy, (2) distinguish
among users performing the same exercise with 98.7% accuracy, (3) distinguish among 14 distinct exercises with
over 96.9% accuracy, and (4) identify commonplace mistakes made with 96.7% classification accuracy. Our results are
also comparable to those achieved with a wrist-worn wearable (e.g., 84.3% for weight used, 96.4% for identifying
mistakes). Finally, we also characterize the performance tradeoffs, in terms of accuracy vs. robustness vs. latency,
between different variants of our core, set-based classification techniques.

• Longitudinal Tracking & Incremental Learning: While our approach provides high accuracy on unlabeled samples
collected during the same or coterminous sessions (which is how most prior work has also been evaluated), we show
that the inferencing accuracy degrades when applied to test data spaced weeks apart—e.g., exercise discrimination
accuracy drops to 78%. To overcome this, we develop and validate an incremental learning strategy, which uses only
highly confident samples to continually update the W8-Scope classifiers. This approach achieves an accuracy of 90.2%
for classifying exercises and 87.4% in distinguishing users, even as an individual’s exercise behavior evolves over a
12–15 week period.

Compared to other solutions that require more extensive instrumentation or wearable devices, we believe that W8-
Scope demonstrates how low-cost instrumentation of commonplace gym equipment (specifically weight machines) can
help obtain fine-grained, individual-specific insight in a privacy-sensitive manner. Such insight may be augmented with
selective inputs from wearable devices or via the use of simple additional sensors (e.g., an IR sensor) in the future.

1 Pronounced Weight-Scope.
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2. Related work

We describe prior work on ‘‘exercise-monitoring’’ using mobile, wearable, infrastructural sensors and compare our
approach against those.

Mobile, wearable & IoT sensor-based exercise monitoring: Chang et al. [8] were one of the first to propose a
wearable solution (involving multiple accelerometers) for tracking the type and repetition count of free-weight exercises.
Similarly, other works [9,10] also utilize multiple body-worn inertial sensors to detect different gym exercises. RecoFit [3]
is also a wearable system based on an arm-worn inertial sensor to segment exercise and non-exercise periods and to
detect different strength training exercises. Works such as [11,12] present smartwatch-based systems for recognizing and
counting repetitions of various gym exercises. Zhou et al. [4] proposed a wearable fabric pressure sensor system that
measures the muscle movement, action and repetitions of four leg machine exercises. Bian et al. [13] have demonstrated
a wearable, body capacitance-based sensor for recognizing and counting seven different gym exercises. The recently
proposed LiftRight system [14] utilizes an arm-worn initial sensor to quantify and analyze the performance of three
different weight training exercises. The MuscleSense [15] system utilizes multiple sEMG sensors on the upper limb to
assess the amount of workload while performing weight-based exercises. There are also other apps and wearables such
as TrackMyFitness [16], Atlas Wristband [17], Samsung Watch Active2 [18] that detect exercises, record repetitions and
track workout progress. Unlike W8-Scope, all these approaches require the user to have some body-worn devices. Among
the various exercise attributes inferred, we believe that ‘weight identification’ and ‘mistake identification’ are harder to
perform with wearable devices, while recognizing the exercise type (albeit limited to upper limb exercises) and user
identification are easier to achieve using wearable sensors.

An alternate body of prior work assesses exercise characteristics using sensors attached to different parts of the exercise
machine. Moller et al. [19] explored the use of a smartphone-based trainer for assessing the quality of exercises performed
on a balance board. FEMO [20] is a platform for monitoring dumbbell exercises using passive RFID tags attached to
individual dumbbells. Sundholm et al. [6] developed a pressure sensor mat that recognizes and counts repetitions of
strength training exercises performed on a mat. Similarly, ExerTrack [21] is a recently proposed floor-based sensing system
using a capacitive proximity sensor to recognize and count the repetitions of 8 different body weight exercises. The Jarvis
system [7] utilizes multiple IoT sensors, attached to different moving parts of exercise machine to segment repetitions,
recognize exercise type and provide feedback to the user through a VR headset. Closest in spirit to our work, Jarvis also
uses wearable EMG sensors to incorporate muscle activation activity as part of the feedback. In contrast, our approach
uses a single sensor device mounted on a novel location (the weight stack) to extract novel insights, such as the amount of
weight lifted (besides exercise recognition) and commonplace mistakes made; we also consider the challenge of evolving
the classifiers over medium time-scales.

Infrastructural sensor-based exercise monitoring: Prior work has explored the use of WiFi [22,23] and infrastructure-
driven video sensing [5,24] for exercise activity recognition. SEARE [22] utilizes WiFi CSI waveform-based features to
distinguish between 4 exercises. Similarly, Guo et al. [23] use CSI information to analyze workouts within a home/work
environment. However, these WiFi-based systems may not work in a multi-user gym environment and in non line-of-
sight scenarios. The GymCam [25] system leverages a single camera to track multiple people exercising simultaneously
and recognize their exercise type and repetitions. However, this system does not track other aspects of exercising such as
the weight lifted or mistakes made. Gonzalez-Ortega et al. [5] developed a 3D vision-based system to track the trajectories
of human body parts during psychomotor exercises. Velloso et al. [24] presented a comparison of wearable sensor and
Kinect model-based approaches for qualitative recognition of weight lifting exercises. All of these vision-based methods
pose privacy concerns and are affected by external factors, such as lighting and line-of-sight. In contrast, W8-Scope is
simpler to deploy, cost-effective and more privacy-friendly.

3. Overall goals and approach of W8-Scope

W8-Scope’s broader goal is to quantify various attributes related to exercises performed using weight-based equipment
in a gym or a fitness facility. To analyze their own progress, gym-goers are interested in tracking their exercises, weight
lifted etc. [26]. A review of physical activity apps found that only 2% provided evidence-based guidelines for resistance
training [27]. Automatically logging the exercise performed, as well as the amount of weight lifted, helps users (especially
novice or intermediate users who lack knowledge about the proper exercise posture or use of gym equipment) to
track their exercise performance and receive personalized feedback, such as: Am I committing more mistakes when
performing shoulder exercises compared to exercises targeting other muscle groups? In this work, we focus on identifying
the following facets: (a) the amount of weight used, (b) the exercise performed, (c) incorrect patterns of performing
exercise and (d) which user is performing the exercise (the assumption being that each user has a unique signature while
performing a specific exercise).

3
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Fig. 2. Overview of W8-Scope’s workflow.

3.1. Design goals and challenges

Design goals: One of our key goals is to devise a wearable-free and non-intrusive monitoring approach—i.e. infer the
facets mentioned above without instrumenting the user’s body with any wearable device, or without using privacy-
violative infrastructural video sensing [5,25]. Our decision to avoid wearables is influenced not just by prior work [28] that
suggests possible inconvenience from such devices, but also based on a survey conducted on 107 users of a Community
gym: 59% of such users indicated an unwillingness to adopt wearable-based solutions (the antipathy to wearables was
even higher (63%) among users in the 55+ age group). Our goal is to also provide a simple and cost-effective solution.
As such, we propose to use a simple small form-factor sensor device mounted externally (i.e., after-market) on the top
plate of a weight stack (unlike Jarvis [7], which uses multiple machine-attached sensors) to infer the exercise and related
attributes. Such an approach does not interfere with the normal usage of the exercise machine.

Practical challenges: Our proposed approach, based on the attachment of a sensor to a single location, poses several
practical challenges: (i) Distinguishing between different exercises becomes more challenging, given that the weight
stack’s motion is predominantly vertical and is likely to be similar across multiple exercises. This requires us to identify
additional differentiating features; (ii) As the sensor is placed on the weight stack itself, it is thus exposed to noise,
interference, and other confounding effects caused by nearby objects and users—e.g., the magnetic sensor is very sensitive
to several environmental factors, including metallic equipment (e.g., dumbbells) carried by other gym-users; (iii) Different
users perform the same exercise differently (with the motion dynamics potentially also varying with the choice of weight),
implying the need to identify robust features; (iv) Over longer time periods, users exhibit natural ‘‘drift’’ in their exercising
styles.

3.2. Overview of W8-Scope design

We utilize a combination of 3-axis accelerometer and 3-axis magnetometer sensor streams from a weight-stack attached
sensor device (DA14583 IoT Sensor [29]), attached to the top-most slab, to uncover various attributes of a set of exercises
performed on the weight machine. In our approach (illustrated in Fig. 2), we mainly leverage the magnetic sensor
data to identify the amount of weight that is lifted, as the magnetic field strength is affected by this weight. We also
combine features from accelerometer data to disambiguate magnetic sensor data which might look similar for different
(weight, height) combinations. We then use a combination of features, extracted from both sensors, to identify the
exercise performed and detect anomalous or incorrect exercise executions. The baseline W8-Scope pipeline operates at
the granularity of individual sets—i.e., it infers the {weight, exercise type, user} attributes over an entire set, although we
shall also study the implications of adapting it to support in-situ inferences, during an ongoing exercise set.

4. Dataset

We conduct extensive studies and experiments with 50 users performing a variety of exercises on weight stack-based
machines under varying conditions. The data collection was performed in multiple phases at two different gym facilities
(a University gym and a Community gym). The collected data included 2 distinct types of studies: (a) an initial Validation
Study used to identify discriminative features and build the classification models, and (b) multiple Real-World Studies,
conducted across 2 gyms, to evaluate W8-Scope’s real-world accuracy.

For the studies, we focus on a class of 14 exercises that target different muscle groups and that the gym trainers
indicated to be among the most popular exercise choices. At University gym, we monitored ten exercises performed using
a weight stack-based ‘‘cable-pulley’’ multi-purpose equipment (shown in Fig. 1). This machine has a set of 20 free-weights
(each weighing 2.5 kg, except the top-most slab (1.25 kg)), and permits at least 30 different weight training exercises [30].
Fig. 3 shows the position of the exerciser and the weight stack during the upward motion of these ten exercises. In the
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Fig. 3. Exercise positions for 10 exercises (on cable pulley machine).

Community gym, we utilize six dedicated single purpose weight machines for performing exercises such as leg curls, leg
press, triceps pushdown, biceps curls, chest press and shoulder press. These machines have varying number of weight slabs,
weighing 7.5 kg each.

4.1. Initial validation study

For the feasibility studies, we conducted several experiments using the cable-pulley machine in our University gym,
over various controlled conditions across several days. The key parameters varied are: (i) the exercise performed (10
different exercises), (ii) amount of weight lifted (9 different weights), (iii) range of motion of the weight stack (4 different
heights), (iv) different positions of placement of the sensor device (4 different positions), and (v) correctness of performing
the exercise (2 incorrect executions). In total, we collected 252 sets of exercise data (where a set is the number of cycles
of reps completed; an exercise set in our study consisted of 10 reps) for different combinations of these parameters across
8 subjects (5 males, 3 females).

4.2. Real world study

For the user study at University gym, we recruited 35 (23 males, 12 females) university students and staff. For the study
at the Community gym, 15 (9 males, 6 females) participants were recruited. The studies were approved by our Institutional
Review Board.

4.2.1. Overall study procedure
Prior to data collection, each weight stack exercise machine was instrumented with a sensor device, capturing both

accelerometer and magnetometer sensors at 50 Hz. The participants who agreed to take part in the study were required
to visit the gym and perform a set of specified exercises. At the University gym, the participants were also given a
smartwatch (LG-Urbane), to be worn on their dominant hand, where a custom application captured accelerometer and
magnetometer data (at 50 Hz). All the exercise sessions were video recorded for ground truth purpose. The number of sets
and repetitions are as recommended by gym trainers. Note: For every exercise set, we collected data for 10 repetitions
each. The participants were advised to take breaks (as required) in between exercise sets and were allowed to perform
the exercises at a pace they are comfortable with. Except for the simulated incorrect executions, the subjects were not
given any other special instructions and so, performed exercises naturally. An exercise session per subject ranged from
about 35 to 55 min for Study1_univ and for 12 to 24 min for Study2_comm. For participating in the study, we provided
each participant a monetary compensation of $10.

4.2.2. Study in University gym (Study1_univ)
At our University gym, we focused on collecting data for different exercises, different weights and simulated incorrect

executions. Among the 35 participants, 30 performed: (i) 2 sets each of the ten exercises shown in Fig. 3, (ii) 3 sets of two
exercises (triceps and lats) while simulating mistakes such as ‘‘pulling too fast’’, ‘‘releasing too fast’’ and ‘‘lifting only half
through’’. For obtaining data for different set of weights, 18 out of the 35 participants performed three exercises (namely,
triceps, biceps and lats exercise) using 6 different weights (from 3.75 kg to 16.25 kg). In total, we collected 1148 sets of
exercise data. The details of this study are tabulated in column 2 of Table 1.

5
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Table 1
Summary of real-world exercise dataset collected from University gym and Community gym.

Study1_univ Study2_comm

No. of participants 35 (23 males, 12 females) 15 (9 males, 6 females)

Age variation 21–35 years 18–65 years

Self-rated expertise 13 (Novice); 16 (Intermediate); 6 (Expert) 9 (Novice); 3 (Intermediate); 3 (Expert)

No. of exercises 10 (targeted muscles: forearms, biceps, triceps, chest,
abs, shoulders, rear-delts, lats, traps, middleback)

6 (targeted muscles: biceps, hamstrings,
chest, quadriceps, shoulders, triceps)

No. of sets of exercises

Total 1148 sets of 10 reps each Total 180 sets of 10 reps—2 sets each of
6 exercises (with weights of subject’s
choice)

320 sets (6 weights for 3 exercises from 18 subjects)
588 sets (10 exercises with 2 weights from 30 subjects)
240 sets (4 incorrectness for 2 exercises from 30 subjects)

Variation of weights 6 weights (3.75 kg to 16.25 kg) Weights used varied from 5 kg to 80 kg

Incorrect exercise variations 4 (pulling too fast, releasing too fast, pulling half way
through, lifting heavier weight)

N/A

Average duration of exercise
session across subjects

48 min 19 min

Aggregated duration across all
sessions

36 h 50 min 5 h 46 min

Table 2
Summary of real-world longitudinal exercise dataset collected from University gym.

Study3_long

No. of participants 10 (7 males, 3 females)
Age variation 21–35 years
Self-rated expertise 4 (Novice); 4 (Intermediate); 2 (Expert)
No. of exercises 5 (targeted muscles: triceps, biceps, abs, middleback, rear-delts)
No. of sets of exercises Total 400 sets of 10 reps– 2 sets each of 5 exercises (with weights of subject’s choice) on

4 different sessions
Variation of weights Weights used varied from 3.75 kg to 43.75 kg
Average duration of exercise session across subjects 14 min
Aggregated duration across all sessions 8 h 20 min

4.2.3. Study in Community gym (Study2_comm)
At the publicly-accessible community gym, our focus was to obtain data from other demographic groups (e.g., working

adults) and from different dedicated weight stack-based exercise machines (including leg exercises). The 15 subject in this
study (referred to as Study2_comm) varied widely in their age, & expertise in weight training, and performed 2 sets each of
6 different exercises (with weights of their choice) on the dedicated weight stack machines. In total, 180 sets of exercise
data were recorded (see column 3 of Table 1 for summary).

4.2.4. Longitudinal study in University gym (Study3_long)
In both Study1_univ and Study2_comm, the users performed exercises in a single session. We further conducted a

multi-session study (Study3_long) with a subset of 10 users from the subject pool of Study1_univ. In addition to the original
session, these users performed exercises on 4 additional days (separated by a week); furthermore, there was a gap of over
3 months between the original session and these 4 sessions (Fig. 4 illustrates the study period). In each of these session,
the participant performed 5 exercises (namely, triceps, biceps, abs, middleback and rear-delts) with weights of their choice,
resulting in a total of 400 sets of exercise data (details listed in Table 2).

5. Design and implementation of W8-Scope

To design W8-Scope, we first describe the sensor data patterns that occur during different exercises and detail the
features extracted. We then explain how W8-Scope identifies different facets of such exercises.

5.1. Accelerometer sensor analysis

On inspecting the accelerometer sensor data across exercises, we observed that the accelerometer z-axis data clearly
shows the variation with each repetition and also varies across different exercises, indicating the possibility of using an
accelerometer to distinguish between exercises.

6
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Fig. 4. Longitudinal study period.

Fig. 5. Steps involved in counting repetitions and computing displacement.

Fig. 6. Variation in accelerometer readings while performing Triceps Pushdown exercise (a) correctly, (b) by pulling weights too fast & (c) by
releasing/slamming down the weights fast.

5.1.1. Identifying and counting repetitions
To segment and count individual repetitions in an exercise set from accelerometer data, the following approach is

taken. The raw accelerometer data is initially filtered, then we obtain the local maxima and local minima (for z-axes)–
i.e., points around which all other neighboring samples are lower/higher by δ (empirically set to 60% of the highest/lowest
sample amplitude for our work). As certain repetitions were observed to have multiple peaks and valleys, an additional
constraint on a minimum time threshold ∆T (empirically set to 2 s) between successive peaks is used to avoid over
counting. The segment between two consecutive valleys is assumed to represent a repetition.

5.1.2. Computing the range of motion of weight stack
During our feasibility studies, we observed that one of the evident difference between exercises is in terms of the height

to which the weight stack could be lifted (for the same amount of weights used). In addition, the inter-repetition time also
vary for different exercises and different amounts of weight lifted (e.g., lifting heavier weights would take longer time).
To compute the weight stack displacement (outlined in Fig. 5), we first extracted the z-axis acceleration signal, integrated
it using cumulative trapezoidal integration [31] to obtain velocity, then low-pass filtered and then integrated again to
obtain the displacement. As shown in Section 5.5, this approach results in a mean displacement error of ±1.15 cm.

5.1.3. Understanding quality of exercise repetitions
To understand the common mistakes made while exercising, we first consulted the professional trainers in our campus

gym. They reported that, (a) pulling or releasing the weights too fast, or (b) lifting the weight only half way through
corresponded to some ‘‘common mistakes’’ made by novice users.

As a preliminary study, we collected data from 6 trainers at the gym for 3 sets of 10 reps of six exercises (out of the
10 exercises on cable pulley machine). Out of the 3 sets, they were instructed to perform one set correctly and two sets
incorrectly—i.e., pull the weights too fast or release the weights too fast. We found (e.g., see Fig. 6) that the accelerometer
data contains visible signatures, that can help distinguish between such correct and incorrect execution patterns (as shown
later in Section 5.5).

7
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Fig. 7. Variation in magnetic field for four exercises performed with weight, w = 6.25 kg.

Fig. 8. Variation in magnetic field for different weights.

5.2. Magnetic sensor analysis

We next studied how the magnetic field, sensed by a magnetometer, varies when performing different exercises using
the cable pulley weight stack machine.

We found that the magnetic field indeed varies as the weight stack goes up and down, indicating individual repetitions
of each exercise and also shows distinct pattern across exercises. Fig. 7 shows the distinct pattern of the magnetic field
for a sample of four exercises performed with a weight, w = 6.25 kg.

5.2.1. Variation in magnetic field vs. weight lifted
We also observed that the magnetic field not only changes with the motion of the weight stack, but also as a function

of weight lifted. Consider the weight stack has a set of m weight slabs, each slab with mass = w. Let di be the distance of
the ith slab from the sensor, while at rest, and let D be the distance (height) moved by the set of K (K ≤ M weight slabs
that are lifted). Eq. (1) represents magnetic field strength (which varies inversely with the square of the distance), B as a
function of K . The first term represents the K slabs that move up (leaving the slab-sensor distance unchanged) and the
second term represents the M − K slabs) that do not move.

B =

K∑
i=1

wi

d2i
+

M∑
i=K

wi

(D + di)2
(1)
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Table 3
Features extracted from each time window of accelerometer and magnetometer data. The Count represents the number of signal axes on which the
feature is computed. For e.g., count = 4 means features are extracted on the x-axis, y-axis, z-axis and the magnitude of the signal.
Feature Count Description

Mean 4 Average of the values for the time window for each axes and the Euclidean norm (magnitude) of the signal
Max 4 Maximum value in a time window for each axis and signal’s magnitude
Min 4 Minimum value in a time window for each axis and signal’s magnitude
Range 4 Total change in values within the time window for each axis and signal’s magnitude
Variance 4 Variance of the values in a time window for each axis and magnitude of signal
Spectral entropy 4 Normalized information entropy of the FFT components of each axis and magnitude of signal
Spectral energy 4 Mean value of the square of the FFT coefficients of the signal for each axis and magnitude value
Mean crossing rate 4 Number of times the values cross the mean of the time window
Covariance 3 Covariance between each pair of axes of the sensor
Correlation 3 Correlation between each pair of axes of the sensor
Repetition time 1 Average time taken to complete a repetition in a exercise set
Repetition height 1 Average height to which the weight stack was lifted within a set
Repetition velocity mean 1 Average of the speed with which the weight stack was lifted in a set
Repetition velocity Std.dev 1 Standard deviation of the speed with which the weight stack was lifted in a set

Accordingly, as illustrated in Fig. 8(b), the magnetic field at the zenith should exhibit a U-shape curve, initially decreasing
(as K increases from a small value) but then eventually increasing (as the first term begins to dominate when K becomes
larger).

Fig. 8(a) shows the variation in magnetic field while performing 10 repetitions each of lats exercise with 9 different
set of weights ranging from 3.75 kg to 23.75 kg. The figure is annotated (in red color) with the mean value of the sensed
magnetic field as experienced by the sensor when lifting varying amount of weights, and shows how the magnetic sensor
values can help distinguish between different weights. Initially as the amount of weight is increased, the strength of the
magnetic field keeps decreasing, thus making it easier to distinguish between the lighter weights. However, at higher
weight values, the differentiation in the magnetic field is less pronounced (e.g., the mean magnetic field is −255 µT for
w = 21.25 kg or w = 23.75 kg).

5.2.2. Magnetic field vs. (height, weight) variation
Given that the magnetic sensor is affected by both the height (D) and the weight lifted, we next study if there are

cases where the magnetic sensor would be unable to distinguish between ‘‘weight = w1, height = h1’’ and ‘‘weight = w2,
height = h2’’ combinations? We conducted an experiment in which lats exercise was performed with 3 different weights
(3.75 kg, 8.75 kg, 13.75 kg) lifted to 4 different controlled heights (6 cm, 12 cm, 18 cm, 24 cm). We observed that the
change in magnetic field for weight, w = 8.75 kg and height, h = 6 cm looked very similar to that of w = 13.75 kg and
h = 24 cm (mean and total changes being approx. 45 µT and 32 µT respectively for both cases). A magnetic sensor alone
is thus insufficient for resolving ambiguity: both magnetic and accelerometer sensor data are thus needed to accurately
distinguish between different weights.

5.3. Sensor data analysis: Key takeaways and features

Based on our initial validation experiments and analysis, our major takeaways are: (i) the weight stack movement
is clearly identifiable from the magnetometer data, (ii) the accelerometer sensor can provide an accurate estimate
of the precise exercise-related z − axis movements, as well as two useful motion-related features: the time taken to
complete a repetition as well as the height to which the weight stack is lifted, (iii) the combination of accelerometer and
magnetometer readings can help identify the amount of weight that is being lifted, and (iv) the accelerometer data also
contains latent temporal features that are characteristic of selected mistakes in exercise motion dynamics.

Accordingly, in our approach, both the accelerometer and magnetic sensor streams are first pre-processed (for each
individual set) to remove any outliers. The pre-processed sensor data is divided into frames of length w (w = 2 s, based on
the observed duration of a single rep). On each frame, we first extract statistical features for each axis and the magnitude
of both sensors. As described in Section 5.1, we also compute repetition-based features such as average time taken per
repetition, average height to which the weight stack was lifted, and the average & standard deviation of speed with which
the weight stack was lifted/brought down. See Table 3 for the complete set of features used in our classifier models.

5.4. The W8-Scope classification pipeline

Based on the insights gathered, we develop the W8-Scope classification pipeline. After evaluating different machine
learning models, we use a Random Forest (RF) classifier (that gave best performance, similar to prior works (e.g., [24,32]))
throughout our multi-stage pipeline. The key components in the classification pipeline (see Fig. 9) are as follows:
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Fig. 9. The W8-Scope multi-stage classification pipeline.

Table 4
Average error (in cm) in displacement computation for varying heights to which weight
stack is lifted.
Actual height 6 cm 12 cm 18 cm 24 cm

Average error ±0.67 cm ±0.87 cm ±1.1 cm ±1.96 cm

• Amount of Weight Lifted Identification – We train a weight classifier using the parameter tuned random forest classifier.
The weight classifier provides the probability for each of the different weights (i.e., the probabilities that weight =

[w1, w2, . . . , wn]) for each distinct set. Note that the probability is computed first using each individual repetition,
and then combined across the consecutive repetitions to determine the probability over an entire set.

• Exercise Identification – For the exercise classifier, we follow a soft decoding approach: we include an additional feature
vector, consisting of the probability values for each of the candidate weight classes, instead of just using the ‘most
likely’ weight value. The exercise classification is performed on the new feature set with the parameter tuned RF
classifier. As before, the exercise probability values are computed for each individual repetition, and then combined
to determine a set-level probability. In addition, in Section 6.3.2, we shall look at the possibility of performing
such exercise classification during (i.e., after 3–6 repetitions) a set, possibly by including additional inexpensive IR
(infrared) sensors.

• Detecting Mistakes in Exercise Execution – We next attempt to detect the mistakes made, at a per-repetition level. (This
is necessary as users may incorrectly execute only a subset of the multiple repetitions in a set.) We first segment
both sensor signals corresponding to the upward and downward motion of the weight stack during a repetition using
techniques described earlier in Section 5.1.1. We then obtain the velocity and displacement corresponding to each
upward & downward transition for each repetition. We also feed in the output of the exercise classifier (obtained
by taking majority output labels over an entire set)–i.e., mistake identification is not performed real-time, but only
at the end of an entire set (usually lasting 30–40 s). We use another RF classifier, and this new set of features, to
classify the commonplace different mistakes such as {‘‘pulling the weight stack too fast’’, ‘‘releasing fast or slamming
down the weight stack’’, ‘‘lifting the weights only half-way’’}.

• User Identification — To identify the specific user, we used the initial set of features used for weight classification
to build multiple per-exercise classifiers, and use the specific classifier (corresponding to the identified exercise) to
identify the user for an entire exercise set.

5.5. Initial validation results

We now present summarized results on the performance of different W8-Scope components, evaluated on validation
studies (explained earlier in Section 4.1). The repetition counting mechanism (Section 5.1.1) achieves an accuracy of 98%
in counting the 10 repetitions in each set. For displacement computation, we observed an average estimation error of
±1.15 cm compared to the ground truth height. Table 4 shows the breakdown of the average error in displacement
computed for each height. Additional results (summarized in Table 5) show that the combination of accelerometer and
magnetic sensing features hold promise in achieving high accuracy (over 97% using 10-fold cross validation) in inferring
different exercise-related attributes.
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Table 5
10-fold cross validation results of W8-Scope classifier models with initial validation study data.

Weight classification Exercise classification Mistakes classification

Only accelerometer 77.49% 91.53% 90.43%
Only magnetometer 92.96% 79.37% 83.85%
Accelerometer and magnetometer 99.41% 98.74% 97.34%

Table 6
Performance of amount of weight identification.
Weight classification Accuracy Precision Recall

10-fold CV (Study1_univ) 97.5% 0.978 0.971
LOOCV (Study1_univ) 93.75% 0.937 0.938

6. Real-world W8-Scope evaluation

We now present the performance evaluation of W8-Scope, along with insights gained, based on real world, naturalistic
exercise data collected (described in Section 4.2) from two gyms. We focus on the primary attributes of interest {Weight
Used, Exercise Performed, Mistake Identification, User Identity}. For the University gym, we also compare our proposed
approach against that obtained via a wearable (smartwatch).

6.1. Counting repetitions

We first evaluate the performance of repetition counting. Using 908 sets of data collected from different weights and
different exercises experiment in Study1_univ, we obtained a performance of 97% in accurately counting the 10 repetitions
per set. Out of the 28 incorrectly counted sets (that caused 3% error in counting reps), 12 sets are off by ±1, 9 sets are
off by ±2, 4 set are off by ±3, 2 sets are over counted by 4 and 1 set is under-counted by 5. W8-Scope under-counted the
repetitions primarily for the forearms exercise, because the range of motion of the weight stack was too short to show
evident peaks in acceleration data. Over counting of repetitions happened due to human artifacts, when the subject moved
the weight stack up and down while ‘prepping’ at the beginning of the set. For the 180 sets of additional data collected
from Study2_comm, the repetitions were accurately counted for 177 sets (98% accuracy), indicating that this estimation
was accurate across gym environments.

6.2. Identify the amount of weight lifted

We evaluate the performance of weight classification on different weights’ data obtained from Study1_univ. Based on
10-fold cross validation with RF classifier (which outputs the dominant label observed across all the repetitions in a set),
we achieved an accuracy of 97.5% in distinguishing between six set of weights, w = [3.75, 6.25, 8.75, 11.25, 13.75, 16.25]
in the weight stack, with the classification error confined to the heavier weights – 13.75 kg and 16.25 kg.

We also performed a leave-one-subject-out cross validation (LOOCV) in which the weight-classificationmodel was trained
with data from all users, except the test user, and then tested on the data from test user. Using this approach, we obtained
an average accuracy of 93.75%, with a precision of 0.937 and recall of 0.938 in classifying the weights, i.e., the mean
percentage error was 6.25%, with the maximum error (11%) in recalling weight, w = 16.25 kg. Table 6 presents the
summary of results from weight classifier.

6.3. Identify the exercise performed

University gym: We first evaluate the accuracy of classifying the 10 exercises (performed on the multi-purpose cable
pulley machine) from 588 sets of data collected from 30 subjects in Study1_univ. We obtained a performance accuracy
of 96.93%, with a precision of 0.962 and recall of 0.969, in classifying the exercises. This is a mixed person model as
it includes training data from all the users for all the exercises. From the confusion matrix(Fig. 10), we found that the
classification errors occurred primarily during middleback, rear-delts and biceps exercises, due to the higher within-exercise
variability across users.

Using InfoGainAttributeEval in Weka, we further evaluated the features with the highest information gain. We found
that the repetition-height and repetition-time (both of which are derived from accelerometer data) were the most
distinguishing features in exercise classification. To illustrate this, Fig. 11a plots the distribution of the average time per
repetition of each exercise across all 30 subjects. For most users, abs exercise took the longest (≥2.65 s) and rear-delts
exercise took the least amount of time (≤2 s). Similarly, Fig. 11b plots the boxplot of the variation of the height to which
the weight stack was lifted for each of these 10 exercises.

Community gym: To further evaluate the exercise classification accuracy, we analyzed the Study2_comm data (where
users performed exercises using exercise-specific weight machines) by withholding the machine label. We applied a
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Fig. 10. Confusion matrix of exercise classification (with Study1_univ data).

Fig. 11. Variation in repetition time & height per exercise (across subjects).

Fig. 12. Performance comparison of different exercise classification models.

Table 7
Performance of identifying exercise performed.
Exercise classification Accuracy Precision Recall

10-fold CV (Study1_univ) 96.93% 0.962 0.969
10-fold CV (Study2_comm) 97.79% 0.978 0.982

10-fold CV approach, where the data consisted of exercises performed across all the 6 machines. W8-Scope achieved an
accuracy of 97.79% (precision = 0.978, recall = 0.982) in classifying the 6 exercises performed by 15 subjects. With a leave-
one-exercise-set-out cross validation approach, the accuracy drops slightly to 94.4%. Table 7 summarizes the performance
of exercise classifier.

6.3.1. Performance of different segregated models
The results presented to date are based on cross-validation studies, where the training data involves labeled data

combined across all users. Given an assumption that exercising styles are likely to be affected by certain demographic
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Fig. 13. Thermal images captured by IR sensor for three different exercise positions of the individual.

attributes (e.g., gender or expertise level), we further studied the benefits of building such demographics-specific
classification models. We utilize the data collected from Study1_univ for this purpose.

We first trained exercise classification models separately for males and females. Using a 10-fold CV approach for
classifying exercises, we achieved an average accuracy of 94.63% with males-only model and 97.84% with females-only
model (compared to our reported baseline of 96.93%). The males-only model exhibited comparatively poorer performance,
with exercise classification accuracy being especially lower for reardelts andmiddleback exercises (precision and recall both
less than 0.92). This degradation was due to the wider variance in exercise dynamics, observed among male participants.
For the middleback exercise, some of the male individuals interchangeably used two distinct positions (‘‘on the bench’’ vs.
‘‘on the floor’’) to perform the exercise, leading to poorer classification accuracy (an aspect that we shall address further
in Section 6.3.2). However, this variability was absent among any of the female subjects, resulting in a slight improvement
in the overall exercise classification performance.

We further divide the data based on expertise levels of the individuals and train three different models for expert,
intermediate and novice category of users. Based on 10-fold cross validation, each of the three models achieved an average
classification accuracy of 98.47%, 98.01% and 97.41% respectively. Compared to the mixed-person model, there is a 1%–2%
improvement in the performance of classifying the exercises. The highest accuracy was achieved for expert category of
users, who are the most familiar with these specific weight machine exercises. On the other hand, the highest fraction
of mis-classfications are for novice users with lowest performance in classifying shoulders exercise (which achieved a
precision of 0.93 and recall of 0.91). The shoulders exercise was also reported as the toughest exercise, especially among
novices.

Fig. 12 shows the performance comparison of different exercise classification models. Overall, we observed that data
segregation, based on different categories such as the gender and expertise level, helps in slight improvement in the
overall exercise classification accuracy compared to a mixed-person model.

6.3.2. Improving exercise classification with additional cheap sensors
In our prior analysis, we observed that the exercise classification accuracy drops as individuals maintain different

postures while performing the same exercise. This was primarily evident for the middleback exercise where certain
male subjects altered the position between ‘‘on the bench’’ and ‘‘on the floor’’ to perform the exercise. To overcome
this variability introduced by varying exercise postures, we propose an approach where additional cheap IR sensors are
attached to the top of the weight stack. These IR sensors help to obtain the contour of the exercising individual, in a
privacy-preserving fashion (as they provide only a thermal silhouette), when the exercise starts and identify if the person
is sitting on the floor or sitting on a bench or standing. To study the feasibility of this approach, we attached a thermal
camera to the top of the weight stack and the individual who performed the exercise maintained different positions. We
used the FLIR Lepton micro thermal camera module and attached it to a raspberry pi to capture the images. Fig. 13 shows
the images captured by the thermal camera when the person performing the exercise (either middleback or reardelts
exercise) was (a) sitting on the floor, (b) sitting on a bench and, (c) standing. We can observe that the contour of the
exercising individual is clearly visible in the thermal images.

To validate if such additional hints can better classify among certain exercises that have higher variability across
individuals, we included an additional feature which specifies the exercise position (i.e., stand, sit on bench, sit on floor)
into the exercise classification model. For this, we assume that this extra information is available as ground truth when
training the exercise classifier. Using a 10-fold CV approach, we achieved a slightly higher accuracy of 97.51% (compared to
earlier 96.93%) in classifying the exercises. We also evaluated the performance separately for the gender-wise segregated
models. We achieved an average accuracy of 96.45% and 97.89% for the males-only and females-only model respectively.
We found that the performance of the males-only model improved by ≈2%. Upon inspecting the confusion matrix, we
found that the accuracy of classifying middleback and reardelts exercises has improved. Middleback exercise was often
confused with lats and reardelts exercises due to the similarity in the positions followed during these exercises. Therefore,
including the additional postural information helped to more accurately disambiguate these exercises.
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Table 8
Performance of identifying mistakes made.
Mistakes classification Accuracy Precision Recall

10-fold CV (Study1_univ) 96.75% 0.968 0.967
LOOCV (Study1_univ) 79.2% 0.78 0.82

6.4. Identify exercise ‘‘Mistakes’’

For evaluating the performance of this component, we utilized the data collected for three variations of incorrect
executions (explained earlier in Section 5.4) of two exercises (triceps and lats) from 30 subjects in Study1_univ. We also
included data from one correct execution set for each exercise.

Using 10-fold CV, we obtained an overall performance accuracy of 96.75% in classifying the mistakes. Using LOOCV,
we observed a sharp drop in accuracy to 79.2% (precision = 0.78; recall = 0.82). The performance drop in LOOCV is
explained by the fact that mistakes are often person-specific, with mistakes for one person appearing very similar to the
correct execution by another user–e.g., the weight stack motion dynamics for a tall user lifting half way are very similar
to a short user performing correct lifting. The performance of classifying exercise mistakes is tabulated in Table 8.

6.4.1. Additional insights into ‘Typical Mistakes’
Because our long-term goal is to provide individuals actionable feedback to correct mistakes, we also performed manual

annotation of the exercise videos (which provide ‘‘ground truth’’) to understand a few additional characteristics of such
mistakes. Table 9 details the various fine-grained insights that we gained from this analysis.

1. Does lifting ‘too heavy a weight’ result in disproportionately higher mistakes (e.g., ‘releasing too fast’, ‘lifting only halfway’,
‘making postural mistakes’)?
For this purpose, we manually annotated the 60 ground truth videos recorded, across 30 subjects, for the triceps
and lats exercises performed with ‘‘heavy weight’’. The annotation was performed separately for the two individual
transitions (upward and downward) of each repetition. We observed that, out of the 584 repetitions from 60 sets of
lifting heavy weight, the subjects committed some kind of mistake (details listed in Table 9) during 93 repetitions
across 21 sets (35% of heavy sets). The prominent mistakes were ‘releasing too fast’ and ‘lifting only half-way
through’. The other common mistake of ‘pulling too fast’ was not observed in this data. Also, compared to exercise
sets performed with lighter/comfortable weight, on an average the time taken to complete one repetition for triceps
and lats exercises also increased by 0.65 s. We used the previously trained mistake-classifier model and provided
the data from the sets which had manually labeled ‘mistake labels’ as a test set. We obtained an overall accuracy of
81% (precision = 0.84; recall = 0.80) in classifying the two mistakes (‘lift half way’, ‘release too fast’). In contrast,
applying the same classifier to the 120 sets (of the same 30 users) which involved lighter weights resulted in the
identification of mistakes in 57 repetitions across 14 sets (11.6% of non-heavy sets). This strongly suggests that
mistakes in exercise motion dynamics are significantly more likely (almost double) when gym-goers attempt to
exercise with heavier weights.

2. Are mistakes isolated (singletons) in a set, or do they consistently manifest across an entire set? To answer this question,
we randomly selected 10 subjects and manually annotated 197 videos of their 10 exercises performed naturally
with two different weights (3.75 kg, 6.25 kg). Out of the 197 exercise sets, 64 reps within 20 sets (10%) across 6
subjects had incorrect executions (i.e., had at least one rep with any of the 3 mistakes: ‘pulling too fast’, ‘releasing
too fast’, ‘lifting only halfway’). Moreover, mistakes are often repeated: 75% of the incorrect sets (15 out of 20) had
3–5 consecutive incorrect repetitions. The W8-Scope classifier was able to correctly identify 83% of the mistakes
performed in these manually-curated sets.

Key takeaway: Our analyses suggests that W8-Scope can be used to reliably identify the majority of instances (repetitions)
within an exercise set/session where a user makes commonplace ‘‘motion dynamics-related’’ errors. Such knowledge can
then be used to tailor useful actionable feedback: e.g., observations of more frequent mistakes during shoulders exercise
likely indicate weak shoulder muscles, and the gym-goer may be recommended additional shoulder exercises. However,
our purely weight-stack based approach does not currently provide insights into other postural mistakes that may be
committed by novice users.

6.4.2. Mistakes classification with ‘weight’ as an input
The mistakes classifier in W8-Scope pipeline does not use the ‘weight used’ as a feature in classifying the various

mistakes that are made by individuals. Based on manual annotation and analyses of the ‘‘heavier weights’’ exercise
data, we observed that there is a greater probability among individuals in making mistakes when lifting heavier weights
compared to lighter weights. As such intuitively, incorporating the amount of weight used as a feature should help to
improve the performance of mistakes classification.
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Table 9
Insights into Typical Mistakes that people make — Observations from exercise videos.
Key observations Supporting evidence

People tend to make more mistakes while lifting heavy weights 35% of heavier weight lifted sets had mistake — lift half way (62
reps), release too fast (31 reps)

Postural mistakes such as ‘‘hunching the back‘‘, ‘‘leaning forward’’,
‘‘moving elbow during triceps exercise’’, ‘‘swinging body during lats
exercise’’ are commonly made while lifting heavy weights

41% of heavy weight sets had mistakes with body postures — hunch
(33 reps), lean forward (16 reps), move elbow (54 reps), swing body
(67 reps),

People tend to mistakes constantly in an exercise set 75% (15 sets) of the incorrect sets had 3–5 consecutive reps that
were incorrect

Most mistakes are made towards the end of an exercise set and in
the second set of the same exercise

90% of incorrect sets have mistakes made from rep 6 and onwards

Lifting the weight half way through followed by releasing the
weight too fast were the prominent mistakes

Out of 64 incorrect reps — lift half way (48 reps), release too fast
(10 reps), pull too fast (6 reps)

Most number of mistakes were made while performing shoulders
exercise followed by chest and abs exercises

Incorrect reps: Shoulders (53%), Chest (17%), Abs (12%)

Table 10
Performance of user identification.
User classification Accuracy Precision Recall

10-fold CV (Study1_univ) 98.97% 0.989 0.988
10-fold CV (Study2_comm) 98.74% 0.985 0.987

Table 11
Summary of performance accuracy – W8-Scope vs. smartwatch approach.

W8-Scope
Study1_univ

W8-Scope
Study2_comm

Smartwatch
Study1_univ

Weight classification 97.50% N/A 84.37%
Exercise classification 96.93% 97.79% 98.75%
Mistakes classification 96.75% N/A 96.46%
User classification 98.97% 98.74% 99.31%

To investigate this, we included ‘weight’ as a feature in the mistakes classifier. We utilized the 21 sets of data (earlier
annotated to have mistakes) corresponding to heavier weights to evaluate the performance of the modified classifier. We
obtained an average classification accuracy of 84.7% in identifying the mistakes (‘release too fast’ and ‘lift half way’). This
is about ≈4% improvement in performance, compared to the original classifier model which achieved 81% accuracy on
the same data.

6.5. Identify users performing exercises

W8-Scope’s final component helps to distinguish between the different users performing the same exercise. Table 10
summarizes our numerical results.

University gym: Applying the ‘User Classifier’ across the 30 university gym users results in a classification accuracy (using
10-fold cross validation) of 98.97%. Out of the 10 exercises, the classification errors are primarily confined to the shoulders,
forearms, middleback and triceps exercises. On more careful inspection, we found that the users who were typically mis-
classified had highly similar repetition-based features– i.e., having similar range of motion for the weight stack and taking
the same amount of time to complete a repetition. By ranking the features based on its information gain, we found the
most significant features to include: (a) repetition time, displacement height and velocity for the accelerometer sensor, and
(b) minimum, maximum and energy of the 3-axes, for the magnetometer sensor.

Community gym: W8-Scope’s ‘User Classifier’ achieves an accuracy of 98.74% (precision = recall = 0.98), when applied
to the case of 15 users who performed 180 total sets of 6 different exercises. Note that the Community gym-goers were
more diverse (in terms of various demographic factors and gym expertise). Our results thus demonstrate that W8-Scope
can indeed be applied robustly to distinguish among users, across a wide variety of demographics.

6.6. Performance comparison: W8-Scope vs. smartwatch

Using the Study1_univ data, we compared (and summarize in Table 11) the performance of each component of W8-
Scope with that of an alternative smartwatch-based approach. Key results include: (a) A weight-stack mounted sensor
is able to identify the weight lifted more accurately than a hand-worn sensor (overall accuracy of 84.37%, precision =
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Fig. 14. Early classification performance accuracy for identifying weight used, exercise type and the user performing the exercise.

0.822 & recall = 0.845); (b) The smartwatch achieves slightly higher accuracy (98.75%) for exercise classification. (b) As
expected, because of its ability to track the 3D arm motion precisely, the smartwatch has a slightly better accuracy of
99.31% (precision = recall = 0.99) in identifying the user. (c) For identifying the exercise performed or any mistakes
made, the performance of W8-Scope and the smartwatch is roughly comparable.

6.7. In-situ/early classification

In W8-Scope, the identification of weight used, exercise type and the user are based on ‘majority voting’ across a set.
While obtaining such insights and providing suggestions (in a retrospective manner at the end of a set) would help the
individuals to improve their performance during the subsequent sets, it might be more useful (especially for novice users)
to enable feedback earlier (i.e., during an exercise set). To study this potential ‘accuracy’ vs. ‘real-time feedback’ trade-off,
we tested the W8-Scope classifiers for identifying weight, exercise and user with inferences obtained only from {2,4,6}
repetitions and the corresponding majority voting (instead of majority voting across a set). We utilized the data collected
during Study1_univ for this purpose. Fig. 14 shows the variation in performance accuracy for the different models (for
classifying weight, exercise, user) tested based on the data from only {2,4,6} repetitions respectively. We observe the
following:

• For identifying the amount of weight used, we obtained an average accuracy of 83.9%, 87.26%, 91.14% respectively
with the three different models. While the accuracy is comparatively still high, there is about 6%–14% drop in
performance compared to the approach of majority voting across a set (which achieved 97.5% accuracy).

• There was a more significant drop in the accuracy of classifying exercises and users with the early-classification
approach. Using the models tested with data from only the first two reps of an exercise set, the average accuracy
of classification of exercises and users dropped to 61.13% and 54.09% respectively. For exercise classification, the
classifier was getting more confused between lats vs. middleback exercises and triceps vs. reardelts exercises. When
data from first six reps of the exercise set was utilized in the test set, the classification accuracy for exercises and
users significantly increased to 80% and 72.3% respectively.

• For user classification, 8 subjects (5 novices, 3 intermediates) out of the total 30 users had a classification accuracy
lower than 50%. The performance improved to 81% and 72% respectively when data from the first six repetitions
were used in training the models.

This analysis suggests that, while delaying the inference till a larger set of repetitions have been observed is likely
to result in improved accuracy, it is possible to achieve reasonable accuracy after about 5–6 repetitions. The ERICA
system [33] has recently studied the effectiveness of offering personalized, real-time corrective feedback to individuals
during workouts. Results in ERICA [33] show that intra-set feedback given after 5 repetitions is favored by individuals and
it also results in lesser repetition-level mistakes. This also suggests that W8-Scope classifiers can be enhanced to enable
such in-situ feedback capabilities to the individuals.

6.8. Feedback accuracy

While the mistake detection module of W8-Scope detects mistakes at individual repetition-level, it is worth noting
that the system only requires the mistakes to be detected once within a feedback delivery window. The feedback delivery
window can vary depending on the application requirement and user preferences. For example, the feedback can be
delivered after every repetition, once or twice within an exercise set or after few sets of the same exercise is over. As
mentioned earlier, the ERICA system [33] shows that feedback delivered once in a sequence of 5 reps is found to be
effective in minimizing the mistakes at repetition-level and is also preferred by individuals over a more frequent rep-
level feedback. Given these insights, we study the accuracy of delivering feedback after first 5 repetitions of the exercise
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Fig. 15. Incremental learning with longitudinal exercise data.

set. For this, we analyze the result of aggregating the per-repetition output of mistake detector based on two different
strategies–(i) provide ‘mistake’ feedback if at least one repetition has a mistake and, (ii) provide mistake feedback if at
least 60% (i.e., majority) of the first 5 repetitions have mistakes and study how accurate such a feedback would be.

For the first strategy, when any of the first five repetitions had a mistake, we obtained a feedback accuracy of 94.2%.
When the mistake feedback was delivered only if at least 60% of the first 5 reps (i.e., 3 reps) had mistakes, the feedback
accuracy improved to 97.3%. Pulling the weight stack too fast and lifting it only half-way through were the two mistakes
that consistently manifested across multiple repetitions.

7. Medium time-scale robustness: Adapting W8-Scope classifiers

Results in Section 6 demonstrate W8-Scope’s impressive accuracy under real-world usage. However, these results
utilize training and test data collected from coterminous (or closely spaced in time) sessions. We now further investigate
whether W8-Scope’s supervised models (especially those based on user-driven motion dynamics, such as exercise or user
classification) are able to perform as well over medium-timescales (e.g., across weeks or months), as an individual’s
exercise pattern evolves over such time periods.

To validate the robustness of our approach across exercise activities that are spaced weeks apart, we initially use the
data from first two sessions of Study3_long (i.e., 10 users performing 5 exercises, across 2 different weeks) as the test
set, applying our previously trained models with Study1_univ data (i.e., from 30 users performing 10 exercises). (Note: As
illustrated in Fig. 15, Study1_univ and Study3_long are separated by a gap of over 3 months, with each of the 4 sessions
in Study3_long occurring in 4 consecutive weeks.) For these two sessions, we obtained an accuracy of 90.5% for weight
classification, 78.3% for exercise classification and 75.2% for user classification, when the classifier outputs are ascertained
per-set (using the ‘‘dominant-label’’ output across all the repetitions of an exercise set). This drop in accuracy, especially
for exercise (previously 96.9%) and user classification (previously 98.9%), suggests that a single-shot training of W8-Scope
classifiers may indeed prove incapable of accommodating the evolutionary changes in an individual’s exercise patterns.
This is further confirmed by training new classifiers using the first two sessions of Study3_long data, and testing them
using the last two sessions. Such coterminous training is able to replicate the higher accuracy values (weight classification
= 93.1%, exercise classification = 89.3%, user classification = 90.4%) observed previously, on single sessions, in Section 6.

7.1. Incremental learning

To better incorporate such temporal evolution in exercise dynamics, we propose an enhanced Incremental Learning-
based W8-Scope framework. Under this approach (Fig. 15 illustrates the specifics, using ‘‘exercise classification’’ as an
example, for our dataset), the labeled training data for the initially-trained W8-Scope classifier is continually augmented
with those unlabeled exercise samples on which the classifier has high confidence. Very specifically, our W8-Scope instance
starts off with the initial labeled training set (the Study1_univ data). As an individual sporadically visits the gym, W8-
Scope classifies the observed exercise activities, and then chooses those activity instances whose classification probability
exceeds a given threshold t . The modified training set (augmented with such ‘‘highly confident’’ samples) is then used to
retrain the classifier (on a per-weekly basis)–this is illustrated in step 2 (indicated within dotted circle) of Fig. 15.

The performance of such incremental learning obviously depends on the right choice of the threshold t . Intuitively,
very low values of t will add too many many noisy, likely misclassified, samples to the training set. Conversely, very high
values of t will ensure the use of only ‘clean’ samples, but might suffer from data paucity. We empirically found t = 0.6
to provide an appropriate choice between these two extremes.
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Table 12
Medium time-scale W8-Scope performance (with and without incremental learning).

Weight Exercise User

Without incremental learning 90.5% 78.3% 75.2%
With incremental learning 95.1% 90.2% 87.4%

7.2. Performance results with incremental learning strategy

We present below the changes in the performance of W8-Scope, after adopting this incremental learning strategy—
i.e., the classification accuracy of activities performed during weeks 3 & 4 of Study3_long , based on a classifier augmented
using ‘highly confident’ activity samples from weeks 1 & 2.

Weight classification: The accuracy of weight classification was 95.1%, with a precision and recall of 0.942 and 0.958
respectively. We observed that the classifier performance was poorer for certain heavier weights (e.g., 36.25 kg, 43.75 kg).
This is due to both the inability of a single magnetic sensor to perform fine-grained differentiation of heavier weights
(elaborated further in Section 8), as well as the lack of sufficient training data for heavier weights (most users exercise
with lower weights).

Exercise classification: We achieved an average set-level accuracy of 90.2% (an improvement of over 12%), with a
precision of 0.881 and recall of 0.923, in classifying the 5 exercises in the test set. When we analyzed the confusion
matrix, we found that biceps exercise and middleback exercise were the ones typically mis-classifed, as they exhibited the
greatest variability in the way these exercises were performed (e.g., high variance in repetition time, repetition height
etc.) across various sessions and individuals, with individual often also performing them incorrectly– e.g., not keeping the
elbow fixed during biceps curls exercises. This dramatic improvement in exercise classification accuracy corroborates our
belief that user exercise dynamics do indeed evolve over the span of several weeks and months.

User classification: We achieved an accuracy of 87.4% (with a precision = 0.845 and recall = 0.893) for discriminating
among the 10 users (from a training subject pool of 30 total users) participating in Study3_long . The somewhat lower
values of user classification accuracy were often due to significant changes in an individual’s exercise style observed from
the video feeds—e.g., when performing the middleback exercise, a subject initially used a bench to sit and perform the
exercise, while in latter sessions, the user performed the same exercise while sitting on the floor and thereby altering the
weight stack’s overall range of motion.

Table 12 shows the comparative performance of W8-Scope without and with incremental learning strategies. Overall,
there was an increase of ∼12% in the accuracy of classifying exercises and users after reinforcing the existing training set
with such highly confident samples from newly collected exercise data. These results suggest that as long as an individual
visits the gym reasonably frequently (e.g., once every 1–2 weeks), W8-Scope can evolve its classifier models to capture the
evolution of an individual’s exercise motion dynamics. We also observe that, at medium time scales, user classification
suffers higher loss in accuracy, compared to other metrics. Indeed, we anticipate that user classification accuracy might
degrade further as the number of users scale to hundreds & thousands. However, we should note that user identification is
the ‘‘least interesting’’ of our demonstrated capabilities, as alternative, relatively low user-effort mechanisms (e.g., tapping
a smart card on a reader, or entering a user-specific passcode) can achieve this objective.

8. Discussion

While our results demonstrate the promise of our approach of instrumenting gym equipment with low-cost sensors,
our work also raises additional questions and possibilities.

Additional sensor instrumentation: In several cases, additional sensors on the weight stack may enable finer-grained
discrimination. For example, we experimented with a configuration where two sensors were attached to the weight stack
(one at the top and another at the bottom). An expert gym staff member performed lats and middleback exercises (19
distinct sets of 8 reps each) with weights varying between {3.75,48.75} kg on the cable pulley equipment. Across the
entire range of weight slabs, the use of both top and bottom sensors results in an improved weight classification accuracy
of 98%, compared to 92% and 87% when one considers only the top or bottom sensor, respectively. The cost-accuracy
trade-off involved in deploying multiple sensors thus needs further investigation.

Extension to additional gym equipment: To study the possible application of the W8-Scope approach to other gym
equipment, we conducted a small study with 4 users (2 sets, 10 reps) performing 6 different exercises using a sensor-
attached dumbbell. By utilizing only the accelerometer sensor data, we obtained an exercise classification accuracy of
85%; however, user identification using this data proved more challenging. In our preliminary work [34], we have recently
explored the alternative approach of combining data sensed from an equipment-attached sensor and a more widely-used
wearable device (an ‘earable’) to monitor weight-based exercises by multiple concurrent users. Our results show that
the combined inertial signals from ear-worn and equipment-mounted sensors can identify the correct {user, equipment}
pairings in 83% of the cases, and can help classify exercises (from among 8 distinct choices) with 92% accuracy. These
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results suggest the promise of exploring techniques that judiciously combine data from sensor-instrumented equipment
& wearable devices.

Interleaved usage of equipment: From field observations, we noted that weight stack machines occasionally saw
‘‘interleaved usage’’–e.g., two users would perform their sets alternately. Our decision to perform exercise classification
and user identification on a per-set basis are driven by this observation. In particular, we do not perform any additional
‘majority voting’ across sets. Of course, different users might also alter the settings of the weight stack during their
exercises—such additional features might help to further improve our ability to discriminate among distinct users.

Impact of alterations to gym equipment: In this work we show that individuals’ exercise behavior may evolve over
time and such changes could be captured by approaches such as incremental-learning. Another factor that may possibly
confuse our classifiers would be due to certain artifacts on the gym equipment itself. For example, replacing the cables
of the exercise machine with newer ones may make it much stiffer, and consequently, it may affect the way individuals
perform the weight training exercises. Additional investigations are required to better understand the impact of such
practical situations and explore ways to accordingly fine-tune our approaches.

Real-time, in-situ corrective feedback: While our analysis demonstrates W8-Scope’s ability to identify a selected set of
motion-related exercising mistakes, we do not consider the challenges of incorporating such mistake detection into a
practical, real-time system that provides corrective feedback. Such challenges go beyond the drop in early classification
studied in Section 6.7, and require a deeper study of how feedback efficacy is affected by the competing objectives of
providing early and accurate feedback. Moreover, the frequency and timing of such feedback (e.g., multiple times within
a single set vs. feedback at the end of a set) must also be designed to strike the right balance between minimizing user
distraction and being actionable.

The recently proposed ERICA system [33] studies the effectiveness of providing personalized, corrective feedback while
performing free-weights exercises. This work examines the impact that the feedback timeliness has on the interplay
between the feedback accuracy and its efficacy. It shows that providing intra-set feedback, every 5–6 repetitions, provides
a judicious balance of effectiveness, accuracy and user-acceptance. The ERICA system could identify more than 94% of
mistakes during the first 5 repetitions of an exercise set and the resulting feedback helped in minimizing the repetition-
level mistakes for remaining repetitions by 10%. The user studies conducted also revealed that more frequent feedback
(i.e., per repetition) was too much and annoying. These results expand the possibilities for W8-Scope system to enable
in-situ, corrective feedback by adopting similar strategies.

Identifying incorrect body forms/postures: Weight training requires the user to adhere to specific exercise techniques
as well as body forms/postures. Although our proposed approach can track incorrect exercise executions, it is not possible
to infer the postural mistakes using only the weight-stack based sensor. To overcome this, we could extend W8-Scope by
combining it with video-based contour tracking of participants, using privacy-preserving thermal cameras. Such sensor
fusion may allow us to track incorrect body postures and provide corrective feedback to prevent serious injuries. In
Section 6.3.2, we showed example IR images which captured body contours of the individuals exercising. Prior work [35]
also explores the use of thermal-imaging and optical flow techniques to estimate energy expenditure during treadmill
exercises. Similar techniques could be extended to infer postural mistakes made by individuals during exercises performed
with a weight stack machine.

9. Conclusions and future work

In this paper, we described the design and evaluation of W8-Scope, a system which can obtain quantified insights on
various exercise-related attributes. We introduce a novel sensing mode (a combination of magnetometer & accelerometer)
and sensor location (on top of a weight stack plate) for monitoring weight training exercises. Through extensive user
studies conducted with 50 subjects in two real gyms, we consistently obtained an accuracy of 95%+ across all attributes,
including the weight used, exercise performed, mistakes made and exercising user. We also show the need to adapt
the classification model to accommodate real-world, longitudinal changes in user exercising behaviors, and show that
an incremental learning-based approach provides sufficient robustness to our classifiers. As future work, we aim to
utilize such low-cost sensing to capture free weights-based exercising behavior (especially in multi-user environments)
and then integrate these insights into a mobile application offering gym-goers personalized, real-time feedback and
recommendations.
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