
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

8-2022 

Holistic combination of structural and textual code information Holistic combination of structural and textual code information 

for context based API recommendation for context based API recommendation 

Chi CHEN 
Fudan University 

Xin PENG 
Fudan University 

Zhengchang XING 
Australian National University 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Xin WANG 
Fudan University 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
CHEN, Chi; PENG, Xin; XING, Zhengchang; SUN, Jun; WANG, Xin; ZHAO, Yifan; and ZHAO, Wenyun. Holistic 
combination of structural and textual code information for context based API recommendation. (2022). 
IEEE Transactions on Software Engineering. 48, (8), 2987-3009. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6714 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Chi CHEN, Xin PENG, Zhengchang XING, Jun SUN, Xin WANG, Yifan ZHAO, and Wenyun ZHAO 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/6714 

https://ink.library.smu.edu.sg/sis_research/6714


0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 1

Holistic Combination of Structural and Textual
Code Information for Context based API

Recommendation
Chi Chen, Xin Peng, Member, IEEE, Zhenchang Xing, Jun Sun, Xin Wang, Yifan Zhao, and Wenyun Zhao

Abstract—Context based API recommendation is an important way to help developers find the needed APIs effectively and efficiently.
For effective API recommendation, we need not only a joint view of both structural and textual code information, but also a holistic view
of correlated API usage in control and data flow graph as a whole. Unfortunately, existing API recommendation methods exploit
structural or textual code information separately. In this work, we propose a novel API recommendation approach called
APIRec-CST (API Recommendation by Combining Structural and Textual code information). APIRec-CST is a deep learning model
that combines the API usage with the text information in the source code based on an API Context Graph Network and a Code Token
Network that simultaneously learn structural and textual features for API recommendation. We apply APIRec-CST to train a model for
JDK library based on 1,914 open-source Java projects and evaluate the accuracy and MRR (Mean Reciprocal Rank) of API
recommendation with another 6 open-source projects. The results show that our approach achieves respectively a top-1, top-5, top-10
accuracy and MRR of 60.3%, 81.5%, 87.7% and 69.4%, and significantly outperforms an existing graph-based statistical approach and
a tree-based deep learning approach for API recommendation. A further analysis shows that textual code information makes sense
and improves the accuracy and MRR. The sensitivity analysis shows that the top-k accuracy and MRR of APIRec-CST are insensitive
to the number of APIs to be recommended in a hole. We also conduct a user study in which two groups of students are asked to finish
6 programming tasks with or without our APIRec-CST plugin. The results show that APIRec-CST can help the students to finish the
tasks faster and more accurately and the feedback on the usability is overwhelmingly positive.

Index Terms—API, recommendation, deep learning, data flow, control flow, text

F

1 INTRODUCTION

IN modern software development, developers heavily rely
on APIs (Application Programming Interfaces). When

developers do not know which API(s) to use for a desired
feature, automatic API recommendation is an important
way to help developers find the needed APIs effectively
and efficiently. In general, API recommendation methods
learn explicit or implicit API usage patterns from a large
code base and then match partially written code with the
patterns to recommend APIs. Existing methods differ in the
types of code information they model and how they model
code information.

Source code contains two core types of information:
structural and textual. Structural code information, such
as control and data flow, represents program logic which
can be captured using a graph representation; textual code
information, such as code comments, method names, vari-
able names, reflects the semantics of the code in natural
language. Take the code snippet in Fig. 1 as an example.
Note that the correct API statement at line 8 should be
hashCode = str.hashCode(). The method name “compute-

• X. Peng is the corresponding author.
• C. Chen, X. Peng, X. Wang, Y. Zhao and W. Zhao are with the School

of Computer Science and the Shanghai Key Laboratory of Data Science,
Fudan University, Shanghai, China, and Shanghai Institute of Intelligent
Electronics & Systems, China.

• Z. Xing is with the Australian National University, Australia.
• J. Sun is with the Singapore Management University, Singapore.

HashCode” and the variable name “hashCode” reflect the
intent of this method (assuming the proper tokenization of
these names). The method body uses multiple APIs which
implement three pieces of correlated program logics: 1)
use a reader to read contents from a file line by line (line
3/4/5/6/11/12); 2) compute the hash code of the content
(line 8); 3) add the hash value into a created list (line 2/7/9).
These program logics can be modeled in a control and data
flow graph as shown in Fig. 5. Note that variable names
(e.g., “path”, “result”, “rd”, “br”, “str”, “hashCode”) are
helpful for the understanding of relevant structural program
logics.

For effective API recommendation, we need not only
a joint view of both structural and textual code informa-
tion, but also a holistic view of correlated API usage in
control and data flow graph as a whole. Unfortunately,
existing API recommendation methods exploit structural or
textual code information separately. Based on the obser-
vation of linguistic naturalness of source code [1], many
approaches [1], [2], [3], [4] have been proposed that rely
on statistical language models for code auto-completion
and API recommendation. The adopted statistical language
models can be simple or enhanced n-gram model [1], [2],
[3], [4] or complex deep learning models (e.g., Recurrent
Neural Network (RNN)) [5], [6], [7]. No matter which types
of statistical language models to use, these approaches treat
code as a sequence of text tokens (which may sometimes be
enriched with simple syntactic information such as program
construct keywords and data types), but do not exploit



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 2

structural code information of source code. As such, they
cannot properly model the long-range dependencies be-
tween correlated but far-away API usage due to the limi-
tation of the length of a sequence.

To overcome the limitation of token-sequence-based API
recommendation, another important line of API recom-
mendation methods [8], [9] analyze control and data flow
graph for recommending APIs. However, these methods
usually base their recommendation on the enumeration
of control and data flow subgraphs, but lack a holis-
tic view of the overall program logic. Consider the code
snippet in Fig. 1. Fig. 3 shows nine control-and-data-
flow subgraphs for this code snippet. Assume developers
do not know the “java.lang.String.hashCode” API to be
used at line 8. Unfortunately, existing methods recommend
“java.io.BufferedReader.readLine” based on the fourth sub-
graph in Fig. 3 or “while” based on the sixth subgraph.
Different subgraphs are treated independently for recom-
mending relevant APIs. As smaller subgraphs usually ap-
pear more frequently than larger subgraphs, APIs from
smaller subgraphs that capture only a partial aspect of the
overall program logic often overshadow APIs from larger
subgraphs that capture more holistic view of the program
logic.

In this work, we propose a novel API recommenda-
tion approach called APIRec-CST (API Recommendation by
Combining Structural and Textual code information), which
addresses the limitation of independent modeling of struc-
tural and textual code information and the lack of holistic
reasoning of code structure in existing API recommendation
approaches. APIRec-CST is a deep learning model that
combines the API usage with the text information in the
source code based on an API Context Graph Network and a
Code Token Network. As such, it can simultaneously learn
structural and textual features for API recommendation.
APIRec-CST uses an API context graph to model API usage
in a control and data flow graph for the entire method,
rather than independent partial subgraphs as in existing
methods [8]. Our API context graph contains the holistic
semantics of the API usage in the source code around the
location for API recommendation. From this API context
graph, the API Context Graph Network learns to extract
informative structural features for API recommendation.
The textual code information in the source code, such as
method names, parameter names and variable names, is
processed as a bag of code tokens which is fed into the Code
Token Network to infer the developer’s intent jointly with
the API Context Graph Network.

We conduct a series of experiments to evaluate the
effectiveness of APIRec-CST. Our results show that APIRec-
CST significantly outperforms an existing graph-based sta-
tistical approach and a tree-based deep learning approach
for API recommendation. The overall top-1 accuracy of
APIRec-CST is about 60.3%, the top-5 accuracy is about
81.5%, the top-10 accuracy is about 87.7% and the MRR is
about 69.4%. In addition, our analysis shows that textual
code information makes sense and improves the accuracy
and MRR. The sensitivity analysis shows that the top-k
accuracy and MRR of APIRec-CST are insensitive to the
number of APIs to be recommended in a hole. The results of
our user study with 18 students and 6 programming tasks

Fig. 1. Example of Computing HashCode of Content from File

Fig. 2. Example of Getting Integer Score from File

show that APIRec-CST can help the students finish the tasks
faster and more accurately and the feedback on our tool’s
usability is overwhelmingly positive.

The main contributions of this work are as follows:

• We propose an API recommendation approach called
APIRec-CST that combines structural and textual
code information in the source code by jointly learn-
ing a graph-based deep learning model and a token-
based deep learning model for effective API recom-
mendation.

• We implement APIRec-CST as a tool that supports
the efficient model training and API inference with
GPU acceleration.

• We evaluate the effectiveness of APIRec-CST for
recommending APIs with both automatically con-
structed test instances and real programming tasks.

2 MOTIVATION

We use the code examples in Fig. 1 and Fig. 2 to motivate the
need for holistic combination of structural and textual code
information for API recommendation. The example in Fig. 1
is to implement a method to compute the hash code of the
content from a file line by line and then adds the computed
hash code into a list. The developer has written the code
he knows and needs help to complete the remaining code.
The line marked as hole is the location that the developer
requests the recommendation of proper APIs for computing
the hash code of the content of a string.

We can see that this program contains rich structural
code information (i.e., multiple APIs and control and data
flow among these APIs). We can get many subgraphs of



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 3

different sizes according to control and data flow, such as
the nine subgraphs shown in Fig. 3. Note that each sub-
graph is labeled with a serial number for the convenience
of discussion. We do not list all the subgraphs for the
code in Fig. 1 due to the space limitation. As we can see,
each subgraph reflects partial program logic (semantics).
For example, the seventh subgraph reflects the semantics of
creating readers for reading a file. As another example, the
fifth subgraph reflects the semantics of reading contents line
by line. None of the subgraphs (including those not listed in
the paper) independently can reflect the expected semantics
(i.e., computing the hash code of a string) at the location of
hole.

If the developer uses existing tools such as GraLan [8]
that recommends APIs based on such subgraphs, he cannot
get the correct API recommendation. Table 1 lists the top-
10 recommendations by GraLan. The first column is the
ranking of each recommendation. The second column lists
the ten recommendations. The third column is the serial
number of the subgraphs in Fig. 3 used as the parent graph
based on which the corresponding recommendation is gen-
erated. In GraLan, each subgraph is considered as a context
parent graph to generate child graphs (each child graph has
one more node than its parent graph and the extra node
is considered as a candidate API recommendation). From
Table 1, we can see that the top-10 recommendations by
GraLan are generated based on partial program semantics
and thus miss the correct recommendation.

In order to recommend the correct API, we need a
holistic view of the overall program logic in the entire
method. Hence, we represent the API usage in a whole
control and data flow graph called API context graph (as
shown in Fig. 5) instead of subgraphs for the entire method.
The API context graph is a directed graph (N,E) where N
is a set of nodes and E ⊆ N × N is a set of edges, which
models the entire API usage of the source code. Each node
in N represents an API method call, an API field access, a
variable declaration, an assignment, a control unit or a hole.
Each edge represents a flow relationship (such as control
flow and data flow) between two nodes. The API context
graph not only contains all semantics in subgraphs, but also
integrates these semantics as a whole. The details of how
to construct an API context graph will be introduced in
Section 4.1. From the API context graph, we can see that
it contains the following two major semantics: semantics-
1) use a reader to read contents from a file line by line;
semantics-2) add a value into a created list. Since these
semantics are in one entire graph, they can be integrated
to infer the semantics at the hole.

When observing these two semantics in a holistic view,
we can find that the declared String variable “str” is just
used to store the content from the file but not used any
more in semantics-1. Furthermore, the declared int vari-
able “hashCode” is not assigned a value in semantics-2.
In addition, there lack of APIs to connect semantics-1 and
semantics-2 to make the program logic complete. From this
holistic view, we can infer that the semantics at the hole is
to get a value of int type based on some kind of processing
of a variable of String type. Note that the subgraph can
be a whole graph in GraLan, but the larger a graph is,
the less frequent it may occur in the training data which

Fig. 3. Control-and-Data-Flow Subgraphs of the Code in Fig. 1

TABLE 1
Top-10 Recommendations by GraLan [8] for the Code Snippet in Fig. 1

Rank Recommendation Parent Graph
1 java.util.List.add 1
2 java.util.ArrayList.new 2
3 java.io.BufferedReader.readLine 4
4 java.io.BufferedReader.new 5
5 while 6
6 java.io.BufferedReader.close 8
7 if 2
8 for 2
9 java.util.ArrayList.add 1
10 java.io.InputStreamReader.new 3

may cause the data sparsity issue. Our deep learning model
learns a vector representation for each entire graph based on
an information diffusion mechanism of all nodes and edges.
In this way, each entire graph that has a distinct semantics
will have a meaningful vector representation, no matter how
large the graph is and how frequent the graph occurs in the
code base. As such, our model does not suffer from the data
sparsity issue.

However, we still cannot recommend the exact API
needed at the hole in Fig. 1, if we just consider the structural
code information in this example. This is because we cannot
decide what kind of processing should be performed on the
variable of String type. Let us see the code snippet in Fig. 2.
The developer needs to implement a method to read scores
stored in a file, convert each score to an integer and add it
into a list for further use. We can see that the code in Fig. 2
is structurally very similar to the code in Fig. 1, because
the program logics for reading file and list addition are the
same. The API context graph of the code in Fig. 2 is the same
as that of the code in Fig. 1, but the expected APIs at hole are
different. If the developer requests API recommendation for
these two code snippets, we should distinguish the different
intents in the two code snippets. To that end, textual code
information in code becomes very useful for inferring code
intents. In Fig. 1, the method name “computeHashCode”
and variable name “hashCode” imply that the processing
on the variable of String type is likely relevant to hash code
processing. In Fig. 2, the method name “getIntegerScore”
and variable name “score” can imply that the processing
on the variable of String type is likely relevant to String-
Integer conversion.

To sum up, a joint view of both structural and tex-



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 4

TABLE 2
Top-10 Recommendations by APIRec-CST for the Code Snippet in

Fig. 1

Rank Recommendation
1 if
2 java.lang.String.hashCode
3 java.util.ArrayList.add
4 java.lang.String.indexOf
5 java.lang.Integer.parseInt
6 java.lang.String.length
7 while
8 java.lang.String.trim
9 java.lang.String.indexOf
10 java.lang.String.split

Fig. 4. Graph Example

tual code information and a holistic view of correlated
API usage in control and data flow graph of the entire
method is required for effective API recommendation. When
combining structural and textual code information and
learn API usage in control and data flow graph of an
entire method from a holistic view, our proposed approach
(named APIRec-CST) successfully recommends the correct
API java.lang.String.hashCode for the code in Fig. 1 and
the correct API java.lang.Integer.parseInt for the code in
Fig. 2 separately. Take the code in Fig. 1 as an example,
Table 2 shows the top-10 recommendations provided by
APIRec-CST (Note that the parameter type of the fourth
recommendation is java.lang.String, while the parameter
type of the ninth recommendation is int). We can see that
most of the recommendations are related to the semantics of
getting a value of int type based on some kind of processing
of a variable of String type, which benefits from a holistic
view of correlated API usage in control and data flow
graph of an entire method. Among these recommendations,
java.lang.String.hashCode is successfully recommended
as the most possible processing, which benefits from com-
bining structural and textual code information.

3 BACKGROUND

In this work, we adopt Graph Neural Networks (GNNs), in
particular, Gated Graph Neural Networks (GG-NNs) [10],
for API recommendation. An API usage can be naturally
represented in the form of a graph where the nodes repre-
sent APIs and edges represent control/data flow between
nodes. Furthermore, the nodes and edges can be labeled
with additional context information, e.g., the nodes can be
labeled with API calls and the edge labels can be used to
distinguish control flow and data flow.

GNNs are a neural network model which take graph
structures as inputs. GNNs are based on an information

diffusion mechanism and work effectively for a variety
of graphs, e.g., directed or undirected graphs and cyclic
or acyclic graphs. In GNNs, each node of the graph is
represented as a corresponding unit in the neural network,
and the connectivity among the units is the same as the
connectivity among nodes in the graph. The unit captures
the current state of a node and is used to compute the
next state of the node when activated. The units update
their states and exchange information until they reach a
stable equilibrium [11]. The state of a node is composed
of the label of the node, the labels of its incoming and
outgoing edges and the states and labels of neighbor nodes
with a parametric function. Formally, a state xn(t) at the tth
iteration of a node n is defined as follows [11].

xn(t) = fw(ln, lco[n], xne[n](t− 1), lne[n]), (1)

where fw is a parametric function, ln is the label of node
n, lco[n] are the labels of edges containing node n, xne[n](t-
1) are the states of nodes in the neighborhood of node
n at the (t−1)th iteration, and lne[n] are the labels of
nodes in the neighborhood of node n. In this way, each
node can get a node representation. Take the graph in
Fig. 4 as an example. The state x1 of node 1 at time t is
computed as x1(t)=fw(l1,l(1,2),l(1,3),l(1,4),x2(t-1),x3(t-1),x4(t-
1),l2,l3,l4), where l1 is the label of node 1, l(1,2), l(1,3), l(1,4)
are the labels of edges connected with node 1, x2(t-1), x3(t-
1), x4(t-1) are the states of the neighboring nodes (i.e., node
2, node 3 and node 4) of node 1 at time t-1 and l(1,2),
l(1,3), l(1,4) are the labels of these neighbors of node 1. The
state of a node is connected with other nodes in the graph
as nodes can communicate with each other based on the
information diffusion mechanism. Through training, GNNs
can be applied for subgraph matching, mutagenesis, and
web page ranking [11].

GG-NNs [10] are based on GNN. The difference is that
GNNs apply Almeida-Pineda algorithm [12], [13] for com-
puting gradients, whereas GG-NNs apply back-propagation
through time with Gated Recurrent Units [14] for computing
gradients. GG-NNs use a soft attention mechanism to decide
which nodes are more relevant to compute the final vector
representation of the graph. The graph level representation
vector xg is computed as follows [10]. Specifically, the soft
attention mechanism takes the states of the nodes (units) as
input and computes the weight of each node (unit) through
neural networks and a sigmoid function based on updating
the parameters of the neural networks during training to
give higher weights to the nodes (units) that make more
contribution to predicting the correct API.

xg = tanh

(∑
n∈N

σ
(
i(xn(t), ln)

)
� tanh

(
j(xn(t), ln)

))
,

(2)
where σ(i(xn(t),ln)) works as a soft attention mechanism, i
and j are neural networks taking as input the concatenation
of xn(t) and ln and output real-valued vectors [10], and � is
element-wise multiplication.

To get a graph representation, GNNs require creating a
dummy super node which is connected to all other nodes
by a special type of edge [10]. Doing so in our context may
destroy the structural code information of the source code
itself. In addition, the soft attention mechanism of GG-NNs



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 5

can help us to identify which nodes (i.e., APIs) in the API
context graph are more important for API recommendation.
In GG-NNs, the final representation of a graph is the accu-
mulated information of each node with its importance com-
puted through the soft attention mechanism. In this way, the
final representation of a graph is a holistic representation of
all nodes. Therefore, we choose GG-NNs as our deep neural
networks to learn the features of API context graphs from
a holistic view. More details of GNNs and GG-NNs can be
referred to [10], [11].

4 APPROACH

In this section, we present the detailed design of APIRec-
CST. It takes a program with a hole as input, and outputs a
ranked list of API recommendations for filling the hole.

4.1 Program Representation

Given a program with a hole, APIRec-CST first constructs
an API context graph and a bag of code tokens. The API
context graph is a graph representation of structural code
information of the user-provided program, whereas the
code tokens (including the method name, parameter names
and variable names) capture the textual code information.
An API context graph is a directed graph (N,E) where N is
a set of nodes and E ⊆ N ×N is a set of edges. Each node
in N represents an API method call, an API field access, a
variable declaration, an assignment, a control unit or a hole.
Furthermore, each node is labeled differently according to
its type. Table 3 shows how each type of node is labeled.
Specifically, if the type of a node is a variable declaration
initialized with an API method call, the label of the node
is processed as the API method call. For example, the label
of int length = str.length(); is java.lang.String.length().
Similarly, if the type of a node is a variable declaration
initialized with an API field access, the label of the node is
processed as the API field access. The assignment statement
is processed the same as the variable declaration statement.
We use a special node labeled with Hole (called hole node
hereafter) to represent the hole. There is an edge (n, n′) ∈ E
if and only if one of the following conditions is satisfied.

• There is a direct control flow from n to n′;
• There is a direct data flow from n to n′;
• n′ is the hole node and n is a node representing the

preceding statement in the program or n is the hole
node and n′ is a node representing the subsequent
statement in the program.

Given an edge (n, n′), we say that n is the parent node of
n′ and n′ is the child node of n. In APIRec-CST, the edges
in an API context graph are distinguished by labeling them
with different types, i.e., an edge is labeled control flow (Type
c) if there is direct control flow and no direct data flow; an
edge is labeled data flow (Type d) if there is direct data flow
and no direct control flow; an edge is labeled control and data
flow (Type cd) if there are both direct control flow and direct
data flow; and an edge is labeled special flow (Type s) if its
source node or target node is the hole. Note that the special
flow edge makes sure that the hole node is connected to its
context.

Given a program, APIRec-CST systematically builds the
API context graph statically. First, APIRec-CST builds the
AST (i.e., Abstract Syntax Tree) of the program. Then it
creates nodes and edges in the API context graph for each
statement in the program based on the AST in the following
way.

• If the statement is an API method call, an API field
access, a variable declaration or an assignment, a
node is created according to the corresponding node
type in Table 3. Note that if the parameter of an API
method call is also an API method call or an API
field access, APIRec-CST first creates a node for the
parameter.

• If the current statement is an expression that in-
cludes several API method calls or API field accesses,
APIRec-CST creates a node for each API method call
or API field access one by one.

• If the current statement is a control statement,
APIRec-CST creates a node for the control unit ac-
cording to its type and several other nodes together
with edges connecting them as shown in Table 4. For
example, if the current statement is a while statement,
APIRec-CST first creates a While node, a Condition
node, and a Body node. Two Type c edges are intro-
duced, one from the While node to the Condition node
and the other from the While node to the Body node.

Next, we systematically analyze the control and data
dependencies between the nodes (i.e., between the corre-
sponding statements) and introduce the edges accordingly.
Take the while statement as an example. A Type c edge is
added from the Condition node to the first node created
for the condition expression and a Type c edge is added
from the Body node to the first node created for the loop
body. In addition, a Type c edge is added from the While
node to the first node representing the statement following
the loop. If the program contains a hole, a Type s edge is
added from the node representing the statement preceding
the hole to the hole node and a Type s edge is added
from the hole node to the node representing the statement
succeeding the hole. To analyze the data dependencies, if
a node represents a variable declaration statement or an
assignment statement, which means that this node contains
a variable or an object that can be used as a receiver or a
parameter in other API calls, we store its variable or object.
Then if the stored variable or object of a node is used as a
receiver or a parameter in another node representing an API
call, a Type d edge is added from the previous node to the
latter node. Specifically, if there already exists control flow
between these two nodes, a Type cd edge is added between
these two nodes.

For instance, the API context graph for the program
shown in Fig. 1 is shown in Fig. 5, where solid lined triangle
arrows represent edges labeled with control flow; dashed
lined triangle arrows represent edges labeled with data flow;
solid lined diamond arrows represent edges labeled with
control and data flow; and dotted lined triangle arrows
represent edges labeled with special flow. We can see that
different from the graph used in GraLan, each edge is given
a type in our API context graph and the structure of our API
context graph is closely related to the program structure. In



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 6

TABLE 3
Labels of Different Types of Nodes in API Context Graphs

Node Type Label Example
Vari. Decl. [Full Class Name].Declaration String str;→ java.lang.String.Declaration
Vari. Decl. with Constant Assignment [Full Class Name].Constant String str = "str";→ java.lang.String.Constant
Vari. Decl. with Null Assignment [Full Class Name].Null String str = null;→ java.lang.String.Null
Vari. Decl. with Object Creation [Full Class Name].new([Parameter Types]) File file = new File(path);→ java.io.File.new(java.lang.String)
API Method Call [Full Method Name]([Parameter Types]) builder.append("str");→ java.lang.StringBuilder.append(java.lang.String)
API Field Access [Full Field Name] System.out;→ java.lang.System.out

Cascading API Method Call
(API Field Access)

[Full Method Name]([Parameter Types]) builder.append("str").toString(); →
.[Method Name]([Parameter Types]) java.lang.StringBuilder.append(java.lang.String).toString()
[Full Field Name] System.out.println("str"); →
.[Method Name]([Parameter Types]) java.lang.System.out.println(java.lang.String)

Nested API Method Call
(API Field Access)

[Full Method Name]([Parameter Types]) writer.write(sb.toString());→ java.lang.StringBuilder.toString()
[Full Method Name]([Parameter Types]) java.io.FileWriter.write(java.lang.String)
[Full Field Name] label.setForeground(Color.blue);→ java.awt.Color.blue
[Full Method Name]([Parameter Types]) javax.swing.JLabel.setForeground(java.awt.Color)

Control Unit [Control Unit Name] if→ If

TABLE 4
API Context Graph Nodes and Edges for Control Statements

Control Statement
Type

Node of Control
Unit

Nodes and Edges

if statement If
a Condition node and a Type c edge from If node to Condition node
a Then node and a Type c edge from If node to Then node
a ElseIf/Else node and a Type c edge from If node to ElseIf/Else node

while/do
for/foreach statement

While/DoWhile
For/Foreach

a Condition node and a Type c edge from While/DoWhile/For/Foreach node
to Condition node
a Body node and a Type c edge from While/DoWhile/For/Foreach node to
Body node

switch statement Switch
a Selector node and a Type c edge from Switch node to Selector node
a series of Case nodes and Type c edges from Switch node to each Case node
a Default node and a Type c edge from Switch node to Default node

try statement Try
a series of Catch nodes and a Type c edge from Try node to the first Catch
node
Type c edges connecting Catch nodes in order (such as from first to second,
from second to third)
a Finally node and a Type c edge from the last Catch node to Finally node

Fig. 5. API Context Graph of the Source Code in Fig. 1

addition, although the program contains a hole, our API
context graph is still a connected graph that contains all
related structure information, but in GraLan, a graph is not
a connected graph but consists of several context subgraphs
around the hole.

Indeed, our approach can involve multiple libraries. As
long as import needed libraries, our approach can build
the API context graph containing API calls from multiple
libraries (e.g., APIs in the imported libraries).
The bag of code tokens consists of tokens of the method name,

parameter names and variable names. As mentioned before,
it captures the textual code information, which is useful for
API recommendation. The bag of code tokens is collected
as follows. First, APIRec-CST systematically extracts the
method name, parameter names and variable names based
on the AST of the program. Note that APIRec-CST only
extracts the names of parameters and variables whose types
are included in the target library (e.g., JDK). Second, because
developers often use compound or nonstandard word as
names, the extracted names are split as tokens.

APIRec-CST adopts a simple and efficient rule-based
method for splitting names into atomic tokens. First, the
numbers in a name are pruned. For example, “file2” be-
comes “file” afterwards. When a number is found inside in
a name which is used for composing tokens, the name is
split into multiple tokens according to the position of the
number in the name. For example, “int2string” is split into
“int” and “string”. Second, the name is split into multiple
tokens using the two special characters “ ” and “$” that
are often used in naming. For example, “file name” is split
into “file” and “name”. Third, each token is further split
according to camel case [15]. For example, “fileName” is
split into “file” and “name”. Next, each token is processed
by lemmatization. For example, “files” is converted to “file”.
Lastly, APIRec-CST post-processes the tokens by removing
duplicated tokens as well as tokens which are meaningless,
e.g., one character such as “i” and “j”. In general, only
those tokens which are in the GloVe vocabulary [16] are
deemed meaningful. The GloVe vocabulary contains 400K



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 7

Fig. 6. The Overall Architecture of APIRec-CST

most frequent unique tokens obtained from Wikipedia and
Gigaword. The GloVe vocabulary is indeed used to deter-
mine meaningful tokens in our approach. In fact, it allows
us to filter out 16,175 tokens, which include examples such
as “lfsra” (not a word or common abbreviation), “inteface”
(typo), “settting” (typo) and “nodesize” (violating the rule
of camel case).

For instance, the bag of code tokens obtained from
the program shown in Fig. 1 includes “compute”, “hash”,
“code”, “path”, “result”, “rd”, “br” and “str”.

4.2 Architecture
Given a program with a hole represented in the form of
an API context graph and a bag of code tokens, the task of
APIRec-CST is to predict what should be for filling the hole.
APIRec-CST is designed to solve the task based on deep
learning techniques. Fig. 6 shows the overall architecture
of APIRec-CST, which consists of two main components
i.e., the API Context Graph Network and the Code Token
Network, as well as a joint layer. The API Context Graph
Network learns an API context graph vector based on a
given API context graph. It consists of an embedding layer
and GG-NNs. The Code Token Network learns a token
vector based on a given bag of code tokens. It consists of
an embedding layer, multiple hidden layers and a sum
operation. The joint layer is designed to combine the API
context graph vector and token vector and output a joint
vector. The softmax function is then used to compute the
probabilities of each candidate APIs based on the joint
vector. We introduce each component and the joint layer in
the following.

API Context Graph Network The API Context Graph Net-
work takes as input an API context graph (with a hole to
be filled) and outputs a vector. The API context graph is
processed as a set of nodes and edges and fed into the
network. An embedding layer is first used to embed the
node label of each node into an individual vector which is
then used as the initial vector of the node annotation in GG-
NNs. The embedding layer maintains an embedding matrix
to map the label of each node into an individual vector
and the embedding matrix is updated through training. The
label of each node is considered as a single token instead of

being split into several tokens. Then the nodes and edges
are passed into GG-NNs to get an API context graph vector.

In order to get the API context graph vector, GG-NNs
first compute the state of each node and the state from
the last time step is used as the node representation. The
overall process of computing the state of each node is
introduced in Section 3 and the details can be referred
to [10], [11]. Afterwards the API context graph vector is
computed based on the node representations with a soft
attention mechanism to decide which nodes are relevant
to the current API context graph. The detailed equation of
computing the API context graph vector can be found in
Section 3 and [10].

Code Token Network The Code Token Network takes as input
the bag of code tokens and outputs a vector. To obtain the
output token vector, an embedding layer is first used to
embed each of the code tokens into an individual vector.
Subsequently, the information of each token is encoded in
the form of a vector which can be learnt during training
optimized by trainable parameters. We consider the code
tokens as a bag of words, because we need to avoid the
influence of ordering among them. First, developers often
use compound words for naming method names, variable
names, and parameter names. For example, a method
name is “readFile” and another method name is “fileRead”.
These two method names are split as “read file” and “file
read” separately. If the order among tokens is not ignored
and apply a sequence neural network (such as LSTM)
for learning, the vector representations of “read file” and
“file read” are not the same. However, in fact, “read file”
and “file read” reflect the same semantics and the vector
representations of “read file” and “file read” should be
the same. Thus, we think it is better to ignore the order
among tokens and treat code tokens as a bag of words.
Second, we take all tokens into consideration, aiming to
capture the semantics of each token and then integrate them
together. It means that as long as a token exists, we can
capture its semantics no matter its order among all tokens.
Take the code snippet in Fig. 1 as an example. Suppose
that the method name “computeHashCode” is changed to
“compute”, then “hash” and “code” will appear after “str”
instead of before “str”. However, no matter “hash” and
“code” appear after “str” or before “str”, the semantics of
hash code in fact exists in all the tokens. Thus, we think it
is better to ignore the order among tokens and treat code
tokens as a bag of words. We use multiple fully connected
layers as hidden layers to capture higher-level semantic
information among the code tokens. Then we sum all
the vector representation of each token output by the last
hidden layer as the final embedding of all the code tokens
named token vector.

Joint Layer The joint layer takes as input the API context
graph vector and the token vector and outputs a joint
vector. Suppose that the API context graph vector is a
dA-dimensional vector and the token vector is a dT -
dimensional vector. The joint layer first combines the
dA-dimensional vector and the dT -dimensional vector
as a dA+T -dimensional concat vector. Then the dA+T -
dimensional concat vector is used to compute the final joint



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 8

Algorithm 1 Training Instance Construction
Input: API context graph without a hole, node, hole size, code tokens
Output: API context graph with a hole, remaining code tokens,

ground truth
1: count = 0, curr = node
2: while count is less than hole size and curr is not Null do
3: let old be curr
4: if curr is If, While, Do, For, Foreach, Switch, or Try then
5: for each child with edge type of Type c or Type cd of curr do
6: if child represents the statement outside the control scope then
7: count = count + 1
8: curr = child
9: else

10: remove child and its subgraph
11: remove all edges connected to child and nodes in its subgraph
12: end if
13: end for
14: else
15: set curr to be child with edge type of Type c or Type cd of curr
16: count = count + 1
17: end if
18: remove old and all edges connected to old
19: end while
20: replace node with Hole
21: get remaining code tokens related to the API context graph with a hole
22: set groundtruth to be the label of node

vector through a fully connected layer using tanh as the
activation function. The fully connected layer is designed
to further learn the joint semantics of the structural code
information (in the form of the API context graph vector)
and textual code information (in the form of the token
vector) in a holistic way. The joint vector output by the joint
layer is used as the final vector for the softmax function.

Softmax Function In deep neural networks, the softmax
function is usually used to map a vector to a normalized
probability distribution over fixed size classes that needed
to be predicted. The classes are then ranked based on their
probabilities. If we consider each API as a class, the API rec-
ommendation task can be considered as a classification task.
What we need to do is to compute the probability of each
API and then get the top N APIs as the recommendations.
Thus, the softmax function is a natural choice. It takes as
input the joint vector, and outputs a normalized probability
over all APIs.

4.3 Training Corpus Construction

To train the models in APIRec-CST, we require a large set
of training instances. A training instance is a triple consist-
ing of an API context graph (with a hole), a corresponding
bag of code tokens and ground truth (the expected label
of the hole node (i.e., an API call)). To construct training
instances, we first collect a large code base and then parse
the methods one by one. For each method, we construct
its corresponding API context graph (without a hole) and
obtain the bag of code tokens. Afterwards, we systematically
replace a set of nodes from the API context graph with a
hole node. The resultant API context graph (with a hole),
the remaining code tokens and the ground truth (which is
the label of the first removed node) form a training instance.

The details of the algorithm for constructing a training
instance is shown in Algorithm 1. The inputs are an API
context graph without a hole, the corresponding bag of code
tokens, a node node in the graph and a constant hole size.
Intuitively, node is the starting node to be removed and the

label of node is used as the ground truth for the training in-
stance, and hole size is the number of nodes to be removed
in the hole. Specifically, when a node represents a control
unit (e.g, if or while), the node itself and all its child nodes
in the condition subgraph and all its child nodes in the
body subgraph are considered as a whole, which means that
though there are several nodes, the number is considered
as 1. We treat them as a whole to guarantee the syntax
completeness of the source code. Other types of nodes are
considered as single nodes.

Algorithm 1 uses a variable count to count the number
of nodes that have been removed. Whenever count reaches
hole size or there are no more nodes to be removed, the
algorithm terminates. Initially, we set curr (which is the
current node to be removed) to be node. If curr is not
a control node (like if or while), we identify its (unique)
child node child through an edge of Type c or Type cd,
remove the current node curr from the graph and set curr
to be child. Note that whenever a node is removed, so
are its incoming and outgoing edges. The reason why we
choose the child node following edges of Type c or Type cd
is that we remove nodes according to the control flow in
the source code. As a result, the remaining context graph
is still well-formed from a control flow point of view. If
curr is a control node, all of its subgraphs in its control
scope are removed, i.e., we remove all its subsequent nodes
through control flow representing a statement in the control
scope (e.g., all statements in the loop body if curr is a while
node). For instance, if we remove the control node labeled
with While in Fig. 1, all nodes representing the API call at
line 6/7/8/9 are also removed, which are the ones labeled
with Condition, java.io.BufferedReader.readLine(),
Body, int.Declaration, java.lang.String.hashCode() and
java.util.ArrayList.add(java.lang.Object). Then, we set
curr to be the first subsequent node outside of the
control scope. Note that API calls in the condition
and body of a control unit are defined in the con-
trol scope (such as java.io.BufferedReader.readLine()
and java.util.ArrayList.add(java.lang.Object) in Fig. 1),
while the first API call that does not belong to the condition
and body of a control unit is defined outside of the control
scope (such as java.io.BufferedReader.close() in Fig. 1).
Thus, for a control unit, there is only one child node outside
of the control scope. When we remove a control unit through
Algorithm 1 at line 5-13, the child node outside of the control
scope of this control unit is always the last to be visited
(nodes in the condition and body will be first visited), so
curr = child will only be executed one time at last.

For example, Fig. 5 is an API context graph with a
hole that is produced from the code in Fig. 1. In this
example, the input of node node is the node with label
java.lang.String.hashCode() representing the statement
of hashCode = str.hashCode(); at line 8. The input of
hole size hole size is set to be 1. The input of code tokens
code tokens are all the tokens extracted in the original
complete code. The remaining code tokens are those tokens
in the remaining source code, which are “compute”, “hash”,
“code”, “path”, “result”, “rd”, “br” and “str”. For another
instance, if all but line 2 and 3 are removed in Fig. 1, the
remaining code tokens become “compute”, “hash”, “code”,
“path”, “result”, and “rd”. The ground truth of this train-



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 9

ing instance is java.lang.String.hashCode(). We further
illustrate an example whose hole size is more than 1 in
Fig. 7 to explain Algorithm 1. In this example, the first
API context graph is the input API context graph without a
hole, the input of node node is the node with label While,
the input of hole size hole size is 2 and the input of code
tokens code tokens are “compute”, “hash”, “code”, “path”,
“result”, “rd”, “br” and “str”. At the beginning, count is
0, curr is the node with label While, and old is curr.
Since curr is a control unit, all its child nodes (except
the child node outside of the control scope) and corre-
sponding subgraphs are removed (i.e., its condition node
and condition subgraph, and its body node and body sub-
graph). All edges that connected with the removed nodes
are also removed. Thus, we get the second API context
graph in Fig. 7. At this time, though we have removed
several nodes, they all belong to the same control unit,
so count is added from 0 to 1. At the same time, curr
is the node with label java.io.BufferedReader.close()
which is the child node with Type c of the node with label
While. Since count = 1 is less than hole size 2 and curr
is not null, next we need to continue to remove nodes.
When continue to remove nodes, since curr is the node
with label java.io.BufferedReader.close(), which is not
a control unit, we set curr be its child node with Type c
(which is the node with label java.io.F ileReader.close())
and then we directly remove the node with label
java.io.BufferedReader.close() (which is stored as old)
and all edges connected with it. Thus, we get the third API
context graph in Fig. 7. At this time, count is added from 1
to 2, which is not less than hole size 2, so we stop removing
nodes. Finally, we add a hole node at the position of the
input node node. Thus, we can get the fourth API context
graph with a hole in Fig. 7 as output. At the same time,
the remaining code tokens are “compute”, “hash”, “code”,
“path”, “result”, “rd”, “br” and “str”, and the ground truth
is the label of the input node node, which is While.

To systematically construct a set of training instances,
for each API context graph and code tokens constructed
from a method in the code base, the above algorithm is
applied with each node in the graph as the starting node to
be removed and different hole sizes. Note that the hole size
can range from 1 to Max−1 where Max is the total number
of nodes in the API context graph. Though the hole size can
range from 1 to Max-1 where Max is the total number of
nodes in the API context graph, if we do not limit the hole
size, Algorithm 1 will be slow and may suffer from the data
explosion problem. Thus, as in [17], we limit the max hole
size to 5 in our experiments.

5 EVALUATION

The purpose of APIRec-CST is recommending APIs based
on given code context by combining structural and tex-
tual code information. We develop an implementation of
APIRec-CST for JDK 1.8, which has 17,173 API classes and
137,134 API methods/fields. The implementation uses Java-
Parser [18] to parse source code into ASTs and Java reflection
mechanism to recognize API invocations in source code. We
remark that our current implementation supports nearly
70% of the different types of statements that JavaParser

provide, which cover almost all fundamental computational
program logics. The fundamental computational logics of
a program mainly consist of expression statements as well
as control statements. For expression statements, we cover
all the most commonly used statements, such as variable
declaration (including object creation), assignment, literal
expression, method call expression and field access expres-
sion. For control statements, we cover all types of control
units (i.e., if-elseif-else, while, for, foreach, doWhile, try, and
switch). Statements that do not affect the fundamental com-
putational logics of a program are ignored as of now, such
as assert statement and throw statement. In our future work,
we will expand our approach to cover more statement types.
The lemmatization of code tokens is implemented using
Stanford CoreNLP [19]. The deep learning architecture is
implemented using TensorFlow 1.14 [20] and GG-NNs ref-
erence implementation [21]. Based on the implementation,
we conduct a series of experimental studies to answer the
following research questions.

RQ1 (API Prediction Accuracy): How accurate is
APIRec-CST in predicting the next API compared with state-
of-the-art approaches for context-based API recommenda-
tion?

RQ2 (Contribution of Textual Code Information): How
much does textual code information contribute to the API
recommendation?

RQ3 (Sensitivity Analysis): How does hole size (i.e.,
number of APIs to be recommended in a hole) affect the
accuracy of APIRec-CST?

RQ4 (Effectiveness in Real Tasks): How effective are
developers when accomplishing programming tasks using
APIRec-CST ?

All the data of the experimental studies can be found in
our replication package [22].

5.1 Training Details

We create a large corpus from GitHub by crawling all the
Java projects that have 1000 stars or more. In this way we
obtain 1,914 Java projects, which include 944,783 source files,
7,279,321 methods, and 68,319,916 lines of code.

We randomly select 90% of the Java projects as training
set and the remaining 10% projects as validation set. For
methods in the files of each project in the training or vali-
dation set, we apply Algorithm 1 to create a set of training
instances or validation instances. To ensure efficiency we
filter out the files that are larger than 200 KB and the
methods that have no JDK API invocations. The reason for
filtering files that are larger than 200 KB is that parsing large
files using JavaParser [18] is quite time consuming. Large
files may halt JavaParser when parsing these files due to
its limitation in scalability. That is why they are removed
in our approach. Note that most of files (i.e, 99.9993% of
them) have a size smaller than 200KB and we expect filtering
those large files has minimum effect. The reason for filtering
methods that have no JDK API invocations is that we focus
on JDK library. When creating training/validation instances
containing only preceding context, we do not limit the hole
size (i.e., hole size); when creating training/validation in-
stances containing both preceding and succeeding contexts,
we limit the hole size to 5 or less to avoid data explosion.



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 10

Fig. 7. Example of API Context Graphs during Each Step in Algorithm 1

We also filter out training/validation instances that have no
API invocation in the context. Finally we obtain 6,627,591
training instances and 482,186 validation instances.

Based on the training data and validation data, we train
an API recommendation model using a server with Intel
Xeon E5-2620 2.1GHz (16 threads and 128GB RAM) and
two Nvidia 1080Ti GPUs running on Ubuntu 16.04. We
set embedding size of each embedding layer to 300, the
number of hidden layers to 3, hidden size of each hidden
layer to 300, dropout to 0.75, learning rate to 0.005, and
batch size to 256. We conduct serval trial experiments with
different hyper parameters and the above hyper parame-
ters achieve the best performance. After each epoch in the
training, APIRec-CST evaluates the current model using the
validation instances. If the prediction accuracy does not
increase in five successive epochs, the training process ends
and the last best model is used as the result.

5.2 API Prediction Accuracy (RQ1)

We compare APIRec-CST with existing approaches for solv-
ing the same problem. We adopt two approaches that
are most related to ours as baseline approaches in this
evaluation. One is GraLan [8], which is a state-of-the-art
graph-based statistical model for API recommendation and
the other is Tree-LSTM [17], which is a state-of-the-art
deep learning model using tree-based structure for API
recommendation. We reimplement GraLan based on the
description of the approach in [8] and the extraction of
graph representation from code in [23]. We set the parameter
value for GraLan’s theta to 4 and we set the parameter
value for GraLan’s delta to 4. The reason for setting theta
to 4 is that according to Nguyen et al. [8], when theta is

4, the top-10 accuracy achieved by GraLan (86.3%) is close
to the best accuracy (87.1%). The reason for setting delta
to 4 is that according to Nguyen et al. [8], when delta is
4, the top-10 accuracy achieved by GraLan (85.8%) is close
to the best accuracy (87.1%). Considering the performance
of predicting time, we set theta to 4 and delta to 4. The
implementation of Tree-LSTM is directly obtained from the
authors of [17]. APIRec-CST, GraLan and Tree-LSTM are
trained with the same training data. We choose six open-
source Java projects as the test data: Galaxy [24], Log4j [25],
JGit [26], Froyo-Email [27], Grid-Sphere [28], and Itext [29].
These projects are chosen based on the following criteria:
widely used as test data in previous researches on API
recommendation (e.g., [9], [30]); not included in the training
data or validation data. Following the same procedure of
training/validation instance construction (which means that
test instances contain the situations of just preceding context
and both preceding and succeeding context with different
hole sizes), we create 14,986 test instances from the test data.

To confirm the effect of our GraLan implementation, we
compare the API recommendation accuracy of our imple-
mentation on the six projects with that of the GraLan im-
plementation by Liu et al. [9] based on the results they
report in [9]. We use the top-k accuracy, which is the ratio of
the number of test instances whose top-k recommendations
include the expected API, as a metric. To compute the top-k
accuracy, we first need to obtain top-k API recommenda-
tions from GraLan. As mentioned in Section 2, in GraLan,
each subgraph is considered as a context parent graph to
generate child graphs (each child graph has one more node
than its parent graph and the extra node is considered as
a candidate API recommendation). So, given a source code



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 11

with a hole, GraLan first extracts subgraphs around the hole
as context parent graphs and then uses these context parent
graphs to generate child graphs ordered by probabilities.
Finally, the API of the one more extra node of each child
graph compared with its corresponding parent graph is
used as the recommendation. All the API recommendations
are ordered by their probabilities. Thus, we can obtain top-
k API recommendations to compute the top-k accuracy.
The comparison shows that: our implementation achieves
a top-1 (top-10) accuracy of 19.6-41.6% (73.4-80.9%), while
their implementation achieves a top-1 (top-10) accuracy
of 22.4-33.6% (73.9-80.6%); in terms of top-1 accuracy, our
implementation is better than theirs on 4 projects and worse
than theirs on 2 projects; in terms of top-10 accuracy, our
implementation is better than theirs on 4 projects and worse
than theirs on 2 projects. The results show that the perfor-
mance of these two implementations is comparable. Note
that the performance of GraLan is sensitive to the count of
each subgraph appeared in the training data. Our training
data is different from the training data used in [9], which
explains why the performance of our implementation of
GraLan is different from their original.

We compare the top-K accuracies and MRR (Mean Re-
ciprocal Rank) of APIRec-CST, GraLan and Tree-LSTM for
predicting the next API. MRR is a summary metric for top-
K accuracies that averages the inverse of the ranks of each
recommendation, which ranges from 0 to 1 [31]. For exam-
ple, a MRR of 0.25 means that the correct recommendation is
to appear at the fourth position on average. The results are
shown in Table 5. In the table, the number of test instances
of each project is shown after the project name and the best
accuracy and MRR values are in boldface. We can see that
APIRec-CST achieves much higher top-1, top-5, and top-10
accuracy than GraLan and Tree-LSTM. For the six projects,
APIRec-CST’s top-1, top-5, and top-10 accuracy is 50.6-
66.4% (58.6% on average), 67.7-87.1% (81.4% on average),
and 79.2-92.5% (87.9% on average), respectively; GraLan’s
top-1, top-5, and top-10 accuracy is 19.6-41.6% (31.5% on
average), 60.5-71.4% (64.5% on average), and 73.4-80.9%
(77.6% on average), respectively; Tree-LSTM’s top-1, top-5,
and top-10 accuracy is 39.3-52.6% (46.7% on average), 62.9-
75.6% (70.4% on average), and 75.6-82.6% (79.3% on aver-
age), respectively. We can see that APIRec-CST also achieves
much higher MRR than GraLan and Tree-LSTM. APIRec-
CST’s MRR is 58.4-74.2% (68.4% on average), GraLan’s MRR
is 37.4-53.8% (45.3% on average) and Tree-LSTM’s MRR is
51.4-61.7% (56.7% on average). Furthermore, we conduct
Mann-Whitney U test to determine whether the improve-
ments in top-1, top-5, top-10 accuracy and MRR between
APIRec-CST and the other two approaches are statistically
significant. If the p-value is less than 0.05, the improvement
is considered to be significant. The p-value of top-1, top-5
and top-10 accuracy between APIRec-CST and GraLan are
0.003, 0.004 and 0.004 respectively. The p-value of top-1,
top-5 and top-10 accuracy between APIRec-CST and Tree-
LSTM are 0.015, 0.023 and 0.010 respectively. The p-value of
MRR between APIRec-CST and GraLan is 0.003 and the p-
value of MRR between APIRec-CST and Tree-LSTM is 0.007.
We can see that all the improvements are significant.

Since source code can only contain preceding context
or contain both preceding and succeeding context, we fur-

ther separately evaluate the top-k accuracies and MRR of
GraLan, Tree-LSTM and APIRec-CST when source code
only contains preceding context and contains both preced-
ing and succeeding context. The results are shown in Table 6
and Table 7 separately. We can see that no matter source
code contains only preceding context or contains both pre-
ceding and succeeding context, APIRec-CST achieves the
best top-k accuracies and MRR.

We further explain the reasons why APIRec-
CST achieves the best performance. First, APIRec-CST is
based on the hypothesis that we should leverage and
combine the information from different aspects in the
source code as much as possible, which treats the API usage
in the source code as a whole and combines structural
and textual code information. In this way, APIRec-CST can
obtain more complete, diverse and overall information in
the source code that is related to the API needed to be
predicted from our API context graph and code tokens.
Second, APIRec-CST is based on the hypothesis that deep
learning models are stronger than traditional models in
terms of the ability of feature representation, extraction and
learning. Deep learning models are implicit models that
represent, extract and learn features in an implicit way.
Features are represented, extracted and learnt as vectors
through parameters during training automatically. Thus,
there is no need for deep learning models to define and
extract features explicitly and manually to avoid missing
something important or just suitable for some cases. For
example, the subgraphs used in GraLan can be seen as
manually defined and extracted features, which miss
the holistic view of structural code information and can
not identify the important information in the subgraphs.
Benefiting from applying GG-NNs, APIRec-CST can
automatically identify the important information in the
structural code information through training. Meanwhile,
the Code Token Network uses several hidden layers
to abstract the high-level semantics in the textual code
information and then used to jointed with GG-NNs. All the
features are implicit vector representations in a large feature
vector space. Through carefully training, these features can
be trained as well as possible. Thus, APIRec-CST can better
characterize and learn features.

In our work, we use the top-k accuracy and MRR for the
evaluation. These two metrics are widely used in the API
recommendation task in the previous works, such as [3], [4],
[7], [8], [9], [17], [30]. We agree that there is a gap from these
two metrics to the usefulness in practice, i.e. whether an
improved accuracy translates to usefulness improvement of
the recommendation in practice and by how much.

According to [32], [33], it is not always the case that the
more the choices, the better the results. That is, developers
may be overwhelmed by a recommendation list containing
too many API recommendations. As top-k accuracy (usually
k is set to 10 as the max value) is widely used in previous
works, we assume that developers prefer to look up the
correct API recommendation within 10 recommendations in
practice. Therefore, the improvement of top-10 accuracy can
help developers find their desired APIs in more cases when
they are not willing to look up their desired APIs out of 10
recommendations. We conduct an experiment to count the
number of cases where APIRec-CST recommends the correct



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 12

TABLE 5
API Recommendation’s Top-K Accuracy and MRR (%)

Project Model Top-1 Top-5 Top-10 MRR
Galaxy GraLan 29.4 60.5 73.4 42.2
(473) Tree-LSTM 39.3 68.7 76.7 51.4

APIRec-CST 51.0 81.6 88.2 63.6
JGit GraLan 41.6 71.4 79.1 53.8

(4530) Tree-LSTM 52.6 75.6 81.2 61.7
APIRec-CST 66.4 85.1 89.5 74.2

Froyo-Email GraLan 23.0 62.8 78.9 40.7
(1537) Tree-LSTM 51.6 74.5 82.6 61.1

APIRec-CST 63.7 86.0 91.3 73.5
Grid-Sphere GraLan 36.5 66.5 80.9 48.6

(1847) Tree-LSTM 48.0 72.4 80.6 58.3
APIRec-CST 62.0 87.1 92.5 72.8

Itext GraLan 19.6 64.3 75.7 37.4
(4444) Tree-LSTM 46.0 68.1 75.6 55.4

APIRec-CST 57.9 80.7 86.8 67.6
Log4j GraLan 38.6 61.3 77.5 48.9
(2155) Tree-LSTM 42.4 62.9 79.0 52.2

APIRec-CST 50.6 67.7 79.2 58.4

Overall
GraLan 31.7 66.0 77.9 45.9

Tree-LSTM 48.1 70.8 79.1 57.7
APIRec-CST 60.3 81.5 87.7 69.4

API in top-10 recommendations, whereas GraLan and Tree-
LSTM fail to do so. The total number is 682 (about 4.6% of
all the 14,986 cases), which means that developers would
fail to find the correct implementation even after examining
10 recommendation using existing approaches. As a result,
the improvement of top-k accuracy can indeed translate in
usefulness improvement in practice.

In addition, the usefulness of the recommendation gen-
erated by APIRec-CST is partially evidenced through the
user study with the master students on real-world program-
ming tasks as we reported in Section 5.5. How to further
evaluate the usefulness of the recommendations in practice
will be our future direction.

To sum up, APIRec-CST can achieve high top-k accura-
cies and MRR and performs much better than GraLan and
Tree-LSTM. Since APIRec-CST represents correlated API us-
age in control and data flow graph of an entire method from
a holistic view and introduces textual code information.
APIRec-CST can leverage semantics in both preceding and
succeeding context. Thus, no matter the source code only
contains preceding context or contains both preceding and
succeeding context, APIRec-CST can treat the context in the
source code as a whole and leverage all the information in
the context.

5.3 Contribution of Textual Code Information (RQ2)

APIRec-CST mainly relies on the structural code informa-
tion embedded in the API Context Graph Network and
at the same time leverages the textual code information
embedded in the Code Token Network. Though textual
information contains textual semantics that reflect the intent
of a developer, textual information can not reflect usages
among of APIs. For the API recommendation task, the
usages and semantics of structural information (e.g., API
usage) in the source code plays a leading role to predict the
API at a hole, because the API at a hole is closely connected
with the APIs in the context. Thus we assume that the main
contribution is made by structural information. To verify
our assumption, we further train a variant model based
on the same training/validation data that only uses textual

TABLE 6
API Recommendation’s Top-K Accuracy and MRR: with Preceding

Context Only (%)

Project Model Top-1 Top-5 Top-10 MRR
Galaxy GraLan 24.3 60.7 72.8 39.5
(239) Tree-LSTM 34.7 67.4 75.3 48.0

APIRec-CST 50.2 81.6 87.9 62.9
JGit GraLan 38.6 69.1 77.9 50.7

(2399) Tree-LSTM 44.3 72.3 77.4 55.6
APIRec-CST 60.2 82.1 87.1 69.5

Froyo-Email GraLan 22.7 60.4 77.8 38.9
(824) Tree-LSTM 43.9 70.0 79.2 54.9

APIRec-CST 58.9 82.9 89.8 69.4
Grid-Sphere GraLan 33.6 65.6 79.9 46.1

(1167) Tree-LSTM 47.2 73.1 80.0 58.0
APIRec-CST 59.8 87.3 92.6 71.5

Itext GraLan 17.7 61.4 73.7 35.2
(2511) Tree-LSTM 42.4 65.9 73.0 52.2

APIRec-CST 51.6 77.5 84.3 62.6
Log4j GraLan 26.9 59.0 73.2 40.3
(887) Tree-LSTM 35.4 59.0 71.9 45.9

APIRec-CST 44.3 67.6 78.5 54.4

Overall
GraLan 28.0 63.9 76.2 42.5

Tree-LSTM 42.8 68.6 75.9 53.5
APIRec-CST 55.2 79.9 86.4 65.7

TABLE 7
API Recommendation’s Top-K Accuracy and MRR: with Both

Preceding and Succeeding Context (%)

Project Model Top-1 Top-5 Top-10 MRR
Galaxy GraLan 34.6 60.3 73.9 45.0
(234) Tree-LSTM 44.0 70.1 78.2 54.9

APIRec-CST 51.7 81.6 88.5 64.2
JGit GraLan 45.1 74.0 80.3 57.3

(2131) Tree-LSTM 62.0 79.3 85.5 68.6
APIRec-CST 73.3 88.5 92.1 79.6

Froyo-Email GraLan 23.3 65.6 80.2 42.8
(713) Tree-LSTM 60.4 79.7 86.5 68.2

APIRec-CST 69.3 89.6 93.0 78.2
Grid-Sphere GraLan 41.6 68.2 82.8 52.8

(680) Tree-LSTM 49.4 71.3 81.5 58.8
APIRec-CST 65.9 86.6 92.2 75.1

Itext GraLan 22.2 68.0 78.3 40.3
(1933) Tree-LSTM 50.6 71.0 78.9 59.6

APIRec-CST 66.2 84.9 90.0 74.2
Log4j GraLan 46.8 63.0 80.5 54.9
(1268) Tree-LSTM 47.3 65.7 84.0 56.6

APIRec-CST 55.0 67.7 79.7 61.2

Overall
GraLan 36.1 68.5 79.8 49.8

Tree-LSTM 54.2 73.4 82.9 62.4
APIRec-CST 66.2 83.4 89.2 73.7

information called APIRec-TO, which only includes one
network (i.e., Code Token Network). We evaluate APIRec-
TO on the same test data. To evaluate the contribution of
textual code information when combined with structural
code information, we derive a variant of APIRec-CST that
uses structural code information only (called APIRec-SO),
which only includes one network (i.e., API Context Graph
Network). We use APIRec-SO to train an API recommenda-
tion model based on the same training/validation data and
evaluate the model with the same test data.

The results are shown in Table 8. In Table 8, the left
value in the Difference column is the difference between
APIRec-CST and APIRec-TO and the right value is the
difference between APIRec-CST and APIRec-SO. We can see
that the top-1, top-5 and top-10 accuracies as well as MRR
of APIRec-TO are quite lower than APIRec-SO and APIRec-
CST. The results indicate that structural code information
plays the leading role for API recommendation. We can
also see that APIRec-SO achieves good top-1, top-5, and



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 13

TABLE 8
Contribution of Textual Code Information(%)

Project Model Top-1 Difference Top-5 Difference Top-10 Difference MRR Difference
Galaxy APIRec-TO 19.2

+31.8/+4.1
51.6

+30.0/+5.3
64.7

+23.5/+6.0
32.2

+31.4/+4.7(473) APIRec-SO 46.9 76.3 82.2 58.9
APIRec-CST 51.0 81.6 88.2 63.6

JGit APIRec-TO 15.4
+51.0/+4.7

40.9
+44.2/+1.3

51.3
+38.2/+0.9

24.8
+49.4/+3.0(4530) APIRec-SO 61.7 83.8 88.6 71.2

APIRec-CST 66.4 85.1 89.5 74.2
Froyo-Email APIRec-TO 18.9

+44.8/+4.9
43.7

+42.3/+3.6
60.9

+30.4/+2.4
29.4

+44.1/+4.8(1537) APIRec-SO 58.8 82.4 88.9 68.7
APIRec-CST 63.7 86.0 91.3 73.5

Grid-Sphere APIRec-TO 13.2
+48.8/+4.3

42.2
+44.9/+4.0

58.4
+34.1/+1.9

24.7
+48.1/+3.8(1847) APIRec-SO 57.7 83.1 90.6 69.0

APIRec-CST 62.0 87.1 92.5 72.8
Itext APIRec-TO 13.1

+44.8/+1.6
39.3

+41.4/+1.9
51.1

+35.7/+2.4
23.1

+44.5/+1.9(4444) APIRec-SO 56.3 78.8 84.4 65.7
APIRec-CST 57.9 80.7 86.8 67.6

Log4j APIRec-TO 12.0
+38.6/+2.1

27.3
+40.4/-3.7

39.8
+39.4/-4.5

19.1
+39.3/+0.1(2155) APIRec-SO 48.5 71.4 83.7 58.3

APIRec-CST 50.6 67.7 79.2 58.4
Overall APIRec-TO 14.4

+45.9/+3.4
39.3

+42.2/+1.5
51.9

+35.8/+1.0
24.2

+45.2/+2.6(14986) APIRec-SO 56.9 80.0 86.7 66.8
APIRec-CST 60.3 81.5 87.7 69.4

TABLE 9
API Recommendation’s Top-K Accuracy and MRR of APIRec-SO and

APIRec-CST with the Increase of API Number in the Context(%)

Number of APIs Model Top-1 Top-5 Top-10 MRR

1 APIRec-SO 36.2 65.9 72.5 48.5
APIRec-CST 41.7 69.1 75.7 53.0

2 APIRec-SO 53.3 73.4 83.5 62.3
APIRec-CST 55.2 77.7 84.9 65.0

3 APIRec-SO 51.6 78.5 83.6 62.9
APIRec-CST 57.2 81.2 86.9 67.5

4 APIRec-SO 59.1 79.7 86.7 68.3
APIRec-CST 62.0 84.4 88.8 71.4

5 APIRec-SO 59.2 84.9 89.8 70.4
APIRec-CST 63.0 86.1 91.7 72.7

6 APIRec-SO 61.0 82.6 88.8 70.1
APIRec-CST 62.2 83.4 88.6 71.3

7 APIRec-SO 54.6 79.9 86.5 65.3
APIRec-CST 59.6 82.5 89.2 69.3

8 APIRec-SO 62.4 81.5 89.4 70.9
APIRec-CST 61.8 84.2 90.7 71.6

9 APIRec-SO 54.7 80.8 89.4 66.0
APIRec-CST 58.5 81.1 87.9 68.1

10 APIRec-SO 64.1 84.4 90.3 72.8
APIRec-CST 63.9 84.4 89.9 72.9

11 APIRec-SO 58.6 84.2 91.9 69.7
APIRec-CST 63.3 84.0 92.6 72.5

12 APIRec-SO 60.2 81.5 87.8 68.8
APIRec-CST 62.3 81.8 88.1 70.6

13 APIRec-SO 54.9 81.0 89.0 66.3
APIRec-CST 59.2 82.5 89.6 69.5

14 APIRec-SO 65.3 85.8 89.8 73.7
APIRec-CST 67.7 84.2 90.6 74.6

15 APIRec-SO 59.7 82.5 89.4 70.0
APIRec-CST 64.3 85.2 90.5 73.9

15+ APIRec-SO 65.4 85.6 91.3 73.7
APIRec-CST 69.0 83.3 89.6 75.2

top-10 overall accuracy (56.9%, 80.0%, and 86.7%) on the
six projects, but the accuracy is lower than that of APIRec-
CST (60.3%, 81.5%, and 87.7%). The top-1 overall accuracy
achieves a 3.4% improvement, the top-5 overall accuracy
achieves a 1.5% improvement and the top-10 overall accu-
racy achieves a 1.0% improvement when textual code infor-
mation is added. For each test project, the top-k accuracy of
adding textual code information achieves different degrees
of improvement. The improvement of the top-1 accuracy
ranges from 1.6% to 4.9%, the improvement of the top-5
accuracy ranges from 1.3% to 5.3%, and the improvement

TABLE 10
Number of Positive and Negative Test Cases when Adding Textual

Information (%)

Project Postive Test Instances Negative Test Instances
Galaxy (473) 131 (27.7%) 64 (13.5%)
JGit (4530) 823 (18.2%) 514 (11.3%)

Froyo-Email (1537) 318 (20.7%) 180 (11.7%)
Grid-Sphere (1847) 362 (19.6%) 216 (11.7%)

Itext (4444) 829 (18.7%) 599 (13.5%)
Log4j (2155) 376 (17.4%) 472 (21.9%)

of the top-10 accuracy ranges from 0.9% to 6.0%. We can
also see that the overall MRR is improved by 2.6% when
textual code information is added. For each test project, the
improvement of MRR ranges from 0.1% to 4.8%. The top-5
and top-10 accuracy of Log4j project decrease when textual
code information is added. It is because that textual code
information maybe contains noise that negatively influences
the API recommendation results. In our future work, we will
try to better process the noise in textual code information.

For each test project, we further conduct an experi-
ment to count the number of test instances where APIRec-
CST ranks the correct API higher than APIRec-SO (which
we call positive test instances) and otherwise (which we
call negative test instances) to understand the significance
of the improvement by introducing textual information. The
numbers and ratios of positive test instances and negative
test instances for each project are shown in Table 10. From
the table, we can see that the number and ratio of positive
test instances of each project (except Log4j) is higher than
negative test instances. The improvement (i.e., the ratio of
the positive test instances) of each test project is significant,
which is about 20.4% on average. The negative test instances
are usually caused by the lack of in-depth understanding of
the context relevant to the current position. First, the code
tokens in the textual information mislead the implementa-
tion consideration due to the lack of in-depth understanding
of the context. For example, in the first case in Fig. 11 the
code tokens “get” and “all” in the method name mislead
APIRec-CST to recommend for (iteratively adding all the
elements in a loop) and java.util.ArrayList.addAll. How-



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 14

ever, the developer chooses to add all the levels one by
one using java.util.ArrayList.add as they are defined as
a set of enumeration values. Second, the code tokens in the
textual information are more relevant to the APIs after the
current position. For example, in the second case in Fig. 11
the code token “write” in the method name makes APIRec-
CST miss the correct API java.lang.Class.getName in the
top-5 recommendations. In fact, the recommended APIs
related to object writing are the core APIs but will be used
later after the current position.

To further understand the contribution of textual code
information, we analyze its influence with an increasing
number of APIs in the context. We divide all the test data
into 16 subsets according to the number of APIs in the
context (1-15 and above 15). For each subset, we calculate
the difference of the top-1, top-5, top-10 accuracy and MRR
of APIRec-CST and APIRec-SO. Note that the difference
computed for 15+ is the overall difference for the number
of APIs in the context above 15, including 16, 17, 18 and
so on. The results are shown in Fig. 8 (the original top-
k accuracies and MRR are shown in Table 9). The dotted
lines are the zero lines and the points above the lines
indicate positive contribution of textual code information,
which mean that APIRec-CST achieves higher accuracy and
MRR than APIRec-SO. We can see that the contribution of
textual code information is positive in most cases. There
is no obvious positive or negative correlation between the
contribution of textual code information and the number
of APIs in the context. This means that the contribution of
textual code information is insensitive to the number of APIs
in the context. The reason of the nine negative cases in Fig. 8
is also that textual code information maybe contains noise
that negatively influences the API recommendation results.
Though textual information is useful overall, its quality is
difficult to guarantee. That is, it is different in different
projects or even in different test instances. It may sometimes
bring a negative impact, although not often. Please see the
negative examples that we add in Section 5.6 for more
details to learn in which situations textual information is
noise.

To sum up, textual information indeed makes sense and
achieves different levels of improvement for different test
projects in terms of top-1 accuracy, top-5 accuracy, top-10
accuracy and MRR. However, textual information may also
introduce noises that need to be addressed in our future
work.

5.4 Sensitivity Analysis (RQ3)

The test instances (no matter the test instances that con-
tain only preceding context or contain both preceding and
succeeding context) in RQ1 are constructed with different
hole sizes, which means that the number of APIs to be
recommended in a hole is different. Thus, we further con-
duct an experiment to evaluate how the number of APIs
to be recommended in a hole will affect the accuracy of
APIRec-CST. For each test project, we vary the number of
APIs to be recommended in a hole of test instances in our
experiment from 1 to 10+ (i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
and over 10). Therefore, we can obtain 11 subsets of test
instances. For each subset of each test project, we evaluate

the top-1 accuracy, top-5 accuracy, top-10 accuracy and MRR
of APIRec-CST. The results are show in Fig. 9.

We can see that there is no obvious positive or negative
correlation between the number of APIs to be recommended
in a hole and the top-k accuracy and MRR, which means that
the top-k accuracy and MRR of APIRec-CST are insensitive
to the number of APIs to be recommended in a hole. Maybe
the results are not consistent with our intuition that the
larger the number of APIs to be recommended in a hole
the lower the top-k accuracy and MRR. For example, the
top-k accuracy and MRR curves of JGit and Froyo-Email
are relatively flat, which indicates that the top-k accuracy
and MRR of JGit and Froyo-Email change lightly when the
number of APIs to be recommended in a hole changes.
The top-k accuracy and MRR curves of Itext and Log4j are
relatively flat when the number is less than 6, however,
the curves fluctuate when the number is more than 6. In
addition, the top-k accuracy and MRR of Itext and Log4j
when the number is more than 6 (or 7) are lower than
the top-k accuracy and MRR of Itext and Log4j when
the number is less than 6 (or 7) in most cases. The top-
k accuracy and MRR curves of Galaxy and Grid-Sphere
fluctuate relatively severely, which indicates that there is no
correlation between the number of APIs to be recommended
in a hole and the top-k accuracy and MRR of Galaxy and
Grid-Sphere. The above observations are reasonable and we
list some reasons as follows. First, we construct instances
with different hole sizes for training, so APIRec-CST can
learn semantics as much as possible no matter the hole size
is small or large. Second, APIRec-CST is context sensitive,
so if the APIs and code tokens in the context are enough for
inferring semantics, APIRec-CST can still correctly recom-
mend the correct API even the hole is large. For example,
when a developer wants to read contents from a file line
by line and he just writes one line code FileReader rd =
new FileReader(path); in the current method “readFile”.
Though the hole is large in this example, APIRec-CST can
still recommend the expected APIs one by one because
the APIs (java.io.F ileReader.new(java.lang.String)) and
code tokens (“read” and “file”) are enough to infer the
semantics of reading contents from a file line by line.

To sum up, the top-k accuracy and MRR of APIRec-
CST are insensitive to the number of APIs to be recom-
mended in a hole. In most cases, APIRec-CST achieves
comparable top-k accuracy and MRR with different number
of APIs to be recommended in a hole when compared with
the overall top-k accuracy and MRR of each test project.

5.5 Effectiveness in Real Tasks (RQ4)

We develop an IntelliJ IDEA plugin for APIRec-CST and
conduct a user study in which two groups of participants
are asked to complete a set of programming tasks with and
without the plugin respectively. Note that the purpose of
the user study is not to compare APIRec-CST with other
approaches, since we have already answered RQ1. The
objective is rather to evaluate whether APIRec-CST can
indeed help developers during coding. So, two groups of
participants are asked to complete a set of programming
tasks with and without using the APIRec-CST’s plugin re-
spectively. We derive a set of programming tasks from Stack



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 15

Fig. 8. Textual Code Information Contribution with the Increase of API Number in the Context

Overflow (SO) in the following way. We find the 500 most
voted SO questions with the tag “Java” and identify those
that can be used as programming tasks. For example, ques-
tions about concept explanation such as “Is Java pass-by-
reference or pass-by-value?” are eliminated. We then choose
those questions that have code snippets in the answers or
question bodies that can be used to implement the desired
functionalities. We further filter out the questions that have
less than four lines of code or are not API intensive. We
obtain 44 SO questions as candidates and randomly select
the following six as the tasks. For each task we prepare a
description based on the corresponding question title and
body and design a set of test cases (2-9, 6 on average). We
design test cases based on the following two criterion: (1) We
just design normal test cases and do not design exception
test cases. For example, for T1, we do not design a test
case that a file does not exist. (2) We design test cases by
considering all situations as much as possible for each task.
For example, for T1, we design three normal test cases that
are a file containing empty content, a file containing one-
line content and a file containing multi lines content. The
six tasks are as follows:

T1: How do I create a Java string from the contents of a
file [34]

T2: Iterating through a Collection, avoiding Concurrent-
ModificationException when removing objects in a loop [35]

T3: How can I generate an MD5 hash [36]
T4: How do I invoke a Java method when given the

method name as a string [37]
T5: How to read all files in a folder from Java [38]
T6: How can I increment a date by one day in Java [39]

We recruit 18 master students from our school and all
of them major in software engineering. Since the tasks
require the experience and ability of programming with JDK
library, we first ask the participants to objectively evaluate
their own experience and ability of programming with JDK
library by themselves. We split the experience and ability
of programming with JDK library into four levels, which
are “poor”, “ordinary”, “well” and “outstanding”. Each
participant must choose one of the levels as their experience
and ability of programming with JDK library. As a result,
12 participants choose “ordinary” and 6 participants choose
“well”. Thus, we divide the participants into two groups
whose overall abilities are at an equivalent level (each group
contains 6 participants with “ordinary” and 3 participants
with “well”). We respectively assign G1 to use standard
IntelliJ IDEA and G2 to use IntelliJ IDEA with the APIRec-
CST plugin. Each participant is asked to complete the six
tasks from T1 to T6 independently. They are not allowed
to search Internet, but can look up the JDK reference doc-
umentation and use the code recommendation feature and
other facilities provided by IntelliJ IDEA. The participants
in G2 can request the help of the APIRec-CST plugin, which
can provide a list of top 10 API recommendations for the
current cursor position. The participants are asked to write
the method signature even though they have no idea of a
task. The method signature is named by the participants
themselves, so we ask the participants to use meaningful
naming instead of casual naming. For each task each par-
ticipant is given 20 minutes and if he (she) can not finish
the task in time he (she) has to stop and submits his (her)
implementation of the task. We record the completion time



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 16

Fig. 9. Sensitivity Analysis on the Number of APIs in a Hole of APIRec-CST

of the participants and test their implementations for each
task.

Before formal experiments, we train the participants in
G2 on how to use APIRec-CST. We show the participants in
G2 how to use APIRec-CST through an example and then
let the participants in G2 try to use APIRec-CST based on
this example until each of them is skilled at using APIRec-
CST. The participants in G2 are enforced to use APIRec-
CST when they do not know which API call to use next or
have no idea of a task. The participants in G2 can also use
APIRec-CST to help to reduce the typing time even if they
know what to write next.

We use task completion time and test pass rate as two
metrics for evaluation. Task completion time is the time that
a participant used to complete a task. Given a submitted
implementation of a task, test pass rate is the percentage
of test cases passed in the total number of test cases. The
results of descriptive statistics analysis of task completion
time and test pass rate are shown in Table 11 and Table 12
respectively. On average, the participants in G1 use 665.7-
1,173.3 seconds to finish a task, while the participants in
G2 use 441.3-708.1 seconds to finish a task; the participants
in G1 pass 4-47% test cases, while the participants in G2

pass 68-89% test cases. We can see that APIRec-CST helps
the participants finish the tasks faster and more accurately.
Furthermore, we evaluate whether the improvements are
significant or not. We make a significance test using the
Mann-Whitney U test where a difference is thought to be
significant if the p-value is less than 0.05. We can see that the
participants in G2 significantly outperform the participants
in G1 in terms of completion time for three tasks and in
terms of test pass rate for five tasks. Furthermore, we count
the average number of times that participants in G2 actually
use APIRec-CST for each task. On average, participants in
G2 actually use APIRec-CST 10 times for T1, 7 times for T2,
6 times for T3, 6 times for T4, 9 times for T5 and 10 times
for T6. It indicates that participants in G2 are willing to use
APIRec-CST when they need help. To sum up, developers
are more effective in terms of task completion time and
test pass rate when accomplishing programming tasks using
APIRec-CST.

We have an interview with each of the participants in
G2 to get their feedback on APIRec-CST. Most of them
agree that APIRec-CST provides accurate recommendations
which are quite helpful especially when they do not know
how to proceed. In most cases, the right API is included



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 17

TABLE 11
Completion Time of the Tasks (Seconds)

Task Group avg min max median stan. dev. p

T1 G1 888.0 485 1200 900 299.83 0.0904G2 680.0 188 1200 718 343.13

T2 G1 671.4 232 1200 480 387.91 0.2677G2 562.4 246 1003 449 298.53

T3 G1 1173.3 960 1200 1200 75.42 0.0001G2 441.3 160 703 463 150.04

T4 G1 1159.6 836 1200 1200 114.39 0.0003G2 708.1 431 1154 697 211.87

T5 G1 665.7 345 1200 558 295.51 0.0924G2 475.0 232 746 427 184.56

T6 G1 1140.0 660 1200 1200 169.71 0.0013G2 707.3 255 1200 658 340.67

TABLE 12
Test Pass Rate of the Tasks

Task Group avg min max median stan. dev. p-value

T1 G1 0.26 0.00 1.00 0.00 0.41 0.0073G2 0.81 0.00 1.00 1.00 0.36

T2 G1 0.47 0.00 1.00 0.33 0.41 0.1461G2 0.68 0.00 1.00 1.00 0.39

T3 G1 0.11 0.00 1.00 0.00 0.31 0.0008G2 0.89 0.00 1.00 1.00 0.31

T4 G1 0.11 0.00 1.00 0.00 0.31 0.0012G2 0.83 0.00 1.00 1.00 0.33

T5 G1 0.36 0.00 1.00 0.38 0.37 0.0030G2 0.89 0.5 1.00 1.00 0.21

T6 G1 0.04 0.00 0.33 0.00 0.10 0.0013G2 0.78 0.00 1.00 1.00 0.42

in the top 5 recommendations. In extreme cases, APIRec-
CST can even provide right APIs when the participants
only declare a method (including method name and param-
eters). This indicates that APIRec-CST can provide useful
recommendations by only using textual code information.
They also provide suggestions for further improvement.
Two common suggestions are recommending arguments for
API invocation and providing explanations for the recom-
mended APIs.

5.6 Qualitative Analysis

In RQ1 and RQ2, we perform quantitative analysis on
APIRec-CST, thus we list some examples to qualitatively
illustrate the advantages of APIRec-CST. In Fig. 10, we list
five examples.

The first example is to read contents from a reader of a
file line by line. As we can see that GraLan recommends the
correct API in the third place, Tree-LSTM recommends the
correct API in the second place, and both APIRec-SO and
APIRec-CST recommend the correct API in the first place.
The first two recommendations of GraLan are due to the
irrelevant subgraphs that capture the semantics of list oper-
ation. This suggests that though subgraphs in GraLan may
capture the semantics at a hole, the recommendations may
be over-shadowed by other irrelevant subgraphs. Tree-
LSTM is a deep learning model using tree-based structure
which includes control flow among APIs but lacks data
flow. Tree-LSTM treats source code as code tree, and feed
the code tree into the deep learning model. Compared to
GraLan, Tree-LSTM also considers the structure information
but lack of data flow. Thus, Tree-LSTM performs better than
GraLan, although worse than APIRec-SO and APIRec-CST.
APIRec-SO and APIRec-CST treat source code as an API

context graph which contains the structure information, and
apply GG-NNs to learn the semantic in an API context
graph using a holistic view. Due to the information diffusion
mechanism in GG-NNs, each node itself and its relations to
other nodes in the API context graph are integrated and
added to the final vector representation of the API context
graph. As a result, APIRec-SO and APIRec-CST successfully
recommend that the API of the hole should be used to read
the next line. From this example, we can see that a holistic
view of correlated API usage in control and data flow graph
of an entire method can help to improve the ranking of the
correct API.

The second example is to draw a BufferedImage
given a RenderedImage. As we can see that GraLan and
Tree-LSTM fail to recommend the correct API in the top
5 recommendations, whereas APIRec-SO and APIRec-
CST successfully recommend the correct API in the first
place. In this example, none of the subgraphs in GraLan can
capture the real semantics at the hole. Most of GraLan’s
recommendations are the APIs in java.util.Hashtable
because APIs in java.util.Hashtable are closest to the hole
and are used as context in subgraphs. Due to the lack of
data flow among APIs, Tree-LSTM cannot recommend the
correct API. Only with a holistic view of a control and
data flow graph of an entire method, can APIRec-SO and
APIRec-CST find that all the APIs in the method are
prepared to be used as the parameters of the correct API
java.awt.image.BufferedImage.new(java.awt.image.C
olorModel, java.awt.image.WritableRaster, boolean, jav
a.util.Hashtable) to create a BufferedImage object. From
this example, we can see that in some situations, a holistic
view of correlated API usage in control and data flow graph
of an entire method can help to recommend the correct API.

The third example is to remove an old database file.
As we can see that GraLan fails to recommend the cor-
rect API in the top 5 recommendations, Tree-LSTM recom-
mends the correct API in the fifth place, whereas APIRec-
SO recommends the correct API in the second and APIRec-
CST recommends the correct API in the first place. All
of the approaches capture the semantics at the hole is
to apply an operation to a File object. However, the first
three approaches fail to identify which operation should be
applied to the File object. APIRec-CST leverages the method
name as textual information in which “remove” indicates
that the operation is to delete a file. APIRec-CST applies
a Code Token Network to embed the textual information
to capture the semantics in the textual information and
combined (joint) with the structure information. From this
example, we can see that the method name is indeed helpful
to clarify the semantics.

The fourth example is to set the time in millisecond of a
given value. As we can see that GraLan and Tree-LSTM fail
to recommend the correct API in the top 5 recommenda-
tions, APIRec-SO recommends the correct API in the third
place and APIRec-CST recommends the correct API in the
first place. Since there is only one JDK API (Calendar) in the
method, recommendations of all the approaches are related
to the Calendar object. However, the first three approaches
cannot recommend the correct API in first place because
they are not certain which operation should be applied on
the Calendar object. APIRec-CST leverages the parameter



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 18

Fig. 10. Positive Examples for Qualitative Analysis



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 19

name as textual information in which “time”, “in” and
“millis” (“in” and “millis” are also in the method name)
indicate that the operation is to process time in millisecond.
Combined with the semantics in the API context graph,
APIRec-CST successfully identifies that the operation is to
set the time in millisecond. From this example, we can see
that the parameter name is helpful to clarify the semantics.

The last example is to create a new directory (delete
the original directory if the directory exists). As we can see
that GraLan fail to recommend the correct API in the top 5
recommendations, Tree-LSTM recommends the correct API
in the fifth place, APIRec-SO recommends the correct API
in the third place and APIRec-CST recommends the correct
API in the first place. All of the approaches capture the
semantics at the hole is to apply an operation to a File object.
However, the first three approaches fail to identify which
operation should be applied to the File object, and thus fail
to recommend the correct API in the first place. APIRec-
CST leverages the variable names as textual information in
which “dir” and “folder” indicate that the operation should
applied on a directory not a file. Combined with the se-
mantics in the API context graph, APIRec-CST successfully
identifies that there lacks a new directory and thus the
operation is to create a new directory. From this example,
we can see that the variable names are helpful to clarify the
semantics.

Since textual information may introduce noise that affect
the accuracy of APIRec-CST for API recommendation based
on the findings in RQ2, we further list some examples that
negatively affect the accuracy of APIRec-CST when intro-
ducing textual information. In Fig. 11, we list two examples.

The first example is to get a list that contains all
the possible logging levels (such as SEVERE, WARNING
and FINER). As we can see that GraLan recommends the
correct API in the second place, Tree-LSTM and APIRec-
SO recommend the correct API in the first place, and
APIRec-CST recommends the correct API in third place.
APIRec-CST achieves the worst performance. In this ex-
ample, the code tokens in the textual information mislead
the implementation consideration due to the lack of in-
depth understanding of the context. The code tokens “get”
and “all” in the method name mislead APIRec-CST to
recommend for (iteratively adding all the elements in a
loop) and java.util.ArrayList.addAll. However, the de-
veloper chooses to add all the levels one by one using
java.util.ArrayList.add as they are defined as a set of
enumeration values.

The second example is to write the level of an event as
well as its class name. As we can see that GraLan, Tree-
LSTM and APIRec-CST fail to recommend the correct API
in the top 5 recommendations, and APIRec-SO recommends
the correct API in the fifth place. APIRec-CST fails to recom-
mend the correct API when introducing the textual informa-
tion. In this example, the code tokens in the textual informa-
tion are more relevant to the APIs after the current position.
The code token “write” in the method name makes APIRec-
CST miss the correct API java.lang.Class.getName in the
top-5 recommendations. In fact, the recommended APIs
related to object writing are the core APIs but will be used
later after the current position.

5.7 Threats to Validity
The threats to the internal validity of our studies lie
in four aspects. First, the GraLan implementation may
not be exactly consistent with the approach. Second, we
use the GloVe vocabulary to determine meaningful to-
kens. The GloVe vocabulary contains 400K most frequent
unique tokens obtained from Wikipedia and Gigaword.
Wikipedia contains software engineering-specific tokens,
however, Wikipedia maybe does not contain all tokens that
are software engineering-specific. Thus, tokens found only
in source code or software may be filtered, despite them
being meaningful in the software domain, which maybe
decreases the accuracy of APIRec-CST. However, we think
that this impact will be light, because Wikipedia is large
enough and our experiment results show the effectiveness
of adding textual information. In the future, we will seek for
stronger strategies for text processing. Third, since the con-
trol and data dependency analysis is performed statically
in APIRec-CST, we acknowledge that it might not be fully
accurate. Because we are suffered from the problem of type
hierarchy, which is a common problem in static analysis.
This is however the standard approach in existing state-
of-the-art approaches [8], [9], since obtaining control/data
dependency through dynamic analysis has its limitations as
well. In our future work, we will try our best to solve this
problem. Fourth, the test cases developed for each task may
not be complete.

The threats to the external validity of our studies lie in
three aspects. First, we only implement our approach for
Java and evaluate it with JDK. It is not clear how well the
approach can support other languages and API libraries.
However, our approach can be easily extended to other
libraries. The representations of the API context graph and
the code tokens are general. To construct the API context
graph containing APIs in other libraries, we need to import
the target libraries for using Java reflection mechanism and
then use JavaParser to parse the source code for constructing
the API context graph and code tokens. For other object-
oriented programming languages, we need to use the cor-
responding parser instead of JavaParser to parse the source
code. The cost (such as time and computation power) of
retraining APIRec-CST is determined and influenced by the
total number of training and validation instances instead of
libraries or languages. Second, as adopted in [8], [9], [17], the
test cases used in RQ1 are constructed automatically which
may not reflect the scenarios in the real world. Different
from existing approaches, we additionally conduct a user
study to simulate the scenarios in the real world to evaluate
the effectiveness of APIRec-CST. Third, we only evaluate the
approach with a group of master students and a set of tasks
from SO in the user study. It is not clear how effectively the
approach can support industrial developers to accomplish
more complex programming tasks.

6 RELATED WORK

This work is closely related to various research on code
recommendation. In modern IDE (Integrated Development
Environment), type information is often used to recommend
API method calls when classes or objects are typed. To
enhance the performance of the code recommendation in



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 20

Fig. 11. Negative Examples for Qualitative Analysis

IDEs, several approaches have been proposed to sort, filter
and group API methods for better recommendation [40],
[41], [42]. In comparison, APIRec-CST does not require a
developer to write a receiver expression. Heinemann et
al. [43] propose an API method recommendation algorithm
based on the extracted identifiers (such as variable and
type names) in the development context. In comparison, in
addition to the textual information (including identifiers),
APIRec-CST also takes structural information into consid-
eration. Besides, APIRec-CST uses a deep neural network
to learn the semantics of the textual information instead
of simply using Jaccard similarity. Several approaches [44],
[45] compute the similarity between the current code context
and previous code examples based on a set of API calls or
other additional information (such as method names, Java
keywords, class or interface names). In comparison, APIRec-
CST considers the complete API usage modeled in an API
context graph, which contains API calls, Java keywords, and
control and data flow among them. Furthermore, APIRec-
CST combines textual information which includes method
names, parameter names, and variable names.

This work is also related to work on mining usage
patterns from source code, such as [46], [47], [48], [49], [50].
These approaches often apply deterministic mining algo-
rithms to mine usage patterns for code recommendation.
Zhong et al. [48] propose MAPO to cluster code snippets
and mine usage patterns by frequent subsequence mining.
Nguyen et al. [49] propose GrouMiner to mine usage pat-
terns by representing source code as groums. Nguyen et
al. propose Grapacc [50], which first mines usage patterns
based on graphs and then matches these patterns with the
code fragment under editing based on graph-based features
and token-based features. Wang et al. [47] apply a two-
step clustering strategy to cluster call sequences and mine
usage patterns for each cluster using a frequent closed se-
quence mining algorithm. Fowkes et al. [46] propose a near
parameter-free probabilistic algorithm to infer the most in-
teresting usage patterns. In comparison, APIRec-CST learn

regularity of the API usage based on deep learning tech-
niques instead of mining usage patterns explicitly.

Based on the conjecture that source code is naturally
repetitive and predictable [1], many approaches have been
proposed to learn statistical language models from source
code for code recommendation. Hindle et al. [1] train an
n-gram model based on the tokens of the source code to
recommend the next token. Allamanis et al. [2] use a large
corpus of source code from various domains to train an n-
gram model. Nguyen et al. [3] enhance the n-gram model
with roles and data types of code tokens and global technical
concerns/functionality. Tu et al. [4] enhance the n-gram
model with a cache to capture the localized regularities in
the source code to improve the accuracy. Nguyen et al. [8]
propose a graph-based statistical language model by using
Bayesian statistical inference to compute the probabilities
of API recommendations based on graphs. Liu et al. [9]
propose a re-ranking approach based on the top-10 rec-
ommendations of GraLan to improve the top-1 accuracy
using API usage paths as features. Nguyen et al. [30] pro-
pose APIRec that learns from fine-grained code changes by
developing an association-based change inference model to
recommend API calls. Xie et al. [51] propose HiRec which
leverages hierarchical context with a statistical model for
API recommendation. HiRec identifies third-party APIs in
the project-specific methods and use them as hierarchical
context. However, HiRec does not take control and data flow
into consideration and ignores the impact of textual code
information. In addition, HiRec focuses on recommending
API methods of a given object, which means that a devel-
oper needs to write the object. However, APIRec-CST does
not require a developer to write an object. In comparison,
APIRec-CST learns from the control and data flow in the
source code instead of treating the source code as tokens
as in the above-mentioned proposals. Furthermore, APIRec-
CST takes a holistic approach to learn from both structural
and textual code information.

There are also approaches which apply deep learning



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 21

techniques for code recommendation. Raychev et al. [5] treat
the source code as sentences and combine the n-gram model
with RNN for recommending sentences. Dam et al. [6] train
an LSTM (Long Short-Term Memory) neural network based
on code tokens. Nguyen et al. [7] train a deep neural network
called Dnn4C, which not only leverages the local context of
lexical code elements, but also syntactic and type contexts.
Svyatkovskiy et al. [52] reformulate code completion from a
generation task to a task of learning to rank the valid com-
pletion suggestions computed from a candidate provider.
They propose a framework to design and combine different
deep learning components to retrieve a range of trade-offs
beyond reusing existing neural architectures. However, they
do not focus on improving the representation of source code
(such as considering control and data flow) and designing
new deep learning models. Liu et al. [53] propose an MTL-
based self-attentional neural architecture, which leverages
the paths in ASTs and combines the tasks of predicting
next value and predicting next type in an AST in the same
learning process. In comparison, APIRec-CST combines a
graph-based deep neural network and a token-based deep
neural network to capture both structural and textual code
information.

This work is broadly related to other applications of deep
learning techniques on source code for various objectives
including code summarization [54], code generation [55],
[56], [57], [58], [59], code search [60], [61], comment gen-
eration [62], [63], [64], [65], [66] or defect prediction [67],
[68]. For example, Allamanis et al. [54] propose an atten-
tional neural network to give an extreme summary of a
sequence of code tokens. Mou et al. [59] apply a sequence-to-
sequence recurrent neural network to generate code when
given a user intention. Gu et al. [61] propose a deep neural
network called CODEnn to jointly embed code snippets
and natural language descriptions. Hu et al. [62] propose
DeepCom which takes AST sequences of source code as
input and generates the corresponding comments based on
an attentional Seq2Seq model. Wang et al. [68] apply Deep
Belief Network to learn features of tokens extracted from
source code for defect prediction. These approaches apply
different deep learning models to learn program semantics
for different objectives. In comparison, APIRec-CST repre-
sents program as an API context graph and a bag of code
tokens and designs a novel deep neural network for API
recommendation.

There are also approaches focusing on recommending
API code snippets or API usage examples, such as [69], [70],
[71]. For example, Moreno et al. [72] propose an approach
named MUSE to mine and rank actual code examples which
can show the usage of a method. MUSE extracts method
usage examples by using static code slicing and clone detec-
tion. Gu et al. [73] propose a graph kernel based approach
named CodeKernel to recommend API usage examples for
developers. CodeKernel models source code as graphs and
clusters the graphs by a graph kernel method. The task of
recommending API code snippets or API usage examples
and the task of recommending the next API are two different
scenarios. In comparison, though recommending API code
snippets or API usage examples can provide a complete
code snippet or usage example to developers, the accuracy
is not as high as recommending the next API. In addition,

developers may spend a lot of time and effort to identify
and modify the code they need and delete the code they
do not need in the recommended API code snippets or API
usage examples. However, when recommending the next
API, developers just need to choose the API they need and
modify the parameters. Furthermore, when recommending
the next API one by one, it is flexible for developers to find
more API usages.

7 CONCLUSION

In this paper we propose a deep learning based API rec-
ommendation approach that combines the API usage with
the text information in the source code to simultaneously
learn structural and textual features. Our evaluation shows
that our approach significantly outperforms an existing
graph-based statistical model and a tree-based deep learn-
ing model for API recommendation and can effectively
help students to finish programming tasks faster and more
accurately. Our future work will improve the approach
from several aspects. First, we will improve the utilization
of textual code information, for example by using better
data preprocessing methods and model architectures or
introducing user interactions. Second, we will incorporate
argument recommendation and API explanation into the
approach. Third, we will apply our approach for other API
libraries and try to extend the approach to support API
recommendation of multiple libraries.

REFERENCES

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu, “On
the naturalness of software,” in 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
2012, pp. 837–847.

[2] M. Allamanis and C. A. Sutton, “Mining source code repositories
at massive scale using language modeling,” in Proceedings of the
10th Working Conference on Mining Software Repositories, MSR ’13,
San Francisco, CA, USA, May 18-19, 2013, 2013, pp. 207–216.

[3] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“A statistical semantic language model for source code,” in Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013, 2013, pp. 532–542.

[4] Z. Tu, Z. Su, and P. T. Devanbu, “On the localness of software,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, (FSE-22), Hong Kong, China,
November 16 - 22, 2014, 2014, pp. 269–280.

[5] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion with
statistical language models,” in ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’14, Edinburgh,
United Kingdom - June 09 - 11, 2014, 2014, pp. 419–428.

[6] H. K. Dam, T. Tran, and T. Pham, “A deep language model for
software code,” CoRR, vol. abs/1608.02715, 2016.

[7] A. T. Nguyen, T. D. Nguyen, H. D. Phan, and T. N. Nguyen, “A
deep neural network language model with contexts for source
code,” in 25th International Conference on Software Analysis, Evolu-
tion and Reengineering, SANER 2018, Campobasso, Italy, March 20-23,
2018, 2018, pp. 323–334.

[8] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 1, 2015, pp. 858–868.

[9] X. Liu, L. Huang, and V. Ng, “Effective API recommendation
without historical software repositories,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ASE 2018, Montpellier, France, September 3-7, 2018, 2018, pp.
282–292.



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 22

[10] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” CoRR, vol. abs/1511.05493, 2015.

[11] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE Trans. Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[12] L. B. Almeida, “A learning rule for asynchronous perceptrons with
feedback in a combinatorial environment.” in Proceedings, 1st First
International Conference on Neural Networks, vol. 2, 1987, pp. 609–
618.

[13] F. J. Pineda, “Generalization of back-propagation to recurrent
neural networks,” Physical review letters, vol. 59, no. 19, p. 2229,
1987.

[14] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” CoRR, vol.
abs/1406.1078, 2014.

[15] “Camel case,” 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Camel case

[16] “Glove,” 2020. [Online]. Available:
https://nlp.stanford.edu/projects/glove

[17] C. Chen, X. Peng, J. Sun, Z. Xing, X. Wang, Y. Zhao, H. Zhang,
and W. Zhao, “Generative API usage code recommendation with
parameter concretization,” SCIENCE CHINA Information Sciences,
vol. 62, no. 9, pp. 192 103:1–192 103:22, 2019.

[18] “Javaparser,” 2020. [Online]. Available:
https://github.com/javaparser/javaparser/

[19] “Stanford corenlp,” 2020. [Online]. Available:
https://stanfordnlp.github.io/CoreNLP/

[20] “Tensorflow,” 2020. [Online]. Available:
https://github.com/tensorflow/tensorflow

[21] “gg-nns reference implementation,” 2020. [Online].
Available: https://github.com/Microsoft/gated-graph-neural-
network-samples

[22] “Replication package,” 2020. [Online]. Available:
https://apireccst.wixsite.com/apirec-cst

[23] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Graph-based mining of multiple object usage
patterns,” in Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2009, Amsterdam,
The Netherlands, August 24-28, 2009, 2009, pp. 383–392.

[24] “Galaxy,” 2020. [Online]. Available:
https://github.com/puniverse/galaxy

[25] “Log4j,” 2020. [Online]. Available:
https://github.com/apache/log4j

[26] “Jgit,” 2020. [Online]. Available: https://github.com/eclipse/jgit
[27] “Froyo-email,” 2020. [Online]. Available:

https://github.com/Dustinmj/Froyo Email
[28] “Grid-sphere,” 2020. [Online]. Available:

https://github.com/brandt/GridSphere
[29] “Itext,” 2020. [Online]. Available:

https://github.com/itext/itextpdf
[30] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,

E. Rademacher, T. N. Nguyen, and D. Dig, “API code recom-
mendation using statistical learning from fine-grained changes,”
in Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016, 2016, pp. 511–522.

[31] V. J. Hellendoorn, S. Proksch, H. C. Gall, and A. Bacchelli, “When
code completion fails: a case study on real-world completions,” in
Proceedings of the 41st International Conference on Software Engineer-
ing, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, 2019, pp.
960–970.

[32] B. Schwartz, “The paradox of choice: Why more is less.” Ecco
New York, 2004.

[33] E. Reutskaja, A. Lindner, R. Nagel, R. A. Andersen, and C. F.
Camerer, “Choice overload reduces neural signatures of choice
set value in dorsal striatum and anterior cingulate cortex,” Nature
Human Behaviour, vol. 2, no. 12, pp. 925–935, 2018.

[34] “Stack overflow question,” 2020. [Online]. Available:
https://stackoverflow.com/questions/326390/

[35] “Stack overflow question,” 2020. [Online]. Available:
https://stackoverflow.com/questions/223918/

[36] “Stack overflow question,” 2020. [Online]. Available:
https://stackoverflow.com/questions/415953/

[37] “Stack overflow question,” 2020. [Online]. Available:
https://stackoverflow.com/questions/160970/

[38] “Stack overflow question,” 2020. [Online]. Available:
https://stackoverflow.com/questions/1844688/

[39] “Stack overflow question,” 2020. [Online]. Available:
https://stackoverflow.com/questions/428918/

[40] D. M. Pletcher and D. Hou, “BCC: enhancing code completion
for better API usability,” in 25th IEEE International Conference on
Software Maintenance (ICSM 2009), September 20-26, 2009, Edmonton,
Alberta, Canada, 2009, pp. 393–394.

[41] D. Hou and D. M. Pletcher, “Towards a better code completion
system by API grouping, filtering, and popularity-based ranking,”
in Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, RSSE 2010, Cape Town, South
Africa, May 4, 2010, 2010, pp. 26–30.

[42] ——, “An evaluation of the strategies of sorting, filtering, and
grouping API methods for code completion,” in IEEE 27th Interna-
tional Conference on Software Maintenance, ICSM 2011, Williamsburg,
VA, USA, September 25-30, 2011, 2011, pp. 233–242.

[43] L. Heinemann, V. Bauer, M. Herrmannsdoerfer, and B. Hummel,
“Identifier-based context-dependent API method recommenda-
tion,” in 16th European Conference on Software Maintenance and
Reengineering, CSMR 2012, Szeged, Hungary, March 27-30, 2012,
2012, pp. 31–40.

[44] M. Bruch, M. Monperrus, and M. Mezini, “Learning from exam-
ples to improve code completion systems,” in Proceedings of the 7th
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2009, Amsterdam, The Netherlands, August 24-28, 2009,
2009, pp. 213–222.

[45] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “A
simple, efficient, context-sensitive approach for code completion,”
Journal of Software: Evolution and Process, vol. 28, no. 7, pp. 512–541,
2016.

[46] J. M. Fowkes and C. A. Sutton, “Parameter-free probabilistic API
mining at github scale,” CoRR, vol. abs/1512.05558, 2015.

[47] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang,
“Mining succinct and high-coverage API usage patterns from
source code,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, San Francisco, CA, USA, May
18-19, 2013, 2013, pp. 319–328.

[48] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: mining
and recommending API usage patterns,” in ECOOP 2009 - Object-
Oriented Programming, 23rd European Conference, Genoa, Italy, July
6-10, 2009. Proceedings, 2009, pp. 318–343.

[49] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Graph-based mining of multiple object usage
patterns,” in Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2009, Amsterdam,
The Netherlands, August 24-28, 2009, 2009, pp. 383–392.

[50] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V.
Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Graph-based
pattern-oriented, context-sensitive source code completion,” in
34th International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland, 2012, pp. 69–79.

[51] R. Xie, X. Kong, L. Wang, Y. Zhou, and B. Li, “Hirec: API recom-
mendation using hierarchical context,” in 30th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2019, Berlin,
Germany, October 28-31, 2019, 2019, pp. 369–379.

[52] A. Svyatkovskiy, S. Lee, A. Hadjitofi, M. Riechert, J. Franco, and
M. Allamanis, “Fast and memory-efficient neural code comple-
tion,” CoRR, vol. abs/2004.13651, 2020.

[53] F. Liu, G. Li, B. Wei, X. Xia, Z. Fu, and Z. Jin, “A self-attentional
neural architecture for code completion with multi-task learning,”
in ICPC ’20: 28th International Conference on Program Comprehension,
Seoul, Republic of Korea, July 13-15, 2020, 2020, pp. 37–47.

[54] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional at-
tention network for extreme summarization of source code,” in
Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, 2016, pp.
2091–2100.

[55] P. Yin and G. Neubig, “A syntactic neural model for general-
purpose code generation,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers, 2017, pp. 440–450.

[56] Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang, “A
grammar-based structural CNN decoder for code generation,”
CoRR, vol. abs/1811.06837, 2018.



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3074309, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX 2020 23

[57] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kociský,
F. Wang, and A. W. Senior, “Latent predictor networks for code
generation,” in Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers, 2016.

[58] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks
for code generation and semantic parsing,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long
Papers, 2017, pp. 1139–1149.

[59] L. Mou, R. Men, G. Li, L. Zhang, and Z. Jin, “On end-to-end pro-
gram generation from user intention by deep neural networks,”
CoRR, vol. abs/1510.07211, 2015.

[60] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,”
in Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016, 2016, pp. 631–642.

[61] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 933–944.

[62] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Com-
prehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, 2018,
pp. 200–210.

[63] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing
source code with transferred API knowledge,” in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., 2018, pp. 2269–
2275.

[64] Y. Liang and K. Q. Zhu, “Automatic generation of text descriptive
comments for code blocks,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th in-
novative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, 2018,
pp. 5229–5236.

[65] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S.
Yu, “Improving automatic source code summarization via deep
reinforcement learning,” in Proceedings of the 33rd ACM/IEEE In-
ternational Conference on Automated Software Engineering, ASE 2018,
Montpellier, France, September 3-7, 2018, 2018, pp. 397–407.

[66] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers, 2016.

[67] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learn-
ing for just-in-time defect prediction,” in 2015 IEEE International
Conference on Software Quality, Reliability and Security, QRS 2015,
Vancouver, BC, Canada, August 3-5, 2015, 2015, pp. 17–26.

[68] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic fea-
tures for defect prediction,” in Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016, 2016, pp. 297–308.

[69] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma:
code recommendation via structural code search,” Proc. ACM
Program. Lang., vol. 3, no. OOPSLA, pp. 152:1–152:28, 2019.

[70] L. Ai, Z. Huang, W. Li, Y. Zhou, and Y. Yu, “SENSORY: lever-
aging code statement sequence information for code snippets
recommendation,” in 43rd IEEE Annual Computer Software and
Applications Conference, COMPSAC 2019, Milwaukee, WI, USA, July
15-19, 2019, Volume 1, 2019, pp. 27–36.

[71] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, and Y. L.
Traon, “Facoy: a code-to-code search engine,” in Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 946–957.

[72] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, and A. Marcus,
“How can I use this method?” in 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 1, 2015, pp. 880–890.

[73] X. Gu, H. Zhang, and S. Kim, “Codekernel: A graph kernel
based approach to the selection of API usage examples,” in 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2019, San Diego, CA, USA, November 11-15, 2019, 2019, pp.
590–601.


	Holistic combination of structural and textual code information for context based API recommendation
	Citation
	Author

	Holistic Combination of Structural and Textual Code Information for Context based API Recommendation

