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iMon: Appearance-based Gaze Tracking System on Mobile Devices

SINH HUYNH, School of Integrated Technology, Yonsei University, South Korea
RAJESH KRISHNA BALAN, School of Information Systems, Singapore Management University, Singapore
JEONGGIL KO, School of Integrated Technology, Yonsei University, South Korea

Gaze tracking is a key building block used in many mobile applications including entertainment, personal productivity,
accessibility, medical diagnosis, and visual attention monitoring. In this paper, we present iMon, an appearance-based gaze
tracking system that is both designed for use on mobile phones and has significantly greater accuracy compared to prior state-
of-the-art solutions. iMon achieves this by comprehensively considering the gaze estimation pipeline and then overcoming
three different sources of errors. First, instead of assuming that the user’s gaze is fixed to a single 2D coordinate, we construct
each gaze label using a probabilistic 2D heatmap gaze representation input to overcome errors caused by microsaccade eye
motions that cause the exact gaze point to be uncertain. Second, we design an image enhancement model to refine visual
details and remove motion blur effects of input eye images. Finally, we apply a calibration scheme to correct for differences
between the perceived and actual gaze points caused by individual Kappa angle differences. With all these improvements,
iMon achieves a person-independent per-frame tracking error of 1.49 cm (on smartphones) and 1.94 cm (on tablets) when
tested with the GazeCapture dataset and 2.01 cm with the TabletGaze dataset. This outperforms the previous state-of-the-art
solutions by ~22% to 28%. By averaging multiple per-frame estimations that belong to the same fixation point and applying
personal calibration, the tracking error is further reduced to 1.11 cm (smartphones) and 1.59 cm (tablets). Finally, we built
implementations that run on an iPhone 12 Pro and show that our mobile implementation of iMon can run at up to 60 frames
per second - thus making gaze-based control of applications possible.

CCS Concepts: « Human-centered computing — Ubiquitous and mobile computing systems and tools.
Additional Key Words and Phrases: Mobile gaze tracking; Appearance-based gaze tracking; Mobile deep learning
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1 INTRODUCTION

Gaze tracking has been proposed as a key input method for numerous compelling applications across different
domains such as entertainment/games [9, 36], personal productivity [8], human-computer interaction [34, 42, 57],
medical diagnosis [10, 12, 14], and behavioral studies [6, 45]. This is because up to 80% of human sensory
information is perceived via the visual pathway [21] and thus knowing where the user is currently focusing on
within the screen is key for many types of user-driven context-sensitive applications.
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Table 1. Person-independent per-frame 2D gaze estimation accuracy (Euclidean error in cm) on the GazeCapture dataset
using different techniques from previous studies (top) and ours (bottom).

Study ‘ Description ‘ Phone ‘ Tablet ‘ Average
Krafka et al. (2016) [32] | New model architecture (iTracker) + AlexNet CNN modules | 2.04 3.32 2.26
Kannan et al. (2017) [29] | iTracker + AlexNet CNN modules + larger input image size 1.75 - -
He et al. (2019) [22] New model architecture (SAGE) + AlexNet CNN modules 1.78 2.72 1.94
Gou et al. (2019) [18] iTracker + improved CNN modules + new training scheme 1.77 2.66 1.92
Our baseline SAGE + EfficientNetB3 CNN modules 1.66 2.31 1.77 (+8%)
Improvement (i) Our baseline + 2D heatmap gaze representation (Sec. 4.1) 1.58 2.07 1.66 (+16%)
Improvement (ii) Our baseline + eye-region image enhancement (Sec. 4.2) 1.58 2.09 1.67 (+15%)
iMon - full system Our baseline + (i) + (ii) 1.49 1.94 | 1.57 (+22%)

Mobile devices, in particular, are an ideal platform for gaze tracking applications as they are the primary
computing platform for most users. Unfortunately, even with extensive research efforts, gaze tracking is still
far from being a pervasive technology available on all smartphones. Existing mobile gaze tracking solutions
either perform inaccurately under real-world settings or require specialized and expensive hardware. In this
paper, we present a practical gaze tracking solution that can run entirely on mobile devices without requiring
any additional hardware while still achieving best-in-class accuracy.

There are two broad methods of gaze tracking known as i) geometry-based and ii) appearance-based [20]
approaches. Geometry-based methods use geometric models of the eyes and specific eye-related features (e.g.,
iris, pupil) to perform gaze estimation. However, this approach usually requires specialized sensing hardware and
a complicated calibration procedure to achieve accurate results.

The second method, known as appearance-based gaze tracking [38, 58], leverages only the features extracted
from face and eye images and uses these features to predict the gaze. Recently, convolutional neural network
(CNN) models have been used to improve the performance of appearance-based gaze tracking [58] and allowed
them to surpass the accuracy of classical feature-based regression models [32, 65]. In addition, appearance-based
gaze tracking can be used on nearly all modern commodity smartphones and tablets as all it requires is images,
captured non-intrusively, from the front-facing camera.

In this paper, we present iMon', a mobile gaze tracking system that outperforms the state-of-the-art appearance-
based techniques [18, 22, 37]. It does this by considering the entire end-to-end pipeline involved in mobile
appearance-based gaze tracking. Previous studies have made improvements on parts of this pipeline, especially
the gaze estimation model, but this work argues and shows that the overall performance is impacted not only
by the model, but also by carefully engineering and fully exploiting the potential of all pipeline components. In
particular, we identify three common sources of error within the pipeline that significantly affect the overall
accuracy of the appearance-based gaze tracking systems.

We correct these errors by (1) leveraging a novel 2D heatmap-based probabilistic representation of the human
gaze to mitigate the errors in ground-truth labels of the gaze point caused by microsaccade eye movements, (2)
improving the pre-processing pipeline (detect eye regions, enhance visual details and remove motion blur in
input images), and (3) applying calibration to alleviate the effect of individual differences in Kappa angle, which
is the difference between the pupillary and visual axis of a person’s eye where larger angles can cause gaze
tracking error. Note that all our improvements are orthogonal and complementary to improvements in either
the model architecture (e.g. SAGE [22]) or CNN model backbone (e.g. EfficientNet [59]) used; thus, with future
improvements in individual components, the accuracy can be further improved.

1iMon’s source code and a video of it operating as part of a real application is available at https://github.com/imonimwut/imon.
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Specifically, our improvements were driven by the following observations. First, we observed that current
solutions are hampered by the fixational eye movements present when an individual is focusing on a particular
point as a single point is used to represent a person’s current gaze. These eye movements are called microsaccades
and they can impose an average magnitude of 0.6° when a person is observing a scene under normal conditions [46].
The eye movements at this magnitude result in a large 0.42 cm shift in the true position of a person’s gaze
compared to the target positions (ground truth) when the distance between the user’s eye and the screen is
~40cm (e.g., front-facing camera of a mobile device).

To overcome this, during training, instead of using a 2D coordinate similar to prior work where a person’s gaze
can only be at a single point at any given time, we use a 2D probabilistic heatmap representation for gaze labels.
The 2D heatmap is constructed by a Gaussian Density Function that represents the gaze focus as a region with
higher probability and thus accounts for the uncertainty in the exact gaze point position. Contextually, the use of
such a heatmap representation allows the gaze estimation model to account for ground truth errors that existing
gaze tracking datasets embed. While heatmap representations of the human gaze have been used in previous
work to summarize gaze data, to the best of our knowledge, this is the first work to apply such representations
to appearance-based gaze estimation models. We show using the GazeCapture [32] dataset, that this technique
alone improves the gaze tracking accuracy by ~7.81%.

Second, we observed that gaze tracking is a pipelined operation (as shown in Figure 1) where input frames
are first processed using face detection and facial landmark alignment schemes before they are sent to a deep
learning-based gaze estimation model that outputs the final results. We show that improving solely the face
detection and landmark alignment steps in the state-of-the-art approaches can improve the overall estimation
accuracy by ~6.16% compared to previous pre-processing methods. iMon also employs an image enhancement
model based on the UNet architecture [51] that pre-processes eye-region images to improve the visual details
and remove motion blur. This step is particularly important as eye-region images captured by a mobile device’s
front camera tend to have limited resolution and are frequently subjected to motion blur. Our evaluation shows
that this image enhancement step improves the overall gaze tracking accuracy by an additional ~6.38%. These
pipeline improvements are used during both training and inference time.

An additional benefit of improving the pipeline as a whole is that we can apply optical flow-based gaze position
tracking, during inference time, to keep track of the facial landmarks over consecutive frames. Our evaluations
show that this can eliminate 50% to 80% of the pre-processing computational overhead with a small accuracy loss
ranging from ~1.93% to ~13.23%. Such operations can be selectively enabled depending on whether the highest
accuracy or lowest latency is required at the target application.

Finally, we note that the error caused by individual differences in visual focus known as the Kappa angle
cannot be addressed via a general gaze tracking model. We therefore propose a simple calibration scheme that
considers the screen space as a grid and simply adjusts the gaze shift caused by the Kappa angle on the horizontal
and vertical axes on each grid cell. When calibrated using 20 fixation points (this takes a few seconds per point
for a user to do), iMon can further reduce the fixation gaze tracking error by ~12.4%.

Overall, as aforementioned, our study shows that improving individual components in the gaze estimation
pipeline, can bring a noticeable positive impact on the gaze estimation accuracy. Unfortunately, previous work in
appearance-based gaze tracking fails to acknowledge the comprehensiveness of the pipeline while mostly focusing
on only the performance (and the improvement) of the deep learning model. We take the experiences from
previous work, combine them with novel and well-known state-of-the-art solutions to show that a comprehensive
approach in examining the entire pipeline is essential in practically achieving high gaze estimation accuracy.

We evaluate iMon using the publicly available GazeCapture dataset [32] that was collected from nearly 1,500
smartphone and tablet users. Overall, iMon achieves a person-independent (i.e., no Kappa angle calibration)
per-frame gaze tracking error of 1.49cm and 1.94cm on the smartphones and tablets, respectively, which is ~22%
better compared to previously reported state-of-the-art results as shown in Table 1. When averaging multiple
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per-frame predictions of each fixation point, the per-fixation gaze tracking error of iMon reduces to 1.26 cm
and 1.70 cm and can be further reduced to just 1.11 cm and 1.59 cm by applying a simple personal calibration
step. Furthermore, we also exploit a second dataset TabletGaze [24] to validate iMon’s performance and observe
similar improvements compared to prior work.

Finally, we implemented iMon on iOS using Apple’s CoreML framework [27] and show that iMon can run
end-to-end gaze tracking locally on a mobile device at 12 frames per second (fps). Using more latency-friendly
settings by applying optical flow to detect eye regions and using MobileNetV2 for the gaze estimation model,
iMon can perform at nearly 60 fps. In particular, we show that iMon performs in real-time completely locally. This
is important as needing a cloud service introduces additional costs and privacy considerations — especially since
facial images are processed. Lastly, we also show through an application-focused user study that iMon enables
the controlling of a mobile game application with only the users’ gaze information.

The key contributions of this work are as follows:

e We present appearance-based gaze tracking as a pipeline of inter-connected components and identify three
main sources of error within the gaze estimation pipeline that have critical impact on the performance of
appearance-based gaze tracking generally and for mobile platforms in particular.

e We present the design of iMon, an end-to-end real-time gaze tracking system for mobile devices, that consists of
a mixture of novel and well-established techniques to address each error source and improve the performance
of the tracking pipeline as a whole: i) 2D heatmap-based gaze representation, ii) improved image pre-processing
(face detection, facial landmark alignment, optical flow tracking, and eye-region image enhancement), and iii)
per-user Kappa angle calibration.

e We show, via extensive evaluations with two public datasets, GazeCapture and TabletGaze, that iMon outper-
forms state-of-the-art approaches by up to 22% in accuracy. When calibrated using 20 random fixation points,
iMon can further reduce the fixation gaze tracking error by ~12.4% to just 1.11cm on smartphones and 1.59cm
on tablets. In addition, using real implementations and a user study, we show that iMon can run on mobile
phones while providing high enough accuracy to enable gaze controlled mobile apps.

2 RELATED WORK
2.1 Gaze Tracking

Gaze tracking is the task of (continuously) estimating the gaze direction represented as a 3D gaze vector [65, 67]
or the gaze point on a screen represented as a 2D coordinate [24, 32]. While the 3D direction metric suits with
the settings in which the distance between user’s eye and the camera is static, this assumption is violated in the
mobile context. Due to the dynamic relative positions between the mobile device’s screen and user’s eye, gaze
direction cannot be translated directly to a 2D gaze point without using a separate designated mapping model. As
our goal is to develop a practical end-to-end gaze tracking system for mobile applications, our literature review
focuses on 2D coordinate gaze estimations.

Largely, approaches for estimating gaze can be categorized as either geometry-based or appearance-based
schemes [19].
¢ Geometry-based Gaze Tracking. Geometry-based gaze tracking schemes estimate the gaze direction or gaze
point by tracking a certain set of eye features based on a geometric eye model. Such schemes typically require
special hardware such as a camera and illumination sources to project and capture the infrared or near-infrared
light pattern on the eyes [17, 44]. The reflection image is then used to reconstruct the eye geometry model
and estimate eye-related parameters (e.g., iris [60, 61], sclera [50], pupil [41]). However, geometry-based gaze
tracking is generally limited for real-world usage due to the dependency on external sensors and light sources for
capturing high-quality eye images.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 161. Publication date: December 2021.



iMon: Appearance-based Gaze Tracking System on Mobile Devices + 161:5

e Appearance-based Gaze Tracking. Appearance-based gaze estimation [38, 58, 65, 66] exploits regression
models to map a high dimensional input vector to a gaze direction or a gaze point coordinate. The input vector
here is either a set of features extracted from eye-region images or the full facial images themselves. Appearance-
based gaze tracking requires much more training data compared to geometry-based approaches, but it can work
under different lighting conditions and across a broad range of users and facial features. On mobile devices,
appearance-based gaze tracking schemes can leverage eye images captured by the front camera while the mobile
device is in use without requiring any external sensor support.

2.2 Appearance-based Gaze Tracking Using CNNs

Recent advancements in deep neural network research, especially, convolutional neural networks (CNNs), and
the availability of large datasets has enabled significant progress in appearance-based gaze estimation [32, 65, 66].
Datasets such as GazeCapture [32] and MPIIGaze [67] have become representative benchmark datasets for
in-the-wild 2D gaze point and gaze direction estimation, respectively. Specifically, GazeCapture, introduced
by Krafka et al. [32], is a large-scale 2D gaze dataset with ~2.5 M images collected from nearly 1,500 subjects
using Phones and iPads. The work also proposed a 2D gaze estimation model using a CNN architecture, called
iTracker, which processes a set of four images extracted from each frame: a face image, a grid image presenting
the face position within the frame, left and right eye images. The authors showed that iTracker CNN-based
model can learn to map eye images directly to the 2D gaze coordinate and outperform classical models exploiting
handcrafted features.

Subsequently, many improvements were made to the 2D gaze estimation accuracy by applying larger im-
age input sizes [29], different model architectures [22], more robust CNN modules [18], or different training
schemes [18]. These prior work focus mainly on designing an estimation model suitable for general use that
do not require personal calibration, which is challenging given the anatomical differences on a per-user basis.
Furthermore, as we later show, these schemes exploit ideal representations of the human gaze for ground truth
labeling, which does not represent real micro gaze movements. At the moment, it is claimed that the accuracy of
person-independent gaze estimation is still insufficient for use in practical mobile device scenarios [35, 64]. Table 1
summarizes the reported results of different previously proposed methods evaluated using the GazeCapture
dataset. Specifically, the previous best person-independent 2D gaze estimation error was 1.77 cm on smartphones
and 2.66 cm on tablets as reported by Gou et al. [18]. Lastly, we note that previous work on mobile 2D gaze
tracking has mostly focused on gaze estimation model improvements, with less consideration on the organic
interaction between many software components within the gaze tracking pipeline that is required for accurate
gaze estimations. This is also important from the latency and energy consumption aspects as running the whole
gaze tracking pipeline with multiple computationally intensive components in real-time continuously on mobile
devices is challenging.

Our work takes a more holistic approach in achieving accurate and efficient gaze estimation on mobile
platforms by comprehensively improving the end-to-end gaze estimation pipeline, rather than focusing only on
the estimation model which is only a single component in the pipeline. Specifically, we i) re-consider how human
gaze is represented in 2D, ii) enhance eye region image quality given mobile usage characteristics, and iii) exploit
anatomical eye features for per-user calibration.

3 ERROR SOURCES THAT IMPACT GAZE TRACKING ACCURACY

In this section, we will identify and discuss common sources of errors that impact the accuracy of appearance-
based gaze tracking. Then we will show in Section 4 how iMon overcomes these errors and present evaluation
results in Section 5.
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Fig. 1. Appearance-based gaze tracking pipeline on mobile platforms: each frame extracted from the video captured by the
mobile device’s front camera is fed into a face detection model to locate the face position within the frame. Then a facial
landmark alignment model is applied to align the position of the landmarks within the face bounding box. Finally, a gaze
estimation model takes the eye regions as input and outputs an estimation of the user’s gaze point. Potential optimizations
can be made, as in this work, by identifying image similarity and skipping through redundant operations using techniques
such as optical flow.

3.1 Error Source 1: Errors in Labeled Data Used for Training

Developing an accurate gaze estimation model requires a large and diverse training dataset to capture all possible
facial feature combinations. However, collecting high-fidelity labeled gaze data (i.e., images with ground truth
locations of the gaze) is not easy and is usually done in two ways: (1) using specialized gaze tracking devices
(e.g., Tobii X2-60 [26], EyeLink Portable Duo [15]), or (2) asking participants to actively focus their gaze on a
target point on the screen as part of a data collection experiment.

Given the high costs of purchasing and calibrating gaze tracking platforms, it is challenging to collect samples
from a large and diverse population using the first approach. On the other hand, the second approach can be
made scalable by exploiting mobile applications that present participants with a sequence of target gaze fixation
points on the screen with recordings from the front facing camera. Thus, several recent work has used this
approach [24, 32] to train a robust gaze estimation model using a large set of diverse participants.

Unfortunately, this participatory data collection approach, while scalable, is susceptible to errors caused by
microsaccade movements. These are the small and involuntary eye movements that occur while the eye is
focusing on a fixed point [40]. Therefore, even if the user believes to be observing a single point on the screen, the
gaze shows small movements, which complicate the ground truth. Prior work has shown that such microsaccades
contribute to enhancing the spatial detail of our vision, and prevent it from fading [40, 52]. Under stationary
fixation scenarios, microsaccades have an average amplitude of 0.61° [46]. This translates to a shift in focus, from
the point being fixated on, of up to 0.43 cm when the screen is positioned 40 cm away from the human eye. Note
that the average peak velocity of microsaccade movements ranges from 40° to more than 200° per second, and
the frequency of such movements can vary from 1 to 3 times per second depending on the visual task [46].

Such rapid movement characteristics make obtaining fine-grained labeled data very challenging. Thus, in
practice, when collecting labeled data for appearance-based gaze tracking, a common assumption made is that the
participants focus (and stay focused) on the target point as instructed. However, due to microsaccade movements,
there are inevitable deviations from the (believed) ground-truth point. We make our first observation of an error
source as follows:

Error Source #1: The current commonly used gaze label data collection methods cannot capture the exact ground
truth position of the target gaze point.
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Fig. 2. lllustration of the eye’s Kappa angle.

3.2 Error Source 2: Errors in the Input Eye Image Data

As Figure 1 shows, a typical processing pipeline used by an appearance-based gaze tracking system commonly
consists of multiple interconnected components. Given an input frame, the face region on the image is initially
identified and key facial landmarks are aligned. Next, the landmarks related to the eye, as well as the eye-region
images themselves, are fed into a gaze estimation model, which usually uses CNNs [22, 32] to output the 2D
position estimate of the user’s focus.

Modern smartphones and tablets have front facing cameras with high pixel resolutions. However, even with
this, the size of the eye regions is very small when compared to the full image size. For example, in the widely
used GazeCapture dataset [32], more than half of the images (with 640x480 resolution) captured by the front
camera of iPhones and iPads have eye regions with a resolution of lower than 36x36 pixels. This limits the visual
content that can be extracted from the eye images, which negatively affects the performance of a gaze estimation
model. Furthermore, images captured on mobile devices often contain motion blur caused by hand and head
movements. This blur makes the detection of already-small eye regions even harder. With this in mind, we make
our second error observation as follows:

Error Source #2: The eye regions captured by a mobile devices’ front camera will usually have low resolution and
exhibit motion blur effects.

In addition, face detection and facial landmark alignment models also introduce high computational overheads
as they execute complex CNN operations on a per-frame basis. Thus, a gaze tracking pipeline that processes
each frame through all pipeline operations could result in high latency and a computationally expensive solution
that would be difficult to run in real-time on resource-constrained mobile devices due to frequent use of a deep
learning model [25, 49]. We thus note the following optimization observation:

Optimization Observation: Running the full gaze tracking pipeline on every frame could impose significant
computational and latency costs on a mobile device. Schemes to suppress the computation with minimal loss in
accuracy can allow for effective real-time gaze tracking.

3.3 Error Source 3: Errors Caused by Individual Eye Variations

Figure 2 illustrates the Kappa angle, which is the angular difference between the optical and visual axes at the
eye (i.e., the difference between where your eyes appear to look at and what you are actually seeing). The optical
axis, also referred as the pupillary axis, is the line perpendicular to the cornea that intersects the center of the
entrance pupil [43]. The visual axis is the line connecting the point of gaze and the fovea, passing through the
center of corneal curvature (nodal point) of the eye.
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The Kappa angle varies across people and a study by Gharae et al. of 977 participants, suggests that the average
and standard deviations for the Kappa angle was -0.02° + 0.49° on the horizontal axis (x-axis), and -0.09° + 0.32°
on the vertical axis (y-axis) [16].

Unfortunately, determining the Kappa angle from the input images is not easy as these eye images can only
be used to determine the optical axis, but not the visual axis. Hence, gaze estimation models can only learn to
approximate the Kappa angle from the training dataset. From the standard deviation figures produced by Gharae
et. al [16] mentioned above, the average estimation error is 0.34 cm and 0.22 cm on the horizontal and vertical
axis respectively, assuming the eyes and screen are 40 cm apart and the optical axis is perpendicular to the screen.
Based on this, we make our third and final error observation as follows:

Error Source #3: Improving the accuracy of gaze estimation will require accounting for the error caused by individual
differences in Kappa angle.

4 IMON

Based on the aforementioned observations, in this section, we present the design of iMon and show how it
overcomes the errors described in Section 3. We present iMon as a gaze estimation system that exploits any
available gaze estimation model (as part of the gaze estimation pipeline) and improves the estimation accuracy
using a combination of techniques within the pipeline as we discuss in this section.

4.1 Using Probabilistic Heatmaps to Overcome Microsaccade Errors

As stated in Section 3.1, the ground truth data even for popular eye image datasets have errors due to users’
microsaccade movements. These involuntary fixational movements suggest that the actual visual focus of the
human eye should not be defined as a single point, but should instead be a focus region of all the points observed
by the eye when focusing on a target point on the screen. A single 2D coordinate, as used in existing datasets, can
only (at the best) represent the center of a person’s visual focus and the actual focus will move around this central
point due to microsaccade movements. With this observation, we posit the following hypothesis to address Error
Source #1 described in Section 3.1:

Hypothesis #1: A probabilistic representation of the human gaze is needed (instead of the currently applied 2D
coordinates) to correct the errors caused by microsaccade movements in existing labeled gaze data. This correction
will result in improved gaze tracking accuracy.

To represent human gaze in a more realistic and probabilistic form, iMon exploits a 2D probability distribution
heatmap to represent the gaze focus region instead of using a single 2D point. Given that the microsaccade
movements of users can vary, we generalize the 2D gaze representation by constructing the 2D Gaussian function
with the mean values of the two axes (x, o) corresponding to the coordinate of gaze point label, and the standard
deviation (ox, oy), which represents the magnitude of microsaccade movements. We take the average degree
of human microsaccade motion reported from previous work in ophthalmology [46] and apply an offset with
respect to the distance between the user and screen, since changes in distance will lead to varying (ox, oy) given
the same physical microsaccade motion.

Figure 3 presents an example of the focal heatmap of the entire screen (left) and the close-up focus region
(right) showing the impact of microsaccade motions. Specifically, to apply such heatmap representations to gaze
labels for model training (instead of the conventionally used 2D coordinates), we use a per-pixel loss function as
shown below. We compute the loss value L of the estimated heatmap h (gaze estimation output) as compared to
the labeled heatmap h via the sum of all absolute pixel errors. Note that the sum of all weights (pixel values) on
each labeled heatmap is 1.

1 .
L(h,h) = Ezi|hi — h;|, where h; denotes the value of pixel i in heatmap h (1)
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Fig. 3. 2D heatmap gaze representation of an entire screen (left) and its zoomed-in gaze focus (right). Each pixel denotes
0.2 cm on the screen.

The default heatmap’s gaze focus area we use in this work is sized for a person 40 cm away from the screen. If
the person is nearer or farther, we scale the focus area accordingly. As there is no absolute measurement of the
distance between the front camera and user’s face available, we approximate this distance based on the size of the
face region captured in the frames. We note that the effect of individual face size differences is far less significant
as compared to the impact of the face-camera distance between the camera and user. For example, the size of the
face region would double if a user moves the device closer - from 40cm to 20cm away from his/her face, which is
not commonly seen for different face sizes at similar distances. We also point out that this approximation relies
on the assumption that the zooming features of the front camera is consistent for the training and inference data.

One positive side effect of this method is that the loss function will output a heatmap with all pixels having
zero values if the input image is invalid (e.g., blurry images or when a user is not looking at the phone). This
is possible given that the gaze focus takes only a small region on the entire heatmap (screen) and all pixels
outside of the focus region are labeled with zero (Figure 3). With a large dataset consisting of gaze focus regions
uniformly distributed over the entire device screen, the model will confidently output an all-zero heatmap for
invalid images where the gaze cannot be properly detected. Such invalid heatmaps can be leveraged in practice
to improve the pipeline efficiency by detecting invalid inputs and skip unnecessary pre-processing steps such as
blink and blur detection.

Note that a predicted heatmap can be converted back to a 2D coordinate by simply computing the weighted
center of the heatmap. We apply this post-processing step to evaluate the gaze tracking accuracy by computing
the Euclidean error when comparing with previous work. We validate this hypothesis and show that exploiting
2D heatmaps over coordinates improves the overall accuracy by ~7.81% improvement in Section 5.4.

We also note that, while the idea of using 2D heatmaps to visualize gaze data is not new [4, 32, 55], this work is
the first to incorporate such gaze representations into the training and inference processes of appearance-based
gaze estimation and observe its impact.

4.2 Improving the Pipeline and Input Images

Appearance-based gaze tracking models rely heavily on the visual characteristics embedded within the input
eye images. However, in practical use cases, eye images captured through a mobile device’s front facing camera
frequently suffer from issues such as low resolution or motion blur due to either the movement of the camera or
the person. Our hypothesis for addressing this error, also discussed as the second error source in Section 3.2 is as
follows:
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Fig. 4. Examples of high-quality (top) and crappified images (bottom).

Hypothesis #2: Adding components to the gaze estimation piepline for enhancing the visual details of low-quality
eye images, that commonly occur in mobile usage scenarios, can significantly improve the gaze tracking accuracy.

To assess this hypothesis, iMon exploits an image enhancement model that converts a given eye-region image
(that exhibits various levels of low resolution and motion blur effects), to a corresponding image with better
visual quality and refined details. These enhanced images are then fed to the gaze estimation model for evaluation.
We integrate this process into iMon’s gaze estimation pipeline.

The image enhancement model in iMon is based on the UNet architecture [51], which is known to be effective
in learning nonlinear relationships between low- and high-resolution images [2]. The model composes of an
encoder that uses convolutional blocks and a symmetric decoder using deconvolutional blocks (also referred
as transposed convolutional blocks). We maintain a small residual network, ResNet18 [23], as the backbone
model for the encoder and decoder. Furthermore, skip connections are added between the convolutional and the
corresponding symmetrical deconvolutional blocks.

To train this image enhancement model, we apply a semi-supervised learning approach called the decrappify
method [1]. Given an original high-quality image, the idea is to create a low-quality version of the same image by
applying removal effects. The two target scenario effects we apply are “coarse visual details” reflected by the use
of low resolutions, and “motion blur” caused by unintended user movements. To generate a low-quality version
(with the same resolution) of the original high-quality image, we first downscale the high-quality images to a
smaller size and then upscale them back to the original size using bicubic interpolation. Second, the motion blur
effect is added by convolving the original image with horizontal and vertical motion blur matrix kernels. The
kernel sizes are randomized to introduce various blur intensities. Figure 4 shows examples of this process, where
on the top we present the original high-quality images and on the bottom the corresponding crappified images
are presented.

iMon’s image enhancement model is trainable end-to-end, and convergence is achieved by minimizing the
combination of i) pixel loss and ii) perceptual feature loss between the reconstructed image and the original
image with high quality. The perceptual feature loss is computed using a VGG16 model [56] pre-trained with the
ImageNet dataset [13]. The objective of using this combination of loss functions is to encourage the model to learn
to reconstruct an image of higher quality, so that it has knowledge of similar pixel values relative to the ground
truth image. More importantly, when the reconstructed image is fed through the pre-trained VGG16 model, it
produces a similar feature representation to the ground truth. Thus, the input to the image enhancement model
is a blurry image with coarse details (directly taken from the smartphone camera), and the outcome of the final
deconvolutional layer is a refined image with better visual quality. We quantify the performance improvement
that this model brings in Section 5.5.
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Fig. 5. Individual difference in vertical kappa angle results in gaze estimation error.
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In addition to this novel image enhancement model, iMon further improves the gaze estimation pipeline by
exploiting state-of-the-art face detection and facial landmark alignment algorithms. Specifically, we use the
Single Shot Scale-invariant face detector (S3fd) [63] to detect the face bounding box, and then apply the Face
Alignment Network (FAN) [7] to specify eye regions. We selected these algorithms as they have demonstrated
robust performance across multiple large-scale 2D face detection and facial landmark alignment benchmark
datasets [28, 53, 62].

4.3 Improving Accuracy through Personal Calibration

As mentioned in Section 3.3, the Kappa angle, an important factor that determines the actual gaze coordinate,
differs for various users. Unfortunately, per-user Kappa angle magnitudes cannot be determined solely from
observing images of the eye as the visual axis is hidden. Therefore, regardless of the size of training data, a
general appearance-based gaze estimation model, even at its best, can only map the optical axis to the visual
axis with the averaged angle difference learnt from the training data. Thus, users with Kappa angle magnitudes
deviating farther from the average will experience a higher gaze estimation error.

Recall that the standard deviation of the vertical and horizontal Kappa angles are 0.32° and 0.49°, respectively,
representing the average angle between the visual axis predicted by an ideal model and the actual visual axis of
the user. In an ideal scenario where the user’s eye’s visual axis is perpendicular to the screen, the error caused by
the individual kappa angle is minimal, approximately 0.22 cm and 0.34 cm for vertical and horizontal, respectively,
or a 0.4 cm euclidean distance error. In other cases where the visual axis deviates significantly (e.g., more than
20°) from the orthogonal line of the screen plane, either horizontally or vertically as illustrated in Figure 5, this
error can be much higher (given the same Kappa angle). Specifically, the more the visual axis deviates from the
orthogonal line of the screen, the higher the error caused by individual difference of Kappa angles. Given the
large diversity of mobile phone users, this error cannot be ignored when designing a practical solution.

To address this issue, iMon adopts a calibration scheme where the screen area is split into three rows and
three columns (a 3x3 grid). Each row and column processes a different calibration value for the vertical axis
and the horizontal axis respectively. Therefore, each cell of the 3x3 grid will have a unique pair of calibration
values on the two axes. We assume that the error caused by individual Kappa angle differences would be similar
for every point included in the cell and can be corrected by linearly shifting the predicted gaze point or focus
region by measurements taken from a small number of calibration points. Thus, we formulate our hypothesis on
overcoming Kappa errors by providing per-user personalization as follows:

Hypothesis #3: The effect of per-user Kappa angle variations can be addressed using a simple calibration scheme
that pre-captures a small number of samples that can be used to estimate the error caused by individual Kappa angle
and correct other gaze predictions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 161. Publication date: December 2021.



161:12 « Huynhetal.

1 while running_facial_landmark_tracking do

2 frame = get_next_frame ()

3 facial_landmarks = optical_flow_track (frame, prev_frame, prev_facial_landmarks)
4 nme = normalized_mean_error (facial_landmarks, prev_facial_landmarks)

5 if nme > threshold then

6 facial_landmarks = get_facial_landmarks (frame)

7 prev_frame = frame

8 prev_facial_landmarks = facial_landmarks

Algorithm 1: Continuous facial landmark tracking.

To perform the calibration, we take samples from n (i.e., n < 20) calibration points. Given that this calibration
process can be considered as overhead, we make sure that this is a one-time process (per-user) and is quick to
complete. We choose the calibration points to provide sufficient coverage of the entire screen. We present the
accuracy improvements that our calibration scheme brings in Section 5.6.

4.4 Improving Latency Using Optical Flow

Finally, one important observation made in Section 3.2 when we analyzed the data pipeline was that running the
entire pipeline on every image is computationally expensive. This is particularly important for mobile device
scenarios where the computational resources available are limited and power-constrained. In this section, we
present a solution, using optical flow [39], that allows iMon to significantly reduce the overhead of performing
pre-processing steps (e.g., face detection and facial landmark alignment) with just a small loss in accuracy.

Our insight is to exploit the fact that with a high enough input frame rate (e.g., 15-30 fps) from the camera, the
differences in motion between consecutive frames, will be marginal in many cases. This is especially true for
mobile usage scenarios. For example, consider a scenario where the user is browsing an online shopping app and
the front camera is used to analyze the user’s gaze. The posture of the person will seldom change while they are
scrolling through the items, and their eye landmark positions will show minimal changes between frames. These
mobile device usage patterns provide us with an opportunity to short circuit unnecessary pipeline operations if
the change in motion is not significant.

To do this, iMon uses the Lucas-Kanade optical flow algorithm [39] to keep track of only the facial landmarks
(12 points for the left and right eyes) over consecutive frames. The robust and relatively computationally heavy
face detection and landmark alignment models only run when the optical flow suggests a significant change in
facial landmarks.

This optical flow-based optimization is presented in Algorithm 1. As the algorithm shows, iMon tracks the
facial landmarks in the current frame using information from the previous frame. As long as the distance between
the two sets of landmarks is under a preset threshold, iMon reuses the previous facial landmarks and skips the
face detection and facial landmark alignment model operation for this current frame.

This optimization greatly improves the overall gaze estimation pipeline latency at the loss of a small amount
of accuracy. We show the effectiveness of this optimization in Sections 5.7 and 5.8.

5 EVALUATIONS

In this section, we present a full evaluation of iMon using two publicly available large-scale gaze datasets and
an application-focused user study to demonstrate the effectiveness of our proposed solutions at satisfying our
hypothesis. We first examine the performance of iMon in various configurations and dimensions using the public
datasets, and later present the user study in Section 5.9.
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5.1 Evaluation Setup

e Public Datasets. The main dataset we use for our evaluation is the GazeCapture dataset [32], which provides
gaze data collected from 1,474 iPhone and iPad users through an Amazon Mechanical Turk study. It contains
nearly 2.5 M 640x480 resolution images of subjects focusing on ~200K unique fixation points, with multiple
(continuous) images available for each fixation point. To induce practical variations, subjects were asked to
continuously change their head and device orientation, and change their relative distance from the screen during
the data collection phase. For all our evaluations, we use the same the train/validate/test data split originally
provided in GazeCapture, where the subjects are split into 1,271 training, 50 validate, and 150 test subjects
respectively.

Additionally, we perform cross-dataset evaluation using models pre-trained on the GazeCapture dataset and

then evaluated on a secondary dataset — the TabletGaze [24] dataset. The TabletGaze dataset was collected using
a Samsung Galaxy Tab S and contains data from 51 subjects consisting of ~100K images, 35 fixed gaze points,
~20K unique point-of-gaze or fixation points (35 fixed points X 51 subjects X 4 body postures (standing, sitting,
slouching, and lying) X 4 sessions - with some invalid data). This secondary evaluation was performed to validate
our findings from the first dataset.
¢ Evaluation metrics. To evaluate the accuracy of iMon and different gaze estimation models used for comparison,
we report two types of error values: i) frame error and ii) fixation error. The frame error is simply the Euclidean
distance between the ground truth gaze position and the one estimated by the model on a per-frame basis. The
fixation error (also referred as dot error in Krafka et al. [32]) is computed by averaging multiple frame errors
that correspond to the same fixation point. Thus, we can think of the fixation error as a practical metric for gaze
tracking applications where input frames are captured continuously. Even for a very short fixation duration (e.g.,
300 ms), multiple gaze estimations can be made and aggregated to achieve a more accurate result.
e Model training. We trained all the models used for evaluation from scratch using 100K iterations and a batch
size of 64. We use the Adam optimizer [31] with an initial learning rate of 0.001 and reduce it by 10% for every
4K iterations. We also apply the mixed-precision scheme for the models so that only the final activation layer
is a 32-bit floating-point type with the other layers represented as 16-bit floating-point types. The size of the
input was 112x112 pixels. Note that we do not apply any data augmentation or per-device/per-screen-orientation
model fine-tuning.

5.2 iMon’s Overall Performance

Table 1 (presented in Sec. 2) summarizes the overall gaze tracking performance of iMon using the GazeCapture
dataset, compared with prior state-of-the-art mobile device appearance-based gaze tracking solutions. Specifically,
iMon achieves a person-independent frame error of 1.49cm and 1.94cm on smartphones and tablets respectively,
which outperforms the previous state-of-the-art by 22.29% on average.

Note that the work proposing the GazeCapture dataset, Krafka et al. [32] in Table 1, by default, identifies the
facial and eye region landmarks from each frame using Apple’s built-in face detection algorithm and performs
facial landmark alignment using a model proposed by Baltrusaitis et al. [3]. As mentioned in Section 4.2, we
noticed that improvements to these preprocessing algorithms can have a significant impact on the overall accuracy,
and applied the S3fd face detection model [63] and the FAN facial landmark alignment model [7] instead of the
originally used algorithms. From their output, we identify and remove 263,858 frames with blinking activities. As
a result, iMon exploits a total of 2,077,941 effective frames (1,724,239 for iPhones, 353,702 for iPads) compared to
1,490,959 frames (1,237,171 for iPhones, 253,788 for iPads) when the default algorithms are applied. We observed
that this simple improvement in applying state-of-the-art algorithms leads to 6.2% increase in accuracy by itself,
which is integrated in iMon’s final accuracy results.
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Fig. 6. CDF of iMon’s tracking error evaluated on GazeCapture dataset.

When averaging multiple per-frame gaze predictions that belong to the same fixation point, iMon achieves a
fixation error of 1.26cm and 1.70cm. We later show that the fixation error can be further reduced to 1.11cm and
1.59cm when applying personal Kappa angle calibration with 20 calibrating points (see Sec. 5.6).

Figure 6 shows the distribution of three types of errors when evaluating iMon on the GazeCapture dataset. We
note that around 60% of the samples collected from smartphones and half of the samples collected from tablets
have calibrated fixation errors of less than 1cm.

One interesting obseration we make observe that the gaze tracking error on tablets is consistently higher than
that of smartphones. One main reason for such behavior is that the amount of data collected from tablets in
GazeCapture dataset is much smaller compared to data from smartphone (only 15% of the total data are from
tablets, while the other 86% are from smartphones). Another reason is due to the bigger size of tablet screen,
hence, the prediction value range tends to show larger variations.

Additionally, we performed a 5-fold cross-subject evaluation on the TabletGaze dataset. In particular, we
randomly split the dataset into five subject groups. We use the data of four groups to fine-tune the gaze estimation
model pre-trained using the GazeCapture dataset, then evaluate the model with the data from the remaining
group. The process is repeated for each fold. This fine-tuning operation is important because the TabletGaze
dataset was collected using tablet devices with different display dimensions and camera positions which are not
included in GazeCapture dataset. A similar fine-tuning step was also applied in previous work (i.e., Krafka et
al. [32]); thus, our evaluations provide a fair comparison. The results in Table 2, show that iMon also achieves
significant improvements on the TabletGaze dataset with a 28.36% reduction in tracking error compared to prior
work. In the rest of this section, we present evaluation results in the impact of each iMon component.

5.3 Selecting the Base Gaze Estimation Model for iMon

As mentioned, iMon focuses on improving the entire gaze estimation pipeline; thus, is designed to be usable with
any appearance-based gaze estimation model. To identify the most accurate and efficient model available for our
evaluations, we evaluated the two best performing mobile gaze tracking approaches from recent work — namely
the iTracker [32] and SAGE [22] (shown in Figure 7) gaze estimation model architectures — and integrated them
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Table 2. Evaluation results (Euclidean error in cm) on TabletGaze dataset. Fixation errors have not been reported for [24]
and [32].

Method \ Frame Er. | Fixation Er.
Baseline - center of screen 7.15 7.15
TabletGaze [24] 3.17 -
iTracker [32] 2.58 -
iTracker - our implementation 2.72 2.68
iMon | 201 1.78
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Fig. 7. SAGE architecture with UpSampling2D layers for 2D heatmap gaze representation output.

to the iMon pipeline. Note that previous literature suggests that the SAGE architecture, which uses only the
eye-region images and the eye landmarks, outperforms the iTracker-based architecture which exploits both eye-
and facial-region images [22].

Both the iTracker and SAGE architecture use AlexNet [33] as their CNN backbone. In addition, we also examined
the effect of using different backbone CNN models with these architectures for gaze estimation. Specifically, we
used EfficientNet-B3 [59] and MobileNetV2 [54] as comparisons as they are known to be efficient and robust.

Our results in Table 3 indicate that the choice of both the model architecture and the backbone CNN module
can heavily affect the overall gaze estimation accuracy. Specifically, the results agree with prior work [22] and
show that SAGE outperforms iTracker across all CNN backbone choices. In addition, within the same architecture,
the EfficientNet-B3 CNN backbone has the best accuracy and outperforms AlexNet by up to 14%.

We thus select the combination of SAGE and EfficientNet-B3 for evaluating iMon as this combination showed the
best accuracy. However, we also note that MobileNetV2 requires less computational resources than EfficientNet-B3
and only has a small accuracy drop compared to EfficientNet-B3. We show how we leverage MobileNetV2 with
Optical Flow to produce a latency optimized version of iMon in Section 5.8. While the gaze tracking model is not
a contribution of this work, this evaluation process is important given that our goal is to propose an improved
to supplement a well-performing gaze tracking model so that higher accuracy can be achieved. Thus, in all
subsequent results, iMon will be using SAGE with EfficientNet-B3 unless stated otherwise.

5.4 Evaluating Heatmap Gaze Representation

To evaluate the accuracy impact of using 2D heatmaps (Section 4.1) to represent the gaze, we trained the baseline
gaze tracking model with 2D heatmap gaze representations extracted using the GazeCapture dataset. To generate
heatmap representations, we added UpSampling2D [11] layers after the Dense layers within the SAGE model
architecture (c.f., Figure 7) to convert the 1D output of the Dense layers into a 2D heatmap.
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Table 3. Evaluation results (Euclidean error in cm) of gaze estimation models with iTracker and SAGE architectures and
different CNN model backbones on GazeCapture dataset.

Model CNN Model Error (phone / tablet)
Architecture Backbone Frame Er. \ Fixation Er.
iTracker AlexNet 2.04/3.32 1.62 /2.82

iTracker MobileNetV2 1.75/ 2.57 1.56 / 2.33
iTracker EfficientNetB3 | 1.80/ 2.59 1.62 / 2.41

SAGE AlexNet 1.84/2.72 1.63/2.49
SAGE MobileNetV2 | 1.69/2.37 | 1.48/2.13
SAGE EfficientNetB3 | 1.66 / 2.31 | 1.47 / 2.12

Table 4. Evaluation results on GazeCapture dataset using 2D heatmap gaze representation with different gaze focus radius
(SAGE architecture + EfficientNet-B3). We compute using the center point of the heatmap and report the Euclidean error in
cm. Adaptive radius ranges from 0.2cm to 0.4cm depending on the face size within each input frame.

Error (phone / tablet)
Gaze Rep. | Radius | Frame Er. | Fixation Er.
Single point \ - \ 1.66 / 2.31 \ 1.47 /2.12
Heatmap 0.2 1.59/2.11 | 1.41/1.90
Heatmap 0.4 1.62/2.15 | 1.41/1.94
Heatmap 0.6 1.64/2.20 | 1.45/1.91
Heatmap 0.8 1.62/2.27 | 1.42/1.98
Heatmap | adaptive | 1.58 /2.07 | 1.36 / 1.86

Using the knowledge of the average magnitude of the microsaccade motion (0.61° or 0.43cm shift when the
screen is positioned 40 cm away [46]), we investigated the accuracy impact of using fixed heatmap-based focus
region sizes ranging from 0.2 cm to 0.8 cm. In addition, we evaluated an additional adaptive case where the size
of the focus region was adaptively set depending on the size of the detected face regions in each input frame.
The results are presented in Table 4 and show that using a 2D heatmap gaze representation, rather than a single
point representation, improves the accuracy (note: top most column shows, as a reference, the results when using
single point gaze representations with the SAGE architecture + EfficientNet-B3). Overall, applying adaptive focus
regions achieves the highest accuracy of 1.58 cm and 2.07 cm (frame error) on smartphones and tablets. In Table 5
(a), we also compare the performance of the adaptive heatmap method using MobileNetV2 and EfficientNet-B3
backbones, and observe that EfficientNet-B3 still achieves better performance.

As discussed in Section 4.1, one important side benefit of using the heatmap gaze representation is that the
gaze estimation model will output a blank heatmap when it encounters an invalid input. We found that even with
our initial frame filtering process to remove obviously wrong inputs (discussed in Section 5.2), blank heatmap
predictions still occurred for 2.69% of the input frames (1.65% fixation points) in GazeCapture’s test dataset. To
further validate the performance improvement from this side benefit, we tested the baseline solution using 2D
point coordinates (presented in Table 3) with data containing invalid samples (that can be detected only by the
heatmap model) and with only valid samples. Figure 8 presents these results and shows that the baseline model
has a significantly higher average tracking error of 2.40 cm (smartphones) and 4.54 cm (tablets) when processing
data with invalid frames (the Point-Invalid results) compared to when processing data with only valid frames
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Table 5. (Top): Evaluation using single point gaze representation for reference; (a): Heatmap effectiveness validation -
Evaluation using heatmap with adaptive radius; (b): Eye-region image enhancement effectiveness validation. All gaze estimation
models are based on SAGE architecture and evaluated on the GazeCapture dataset.

CNN Model Error (phone / tablet)
Backbone Frame Er. \ Fixation Er. | Improv.
MobileNetV2 | 1.69/2.37 1.48/2.13 -
EfficientNetB3 | 1.66 / 2.31 1.47/2.12 -
(a) With heatmap gaze representation
MobileNetV2 | 1.65/2.24 | 1.46/1.95 | +3.11%
EfficientNetB3 | 1.58/2.07 | 1.36/1.86 | +7.81 %
(b) With eye-region image enhancement
MobileNetV2 | 1.65/2.24 | 1.45/2.06 | +2.79%
EfficientNetB3 | 1.58 /2.09 | 1.39/1.94 | + 6.38%
3.2 4.8 |
& Point-Invalid tZPoint-Valid ®Heatmap
E, g 3.6
g § 24
- o o1.2

Fixation error

Frame error
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Fig. 8. Tracking error evaluated on invalid samples (detected via heatmaps) compared to valid samples in GazeCapture
test set. Point-Invalid indicates tracking error of baseline gaze estimation model using 2D point coordinate on invalid input
samples.

(Point-Valid results). The table also shows the accuracy difference when using 2D heatmaps. This suggests that
being able to filter out invalid data in the form of blank heatmaps does provide a positive impact on the overall
gaze estimation performance.

5.5 Impact of Eye-region Image Enhancement

To evaluate the impact of the image enhancement component in iMon, we trained the UNet model discussed in
Section 4.2 with the Flickr-Faces-HQ (FFHQ) dataset [30], which contains 70K high-quality 1024x1024 resolution
PNG face images. The model is trained from scratch and converges after 50K iterations with a batch size of 32
using the Adam optimizer. Both the input and output images of the image enhancement model have a size of
112x112.

Figure 9 presents examples of samples from the GazeCapture dataset before (top) and after applying iMon’s
image enhancement model (bottom). By comparing the top-bottom image pairs, we can visually observe quality
improvements for low-quality and blurred images. Note once more that these results are achieved with the
enhancement model trained using a single dataset (e.g., FFHQ) with 70K images. We conjecture that this model
could potentially improve the fidelity of eye-image input further if it is exposed to more diverse and high-quality
eye images through semi-supervised training.
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Fig. 9. Examples of eye images from GazeCapture dataset (top) and their corresponding enhanced version (bottom).
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Fig. 10. iMon’s evaluation tracking per-frame error of each device orientation on GazeCapture dataset.

Quantitatively, by evaluating our baseline estimation models with the enhanced images and comparing to
the same baseline using original images (c.f., Table 3), we observe, as shown in Table 5 (b), that the accuracy
improves by up to 6.38% with image enhancements.

5.6 Impact of Personal Kappa Angle Calibration

To evaluate the impact of calibration (Section 4.3), we first present the gaze estimation error for different screen
orientation modes in Figure 10. We observe that the horizontal axis has higher errors than the vertical axis for
both portrait and landscape modes. This difference can be partly explained by the Kappa angle error as it is
known to show significantly larger amplitudes on the horizontal axis [16].

Therefore, for Kappa angle calibration, we divide the screen into a 3x3 grid in which the gaze points within
each cell could be shifted differently due to the effect of the individual differences in Kappa angle. We then have
each user focus on specific points on the screen to calculate the Kappa angle error for each portion of the screen.
Given our experiments with pre-existing datasets (e.g., GazeCapture dataset) in which we cannot ask users for
explicit calibration operations, we implemented this by choosing, a number of fixation points from a user’s data
located in four specific screen positions (top, bottom, left, and right). We then used these data points to compute
the bias (difference between prediction and label) for both the horizontal and vertical axes. This bias is then

applied to correct the predictions of other samples for that specific subject, just as we would apply the Kappa
angle error for real users.
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Fig. 11. Fixation error when applying per-user Kappa angle calibration with different number of calibration points on
GazeCapture dataset.

Figure 11 shows that iMon’s Kappa angle calibration scheme can effectively reduce the gaze estimation error
without requiring any model fine-tuning. Specifically, with only 20 calibration points per subject, the fixation
error can be reduced by 12.4% to just 1.11cm on smartphones and 1.59cm on tablets.

We note that this calibration phase is extremely simple and takes less than 1 minute for a 20 point calibration to
complete. Since this is a one-time process, we see the overhead to be minimal. Figure 11 also implies that having
a smaller number of calibration points (4) keeps the gaze estimation error low. Therefore, while our experiences
suggest that 20 points meets a reasonable balance between calibration overhead and performance, this parameter
can be adjusted with respect to the application goals.

5.7 Latency Improvements with Optical Flow

As discussed in Section 4.4, as a latency assist, we apply Lucas-Kanade optical flow tracking [39] to keep track
of the eye landmarks (using 12 points) over consecutive frames. For each frame, if the tracked landmarks drift
away from the reference landmarks in the previous frame by a certain distance (as measured by the Normalized
Mean Error), we iterate through the entire gaze tracking pipeline, which includes the full face detection and facial
landmark alignment operations (c.f., Fig. 1). Otherwise, iMon directly performs image enhancement and gaze
estimation using the tracked landmarks on the input frames. Figure 12 shows the gaze tracking performance
(frame error) for different frequencies of the optical flow detecting that the pre-processing can be skipped. For
example, when 50% of frames bypass pre-processing, we see only a small error increase (to 1.51cm), and when
processing one-third of incoming frames (i.e., 66% of frames skipped), the error is 1.55cm on mobile platforms. By
skipping such frames we can omit the intermediate operations and minimize the processing latency. Overall, the
plot suggests that optical flow can help significantly reduce the latency by avoiding unnecessary preprocessing
with a small tracking error increase.

5.8 iMon’s Processing Latency on Mobile Platforms

We implemented iMon on iOS using the CoreML framework [27]. Except for the optical flow tracking component
that uses OpenCV library APIs [5], all components are implemented as full-precision (float32) ‘mlmodel’ neural
network models that run within the CoreML framework.

Table 6 shows the latency induced by each component of the iMon processing pipeline measured on an
iPhone 12 Pro equipped with the Apple A14 chipset (4-core GPU and a 16-core Neural Engine specialized for
neural network operations). Note that we run the eye-image enhancement model with a batch size of 2 for
concurrently processing the left and right-eye images. The gaze estimation model is evaluated with single-sample
inference. Additionally, we measured the latency of iMon when using the more latency-efficient MobileNetV2
as its core CNN module with optical flow enabled. When using the EfficientNetB3 model for gaze estimations,
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Table 6. Latency measurement of iMon and each of its components measured on an iPhone12 Pro.

Task \ Latency
Face detection (S3fd) 9.36 ms
Facial landmark alignment (FAN) 9.07 ms
Optical flow tracking for eye landmarks 4.43 ms
Eye-image enhancement (UNet-ResNet18) 4.12 ms
Gaze estimation (EfficientNetB3) 56.63 ms
Gaze estimation (MobileNetV2) 2.14 ms

Full Tracking Pipeline \ Frame Rate
iMon (EfficientNetB3) without optical flow | 12.63 fps
iMon (EfficientNetB3) with optical flow 14.02 fps
iMon (MobileNetV2) without optical flow | 40.50 fps
iMon (MobileNetV2) with optical flow 59.38 fps

we can notice from the table that its takes a (relatively) long latency to process each frame. Nevertheless, when
optimizing for processing latency, by exploiting the MobileNetV2, iMon can perform real-time tracking at nearly
60fps with a person-independent per-frame tracking error of 1.63cm on smartphones and 2.34cm on tablets. This
suggests that iMon is a mobile-suitable system that offers real-time and accurate gaze estimations.

5.9 Application-focused User Study

As the final part of our evaluation, we implemented a simple mobile application using iMon on the iPhone 12 Pro
to perform a user study. The purpose of this study was to validate that iMon can be an effective tool for developing
gaze-controlled applications by providing both accurate and timely gaze estimation results. Specifically, our
IRB-approved user study first asks the participants to perform simple Kappa angle calibration and then to play a
custom-designed ping-pong game in which the user controls the racket to hit a moving ball bouncing off the
screen borders purely using eye movements as the control. Le. iMon will track their eye movements in real-time
and move the racket accordingly. Thus low latency and high accuracy are required for a good user experience.

Screenshots of these operations, both the calibration process and game are presented in Figure 13. The Kappa
angle calibration requires the users to focus on the four corners and the center of the screen and visualize the
real-time tracking results as a red circle (c.f., Fig 13 (a)). We use only five points for Kappa angle calibration
given that our user study focused on only a single type of device orientation (i.e., vertical orientation). Once
the calibration is done, the results will be used in the gaze estimation pipeline and our users will then be asked
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(@) (b) (©

Fig. 13. Screenshots and picture of user study: (a) calibration phase screenshot: users are asked to perform a 5-point calibration
(four corners and the center point of the screen) prior to starting the application; (b) ping-pong game app screenshot: the
users control the orange bar (racket) with their gaze while the ball bounces off the screen edges; (c) picture of a participant
playing the ping-pong game by controlling the racket using gaze movements.

Table 7. Survey question and results (on a 5-point Likert scale) from our user study. The frequency column shows the
frequency of answer from the group providing fine-tuning data and the group of newly enrolled participants.

Survey question: Frequency Frequency
Please rate the quality of racket movements on a scale of 1-5 with Fine-tuning | w/o Fine-tuning
(1) The racket moves randomly and/or does not seem to follow my

gaze at all. 0 (0%) 0 (0%)

(2) The racket movement somewhat correlates with my gaze but the

error is too high to play the game. 1(14.2%) 0 (0%)

(3) I can move the racket most of the time using my gaze, but the error

sometimes is still too high. 3 (42.9%) 2(22.2%)

(4) The racket moves accordingly to my gaze with some tolerable error. 3 (42.9%) 7 (77.8%)

(5) The racket moves accordingly to my gaze perfectly. 0 (0%) 0(0%)

to play 10 ping-pong game rounds. As Figure 13 (b) shows, users control the orange bar (racket) to bounce the
moving white ball. For gameplay simplicity, we limit the racket to make only vertical movements. The racket
size is 2.65 cm and the ball’s radius is 0.34 cm. During gameplay, the ball bounces off the screen borders/walls
in random directions and can land on any position on the 12.42 cm long right border of the screen, which is
identical to the movable range of the racket. A video presenting how the user study is conducted is available at
https://github.com/imonimwut/imon.

We enrolled 16 participants to the user study (age: 22.59 + 3.31, 3 females, 8 wearing glasses) and randomly
divided them into two groups - 7 participants in a group where model fine-tuning was performed and 9 participants
in a group without fine-tuning. This allowed us to assess the benefits of fine-tuning iMon for each user. Each
participant was asked to rate their gameplay experience, with respect to the racket movements controlled by the
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Fig. 14. Gaze tracking error evaluated on groups of participants wearing glasses compared to the group not wearing glasses
in the GazeCapture test set.

gaze, through a single-question survey (with 5 options as listed in Table 7). The entire process took less than 10
mins to complete. The group that used model fine-tuning (comprising of 7 participants; 4 with glasses) provided
200 points of additional gaze tracking data to fine-tune the gaze estimation model. We note that all participants
were temporarily asked to remove their masks during the study for effective facial landmark identification, and
obeyed all COVID-19 related regulations.

Table 7 presents the results of the study for both groups of participants — those with and without model
fine-tuning. As the results show, most participants indicated that the racket moved according to their gaze with
tolerable error levels. Furthermore, we noticed that the difference in the gaze tracking errors of the two groups
of participants was not significant. Overall, the user study suggests that iMon can be utilized as a general gaze
tracking solution that can effectively handle real-time gaze control requests.

Quantitatively, the mean gaze tracking error across all the game sessions was 0.74 + 0.43 cm — this was
computed by averaging the distance between the racket and the ball center points at interaction events (when
the ball hits the racket or the right wall/screen border). For the two groups, the computed error is 0.69 + 0.39 cm
and 0.78 + 0.54 cm for the group that performed model fine-tuning and the group that did not, respectively.
Furthermore, we quantify the performance of each participant group by counting the length of rallies in the last 7
rounds each user played in the ping-pong game (we removed the results from the first three game play rounds as
the users needed to get used to playing the game). Specifically, the average rally length was 13.2 consecutive hits
(max 38), and 9.7 (max 41) for the group with fine-tuning and the group without, respectively. This confirms that
iMon can be an effective and easy-to-apply solution for supporting real-time gaze control mobile applications.

6 DISCUSSION & FUTURE WORK

e Extending iMon to other mobile platforms: We designed iMon to be a fast and accurate gaze tracking
solution for mobile phones. As shown in Section 5, it outperforms prior work by up to 22% while still achieving
real-time latencies (up to 60fps) on an iPhone 12 Pro. Since iMon uses deep learning models for many of its
processing components, the implementation on latest Apple devices can leverage the Neural Engine designed to
run machine learning operations efficiently. Therefore, the implementation of iMon on previous Apple device
models (prior to iPhone 8) without Neural Engine would have significantly higher processing latency. For
those devices, depending on the applications, one potential solution is to run iMon in a more latency-optimized
configuration (using MobileNetV2 as backbone model and skip the image enhancement step). In the future, we
also plan to extend iMon to Android by leveraging the Tensorflow Lite framework for fast on-device inference.
e Improving the Performance of iMon: There are a few orthogonal techniques that could be leveraged to
improve the performance of iMon. First, Palmero et al. [47, 48] have demonstrated the potential of integrating the
temporal information from sequences of eye images to improve the performance of appearance-based gaze tracking
methods. However, spatio-temporal gaze estimation models usually leverage sequential components such as
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Recurrent Neural Network or Long Short-Term Memory which could pose significant overheads. Therefore, special
considerations/designs are required to make it practical for mobile platforms. Another important observation
regarding the temporal aspect is that human eye movements can be categorized into a few types (e.g., saccades and
pursuit movements) and each type has certain characteristics/constraints. For example, saccades movements have
an involuntary fixed relationship between movement velocity, magnitude and duration. Those characteristics of
eye movements could be helpful to design a more efficient tracking pipeline.

Next, Figure 11 shows that personal calibration can improve accuracy. However, a full calibration could take
some time as the user has to focus on 20 random points. One possible solution to reduce this time is as users
tend to look at the interacting point (e.g, text, button) before tapping, is to collect the calibration fixation data
incrementally as users interact with their phone/applications - resulting in the tracking accuracy improving
gradually as more opportunistic calibration data is collected.

Kraka et al [32] has demonstrated that augmenting the data by randomly shifting the eye regions within a
certain range for each frame could improve the performance of gaze estimation models for both training and
inference time phases. While data augmentation during inference time could be computationally costly and
impractical on a mobile device, augmenting the training data could potentially improve the accuracy of iMon and
also could be done offline on a separate server.

We also conducted an evaluation on the GazeCapture dataset to compare the performance of iMon between two
groups of participants: with and without glasses. As Figure 14 shows, the tracking error of the group with glasses
is consistently higher on both smartphones and tablets. On average, the tracking error of participants wearing
glasses is 10% higher, even after calibration. Since each individual could have a different pair of glasses with
certain shape, function and thickness, we think that this group represents a special case that requires additional
data for gaze estimation model personalization.

Finally, we believe that fine-tuning iMon for each device model (e.g., specific models for an iPhone, or an
Android device) would help to reduce the tracking error as each device has different characteristics (e.g., camera
position, screen dimensions) that could directly affect the gaze estimation.
¢ Generalizability: Our user study in Section 5.9 was performed with a limited set of participants. While we could
not actively recruit participants from a wide range of age groups due to restrictions from the COVID-19 pandemic,
we believe that the participants that took part in the study (mostly in their 20’s) represent a demographic that is
most sensitive towards even small latency and accuracy issues that could occur when using gaze-based mobile
control operations. Thus, we believe that our findings will hold even for a general population.

7 CONCLUSION

In this paper, we presented iMon, a highly accurate appearance-based gaze tracking system for mobile devices.
iMon consists of a suite of three improvement techniques that significantly improve its accuracy compared to
prior solutions. We first address the issue of low-fidelity ground truth gaze label data by proposing a 2D heatmap
probabilistic representation for gaze labels. We then show how performing image enhancement to improve
the visual quality and remove the motion blur effect of eye-region images can improve the overall accuracy.
Finally, we apply a simple yet effective calibration scheme to mitigate the tracking error caused by the individual
differences in Kappa angel. Overall, with all the improvements, iMon, compared to prior state-of-the-art results,
improves the 2D gaze tracking accuracy by ~22% when tested using the GazeCapture dataset and by ~28% with
the TabletGaze dataset. We also show through an IRB-approved user study that iMon’s gaze tracking performance
can enable gaze-controlled applications with satisfying user acceptance levels. iMon’s source code, along with a
video of it operating as part of the user study application is available at https://github.com/imonimwut/imon.
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