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A Hybrid Architecture Combining Reactive
Plan Execution and Reactive Learning

Samin Karim®, Liz Sonenberg!, and Ah-Hwee Tan?

! Department of Information Systems
University of Melbourne
111 Barry St Carlton 3053, Melbourne, Australia
2 School of Computer Engineering
Nanyang Technological University
Nanyang Avenue, Singapore 639798

Abstract. Developing software agents has been complicated by the
problem of how knowledge should be represented and used. Many re-
searchers have identified that agents need not require the use of complex
representations, but in many cases suffice to use “the world” as their rep-
resentation. However, the problem of introspection, both by the agents
themselves and by (human) domain experts, requires a knowledge repre-
sentation with a higher level of abstraction that is more ‘understandable’.
Learning and adaptation in agents has traditionally required knowledge
to be represented at an arbitrary, low-level of abstraction. We seek to
create an agent that has the capability of learning as well as utilising
knowledge represented at a higher level of abstraction.

We firstly explore a reactive learner (FALCON) and reactive plan execu-
tion engine based on BDI (JACK) through experiments and analysis. We
then describe an architecture we have developed that combines the BDI
framework to the low-level reinforcement learner and present promising
results from experiments using our minefield navigation domain.

1 Introduction

For many applications, agents require the ability to learn and adapt, as well as
utilise an adequate knowledge representation that offers engineering benefits by
virtue of a high-level, semantic representation. One of the major tradeoffs be-
tween an agent that represents its knowledge using a low level of abstraction, to
an agent that represents its knowledge using a high level of abstraction, is in the
type of representation used. ‘Low-level’ agents are more adept at learning and
reactive behaviour [14], but usually lack a semantically rich knowledge represen-
tation, whereas ‘high-level’ agents have a semantically rich knowledge represen-
tation, but traditionally lack adequate learning capabilities that are grounded
to this knowledge base. A hybrid architecture that combines these disparate
knowledge representations may be the solution to achieve a unified agent that
can learn as well as represent knowledge at a higher level of abstraction that
carries greater semantic clarity.

Q. Yang and G. Webb (Eds.): PRICAI 2006, LNAI 4099, pp. 200211, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In this paper we describe and evaluate the behaviours of a high-level reasoner,
JACK (based on the BDI framework [3]), and a reinforcement learner (RL),
FALCON (based on an extension of Adaptive Resonance Theory (ART) [5]), in
order to demonstrate the aforementioned tradeoffs and to set the stage for the
development of a new hybrid architecture that combines these approaches. The
symbolic approach based on BDI has advantages in that it has a more precise,
semantically rich knowledge representation that promotes effective introspection
over the knowledge. Conversely, the RL approach (FALCON) can extract the
equivalent control knowledge without manual intervention, but is disadvantaged
by a less accessible representation (ie. low-level of abstraction).

The approaches that we employ have their roots in cognitive science. The
Belief-Desire-Intention (BDI) approach derives from folk psychology, and pro-
vides a platform for human modelling and logical reasoning. BDI systems encode
goal directed behaviours by using action sequences, or plans, derived from do-
main expert knowledge, usually specified at design time, about the task domain.

In modern cognitive science, many have held the view that cognition is a
process deeply rooted in the body’s interaction with the world [4]. The FALCON
model [17], an instance of reinforcement learning [10] that stems from this philos-
ophy, learns a policy by creating cognitive codes, which essentially are rules that
associate current states to actions that lead to desirable outcomes (rewards).
The strategy is similar to that adopted by the complementary reinforcement
backpropagation algorithm [1].

Thus we see complementary approaches to solve a task. On one hand we have
an ezplicitly represented procedural knowledge base (plans) utilised by the high-
level BDI agent, and which are defined at design-time by the domain expert.
On the other hand we observe an implicitly represented knowledge base accessed
by the low-level FALCON agent and specified during repeated execution and
experience gathering trials. By studying these different approaches to solving the
same task, and analysing the tradeoffs of each, we should be well positioned to
propose a hybrid architecture that combines these two dichotomous approaches.

To begin our investigation we have chosen a relatively simple task, which we
label the ‘minefield navigation domain’. It is similar to the one developed at the
Naval Research Laboratory (NRL) [7], and involves an autonomous vehicle (AV)
learning to navigate through obstacles to reach a stationary target (goal) within a
specified number of steps. Our study indicates that, separately, FALCON and BDI
agents can achieve very good performance in terms of success rates. However,
the knowledge used by the two agents is vastly different. This points to many
issues and challenges in developing an integrated architecture that performs both
deliberative planning and reactive skill learning.

The rest of the paper is organised as follows. Section 2 provides details on the
minefield navigation task domain. Section 3.1 gives a summary of the reactive
FALCON model for this domain and presents the experimental results. Section 3.2
presents the BDI approach to the minefield navigation problem and associated
experimental results. In section 4, a preliminary design and implementation
that combines these two approaches is discussed and analysed. Outcomes and
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discussion of experiments we ran using all three systems is covered in section 5.
Section 6 describes related work, and finally section 7 summarises and discusses
outcomes, highlights more general issues and points to future work.

2 The Minefield Navigation Task

We chose a domain that has sufficient regularity to make unsupervised learning
and a priori defined plans viable. At the same time, there should be sufficient un-
certainty and complexity to make re-evaluation and/or change of plans/actions
necessary. The minefield navigation task (Figure 1) requires an autonomous ve-
hicle (AV) starting at a randomly chosen position in the field to navigate through
the minefield to a randomly selected target position in a specified time frame
without hitting a mine. A trial ends when the system reaches the target (success),
hits a mine or runs out of time (failure).

& Mine: Mavigation Tazk
Wlinez Firld |- Sanar Sigral

Current Dearing Target Dearing

/.

Success rale = 0.9 Hil Mine = 0.02

Com Lo | o o e W T e (e |-

Fig. 1. The minefield navigation simulator

The system has a rather coarse sensory capability with a 180 degree forward
view based on five sonar sensors. For each direction 4, the sonar signal is measured
by s; = J: 4,» Where d; is the distance to an obstacle (that can be a mine or
the boundary of the minefield) in the ¢ direction. Other input attributes include
the range and the bearing of the target from the current position. In each step,
the system can choose one of five possible actions: MoveLeft, MoveFrontLeft,
MoveFront, MoveFrontRight, and MoveRight.

The complexity for learning the minefield navigation problem is largely de-
termined by the dimension of the sensory(state) representation. The state space
is S5 x B where S = [0,1] is the range of the sonar signals in the five directions
and B =1{0,1,...,7} is the set of possible target bearings.
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3 Two Different Approaches

We initially employed two different approaches to solve the minefield navigation
task, which are described in the following sections.

3.1 The Reactive Learning Approach: FALCON

FALCON is an extension of predictive Adaptive Resonance Theory (ART) net-
works

[6,16]. For reinforcement learning, FALCON makes use of a 3-channel architec-
ture, consisting of a sensory field F! for representing the current state, an action
field Ff? for representing the available actions, a reward field F® for represent-
ing the values of the feedback received from the environment, and a cognitive
field Fy for encoding the relations among the values in the three input channels
The reactive FALCON model acquires an action policy directly by learning the
mapping from the current states to the desirable actions. The interested reader
is directed to [17] for details on FALCON. It is sufficient to highlight here that
FALCON achieves standard RL outcomes. As we will see later in section 5, FAL-
CON is a good example of how low-level learners can solve complex tasks without
the extraction and use of higher level abstract knowledge.

3.2 The Plan Execution Approach: BDI

The basic definition of BDI agency is described in [13]. We chose to use JACK
as our agent-oriented programming platform, which supports BDI concepts and
functionality. Architecturally, JACK consists of several constructs: agents, capa-
bilities, events, plans and beliefs (see Figure 2). Agents are at the highest level of
abstraction, and represent entities with autonomous behaviour within the sys-
tem. Plans are executed when a relevant event occurs, which are posted as a
result of many reasons, mainly from goals becoming active, a percept trigger,
or from within other plans. Plans are specified by a domain expert at design
time to negotiate general scenarios, as was the case in our implementation for
the minefield domain. A detailed description of the JACK system can be found
in [11].

4 A Combined Approach: The FALCON-BDI Hybrid

4.1 Towards a Unified, Learning Agent

An important goal of agent research is to develop an architecture that is able to
learn and operate in real time. The RL mechanism of FALCON allows it to adapt
its functional behaviour reasonably well but has inherent difficulties in represent-
ing and acquiring high level abstract knowledge such as those possible in BDI
systems. Moreover, complex constructs such as context, action sequences and
goals are not explicit features of low-level learners such as FALCON. Conversely,
the BDI approach does not suffer from a nonintuitive representation such as the
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Fig. 2. JACK agent-programming language constructs
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RL approach. However, the BDI approach requires significant domain expert in-
put and is not inherently conducive to learning techniques due to it’s high-level
representation.

Due to these inherent limitations of each of these approaches, combining the
plan-based, BDI approach with FALCON is an area we have tackled as part of an
ongoing research effort. An approach is to have a layered system, with FALCON
at the bottom level and the BDI-type system at a higher level, and their outputs
appropriately combined. To this end, one possibility is to use the bottom level to
abstract concepts that are used in the higher, BDI level. Abstraction of concepts
from continuous feature values helps to produce higher level symbolic knowledge.
Two different approaches where explored to achieve the abstraction of concepts.
One approach was to abstract certain states to symbolic knowledge.

Another way to combine the reactive and plan-based approaches is to incor-
porate learning into BDI systems. JACK (BDI) plans are designed specifically
for the task they were designed for, and can achieve almost perfect performance.
However, in a less familiar environment, learning capabilities become desirable.
There are several possible ways learning can take place in a BDI architecture.

1. Existing/predefined plans in a BDI architecture can be refined through the
agent’s subsequent experience with the environment. For example, the con-
text of plans can be refined based on a rewarding strategy. The execution
and actions of plans can be refined in a similar manner.

2. New plans can be learned in a BDI architecture. There are different ap-
proaches that could achieve this, such as: predefined knowledge that facil-
itates the learning of new plans (eg. pre-wired knowledge can be used to
prime the learning process in, say, monitoring subsets of attributes or sit-
uations), or a low-level learner whose action recommendations are collated
into plans.

The use of plans as opposed to rules (codes) results in a knowledge representation
that has engineering advantages in that it is more comprehendible to humans.
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Also, policy compression [14] is attained using plans (ie. the same information
occupies less storage space). The approach described in the second point above
is the basis for the architecture presented in the following sections.

4.2 Plan Generation from FALCON Codes

In this section we present our first step towards a unified architecture that merges
the disparate approaches described in sections 3.1 and 3.2. The model consists
of a BDI top-level (JACK) and RL bottom-level (FALCON). The resulting archi-
tecture generates plans via the BDI top-level from rules learned by the bottom-
level. The crucial element of the system is that a priori information (specified
by the domain expert) is used by the BDI top-level to assist in the generation
of plans.

For our minefield navigation domain, plans consist of sequences of actions. The
human domain expert supplies a priori data in the form of two agent goals that
are associated to information pertaining to these goals. This a priori data can
be likened to clues used by the BDI top-level for plan generation. The essential
idea is that goals encapsulate a priori information that allows the BDI module
to converge relevant FALCON action recommendations into plans:

1. Goal: Avoid mines.
Clue: Consider when the agent is adjacent to a mine, meaning one or more
sonar distance is equal to one.

2. Goal: Reach target.
Clue: Consider when the agent is moving towards the target, meaning the
distance to target is reducing from the previous step.

Plans will start being generated when these relevant conditions occur, as gov-
erned by the goals which encapsulate them. The ultimate effect is that actions
are ‘recorded’ into plans. For the first goal, plans will start being generated
when the agent is ‘close to’ a mine (ie. sonar reading indicates mine is adjacent
to the agent). Similarly for the second goal, once the agent begins reducing its
distance from the target, plans relevant to this goal will start being generated.
So, after multiple runs, the BDI module will have accumulated a plan library
of condition — plan profiles that can subsume the FALCON module when, for
example, the utility (what ever this measurement may be) of the BDI plan is
higher than the utility of the FALCON action. Plans which are executed repeat-
edly with success or failure will have their confidence values reinforced /penalised
accordingly. For this purpose, the rewards in FALCON are utilised for adjusting
the relevant plan’s confidence values.

4.3 The Design

The architecture is illustrated in Figure 3. The top-left box (highlighted) is the
critical module of the architecture, the plan generation subcomponent (PGS),
which integrates FALCON to BDI. PGS generates plans by utilising a priori data
in the form of “clues” that are part of specified goals. The actions, which are part
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Fig.3. FALCON-BDI architecture

of plans, are grounded to symbolic knowledge in the BDI belief base. Actions
can either be performed by the BDI level or the FALCON level.

Algorithm 1 outlines the overall heuristic for plan generation and interaction
between the BDI and FALCON modules. In this algorithm, plans are generated
when an existing plan is not currently being executed and when FALCON ac-
tions are executed. When a plan is executing, FALCON actions are suppressed
and plans are executed to completion. Actions and plans are selected on the
basis of respective utility functions. Also, note that Utility(a) = reward(a), and
Utility(p) = Utility(a;) — Utility(a1) (where a; is the last step of a plan and aq
is the first step of a plan - see step 6 of Algorithm 1).

5 Experiments and Results

We ran experiments using the domain described in section 2. All the systems
described in the preceding sections were trained for 1000 trials, where each trial
involved the random placement of 10 mines, the agent starting point and the
target within a 16 x 16 grid. In each trial, the AV repeats the cycles of sense,
act (and learn in the case of the FALCON and FALCON-BDI systems), until it
reaches the target, hits a mine, or exceeds 30 sense-act(-learn) cycles. The same
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Algorithm 1. The PGS plan generation and FALCON-BDI integration heuristic
Require: n > threshold:, where C is the set of FALCON cognitive codes, and C =
{C1,Co,...,Cn}
1: for each consecutive state-action tuple occurrence, (s,ay), generated by FALCON
do
2:  Update set of ‘active goals’, G (ie. goals relevant to current situation denoted by
(s,a5)).
for each active goal G; € G do
Calculate Utility(ay) and Utlity(ps)
if not already executing a plan then
Select a plan ps : ps = {a1, a2, ..., ac, ...,ar} , where a. is the current step of
ps, and a; is the last step of ps

7 end if

8: if Utility(ps) > Utility(ay) V already executing a plan then

9: Execute ac, where a. € ps

10: else if Utility(ps) < Utility(ay) then

11: if there is an existing plan, pe, in the CustomPlan library, which (s,ay)
can be appended to then

12: Append ay to the end of pe

13: else

14: Create a new CustomPlan, prew

15: Add ay as first step of ppew : Prew = {ay}

16: end if

17: Execute ay

18: end if

19:  end for

20: end for

Table 1. The success rates and hit mines ratio of the different systems with stationary
and randomly moving mines. Number of trials = 1000 and maximum step allowance
= 30 steps.

Mine Movement

System (success rate/hit mines ratio)
Stationary Random

BDI 100% / 0.0% 85.7% / 10.7%

FALcoN 89.4% / 8.5% 80.7% / 16.8%

FALCON-BDI hybrid 88.6% / 9.2% 78.7% / 18.8%

set of 1000 randomly generated minefield configuration was used across all ex-
periments.

These results show that the BDI implementation, as expected, yielded su-
perior performance due to the domain expert defined control knowledge base.
The FALCON implementation followed BDI, and marginally outperformed the
FALCON-BDI hybrid system. The results of FALCON and FALCON-BDI hybrid
systems, however, are very similar, which shows much promise. We also ran the
same experiments with random moving mines. In this instance, the agent must
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Goal: “Avoid Mines”

Context: Mines to ‘hard’ left, left, and straight ahead; Target bearing
= North-East, Agent’s bearing = North-West

Plan body/Action sequence: Right — Hard right — Right —
Straight — Straight — Straight

Fig. 4. Example PGS-generated plan

negotiate mines which move randomly within the grid. This presents the agent
with a more complex task and hence proved to be considerably more difficult to
solve, as evidenced by the performance decrease across all systems.

It is worth reiterating here that quantitative results alone are not the only
component worth considering. The quality of plans and the aformentioned en-
gineering advantages of the BDI plan representation (refer to section 4) are
favourable outcomes not attained by low-level representations such as the rule-
based representation of FALCON. An example plan generated by PGS is shown
in Figure 4. Goals and the action sequence, or plan, are features of the BDI
representation not present in the rule-based representation. To represent the
same information in a rule-based representation would require separate rules
for each step of the plan sequence. Unlike the BDI representation, the relation-
ship between each step in a sequence of actions is not implicit in the rule-based
representation.

6 Related Work

Sun [14] described a two-level model, known as CLARION, for learning reactive
plans and extracting plans from reinforcement learners. The first three layers of the
bottom level form a backpropagation network learning and computing Q-values
and the fourth layer (the top level with only one node) determines probabilisti-
cally the action to be performed CLARION is an example of a hybrid architecture
consisting of explicit (high-level) and implicit (low-level) representations.

Independently, Heinze et al [9] demonstrated the synergistic coupling of a
machine learning architecture (CLARET) with a BDI top-layer in a hybrid ar-
chitecture that achieves intention recognition of aircraft. CLARET was used to
recognise spatial trajectories of aircraft and other observable objects. The BDI
layer processed these observations with higher-level, goal-directed reasoning.

Sun and Sessions [15] mention that scalability is an issue for classical rein-
forcement learners. For a relatively complex domain, abstraction of attributes
or function approximators are often needed. As Sun and Sessions’s system made
use of a radial basis function network or multilayer perceptron network, the sys-
tem may not be able to learn and operate in realtime. However, a key strength
of Sun and Sessions is the capability to perform probabilistic planning.

Also taking a bottom-up approach, the DyKnow framework by Doherty and
Heintz [8] was essentially a signal-to-symbol transformer that, amongst other fea-
tures, continually monitored perceived signals and created higher-level cognitive
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objects facilitated by domain expert defined hypothesis tests. Temporal knowl-
edge (plans) were among these higher level abstractions acquired, and are
maintained as chronologies.

The Soar architecture [12] also achieves planning from a machine learning
bottom-level by way of the well-known chunking mechanism. The PRODIGY
architecture [18] combines a planning and reasoning framework with learning
capability. The learning operates in three distinct ways: improving plan search
efficiency, improving/adding planning operators (which are generalised atomic
planning actions), and improving plan quality according to a predetermined
metric.

These approaches and architectures have the common goal (amongst other
goals) of symbol grounding high-level representations to low-level representa-
tions. Similarly, in this paper we presented an approach that ties a low-level
RL module to a higher-level BDI module, essentially for the purpose of learning
plans. However, the architecture presented in this paper is unique to current
planning-learning hybrid systems in the literature with regard to the way plans
are generated and with the assistance of domain expert knowledge, as well as
the fact it is acquired in real-time.

7 Conclusion and Future Work

We have investigated ways in which different cognitively styled agents using
knowledge representations of varying levels of abstraction can be combined into
a hybrid architecture. Using a ‘minefield navigation’ domain, we firstly com-
pared the performance and characteristics of a low-level reactive learner, FAL-
CON, which is based on a reinforcement learning technique, to that of a high-level
plan execution engine, JACK, that is based on the BDI framework. Secondly,
we studied the way in which knowledge is represented and utilised in these two
approaches, and then finally suggested a hybrid architecture that combines these
two approaches to form a unified agent model.

The experiments reported have been designed to tease out issues relating to
what knowledge to use and represent in our chosen domain. We have looked
at four levels of knowledge representation: (i) the BDI approach (JACK) that
supports the most expressive account of domain knowledge - procedures/plans
are provided by a domain expert, in a rich language where that expertise “guar-
antees” task success; (ii) the reinforcement learner (FALCON) that works on
primitive data where the system designer has provided minimal explicit guid-
ance to the run-time engine, relying on the domain regularity to inform the
learning, and (iii) a hybrid architecture that combines the plan-based and rule-
based, or more generically, high-level and low-level representations, respectively,
to achieve a system that is able to learn whilst maintaining the learned knowl-
edge in a more abstract, higher-level BDI representation that is understandable
to humans.

It is worthwhile noting that the hybrid architecture, presented in section 4,
demonstrates a generalisable ‘interaction’ between different representations.
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In this paper we present a BDI top-level that generates plans derived from an
RL bottom-level. However, the bottom-level could quite easily be another type
of module rather than the RL FALCON module (or more generally, a learning
module) that is based on a representation with a similar low level of abstraction
as FALCON. Furthermore, the application of this architecture goes beyond mobile
robotics. For instance, plan generation, or sequence learning, has application in
the biology domain [2].

It is hoped that further development of the hybrid architecture, whose prelimi-
nary design and evaluation is presented in this paper, will yield even better results
in the future. Among consideration are improved plan selection, generation and
management heuristics, as well as a more defined integration between the bottom
and top levels. There are many avenues to consider in future. Diverse low-level
learners other than FALCON will be considered, and as a major variation, the use
of a human controller in place of the bottom-level will also be explored. Different
knowledge rich domains where such a hybrid system would yield engineering and
performance advantages will also be developed and investigated.
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