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Abstract

The last-mile problem refers to the provision of travel service from the nearest public transporta-

tion node to home or other destination. Last-Mile Transportation Systems (LMTS), which have

recently emerged, provide on-demand shared transportation. In this paper, we investigate the fleet

sizing and allocation problem for the on-demand LMTS. Specifically, we consider the perspective of

a last-mile service provider who wants to determine the number of servicing vehicles to allocate to

multiple last-mile service regions in a particular city. In each service region, passengers demanding

last-mile services arrive in batches, and allocated vehicles deliver passengers to their final destina-

tions. The passenger demand (i.e., the size of each batch of passengers) is random and hard to

predict in advance, especially with limited data during the planning process. The quality of fleet-

allocation decisions is a function of vehicle fixed cost plus a weighted sum of passenger’s waiting

time before boarding a vehicle and in-vehicle riding time. We propose and analyze two models—a

stochastic programming model and a distributionally robust optimization model—to solve the prob-

lem, assuming known and unknown distribution of the demand, respectively. We conduct extensive

numerical experiments to evaluate the models and discuss insights and implications into the optimal

fleet sizing and allocation for the on-demand LMTS under demand uncertainty.

Keywords: Last-mile transportation,, on-demand transportation, fleet sizing and allocation,
demand uncertainty, stochastic optimization

1. Introduction

The last-mile problem refers to the design and provision of travel services from a public trans-

portation node to a passenger’s final destination. It is a fundamental practical problem that has

attracted intense attention in the past decade for several reasons. First, governments worldwide

are under pressure to increase public transport’s share of urban trips to reduce road congestion and

air pollution. Maybe not surprisingly, urban planners recently recognized that the unavailability of

last-mile services is one of the main deterrents to the use of public transport. Second, the aging
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of populations has increased the demand for such services. Third, more countries impose legal re-

quirements to ensure adequate mobility for particular demographic groups, who are most likely to

need last-mile services, such as people with physical disabilities.

Any passenger needing on-demand last-mile service may provide advance notice to the last-mile

transportation systems (LMTS) of his/her impending arrival at the alighting station and her specific

final destination. Once this information is received, the LMTS assigns the passenger to one of the

vehicles in the LMTS fleet, plans the vehicle’s route so that it includes a stop at the passenger’s

destination, estimates the vehicle’s departure time, and notifies the passenger accordingly. Once

all of the passengers assigned to a vehicle are on board, the vehicle executes a delivery route with

stops at each passenger’s destination and returns to the station to pick up passengers for its next

delivery tour. Many papers address various models and case studies of LMTS. With the high

penetration of services such as Uber worldwide, most people are aware of the benefits of on-demand

transportation services and request even more specialized forms, including last-mile service (Wang

and Yang (2019)) .

In this paper, we investigate the fleet sizing and allocation problem for the on-demand LMTS.

Specifically, we consider the perspective of a last-mile service provider who wants to determine the

number of servicing vehicles to allocate to multiple service regions in a particular city. In each

service region (e.g., an area around a metro station), passengers demanding last-mile services arrive

in batches (e.g., as a result of consecutive arrivals of metros or trains), and allocated vehicles deliver

passengers to their final destinations, i.e., last-mile stops. The size of each batch of passengers

(demand henceforth) is random and hard to predict in advance. The quality of fleet-allocation

decisions is a function of vehicle fixed cost (vehicle rental or purchase cost) plus a weighted sum of

passenger waiting time before boarding a vehicle and in-vehicle riding time.

The fleet sizing and allocation problem is challenging, especially since the practical passenger

demand is stochastic (i.e., uncertain). If we know the exact probability distribution of random

demand, we may formulate the problem as a two-stage stochastic programming model. In the first

stage, we decide the number of vehicles to allocate to each service region and their routes before the

realization of random demand. Then in the second stage, we observe the realizations of stochas-

tic demands and make optimal recourse actions (assigning passengers to vehicles), conditioning on

first-stage decisions, and accordingly compute the associated passenger waiting and riding times.

Mathematically, the stochastic programming model identifies vehicle allocation and routing deci-

sions that minimize the total cost, comprising the fixed cost of vehicle allocation and the expected

weighted sum of waiting time and riding time for passengers, where the expectation is taken with

respect to this known probability distribution of random demand.

In reality, it is often notoriously difficult to accurately estimate the exact probability distribution

of demand, especially with limited data during the planning stage. LMTS is a relatively emerging
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transportation mode, and thus sufficient data on LMTS operations is not readily available. Even if

LMTS companies collect data on their LMTS operations, the data may not be sufficient or have high

quality to model the demand distribution. Moreover, it is challenging to obtain LMTS data from

companies due to privacy issues, among others. If we calibrate a stochastic programming model

to a data sample from a biased distribution of random demand, then the resulting biased optimal

decisions may demonstrate disappointing out-of-sample performance (in terms of passenger waiting

and riding times) under the true distribution– a phenomenon known as optimizer’s curse (see Esfa-

hani and Kuhn (2018) and Smith and Winkler (2006) for a detailed discussion). Alternatively, one

can construct an ambiguity set (i.e., a family) of all plausible probability distributions compatible

with the available limited data or expert knowledge about demand.

In this paper, we address the uncertainty of passengers’ demand for last-mile service. We

propose, analyze, and evaluate the computational and operational performance of two models for

the fleet sizing and allocation problem, assuming known and unknown distribution of the demand,

respectively. First, a stochastic programming model is proposed to minimize the fixed cost of

allocated vehicles and the expectation of a weighted sum of passenger waiting and riding times,

under a distributional belief of demand. Second, a distributionally robust model is proposed to

minimize the fixed cost of vehicles and the worst-case (i.e., maximum) expectation of passenger

waiting time and riding times; we also evaluate the worst-case expectation over an ambiguity set

(i.e., a family of all possible distributions of uncertain demand) and characterize the ambiguity set

by known mean and support information of demand. We conduct extensive numerical experiments

and discuss the insights and implications by examining trade-offs between total cost, fleet size, and

passenger waiting and riding times.

The proposed model generalizes the single-service region LMTS routing and scheduling for-

mulation in literature by (1) considering multiple service regions, (2) considering fleet sizing and

allocation decisions, and (3) incorporating the uncertainty of passenger demand. To the best of our

knowledge, and according to our literature review in Section 2, this is the first paper that provides

a theoretical and computational analysis of stochastic optimization models for the fleet sizing and

allocation problem for LMTS.

The reminder of the paper is structured as follows. In Section 2, we review the relevant literature.

In Section 3, we formally define the problem and propose two model formulations. In Section 4,

we present computational results and discuss managerial implications. Finally, we draw conclusions

and discuss future directions in Section 5.

2. Relevant Literature

Existing literature has addressed various models and case studies of the LMTS. Several case studies

analyze LMTS in different contexts, including Liu et al. (2012)’s study of a bicycle-sharing program

3



for a passenger LMTS in Beijing. Some studies have examined the design and performance eval-

uation of an LMTS from a planning perspective. For example, Wang and Odoni (2016) address

the planning side by focusing on passenger LMTS from a stochastic and planning perspective and

provide closed-form approximations for the performance of an LMTS as a function of the system’s

fundamental design parameters. Zhu et al. (2020) study passengers’ multi-modal commuting be-

havior with ride-splitting and ride-sourcing systems, while considering their feeding effects on public

transit—i.e., the ride-splitting fleet provides first- and last-mile services to public transit.

Recent studies have examined the operation of an LMTS from an optimization perspective.

For example, Wang (2019) focuses on LMTS from an operational perspective and provides efficient

strategies for passenger assignment, vehicle routing, and scheduling operations based on a set of

last-mile demand information. Similarly, Agussurja et al. (2019) study the use of ride-sharing

in satisfying last-mile demands with the assumption that last-mile demands are uncertain and

come in batches, and propose a two-level Markov decision process framework that is capable of

generating a vehicle-dispatching policy. Liu et al. (2019) focus on the fleet size and scheduling

of feeder transit services while considering the influence of bike-sharing systems, propose several

hybrid operation modes that combine fixed and dynamic frequencies in a bimodal period, and

compare these with conventional bus scheduling with constant service frequencies. Chen et al.

(2020a) focus on solving the first-mile ride-sharing problem using autonomous vehicles and propose

a mixed-integer linear programming model to determine autonomous vehicle dispatch and ride-

sharing schemes for minimum operational costs. Serra et al. (2019) study the scheduling problem

of last-mile service while considering uncertainty in the system, and propose a two-stage stochastic

programming formulation for scheduling a set of known passengers and uncertain passengers that

is realized from a finite set of scenarios. Chen and Wang (2018a,b) study the pricing problem of

multiple types of passengers in a LMTS using a queueing model to approximate passenger waiting

time.

Personal rapid transit (PRT) and demand responsive transit (DRT), which refer to a variety of

on-demand transportation systems with characteristics that are similar, in some ways, to LMTS,

have also attracted significant attention in recent years. For instance, the PRT system control

frameworks by Anderson (1998); financial assessments by Bly and Teychenne (2005) and Berger

et al. (2011); performance approximations by Lees-Miller et al. (2009); and case studies by Mueller

and Sgouridis (2011). Other papers focus on DRT concept discussions, practical implementation,

and assessment of simulations in case studies, such as Horn (2002) and Quadrifoglio et al. (2008),

among others. Relevant fleet sizing problems have also been studied for on-demand ride-pooling

service by Ke et al. (2020); one-way car sharing service by Xu and Meng (2019); and autonomous

electric vehicles considering charging system planning by Zhang et al. (2019).

In contrast to the increased awareness for LMTS modeling and methodology research, the avail-

ability of practical datasets is a limiting factor in LMTS research. In our numerical study, we
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construct a real case study based on New York City’s travel demand data. In another paper, Hao

et al. (2021) curated last-mile transportation demand data arising from job-related commute in the

United States, with an emphasis on the correlation between last-mile demand and household income

level.

For the challenge of stochastic and uncertain demand, we refer to some frameworks for optimiza-

tion under uncertainty: stochastic programming, robust optimization, and distributionally robust

optimization. When using stochastic programming, the goal is to optimize a certain measure of a

random outcome (e.g., the expected operational cost) for a given fully known distribution of the un-

certain parameters. We refer to Birge and Louveaux (2011) and Shapiro et al. (2014) and references

therein for thorough discussions about applications, formulations, and solution algorithms. Robust

optimization (RO) assumes complete ignorance about the probability distribution of uncertain pa-

rameters. Instead, it assumes that an uncertain parameter’s values may vary in a given constrained

set, called “uncertainty set” (Ben-Tal et al., 2015; Bertsimas and Sim, 2004; Soyster, 1973). Op-

timization is performed with respect to the worst-case scenario in the uncertainty set, which may

inevitably lead to over-conservatism and suboptimal decisions for other more-likely scenarios (Chen

et al., 2020b; Delage and Ye, 2010; Thiele, 2010). By focusing on the worst-case scenario, RO

solutions are often overly conservative. Moreover, they usually have poor expected performances

because they cannot capture the distributional information of uncertainty. Distributionally robust

optimization (DRO) is a third approach to model uncertainty that bridge the gap between the

conservatism of RO and the specificity of SP. DRO optimal solutions are sought for the worst-case

probability distribution within a family of candidate distributions, called an “ambiguity set”. One

can use easy-to-approximate information such as the mean and range of random parameters to con-

struct the ambiguity sets and models that better mimic reality and are less conservative than RO

models. In addition, DRO models with some types of carefully designed ambiguity sets are often

more tractable than their SP counterparts (Delage and Ye, 2010; Rahimian and Mehrotra, 2019).

3. Formulation and Analysis

In this section, we formally define the fleet sizing and allocation problem for the on-demand LMTS.

We propose and analyze two optimization models, namely, a two-stage stochastic mixed-integer

linear programming model in Section 3.2 and a two-stage distributionally robust model in Section

3.3.

3.1. Definitions and Random Parameters

We consider the perspective of a last-mile service provider who wants to determine the number of

vehicles ms to allocate to each service region s ∈ S (e.g., an area around a metro station) in a

particular city. Each service region s ∈ S consists of a known number of last-mile stops Js. For
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each stop j ∈ Js there is a known number, Ks, of feasible vehicle routes (i.e., a sequence of last-mile

stops that a vehicle should visit on a trip). In each planing period (i.e., morning, afternoon, etc.),

a set of punctual Is trains arrive at each service region s ∈ S. Each train dispatches a batch of

passengers demanding last-mile service, and allocated vehicles deliver them to their final last-mile

destinations. The number of passengers (demand henceforth) that need rides to each last-mile stop

j ∈ Js is random. The randomness of the demand stems from the uncertain number of passengers

who make a last-minute request for last-mile service, in addition to those who request their last-mile

service in advance. We make the following assumptions as in Wang (2019):

A1. The delivery fleet consists of at most M vehicles, each with integer capacity c;

A2. The set of last-mile stops in each service region is finite;

A3. The set of feasible routes for LMTS vehicles in each service region is finite and preselected

based on geometry, historical demand patterns, and some practical constraints—e.g., limits

on the maximum number of last-mile stops on a single route or the route’s maximum travel

distance or travel time;

A4. The inter-arrival time (headway) between arrival trains is deterministic and equal to h.

Given a fleet of at most M vehicles and the sets of last-mile stops and preselected routes for

LMTS vehicles, we aim to identify: (1) the number of vehicles to allocate for each service region,

(2) a routing plan for the allocated vehicles (i.e., route selection) in each service region, and (3) the

assignment of passengers to vehicles for different realizations of demand patterns. Decisions (1)–(2)

are first-stage decisions that we make before observing demand patterns. If a route is selected, a

vehicle should visit all of the last-mile stops specified on this route. The assignment decisions (3)

represent the recourse actions in response to the first-stage decisions and the realizations of demand

patterns. The quality of fleet-allocation decisions is a function of the vehicle fixed cost (which may

include vehicle rental or purchase cost, etc.) plus a weighted sum of passenger waiting time before

boarding a vehicle and in-vehicle riding time.

General notation : For a, b ∈ Z, we define [a] := {1, 2, . . . , a} and [a, b]Z := {c ∈ Z : a ≤ c ≤ b}.
The abbreviations “w.l.o.g.” and “w.l.o.o.” respectively, represent “without loss of generality” and

“without loss of optimality.” For notation brevity, we use (Is, Js, Ks) to denote both the number and

set of (trains, last-mile stops, routes) in service region s. For notational and modeling convenience,

we assume w.l.o.g. that last-mile stops (and routes) are numbered sequentially, e.g., J1 := {1, . . . , 4},
J2 := {5, . . . , 10}, K1 := {1, 2, 3}, K2 := {4, 5, 6, 7}, etc.

3.2. Two-stage Stochastic Model (SP) for Fleet Sizing and Allocation

In this section, we assume that we know the joint probability distribution P of the random number

of passengers arriving at the station from train i with a destination of last-mile stop j in each service
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Table 1: Notation.

Indices
i index of train
j index of last-mile stop
k index of route
Sets
S set of service regions
Ks set of pre-selected feasible routes in service region s
Is set of trains arriving to bring passengers in sequence in service region s
Js set of pre-specified last-mile stops in service region s
Parameters
M maximum total number of vehicles in the fleet
ni,j,s (random) number of passengers demanding last-mile stop j arriving at the station from train i
ni,j,s/ni,j,s lower/upper bound of ni,j,s
φj,k 1 if last-mile stop j is served by route k; 0 otherwise
tk total travel time of route k, in terms of intervals between arrival trains
tj,k travel time to last-mile stop j on route k
c vehicle capacity (i.e., number of seats) for vehicle
h inter-arrival time (headway) between trains (demand batches)
fs fixed cost of each vehicle
βw weight of passenger waiting time before boarding in the objective function
βr weight of passenger in-vehicle riding time in the objective function
Decision variables
ms number of vehicles allocated to service region s
zi,j,k,s number of passengers with destination at last-mile stop j assigned to route k right after arrival of train i
wi,k,s number of trips on route k starting right after arrival of train i
Intermediate variables
ui,j,s number of unserved passengers with destination at last-mile stop j waiting at the station

after the arrival of train i
vi,s number of available vehicles at the station after the arrival of train i in service region s

and its corresponding service assignment

region s, ni,j,s, for all s ∈ S, i ∈ Is and j ∈ Js and formulate the problem as a two-stage a “prior ”

stochastic mixed-integer programming model (SP). In the first stage, we determine the number of

vehicles to allocate to each service region, their routes, and the number of trips on each route. In

the second stage, we assign passengers to vehicles for different realizations of demand and compute

the associated riding and waiting-time costs for passengers. A priori optimization has a managerial

advantage, since it guarantees the regularity of service, which is beneficial for both passengers and

the service provider.

Let integer decision variable ms represent the number of vehicles allocated to service region s.
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The feasible regionM of variables m is defined in (1) such that the number of allocated vehicles is

less than or equal to the total number of vehicles in the fleet:

M =
{
m :

∑
s∈Sms ≤M.

}
(1)

Let variable wi,k,s represent the number of trips on route k starting right after the arrival of train

i at service region s, for all i, k, s. Let variable vi,s represent the number of vehicles waiting at the

metro station after arrival of the train (demand batch) i in service region s, for all i, k, s. Feasible

regionW of (w, v) in (2) defines and constrains the number of vehicles waiting at each metro station

s after the arrival of each train i (demand batch) and its corresponding service assignment.

W =

(v, w) :

v0,s = ms −
∑
k∈Ks

w0,k,s, ∀s ∈ S

vi,s = vi−1,s +
∑
k∈Ks

wi−tk,k,s −
∑
k∈Ks

wi,k,s, ∀s ∈ S, ∀i ∈ Is \ {0}

vi,s ≥ 0, wi,k,s ∈ Z, ∀(i, j, k, s)

 (2)

Given a feasible m ∈ M, w ∈ W, and a joint realization of uncertain parameters ξ := (ni,j,s),

we can compute: (1) the number of passengers zi,j,k,s with a destination of last-mile stop j assigned

to route k right after the arrival of train i at service region s, and (2) the number of unserved

passengers ui,j,s with a destinations of each last-mile stop j waiting at the metro station after the

arrival of train (demand batch) i at service region s and its corresponding service assignment using

the following linear program (see Table 1 for notation):

Q(m,w, ξ) := min βw
∑
s∈S

∑
i∈Is

∑
j∈Js

hui,j,s + βr
∑
s∈S

∑
i∈Is

∑
j∈Js

∑
k∈Ks

tj,kzi,j,k,s (3a)

s.t. u0,j,s = n0,j,s −
∑
k∈Ks

z0,j,k,sφj,k,∀s ∈ S, ∀j ∈ Js (3b)

ui,j,s = ui−1,j,s + ni,j,s −
∑
k∈Ks

zi,j,k,sφj,k,∀s ∈ S, ∀i ∈ Is \ {0}, ∀j ∈ Js (3c)

∑
j∈Js

zi,j,k,sφj,k ≤ cwi,k,s, ∀s ∈ S, ∀i ∈ Is, ∀k ∈ Ks (3d)

ui,j,s ≥ 0, zi,j,k,s ≥ 0, ∀(i, j, k, s) (3e)

The objective function (3a) minimizes a linear cost function of the total waiting time and riding

time for passengers. Constraints (3b) and (3c) are passenger flow constraints—i.e., they define and

constrain the number of unserved passengers with a destinations of each last-mile stop who are

waiting at the metro station after the arrival of train is and its corresponding service assignment.

Constraint (3d) ensures the vehicle service capacity restriction. Finally, constraint (3e) specifies the
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feasible ranges of the decision variables. Accordingly, we formulate the stochastic fleet sizing and

allocation of fleet problem as follows:

min
m∈M,w∈W

(∑
s∈S

fsms + EP[Q(m,w, ξ)]
)

(4)

The SP formulation in (4) searches for vehicle sizing, allocation, routing, and scheduling decisions

that minimize the vehicle fixed cost plus a weighted expected sum of passenger waiting time and

riding time, where the expectation is taken with respect to a known joint probability distribution

P of ξ, where ξ is the a vector of demand (i.e., a vector of all (ni,j,s), for all s ∈ S, i ∈ Is and

j ∈ Js). The formulation generalizes the deterministic LMTS routing and scheduling formulation of

Wang (2019) by (1) considering multiple service regions, (2) considering fleet sizing and allocation

decisions, and (3) incorporating the uncertainty of passengers demand for LMTS. In Proposition 1,

we show that the number of trips on routes that have at least two last-mile stops is at most one

after each train arrival in the optimal solution.

Proposition 1. For any k ∈ Ks, if
∑

j∈Js φj,k ≥ 2, then w∗i,k,s ≤ 1 in the optimal solution of

formulation (4).

Proof. For any k ∈ Ks such that
∑

j∈Js φj,k = 2, w.l.o.g., assume that the last-mile stops served

by route k are visited in the sequence of j1, j2 in route k. We use Q(wi,k,s) to denote the value of

objective function (3a) for a solution with route wi,k,s = 2. The corresponding passenger assignments

are zi,j1,k,s and zi,j2,k,s with zi,j1,k,s + zi,j2,k,s ≤ 2c. Assume that route k1 only serves stop j1 and

route k2 only serves stop j2.

• If zi,j1,k,s ≤ c and zi,j2,k,s ≤ c, we can construct another feasible solution with route w′i,k1,s = 1,

w′i,k2,s = 1, and passenger assignment z′i,j1,k1,s = zi,j1,k,s and z′i,j2,k1,s = zi,j2,k,s.

• If c < zi,j1,k,s ≤ 2c and zi,j2,k,s < c, we can construct another feasible solution with route

w′i,k1,s = 1 and w′i,k,s = 1, and passenger assignment z′i,j1,k1,s = c, z′i,j1,k,s = zi,j1,k,s − c and

z′i,j2,k,s = zi,j2,k,s.

• If zi,j1,k,s < c and c < zi,j2,k,s ≤ 2c, we can construct another feasible solution with route

w′i,k2,s = 1 and w′i,k,s = 1, and passenger assignment z′i,j2,k2,s = c, z′i,j2,k,s = zi,j2,k,s − c and

z′i,j1,k,s = zi,j1,k,s.

Since routes k1 and k2 are sub-routes of route k, we have tj1,k1 ≤ tj1,k, tj2,k2 ≤ tj2,k, tk1 < tk and

tk2 < tk. Apparently, the value of objective function (3a) for the solution Q(w′i,k,s, w
′
i,k1,s

, w′i,k2,s) <

Q(wi,k,s), which means that the solution with wi,k,s = 2 is not the optimal solution. Similarly,

we can justify that all solutions with
∑

j∈Js φj,k > 2 and wi,k,s ≥ 2 are not the optimal solution.

Therefore, in the optimal solutions, we have w∗i,k,s ≤ 1 for any k ∈ Ks with
∑

j∈Js φj,k ≥ 2.
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Proposition 1 implies that, at any vehicle dispatch decision after each train i arrives, to reduce

passenger riding time, we would never dispatch multiple identical routes (i.e., wi,k,s ≥ 2) that

visit multiple stops (i.e.,
∑

j∈Js φj,k ≥ 2). In other words, if a route k visits multiple stops (i.e.,∑
j∈Js φj,k ≥ 2), we would dispatch at most one vehicle to serve this route k (i.e., wi,k,s ≤ 1) after

each train i arrives. This proposition will render many integer decision variables wi,k,s to binary

decision variables, which can help to improve the computational efficiency of the optimization model.

3.3. Distributionally Robust Model (DR) for Fleet Sizing and Allocation

The SP formulation in (4) assumes that we know the probability distributions P of ξ = (ni,j,s),

where s ∈ S, i ∈ Is and j ∈ Js. However, in reality, it is challenging, if not impossible, to accurately

identify (estimate) the true distribution of random parameters for the demand. In this section, we

assume that P is not perfectly known. However, we know the support (i.e., upper and lower bounds)

and the mean values of the random parameters. Mathematically, we consider support

R :=
{
n ≥ 0 : ni,j ≤ ni,j,s ≤ ni,j,s,∀s ∈ S, i ∈ Is, J ∈ Js.

}
In addition, we let µ := E[ξ] represent the mean (expected) value of n. Then we consider the

following mean-support ambiguity set F(R, µ):

F(R, µ) :=

{
P ∈ P(R) :

∫
R dP = 1

EP[ξ] = µ

}
(5)

where P(R) in F(R, µ) represents the set of probability distributions supported on R, and each

distribution matches the mean values of n. Using the ambiguity set F(R, µ), we formulate the fleet

sizing and allocation as the following min-max problem:

min
m∈M,w∈W

{∑
s∈S

fsms + sup
P∈F(R,µ)

EP[Q(m,w, ξ)]

}
(6)

The formulation (6) seeks to identify vehicle sizing, allocation, routing, and scheduling decisions

that minimize the worst-case expected cost of passenger waiting time and riding time over a fam-

ily of distributions of random parameters residing in the ambiguity set F(R, µ) for the demand.

Q(m,w, ξ) is the recourse problem defined in (3).

3.4. Reformulation

In this section, we use duality theory and follow a standard approach in distributionally robust

optimization to reformulate the min-max model in (6) to one that is solvable. We first consider the

inner maximization problem sup
P∈F(S,µ)

EP[Q(m,w, ξ)] for a fixed vehicle allocation decision m ∈ M

and w ∈ W, where P is the decision variable—i.e., we are choosing the distribution that maximizes

the expected value of Q(m,w, ξ).

max EP[Q(m,w, ξ)] (7a)
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s.t. EP[ξ] = µ, (7b)

EP[1R(ξ)] = 1 (7c)

where 1R(ξ) = 1 if ξ ∈ R and 1R(ξ) = 0 if ξ /∈ R. As we show in the proof of Proposition 2,

problem (7) is equivalent to problem (8).

Proposition 2. For a fixed m ∈M and w ∈ W, problem (7) is equivalent to

min
[∑
s∈S

∑
i∈Is

∑
j∈Js

µi,j,sρi,j,s + max
n∈R
{Q(m,w, ξ) +

∑
s∈S

∑
i∈Is

∑
j∈Js

−ni,j,sρi,j,s}
]

(8)

Proof. For a fixed (m,w) we can formulate problem (7) as the following linear functional optimiza-

tion problem:

max
P≥0

∫
R
Q(m,w, ξ) dP (9a)

s.t.
∫
R
ni,j,s dP = µi,j,s ∀s ∈ S, ∀i ∈ Is, ∀j ∈ Js (9b)∫

R
dP = 1 (9c)

Letting ρ and θ be the dual variable associated with constraints (9b) and (9c), respectively, we

present problem (9) in its dual form:

min
(ρ,α,λ,θ)

∑
s∈S

∑
i∈Is

∑
j∈Js

µi,j,sρi,j,s + θ (10a)

s.t.
∑
s∈S

∑
i∈Is

∑
j∈Js

ni,j,sρi,j,s + θ ≥ Q(m,w, ξ), ∀n ∈ R (10b)

where ρ and θ are unrestricted in sign, and constraint (10b) is associated with the primal variable

P. Under the standard assumption that µ belongs to the interior of the set {
∫
R ni,j,sQ : Q is a

probability distribution over support R}, strong duality holds between (9) and (10) (see Bertsimas

and Popescu (2005) for a detailed discussion of this assumption and Jiang et al. (2017); Shehadeh and

Padman (2021); Shehadeh and Sanci (2021) for applications). Note that for fixed (ρ, θ), constraints

(10b) are equivalent to θ ≥ max
n∈R
{Q(m,w, ξ)−

∑
s∈S

∑
i∈Is

∑
j∈Js

ni,j,sρi,j,s}. Since we are minimizing θ in

(10), the dual formulation of (9) is equivalent to

min
[∑
s∈S

∑
i∈Is

∑
j∈Js

µi,j,sρi,j,s + max
n∈R
{Q(m,w, ξ) +

∑
s∈S

∑
i∈Is

∑
j∈Js

−ni,j,sρi,j,s}
]

Note that the recourse problem Q(m,w, ξ) is a minimization problem. Thus, in (8) we have

an inner max-min problem. Next, we use Q(m,w, ξ) properties to derive an equivalent single
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minimization reformulation of (8). For fixed m ∈ M, w ∈ W, and a realized value of ξ = n,

Q(m,w, ξ) is a linear program. We formulate Q(m,w, ξ) in its dual form as

Q(m,w, ξ) = max
Γ,ψ

{∑
s∈S

∑
i∈Is

∑
j∈Js

ni,j,sΓi,j,s +
∑
s∈S

∑
i∈Is

∑
k∈Ks

cwi,k,sψi,k,s

}
(11a)

s.t. Γi,j,s − Γi+1,j,s ≤ βwh, ∀(s, i, j) (11b)

φj,k(Γi,j,s + ψi,k,s) ≤ tj,kβr, ∀(i, j, k, s) (11c)

ψi,k,s ≤ 0, ΓI+1,j,s = 0, ∀(i, j, k, s) (11d)

where Γ and ψ are the dual variables associated with constraints (3b)–(3c) and (3d), respectively.

Given the dual formulation of Q(m,w, ξ) in (11) and a fixed and feasible (ρ, wρ,wρ,w), we can rewrite the

inner maximization problem max
n∈R
{Q(m,w, ξ) +

∑
s∈S

∑
i∈Is

∑
j∈Js
−ni,j,sρi,j,s} in (8) as follows

max
Γ,ψ,nnn∈[n,nn,nn,n]

{∑
s∈S

∑
i∈Is

∑
j∈Js

ni,j,s(Γi,j,s − ρi,j,s) +
∑
s∈S

∑
i∈Is

∑
k∈Ks

cwi,k,sψi,k,s

}
(12a)

s.t. (11b)− (11d) (12b)

As we show in the proof of Proposition 3 in Appendix A, for fixed (m,w, ξ) and ρ, problem (12) is

equivalent to the minimization problem in (13) .

Proposition 3. For fixed (m,w, ξ) and ρ problem (12) is equivalent to

min
y≥0,x≥0

∑
s∈S

∑
i∈Is

∑
j∈Js

[
βwhyi,j,s +

∑
k∈Ks

tj,kβ
rxi,j,k,s

]
−
∑
s∈S

∑
i∈Is

∑
j∈Js

ni,j,sρi,j,s (13a)

s.t. y0,j,s +
∑
k∈Ks

φj,kx0,j,k,s ≥ n0,j,s, ∀s ∈ S, j ∈ Js (13b)

yi,j,s − yi−1,j,s +
∑
k∈Ks

φj,kxi,j,k,s ≥ ni,j,s, ∀s ∈ S, i ∈ Is \ {0}, j ∈ Js (13c)

∑
j∈Js

φj,kxi,j,k,s ≤ cwi,k,s, ∀s ∈ S, i ∈ Is, j ∈ Js (13d)

m ∈M, w ∈ W, y ≥ 0, x ≥ 0 (13e)

Combining the inner problem in the form of (13) with the outer minimization problems in

(8) and (6), we derive the following equivalent MILP reformulation of the DR model in (6) (see

Appendix A)

min

{∑
s∈S

fsms +
∑
s∈S

∑
i∈Is

∑
j∈Js

(µi,j,s − ni,j,s)ρi,j,s +
∑
s∈S

∑
i∈Is

∑
j∈Js

[
βwhyi,j,s +

∑
k∈Ks

tj,kβ
rxi,j,k,s

]}
(14a)

s.t. m ∈M, w ∈ W, y ≥ 0, x ≥ 0 (14b)

12



y0,j,s +
∑
k∈Ks

φj,kx0,j,k,s ≥ n0,j,s, ∀s ∈ S, j ∈ Js (14c)

yi,j,s − yi−1,j,s +
∑
k∈Ks

φj,kxi,j,k,s ≥ ni,j,s, ∀s ∈ S, i ∈ Is \ {0}, j ∈ Js (14d)

∑
j∈Js

φj,kxi,j,k,s ≤ cwi,k,s, ∀s ∈ S, i ∈ Is, j ∈ Js (14e)

4. Computational Experiments and Implications

The primary objective of our computational study is to evaluate the computational and operational

performance of the proposed models. We solve the two-stage SP in (4) via the the sample average

approximation (SAA) approach in Appendix B (see, e.g., Kim et al. (2015); Kleywegt et al. (2002)

for a detailed discussion of SAA). Section 4.1 presents the details of data generation and experimental

design. In Section 4.2, we evaluate the solution times of the SP and DR models. In Section 4.3,

we evaluate the optimal solutions of the SP and DR models and their out-of-sample simulation

performance. We close by analyzing the sensitivity of the optimal solutions to different parameter

settings in Section 4.4.

4.1. Experimental Design and Computational Setup

We first construct four instances (instance 1-4 henceforth), in part based on the parameter settings

and assumptions made by Wang (2019) (which address the deterministic counterpart LMTS routing

and scheduling problem for one service region). We summarize our test instances in Table 2. Each

of the four instances is characterized by the number of regions S, number of last-mile stops in each

region Js, and number of routes in each region Ks. The sizes of the instances vary and correspond to

different practical contexts. In addition to these four instances, we then construct an instance based

on the actual on-demand transportation data related to New York City (NYC instance henceforth)1,

which consists of S = 4 regions. The procedure to construct the NYC instance, the details of last-

mile stops and routes, and the empirical statistics of batch demand are summarized in Appendix

C.

To generate demand profile for the instance 1-4, we use a similar magnitude of the number

of passengers in the LMTS literature (e.g., Wang and Odoni (2016); Wang (2019)), as well as

the same random parameter generation procedures in the distributionally robust scheduling and

1Souce: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page. The dataset contains the yellow and

green taxi trip records include fields capturing pick-up and drop-off dates/times, pick-up and drop-off locations, and

driver-reported passenger counts. It was collected and provided to the NYC Taxi and Limousine Commission (TLC)

by technology providers authorized under the Taxicab & Livery Passenger Enhancement Programs (TPEP/LPEP).

Although it is not a real demand record for an exact existing LMTS, since the dataset contains real information of

on-demand passengers, which also reflects the actual spatial and temporal patterns and uncertainty of the demand.
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optimization literature (e.g., Jiang et al. (2017); Shehadeh (2021); Mak et al. (2014)). For instance

1–4, we randomly generate the mean values µ of n from a uniform distribution U [1, 4] and standard

deviation σ = 0.5µ. We randomly generate N in-sample realizations (nn
i,j,s) by following lognormal

(LogN) distributions with the generated µi,j,s and σi,j , for all s ∈ S, i ∈ Is, j ∈ Js, n ∈ N . LogN is a

standard distribution of model customers’ demand and service times in a wide range of applications.

Kamath and Pakkala (2002) results suggest that the LogN is a suitable distribution for modeling

stochastic demands in an economic context. For the NYC instance, in Table C.2 in Appendix C,

we present the empirical µ and σ of batch demand ni,j,s.

According to Gomez-Ibanez et al. (1999), for work trips in San Francisco, the monetary value

of a unit of transfer waiting time is 195% of the user’s after-tax wages, and the monetary value

of a unit of in-vehicle riding time is 76% of the user’s after-tax wages. In general, we should have

βw > βr in the objective function. Following similar parameter selections as in Wang (2019), we

normalize βr = 1 and βw ∈ [2, 3] (we perform sensitivity analysis in Section 4.4). As for the vehicle

fixed cost fs, if the service provider already has a fleet of vehicles, fs could be very small; if the

service provider rents vehicles, fs should include the rental fee and operating cost (e.g., fuel and

gas); if the service provider needs to purchase a new fleet of vehicles, fs may be very large and a

complex depreciation should be considered. Unless stated otherwise, we test two values of fs: (1)

fs = 0 (ignoring the fixed cost and assuming an existing vehicle fleet), and (2) fs = 4, 000, from

a range of [2,000, 6,000] (renting vehicles to serve passengers who are less sensitive to riding and

waiting times)2 (considering vehicle rental fee and/or depreciation and operating cost; see Appendix

Appendix D). We investigate the impact of fs in Section 4.4.

As in prior applied distributionally robust literature (see, e.g., Jiang et al. (2017), Shehadeh

and Sanci (2021), Shehadeh and Padman (2021), and references therein), we respectively use the

20%-quantile and 80%-quantile values of the N in-sample data to approximate the lower n and

upper n bounds of n. We optimize the SP model by using all of the N data points, and the DR

model with the corresponding mean, lower bounds, and upper bounds. We implemented the models

using AMPL2016 programming language calling CPLEX V12.6.2 as a solver with default settings.

We ran all experiments on a computer with an Intel Core i7 processor, 2.5 GHz CPU, and 16 GB

(1600MHz DDR3) of memory, and imposed a solver time limit of 1 hour.

4.2. CPU Time

In this section, we analyze the solution times of the SP and DR models. For each instance in Table

2, we first generate mean demand µ for each last-mile stop in each service region from U [1, 4] (low

to average demand) and U [3, 7] (high demand), and set σ = 0.5µ. Then we generate the in-sample

2The range is approximated considering the general after-tax wage for city residents, the rental price of vehicles

with capacity 4-10, vehicle price and possible depreciation, fuel cost, etc.
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Table 2: Four Instances. Notation: S is # of regions, s is a region, Is is # of trains, Js is # of last-mile stops in

regions s, Ks is number of routes in region s.

Inst S s Is Js Ks Inst S s Is Js Ks
1 4 s = 1 12 4 10 2 4 s = 1 12 4 13

s = 2 12 6 23 s = 2 12 6 31
s = 3 12 6 30 s = 3 12 6 24
s = 4 12 8 39 s = 4 12 8 40

3 5 s = 1 12 4 13 4 6 s = 1 12 4 13
s = 2 12 6 31 s = 2 12 6 31
s = 3 12 6 24 s = 3 12 6 24
s = 4 12 8 40 s = 4 12 8 40
s = 5 12 8 49 s = 5 12 8 49

s = 6 12 8 59

data from LogN using the generated µ and σ. To approximate the lower n and upper n of n, we

respectively use the 20%-quantile and 80%-quantile values of the N = 100 in-sample data. We

optimize the SP by using all of the N data points, and the DR model with the corresponding

corresponding mean, lower bounds, and upper bounds. We use N = 100, fs ∈ {0, 4, 000}, and
M ∈ {40, 60, 80}. For each instance, we impose a time limit of 7,200 seconds (i.e., 2 hours).

Our choice of the sample size N to solve the SAA of SP was motivated by the trade-off between

the computational effort required to solve the resulting mixed-integer linear programs (MILPs) and

the quality of approximation of the expected value objective of SP by its SAA approximation. On

the one hand, the sizes of MILP instances increase with N and their solution times also increase.

On the other hand, optimal solutions of SAA instances with larger values of N are likely to be closer

to optimality compared with the expected value objective.

The literature on the SAA method provides theoretical insights and guidance for selecting a

sample size from this perspective. We implemented the so-called Monte Carlo Optimization (MCO)

procedure to compute statistical lower and upper bounds on the optimal value of SP based on an

optimal solution to its SAA approximation, which in turn provides a statistical estimate of the

relative approximation gap between the optimal value of SP and its SAA approximation (see, e.g.,

Homem-de Mello and Bayraksan (2014) and Linderoth et al. (2006) for a thorough discussion of

MCO). Applying the MCO procedure to our SP model with N = 100, we estimate the relative

approximation gaps for the SP instances described in Table 2 to range between 1% and 5%. In

contrast, larger sample sizes resulted in longer solution times without consistent and significant

improvements in the relative approximation gaps. Based on these considerations, we selected N =

100 for our computational experiments.

Table 3 presents solution times (in seconds) using the SP and DR models for different values ofM

(maximum number of vehicles). We first observe that the DR can quickly solve all instances under

the two ranges of the average number of passengers and all values of fs and M and significantly

faster than the SP model. In contrast, the SP fails to solve all of the SAA instances corresponding

to instance 4 to optimality within the time limit, and terminates with either a large relative MIP
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Table 3: Solution times (in seconds) using the DR and SAA of SP. “–” indicates termination without any feasible

MIP solutions (and thus no upper bound).

Inst Range MMM fsfsfs DR SAA Range MMM fsfsfs DR SAA
1 [1, 4] 40 0 0.30 197 [3, 7] 40 0 1.67 2,477

4,000 1.7 7,110 4,000 0.2 7,200

60 0 0.25 60 60 0 2 305
4,000 25 7,200 4,000 13 7,200

80 0 0.22 31 80 0 0.27 230
4,000 18 7,200 4,000 12 2,542

2 [1, 4] 40 0 0.3 7,200 [3, 7] 40 0 1 7,200
4,000 2 7,200 4,000 1 7,200

60 0 1 0.13 60 0 1 91
4,000 2 7,200 4,000 1 7,200

80 0 0.16 20 80 0 0.3 54
4,000 2 7,200 4,000 2 4,290

3 [1, 4] 40 0 9 7,202 [3, 7] 40 0 1 7,200
4,000 3 7,200 4,000 1 7,200

60 0 500 60 0 9 7,200
4,000 38 7,200 4,000 2 7,200

80 0 1 38 80 0 3 160
4,000 2.3 7,200 4,000 2 7,200

4 [1, 4] 40 0 3,600 – [3, 7] 40 0 1 –
4,000 32 – 4,000 1 –

60 0 4 – 60 0 1 –
4,000 22 – 4,000 1 –

80 0 0.30 – 80 0 4 10%
4,000 50 – 4,000 40 33%

(relMIP) gap (relMip:=UB−LB
LB , where UB is the best upper bound and LB is the linear programming

relaxation-based lower bound obtained at termination) or without any feasible MIP solution, and

thus no upper bound. Additionally, the SP’s solution times differ under the two ranges of the

average number of passengers and values of fs and M .

Under fs = 0, the two models allocate all vehicles (i.e.,
∑

s∈Sm
∗
s = M). The SP’s solution

times decrease as M increases from 40 to 80. Consider instance 1, for example: SP’s solution times

decrease from 197 sec and 2,477 sec to 31 sec and 230 sec, respectively, under uncertain demand
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[1,4] and [3,7]. A possible explanation for this is that when M is large, we can satisfy passenger

demand with any vehicle allocations, routing, and scheduling decisions. That is, we can allocate

a larger number of vehicles in each region that may be sufficient to transport passengers to their

last-mile stops via the direct routes to those steps (e.g., each route serves only one stop). When M

is small, vehicle allocations, routing, and scheduling decisions are subtle and difficult to optimize.

Under fs = 4, 000, the two models allocate a subset of the M vehicles to minimize the total

cost function (see Table 4). The larger SP solution times indicate that SP’s routing and scheduling

decisions are subtle and difficult to optimize in this case.

4.3. Analysis of optimal solutions

In this section, we compare the DR and SP optimal vehicle sizing and allocation decisions and

their out-of-sample performance using the same settings as in Section 4.2. Under zero vehicle fixed

cost (i.e., fs = 0), the two models have similar performance for all three instances. We show such

results for instance 1 in Table E.1 in Appendix E. Therefore, in this section we mainly compare the

optimal sizing and allocation decisions under fs = 4, 000. For presentation brevity and illustrative

purposes, we fix M = 60 and present results for instances 1–3 and NYC, as the SAA-SP can solve

all such instances.

First, we analyze optimal vehicle sizing and allocation decisions yielded by the DR and SP

models, which are presented in Table 4. From this table, we first observe that, for instances 1-3,

both models allocate a higher number of vehicles to each service region under demand [3,7] than

[1,4]. This makes sense, as a larger batch of passengers arrives in each train in the former case.

Second, we observe that by incorporating ambiguity in the number of passengers arriving at each

station after each train in each service region, the DR models always allocate more vehicles than

the SP. As we show next, allocating more vehicles results in a better quality of service in terms of

passenger waiting and riding times, but a higher vehicle fixed cost.

Next, we analyze the in-sample performance of the optimal vehicle sizing and allocation decisions

of DR and SP under “perfect information” (known distributions) and out-of-sample performance

with “misspecified distribution information.” Specifically, we simulate the optimal solutions of DR

and SP using the following two sets of N ′ = 10, 000 out-of-sample data n1
i,j,s, . . . , n

N′
i,j,s , for all

s ∈ S, i ∈ Is, j ∈ Js.

1. Perfect information: We use the same parameter settings in Sections 4.1-4.2 that we use to

generate the N in-sample data to generate the N ′ data from LogN. This is to simulate the

in-sample performance.

2. Misspecified distribution information: To simulate the out-of-sample performance of the DR

and SP optimal solutions when the in-sample data are biased, we keep the same mean µi,j,s,

standard deviation σi,j , and range values of n as in the in-sample data, but we vary the
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Table 4: Optimal sizing and allocation decisions with fs = 4, 000 and M = 60

Inst Range Model
∑

s∈S m
∗
s

∑
s∈S m

∗
s

∑
s∈S m

∗
s m∗1m

∗
1m
∗
1 m∗2m

∗
2m
∗
2 m∗3m

∗
3m
∗
3 m∗4m

∗
4m
∗
4

1 [1,4] DR 28 4 7 7 10
SP 16 2 4 4 6

[3,7] DR 59 11 16 12 20
SP 36 7 9 8 12

2 [1,4] DR 22 2 6 6 8
SP 17 2 4 5 6

[3,7] DR 50 7 11 12 19
SP 28 5 7 7 10

NYC DR 21 3 6 7 5
SP 10 2 3 3 2

Inst Range Model
∑

s∈S m
∗
s

∑
s∈S m

∗
s

∑
s∈S m

∗
s m∗1m

∗
1m
∗
1 m∗2m

∗
2m
∗
2 m∗3m

∗
3m
∗
3 m∗4m

∗
4m
∗
4 m∗5m

∗
5m
∗
5

3 [1, 4] DR 31 2 6 6 8 9
SP 20 2 4 4 5 5

[3, 7] DR 60 8 10 11 16 15
SP 42 5 7 7 11 12

distribution type of ni,j,s to generate theN ′ data. Specifically, we follow a Uniform distribution

to generate realizations n1
i,j,s, . . . , n

N′
i,j,s , for all s ∈ S, i ∈ Is, j ∈ Js, n′ = 1, . . . , 10, 000. We

follow the same standard statistical method as in prior distributionally robust literature to

design the parameters of the joint Uniform distribution with varying levels of correlations,

while keeping the mean and support of the N ′ out-of-sample data the same as those of the N

in-sample data.

We evaluate the out-of-sample performance of the optimal SP and DR solutions as follows. First,

we fix the optimal first-stage allocation decisions (m∗s, for all s ∈ S) in the SP model. Then we

simulate the second-stage recourse problem with dynamic routing using the N ′ data to compute

passenger waiting and riding time costs.

Table 5 presents the means and quantiles of the total cost (TC), second-stage cost (2nd-stage),

total waiting time per region (TWT), and total riding time per region (TRT) yielded by the optimal

solutions of the DR and SP for insatnces 1–3 under perfect distributional information (i.e., LogN

distribution). Table 6 presents the results for the NYC instance. Clearly, by allocating more

vehicles in each region, the DR results in a higher vehicle fixed (one-time) cost, and thus a higher

total cost, than the SP. However, the DR also results a in significantly lower second-stage cost and,

in particular, substantially lower waiting time on average and at all quantiles, and hence offers a

better quality of service and greater passenger satisfaction. For example, consider instance 2 and
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Table 5: In-sample performance of optimal sizing and allocation decisions for Inst 1–3 under perfect distributional information, fs = 4000.

TWT for each region TRT for each region
Inst R Metric Model TC 2nd-stage 1 2 3 4 5 1 2 3 4 5
1 [1,4] Mean DR 117,944 5,944 354 68 104 111 708 1,043 1,129 1,793

SP 88,097 24,097 2,792 2,102 2,007 2,826 604 1,061 1,140 1,837
Median DR 117,836 5,836 320 50 100 110 708 1,045 1,128 1,795

SP 87,866 23,866 2,770 2,090 1,980 2,770 604 1,066 1,140 1,836
75%-q DR 118,275 6,275 400 80 120 130 732 1,077 1,164 1,842

SP 90,959 27,959 3,110 2,420 2,340 3,230 614 1,086 1,174 1,885
95%-q DR 119,440 7,440 670 190 170 180 760 1,121 1,218 1,921

SP 95,817 31,817 3,610 2,980 2,960 3,910 625 1,110 1,213 1,949
[3, 7] Mean DR 245,399 9,399 26 19 50 9 1,779 2,155 2,171 3,087

SP 176,342 32,342 1,681 2,686 3,238 3,910 1,811 2,162 2,211 3,129
Median DR 245,353 9,353 20 10 40 10 1,777 2,156 2,171 3,089

SP 175,619 31,619 1,600 2,580 3,150 3,820 1,809 2,164 2,273 3,134
75%-q DR 245,794 9,794 40 30 70 10 1,844 2,232 2,244 3,174

SP 181,013 37,013 2,010 3,280 3,820 4,600 1,879 2,236 2,273 3,205
95%-q DR 246,447 10,447 70 60 110 30 1,932 2,321 2,359 3,295

SP 189,398 45,398 2,700 4,200 4,890 5,950 1,974 2,313 2,355 3,276
2 [1,4] Mean DR 94,617 6,617 613 139 215 301 532 921 1,211 1,418

SP 78,238 10,238 485 1,098 348 1,083 514 968 1,271 1,454
Median DR 94,421 6,421 590 100 200 280 530 922 1,209 1,420

SP 78,049 10,049 470 1,070 330 1050 514 968 1,268 1,459
75%-q DR 95,137 7,137 680 170 260 350 551 947 1,250 1,469

SP 79,282 11,282 540 1,290 400 1,240 532 995 1,313 1,502
95%-q DR 96,619 8,619 860 390 390 460 583 979 1,317 1,540

SP 81,439 13,439 680 1,650 570 1,550 557 1,034 1,384 1564
[3,7] Mean DR 207,918 7,918 175 84 97 32 1,299 1,500 2,100 2,241

SP 144,785 3,278 1,194 3,357 3,070 5,123 1,362 1,625 2,176 2,134
Median DR 207,836 7,836 220 70 90 30 1,300 1,498 2,101 2,237

SP 144,200 32,200 1,160 3,290 2,970 5,030 1,358 1,628 2,177 2,137
75%-q DR 208,441 8,441 220 120 130 50 1,351 1,553 2,171 2,326

SP 149,331 37,331 1,490 3,890 3,620 5,920 1,416 1,664 2,239 2,172
95%-q DR 209,384 9,384 320 200 200 80 1424 1,623 2,302 2,435

SP 157,029 45,029 2,000 4,760 4,710 7,170 1,490 1,714 2,318 2,227

3 [1,4] Mean DR 132,669 8,669 853 104 125 232 190 475 953 1,229 1,405 1,596
SP 102,232 22,232 513 1,004 1,211 2,751 2,752 522 1,000 1,326 1,320 1,599

Median DR 132,460 8,460 840 80 90 210 190 476 955 1,226 1,407 1,596
SP 101,955 21,955 510 980 1,170 2,730 2,700 522 1,001 1,328 1,320 1,604

75%-q DR 133,344 9,344 940 140 170 280 220 492 983 1,272 1,450 1,647
SP 104,734 24,734 580 1,180 1,420 3,130 3,100 541 1,026 1,372 1,344 1,631

95%-q DR 135,111 11,111 1,110 270 370 440 310 517 1,020 1,339 1,524 1,711
SP 109,032 29,032 720 1,510 1,830 3,700 3,700 570 1,067 1,426 1,381 1,668

[3, 7] Mean DR 252,442 12,442 84 107 96 184 648 1,299 1,571 2,221 2,293 3,155
SP 203,413 35,413 1,005 1,683 3,284 3,530 2,940 1,366 1,677 2,154 2,136 3,195

Median DR 252,740 12,740 80 100 80 130 600 1,299 1,571 2,221 2,292 3,154
SP 202,673 34,673 940 1,610 3,200 3,440 2,880 1,363 1,679 2,158 2,136 3,197

75%-q DR 254,142 14,142 110 140 120 190 790 1,348 1,623 2,293 2,375 3,243
SP 208,480 40,480 1,270 2,060 3,880 4,180 3,440 1,419 1,732 2,215 2,179 3,275

95%-q DR 253,026 13,026 170 220 250 340 1180 1,425 1,701 2,417 2,499 3,364
SP 217,696 49,696 1,850 2,790 4,940 5,300 4,360 1,497 1,805 2,283 2,248 3,383
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Table 6: In-sample performance of optimal sizing and allocation decisions for the NYC instance under perfect

distributional information, fs = 4000.

TWT for each region TRT for each region
Metric Model TC 2nd-stage 1 2 3 4 1 2 3 4
Mean DR 86,018 2,018 142 92 31 16 223 473 544 212

SP 50,210 10,210 817 1,243 1,445 658 325 628 630 296
Median DR 85,982 1,982 140 90 30 10 221 472 538 211

SP 49,341 9,341 730 1,160 1,270 580 319 625 625 292
75%-q DR 86,259 2,259 170 110 40 30 224 507 591 237

SP 52,374 12,374 1,010 1,510 1,810 820 367 691 681 335
95%q DR 86,727 2,727 210 150 70 50 278 549 662 278

SP 58,652 18,652 1,590 2,170 3,050 1310 443 788 788 393

range [1,4]. By allocating 22 and 17 vehicles, respectively, the DR and SP result in 88,000 and

68,000 vehicle fixed costs. However, the average second-stage cost and total waiting time (overall

regions) of the DR are 55% and 137% lower than those of the SP, respectively. It is not surprising

that the total cost of the objective function in SP is lower than that in DR, since we assume perfect

information about the exact demand distribution in this case.

Table 7 presents the means and quantiles of the total and second stage costs from the optimal

solutions of DR and SP under misspecified distributional information. For total cost, the out-of-

sample results in Table 7 shows that there is still no clear winner for instances 1–3, while DR has

significantly lower costs in some worst-case instances, for example in instances 2 with larger demands

of R = [3, 7] (average TC of DR and SP are $215,208 and $226,406, respectively). For second-stage

costs, DR out-performs SP significantly, since DR is designed to be robust against worst-case demand

distributions in the second stage. Interestingly, the DR model provides significantly lower total and

second-stage costs for the NYC instance compared to that of the SP model, which may be due to

the much stronger demand uncertainty in the NYC instance constructed using real data. These

simulation results demonstrate the value of incorporating both uncertainty and ambiguity into fleet

sizing, allocation, routing, and scheduling models.

4.4. Sensitivity Analysis

In this section, we study the sensitivity of DR and SP solutions to various input parameter settings.

For illustrative purposes and presentation brevity, we consider instance 1 for this experiment (we

observe similar results for instances 2-4 and the NYC instance). For each experiment, we simulate

the optimal solutions of the two-stage DR and two-stage SP (called TSM henceforth) under a sample

of 10,000 scenarios of the number of passengers demanding last-mile service.

Impact of variability in demand/demand ranges

First, we analyze the DR and SP solutions’ sensitivity to the variability and volume of the

number of passengers arriving at each service region with each train. In addition to the base

demand range (Range 1, [1,4]), we consider four additional ranges: [1,6], [1,8], [4,7], and [6,9]. In

[1,6] and [1,8], we increase the variability (difference between the lower and upper bounds) of the
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Table 7: Out-of-sample performance of optimal sizing and allocation decisions under misspecified distribution, fs =

4000.

Instance R Metric Model TC 2nd-Stage Instance R Metric Model TC 2nd-Stage

1 [1,4] Mean DR 126,262 14,262 3 [1,4] Mean DR 144,217 20,217

SP 116,912 52,912 SP 139,367 43,367

Median DR 123,791 11,791 Median DR 148,987 24,987

SP 119,346 55,346 SP 148,516 52,515

75%-q DR 138,444 26,444 75%-q DR 156,193 32,193

SP 145,899 81,899 SP 162,518 66,518

95%-q DR 138,444 26,444 95%-q DR 156,193 32,193

SP 145,899 81,899 SP 162,518 66,518

[3,7] Mean DR 257,150 21,150 [3,7] Mean DR 282,210 42,210

SP 216,848 68,848 SP 314,953 146,953

Median DR 252,486 16,486 Median DR 272,873 32,873

SP 210,143 62,143 SP 293,358 125,358

75%-q DR 272,729 36,729 75%-q DR 321,239 81,239

SP 254,225 106,225 SP 441,640 273,640

95%-q DR 277,311 41,311 95%-q DR 329,795 89,795

SP 269,561 121,561 SP 461,111 293,111

2 [1,4] Mean DR 102,883 14,883 NYC Mean DR 87,093 3,093

SP 94,451 26,451 SP 147,923 107,923

Median DR 106,262 18,262 Median DR 87,165 3,165

SP 101,276 33,276 SP 114,264 103,443

75%-q DR 110,987 22,987 75%-q DR 88,210 4,210

SP 108,761 40,762 SP 182,414 168,191

95%-q DR 110,987 22,987 95%-q DR 90,838 6,838

SP 108,761 40,762 SP 26,2214 222,791

[3,7] Mean DR 215,208 15,208

SP 226,406 110,406

Median DR 210,996 10,995

SP 223,017 107,017

75%-q DR 230,932 30,932

SP 298,678 182,678

95%-q DR 233,606 33,605

SP 313,528 197,528

number of ni,j,s from 3 to 5 and 7, respectively. In [4,7] and [6,9], we keep the difference between

the upper and lower bounds of ni,j,s as in the base range (i.e., 3), and increase the demand volume

(lower and upper bounds) to [4,7] and [6, 9]. We keep cost parameters as in the base case settings,

i.e., fs = 4, 000, βw = 2, and βr = 1.

Figure 1 presents the optimal fleet size (i.e.,
∑
s∈S

m∗s) and the average second-stage cost (wait-

ing+riding time costs) as a function of the demand range. It is quite apparent from Figure 1 that
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(a) Optimal fleet size vs. Demand range (b) Average 2nd-stage cost vs. Demand range

Figure 1: Optimal fleet size (
∑
s∈S

m∗s) and the associated second-stage cost (waiting+riding time costs) under different

demand range. TSM is the two-stage SP model

both models tend to allocate more vehicles under higher variability and volume of demand. By

allocating more vehicles, the DR mitigates the increase in passengers’ variability and volume by

maintaining significantly lower waiting and riding time costs.

Impact of cost parameters

Next, we analyze the DR and SP solutions’ sensitivity to the cost parameters. We fix the

demand range to [1,4] and [4,7] as examples of a low and relatively high volume of passengers, and

vary fs ∈ {4, 000, 7, 000, 10, 000} and (βw, βr) ∈ {(1, 2), (8, 4), (32, 16)}. Figures 2 and 3 present

the optimal fleet size,
∑
s∈S

m∗s, and the associated second-stage (waiting+riding time costs) cost as

a function of fs and (βw, βr) under demand range [1, 4] and [1, 7], respectively.

We first observe that the optimal fleet size,
∑
s∈S

m∗s , yielded by the DR model is always larger

than that of the SP model under all values of fs and (βw, βr). Second, we observe that both models

allocate more vehicles under [4,7] than under [1,4], irrespective of the values of cost parameters,

which makes sense given that the former implies a higher volume of demand for last-mile service

that needs fulfilling. Third, we observe that for a fixed value of (βw, βr), the optimal fleet size∑
s∈S

m∗s of the DR and SP decreases as the unit fixed cost fs increases. For example, when (βw, βr)=

(2,1) and range equal [4,7], the
∑
s∈S

m∗s of the DR and SP, respectively, decreases from 62 and 39 to

12 and 7 vehicles as fs increases from fs = 4, 000 to fs = 7, 000 (see Figure 3a and 3c).

Fourth, we observe that as the values of (βw, βr) increase (i.e., passenger waiting and riding time

become more important/expensive), the optimal fleet size
∑
s∈S

m∗s yielded by DR and SP increase

regardless of the unit fixed cost fs and range of passengers. Finally, we observe that by allocating

a larger fleet, the DR always yields a substantially lower second-stage cost (i.e., waiting and riding

times) than the SP, which indicates a better quality of service for passengers. However, this of

course comes at a higher fixed cost. The relative difference in the fixed cost between DR and SP

ranges from 0 to 40%, and the relative difference in the second-stage cost (DR−SPDR × 100%) from

15% to 333%. Practitioners may be willing to pay the extra one-time fixed cost of DR solutions to
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(a) Optimal fleet size vs. (βw, βr), fs = 4, 000 (b) Average 2nd-stage cost vs. (βw, βr), fs = 4, 000

(c) Optimal fleet size vs. (βw, βr), fs = 7, 000 (d) Average 2nd-stage cost vs. (βw, βr), fs = 7, 000

(e) Optimal fleet size vs. (βw, βr), fs = 10, 000 (f) Average 2nd-stage cost vs. (βw, βr), fs = 10, 000

Figure 2: Optimal fleet size (
∑
s∈S

m∗s) and the associated second-stage cost (waiting+riding time costs) under demand

range [1, 4] and different values of fs and (βw, βr). TSM is the two-stage SP model.

provide a better quality of service in terms of lower waiting and riding times, and thus maintain

customer satisfaction and a good business reputation.

5. Conclusion

In this paper, we investigate the fleet sizing and allocation problem for the on-demand last-mile

transportation systems. Specifically, we consider the perspective of a last-mile service provider who

wants to determine the number of servicing vehicles allocated to multiple service regions. In each

service region, passengers demanding last-mile services arrive in batches, and allocated vehicles

deliver passengers to their final destinations. The size of each batch of passengers is random and

hard to predict in advance. The quality of fleet-allocation decisions is a function of vehicle fixed

cost plus a weighted sum of passenger’s waiting time before boarding a vehicle and in-vehicle riding

time.
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(a) Optimal fleet size vs. (βw, βr), fs = 4, 000 (b) Average 2nd-stage cost vs. (βw, βr), fs = 4, 000

(c) Optimal fleet size vs. (βw, βr), fs = 7, 000 (d) Average 2nd-stage cost vs. (βw, βr), fs = 7, 000

(e) Optimal fleet size vs. (βw, βr), fs = 10, 000 (f) Average 2nd-stage cost vs. (βw, βr), fs = 10, 000

Figure 3: Optimal fleet size (
∑
s∈S

m∗s) and the associated second-stage cost (waiting+riding time costs) under demand

range [4, 7] and different values of fs and (βw, βr). TSM is the two-stage SP model.
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We propose, analyze, and evaluate the computational and operational performance of two models

for the fleet sizing and allocation problem, assuming known and unknown distribution of the demand,

respectively. First, we propose a stochastic programming model to minimize the the fixed cost of

allocated vehicles and the expectation of a weighted sum of passenger waiting and riding times, under

a distributional belief of demand. Second, we propose a distributionally robust model to minimize

the fixed cost of vehicles and the worst-case (i.e., maximum) expectation of passenger waiting time

and riding times. We also conduct a set of numerical experiments and discuss the insights and

implications by examining trade-offs between total cost, fleet size, and passenger waiting and riding

times.

Our study opens other avenues that merit further exploration. To name a few, (1) LMTS fleet

sizing and allocation given train arrival uncertainty; (2) LMTS planning and operations under cer-

tain special types of demand uncertainty; e.g., multi-modal distribution of demand; (3) fleet sizing

and allocation for an on-demand transportation system that combines last- and first-mile services;

(4) pricing for last-mile services for multiple service regions with demand uncertainty; (5) incentive

and subsidy mechanism design if drivers in the fleet are independent income-seeking decision-makers

(e.g., Sun et al. (2019), Zhu et al. (2021)); and (6) distributionally robust optimization models for

other optimization problems in on-demand transportation; e.g., vehicle allocation, routing, and

scheduling for hybrid services with both fixed and flexible routes. Finally, our computational ex-

periment is not all based on real-world case studies or exact data due to the lack of benchmark

instances on the specific LMTS problem that we address in this paper. We hope that our approach

and results will also motivate future data collection efforts and standardized benchmark instances.

The availability of high-quality data will enable the development of data-driven approaches for this

and other emerging LMTS problems.
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Appendix A. Proof of Proposition 3

Proof.

max
nnn∈[n,nn,nn,n]

{∑
s∈S

∑
i∈Is

∑
j∈Js

ni,j,s(Γi,j,s − ρi,j,s) +
∑
s∈S

∑
i∈Is

∑
k∈Ks

cwi,k,sψi,k,s

}
(A.1a)

s.t. Γi,j,s − Γi+1,j,s ≤ βwh, ∀(s, i, j) (A.1b)

φj,k(Γi,j,s + ψi,k,s) ≤ tj,kβr, ∀(i, j, k, s) (A.1c)

ψi,k,s ≤ 0, Γi,j,s ≥ 0, ΓI+1,j,s = 0, ∀(i, j, k, s) (A.1d)

First, we rewrite constraints (A.1c) as φj,kψi,k,s ≤ tj,kβ
r − φj,kΓi,j,s. Given that ψi,k,s ≤ 0 and the

objective of maximizing a positive number times Γi,j,s in (A.1), then, without loss of optimality,

we can assume that Γi,j,s ≥ 0, for all i ∈ [I], j ∈ [J ], and s ∈ [S]. Note that if Γi,j,s < 0, then

φj,kψi,k,s ≤ tj,kβr+φj,k|Γi,j,s| = a positive number. Given that ψi,k,s ≤ 0, then in this case, condition

φj,kψi,k,s ≤ a positive number is relaxed and the first term in the objective will be negative for Γi,j,s.

It follows that Γi,j,s ≥ 0 in the optimal solution. Second, we consider the following cases, for fixed

s ∈ S, i ∈ Is, j ∈ Js and fixed ρi,j,s:

• Case 1: when ρi,j,s ≥ 0

– If 0 ≤ Γi,j,s < ρi,j,s. In this case, (Γi,j,s − ρi,j,s) < 0 and so ni,j,s = ni,j,s maximizes

(A.1a). Thus, the first term in the objective function (A.1a) reduces to:

ni,j,s(Γi,j,s − ρi,j,s) ≤ 0 (A.2)

– If Γi,j,s > ρi,j,s ≥ 0. In this case, (Γi,j,s − ρi,j,s) > 0, ni,j,s = ni,j,s, and the first term in

the objective function (A.1a) reduces to:

ni,j,s(Γi,j,s − ρi,j,s) ≥ 0 (A.3)

Note that (A.3)>(A.2). It follows that if ρi,j,s ≥ 0, then Γi,j,s ≥ ρi,j,s and ni,j,s = ni,j,s

maximizes the objective of (A.1). In other words, when ρi,j,s ≥ 0, ni,j,s = ni,j,s is optimal to

(A.1) and the objective equals ni,j,s(Γi,j,s − ρi,j,s) as in (A.3).

• Case 2: when ρi,j,s < 0, then Γi,j,s > ρi,j,s (given that Γi,j,s ≥ 0). In this case, (Γi,j,s−ρi,j,s) =

(Γi,j,s + |ρi,j,s|) ≥ 0, ni,j,s = ni,j,s, and the first term in the objective (A.1a) reduces to:

ni,j,s(Γi,j,s + |ρi,j,s|) ≥ 0 (A.4)

Thus, when ρi,j,s < 0, the objective of (A.1) equals to ni,j,s(Γi,j,s − ρi,j,s)
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It follows from the above analysis, that ni,j,s = ni,j,s is optimal to (A.1). Thus„ w.l.o.o., we can set

ni,j,s = ni,j,s in (A.1). Accordingly, (A.1) is equivalent to

max
Γ,ψ

{∑
s∈S

∑
i∈Is

∑
j∈Js

ni,j,s(Γi,j,s − ρi,j,s) +
∑
s∈S

∑
i∈Is

∑
k∈Ks

cwi,k,sψi,k,s

}
(A.5a)

s.t. Γi,j,s − Γi+1,j,s ≤ βwh, ∀(s, i, j) (A.5b)

φj,k(Γi,j,s + ψi,k,s) ≤ tj,kβr, ∀(i, j, k, s) (A.5c)

ψi,k,s ≤ 0, ΓI+1,j,s = 0, ∀(i, j, k, s) (A.5d)

For fixed w and ρ, problem (A.5) is a bounded and feasible linear program. We formulate (A.5) in

its dual form as

min
y≥0,x≥0

∑
s∈S

∑
i∈Is

∑
j∈Js

[
βwhyi,j,s +

∑
k∈Ks

tj,kβ
rxi,j,k,s

]
−
∑
s∈S

∑
i∈Is

∑
j∈Js

ni,j,sρi,j,s (A.6a)

s.t. y0,j,s +
∑
k∈Ks

φj,kx0,j,k,s ≥ n0,j,s, ∀s ∈ S, j ∈ Js (A.6b)

yi,j,s − yi−1,j,s +
∑
k∈Ks

φj,kxi,j,k,s ≥ ni,j,s, ∀s ∈ S, i ∈ Is \ {0}, j ∈ Js (A.6c)

∑
j∈Js

φj,kxi,j,k,s ≤ cwi,k,s, ∀s ∈ S, i ∈ Is, j ∈ Js (A.6d)

Combining the inner problem in the form of (A.6) with the outer minimization problems in (8) and

(6), we derive the following equivalent reformulation of the DR model in (6)

min

{∑
s∈S

fsms +
∑
s∈S

∑
i∈Is

∑
j∈Js

(µi,j,s − ni,j,s)ρi,j,s +
∑
s∈S

∑
i∈Is

∑
j∈Js

[
βwhyi,j,s +

∑
k∈Ks

tj,kβ
rxi,j,k,s

]}
(A.7a)

s.t. y0,j,s +
∑
k∈Ks

φj,kx0,j,k,s ≥ n0,j,s, ∀s ∈ S, j ∈ Js (A.7b)

yi,j,s − yi−1,j,s +
∑
k∈Ks

φj,kxi,j,k,s ≥ ni,j,s, ∀s ∈ S, i ∈ Is \ {0}, j ∈ Js (A.7c)

∑
j∈Js

φj,kxi,j,k,s ≤ cwi,k,s, ∀s ∈ S, i ∈ Is, j ∈ Js (A.7d)

m ∈M, w ∈ W, y ≥ 0, x ≥ 0, ρ ≥ 0 (A.7e)
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Appendix B. Sample average approximation of SP

There are two well-known difficulties in obtaining an (exact) optimal solution to the SP in (4).

First, evaluating the value of EP[Q(m, ξ)] involves taking multi-dimensional integrals and solving a

huge number of similar integer programs. Second, both EP[Q(x, ξ)] and Q(x, ξ) are non-convex and

discontinuous (Birge and Louveaux, 2011; Shapiro et al., 2009). In view of these two difficulties,

we resort to approximation solution approaches, and the sample average approximation (SAA)

approach in particular.

In SAA, we replace the distribution of ξ with a (discrete) empirical distribution based on R inde-

pendent and identically distributed (i.i.d.) samples of random demand, then solve the sample aver-

age approximation (B.1) of (4). Note that in the SAA formulations (B.1), we associate all scenario-

dependent parameters, variables, and constraints with a scenario index r for all r = 1, . . . , R. For

example, parameters n by nr to represent number of passengers realized in scenario r, and variables

u are replaced by ur to represent the number of unserved passengers in scenario r. In addition,

constraints (3b)–(3e) are incorporated in each scenario.

vR = min f̂R :=
1

R

R∑
r=1

[
βw
∑
s∈S

∑
i∈Is

∑
j∈Js

huri,j,s + βr
∑
s∈S

∑
i∈Is

∑
j∈Js

∑
k∈Ks

tj,kz
r
i,j,k,s

]
(B.1a)

s.t. m ∈M, w ∈ W (B.1b)

(3b)− (3e), for r = 1, . . . , R (B.1c)

32



Appendix C. Construction and Statistics of the NYC Instance

We construct the NYC instance based on the dataset the procedure as follows:

1. Select 4 metro stations that are relatively far away from each other in Manhattan, NYC;

2. For each station, construct a 1-mile by 1-mile square as a last-mile service region with the

station located in the center;

3. For each service region, consider the passengers with destination within the region as potential

demand for LMTS;

4. For each service region s, cluster the passenger destinations to Js clusters; assume the center

of each cluster js as the location of a last-mile stop js to cover all passengers in that cluster;

5. For each last-mile stop j in service region s, record the number of passengers going to that

stop (i.e., with destination in that cluster) within each time interval i (e.g., every 5 or 10

minutes) as the batch demand ni,j,s for the LMTS;

6. For each last-mile stop j in service region s, compute the upper bound, lower bound, 20%

percentile, and 80% percentile for batch demand ni,j,s across i in certain period (e.g., 10 am

to 11 am);

7. Using the locations of all last-mile stops in each service region s, generate Ks routes to serve

a subset of stops (e.g., serve 1, 2, and 3 stops), all of which start from and return to the metro

station;

8. For each route k, record its total travel time tk, stop-route configuration φj,k, and travel time

to each stop tj,k.

Table C.1: NYC Instance.

Notation: S is number of regions, s is a region, Js is number of last-mile stops in regions s, Ks is number of routes

in region s.
Inst S s Js Ks
NYC 4 s = 1 5 31

s = 2 6 30
s = 3 4 15
s = 4 5 20
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Table C.2: Statistics of the batch demand for each last-mile stop per service region in the NYC instance.

Notation:µ and σ are respectively the empirical mean and standard deviations of batch demand ni,j,s.

Region, s LM stop, j µ σ
s = 1 j = 1 1.11 1.64

j = 2 1.13 1.88
j = 3 2.23 2.72
j = 4 1.13 2.45
j = 5 1.30 2.25

s = 2 j = 1 1.40 1.72
j = 2 1.43 1.93
j = 3 1.20 1.92
j = 4 2.63 2.54
j = 5 2.63 2.54
j = 6 1.83 1.89

s = 3 j = 1 2.43 2.86
j = 2 3.33 2.37
j = 3 2.63 3.10
j = 4 3.23 3.58

s = 4 j = 1 1.37 2.86
j = 2 1.13 2.37
j = 3 1.90 3.10
j = 4 1.20 3.58
j = 5 1.70 2.58

Appendix D. Values of parameters fs, βw, and βr

Let the average after-tax hourly wage of passengers be g/hour. According to Gomez-Ibanez et al.

(1999):

• Monetary value of riding time (76% of after-tax wage): $0.76g/hour≈ $0.0127g/minute.

• Monetary value of waiting time (195% of after-tax wage): $1.95g/hour=$0.0325g/minute.

• Average hourly total fixed cost of a vehicle (with capacity 5), including the cost to rent the

vehicle, wage paid to the driver, fuel cost, and other maintenance and operating costs: b/hour.

In the LMTS, we have I trains with headway h minute. The duration of the time that vehicles

are needed is slightly longer than Ih. Then, we can approximate the fixed cost fs, parameter βw,

and βr as fs = b · Ih60 = bIh
60 ; βr = 0.0127g; βw = 0.0325g.

Scenario 1: Assuming there is an existing fleet with no additional cost, we have fs = 0, βr =

0.0127g, and βw = 0.0325g. In the numerical experiments, we normalize βr to 1 and evaluate this

scenario with the following parameters: fs = 0, βr = 1; βw ∈ [2, 3].

Scenario 2: Assuming the average after-tax hourly wage of passengers (e.g., working adults who

are more sensitive to riding and waiting times) g = $10/hour and the average hourly total cost of

a vehicle (e.g., regular vehicle) b = $30/hour, then: fs = 30·10·10
60 = 50; βr = 0.127; βw = 0.325.

In the numerical experiments, we normalize βr to 1 and evaluate this scenario with the following

parameters: fs ∈ [200, 600], βr = 1; βw ∈ [2, 3].

Scenario 3: Assuming the equivalent average after-tax hourly wage of passengers (e.g., children,

students, seniors, and the disabled, who are less sensitive to riding and waiting times) g = $3/hour
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and the average hourly total cost of a vehicle (e.g., vehicle with special equipment for children,

seniors, and the disables) b = $90/hour, then fs = 90·10·10
60 = 150; βr = 0.0381; βw = 0.0975.

In the numerical experiments, we normalize βr to 1 and evaluate this scenario with the following

parameters: fs ∈ [2, 000, 6, 000], βr = 1; βw ∈ [2, 3].

Appendix E. Example of In-sample performance under fs = 0

Under fs = 0, both models allocate the same numbers of vehicles. As such, they have similar in-

sample and out-of-sample simulation performances for all three instances. As an example, in Table

E.1, we present in-sample simulation results (i.e., under set 1; perfect information) for instance 1.

Table E.1: In-sample performance of optimal allocation decisions under perfect distributional information, fs = 0.

The performance of two models are almost the same if demands follow the perfect (in-sample) distribution.

Instance R Metric Model TC 2nd-Stage

1 [1,4] Mean DR 4,590 4,590

SP 4,572 4,572

Median DR 4,592 4,592

SP 4,573 4,573

75%-q DR 4,722 4,722

SP 4,750 4,750

95%-q DR 4,921 4,921

SP 5,001 5,001

[3,7] Mean DR 9,370 9,370

SP 9,618 9,618

Median DR 9,332 9,332

SP 9,605 9,605

75%-q DR 9,776 9,776

SP 9,941 9,941

95%-q DR 10,403 10,403

SP 10,509 10,509
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