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Abstract

In this data-rich era, it is essential to develop advanced techniques to analyze

and understand large amounts of data and extract the underlying information

in a flexible way. We provide a review study on the state-of-the-art statistical

time series models for univariate and multivariate functional data with serial

dependence. In particular, we review functional autoregressive (FAR) models

and their variations under different scenarios. The models include the classic

FAR model under stationarity; the FARX and pFAR model dealing with multi-

ple exogenous functional variables and large-scale mixed-type exogenous vari-

ables; the vector FAR model and common functional principal component

technique to handle multiple dimensional functional time series; and the

warping FAR, varying coefficient-FAR and adaptive FAR models to handle

seasonal variations, slow varying effects and the more challenging cases of

structural changes or breaks respectively. We present the models’ setup and

detail the estimation procedure. We discuss the models’ applicability and illus-

trate the numerical performance using real-world data of high-resolution natu-

ral gas flows in the high-pressure gas pipeline network of Germany. We

conduct 1-day and 14-days-ahead out-of-sample forecasts of the daily gas flow

curves. We observe that the functional time series models generally produce

stable out-of-sample forecast accuracy.

This article is categorized under:

Statistical Models > Semiparametric Models

Data: Types and Structure > Time Series, Stochastic Processes, and

Functional Data

KEYWORD S

energy forecast, functional autoregressive modeling, functional time series, sieve estimation

1 | INTRODUCTION

Analyzing big data provides both advantages and challenges in various research fields, including energy, economics,
medicine, biology, and finance. Big data has played an increasingly important role in the investigation of scientific
questions and provided rich information for statistical inference. On the other hand, complex dependence structures,
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large sample sizes and high dimensions in big data bring another level of statistical and computational difficulties that
cannot be solved with traditional statistical methods. It is essential to build advanced and flexible methods to analyze
complex structures in big data and understand the underlying dynamics.

This study aims to provide a review on recently developed models and methodologies for handling big data sets that
can be naturally represented as a series of dependent functions or curves. In contrast to other reviews on functional
data which have focused more on theory or computations of independent functional data (see e.g., Ullah &
Finch, 2013; Wang, Chiou, & Müller, 2016), this review focuses on modeling and prediction for serially dependent func-
tional data. As illustration, we demonstrate the implementation of the reviewed models using real data on natural gas
demand and supply in the German gas transmission network.

In the high-dimensional area, curves arise naturally in many cases such as natural gas flow curves (Chen, Chua, &
Koch, 2018), electricity price curves (Chen & Li, 2017; Chen, Marron, & Zhang, 2019), growth data in Berkeley Growth
Study (Tuddenham, 1954), and Canadian weather data (Programm, 1982; Ramosay & Dalzell, 1991). A good review of
functional data examples is given in Ramsay and Silverman (2002). Recent advances in functional data analysis (FDA)
have enabled efficient methods for analyzing big data with certain features. In FDA, the observed multiple time series
are considered as discrete observations of a continuous curve or function. With a natural and parsimonious functional
representation, the high-dimensional data is converted to a series of curves and can be analyzed with improved effi-
ciency and accuracy. We refer to Müller and Stadtmüller (2005), Ferraty and Vieu (2006), Ramsay and Silverman (2002),
Ramsay and Silverman (2005) and Wang et al. (2016) for details on analyzing independent functional data.

The functional data collected over time naturally exhibit serial dependence, which is inconsistent to the IID
assumption widely adopted in for example, functional regressions. This motivates the study of functional time series
analysis, which focuses on understanding the serial dependence among the curves, modeling their dynamics over time,
and conducting statistical prediction. Functional time series analysis is still a fast developing field. The autoregressive
Hilbertian (ARH) process pioneered by Bosq (1991), also called functional autoregressive (FAR) model under Hilbert
space, is likely the most popular pioneering work and plays an important role in this context. As a natural extension of
the scalar and vector-valued AR process (Brockwell & Davis, 1991) to the infinite-dimensional space, FAR is mathemat-
ically and statistically flexible to be used in practice for modeling and prediction of continuous time series
(Hörmann, 2013). The FAR model considers serial correlation between the functional observations and models it as a
linear operator on the functional space. Bosq (2000) provided a comprehensive theory of the general linear functional
time series including the limit theorem of linear process in both Hilbert and Banach spaces. Mas (2007) completed the
theoretical study of the FAR model by addressing the issue of weak convergence for estimates from the model, which
proved that traditional facts about weak convergence in nonparametric models appear. Dedecker and Merlevède (2002,
2003) proved a conditional central limit theorem for functional linear processes under mild assumptions. Hörmann,
Kokoszka, et al. (2010) set up the theoretical framework to investigate the serial dependence in functional time series
modeling. See also Mas and Menneteau (2003), Menneteau (2005), Bosq (2007) and Farindon (2011) for more theoreti-
cal studies of functional time series.

In the FAR modeling framework, several estimation approaches have been proposed. The most popular estimation
methods include the functional Yule–Walker (FYW) estimation and the sieve maximum likelihood (SML) estimation.
Later, based on FYW estimation of Bosq (1991), a nonparametric kernel estimator was introduced by Besse, Cardot,
and Stephenson (2000). Didericksen, Kokoszka, and Zhang (2012) evaluated several FYW estimation methods and
showed that the Bosq (2000) method performed the best overall. Moreover, Antoniadis and Sapatinas (2003) and Anton-
iadis, Paparoditis, and Sapatinas (2006) applied the wavelet-kernel approach and addressed the inverse problem of
FYW, which can not satisfy the positive semidefiniteness condition in the covariance operator, while Kargin and
Onatski (2008) adopted the method of predictive factor decomposition. Alternatively, Mourid and Bensmain (2006) pro-
posed using sieves methods initially introduced by Grenander (1981) to reduce the number of dimensions and obtain a
closed-form maximum likelihood estimator (MLE). Liu, Xiao, and Chen (2016) derived the estimation procedure of the
convolutional FAR model using splines and sieve methods.

In addition to the advancement of estimation approaches, there has been a vivid development of FAR modeling.
Damon and Guillas (2002) proposed the FAR model with exogenous variables (FARX) to incorporate the effect of exog-
enous functional covariates on the serially dependent curves; see also Chen et al. (2018). To investigate the effect of
large-dimensional functional and scalar covariates on the serially dependent functional time series, Chen, Koch, and
Xu (2019) proposed a partial FAR (pFAR) model. Beyond the univariate FAR models, Chen, Chua, and Härdle (2019)
proposed the vector FAR (VFAR) model describing the joint dynamics of the multiple functional time series with serial
cross-dependence in a unified framework. When the dimension becomes too large, the VFAR model faces an
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overparametrization problem. Factor modeling can be employed to extract low-dimensional factors retaining the depen-
dency information. The relatively low dimensional factors can represent the original high-dimensional curves data well.
The factors also inherit the serial dependence that can be further modeled by simple time series models for example, in
an autoregressive framework. See Zhang, Chen, Klotz, and Lim (2017) for the model on multi-country yield curves
analysis.

The aforementioned works assume constant serial dependence over time, that is, time homogeneity. However, the
linear stationarity assumption is not practical for unstable real-world time series data (Xu, Li, & Chen, 2017). According
to the literature, considering nonstationary time series methods can be a possible way to address this issue. Horváth,
Kokoszka, and Rice (2014) developed a general methodology for stationarity testing, and Hörmann, Kokoszka, and
Nisol (2018) derived several methods for periodicity testing in a functional time series. In addition, Kosiorowski,
Mielczarek, Rydlewski, and Snarska (2014) adopted a moving functional median method, and Xu et al. (2017) proposed
a varying coefficient FAR (VC-FAR) model. In the latter case, serial dependencies among curves are assumed to change
over time gradually, and time-dependent coefficients are obtained using a local regression technique. Chen and
Li (2017) presented an adaptive FAR (AFAR) model that allows both smooth structural changes and abrupt breaks.
The time-dependent parameters of the model are calculated in a data-driven way.

This paper provides a review study of different FAR models and statistical approaches in the functional domain.
This review focuses on modeling and methodology for the serially dependent functional data, and demonstrate the
implementation of the reviewed models using real data, while the other reviews in Ullah and Finch (2013) and Wang
et al. (2016) focused more on theory or computations of independent functional data without real data applications.
Specifically, we start with a stationary FAR model that describes the serial dependence of curves varying with time,
which was initially introduced by Bosq (2000). We introduce smoothing and estimation techniques and provide useful
literature references. Then we extend to the FARX model with exogenous variables by Chen et al. (2018) and the partial
FAR (pFAR) model with large-scale exogenous variables of mixed data type by Chen, Koch, and Xu (2019). While the
classical FAR models only consider the dependence of curves on their own lagged values, the FARX and pFAR models
by incorporating exogenous information can facilitate richer dynamics and also causal interpretation. Next, we will dis-
cuss the vector FAR (VFAR) model for multiple-dimensional functional time series that exhibit lead–lag cross depen-
dence by Chen, Chua, and Härdle (2019). When the dimension of functional time series increases, we will show how to
build up factors via the common functional principal component (CFPC) analysis, see Zhang et al. (2017). Lastly, we
will discuss the scenarios with seasonal variations, slow varying effects and more challenging, unforeseeable structural
changes or breaks, in the framework of the warping FAR (WFAR) by Chen, Marron, and Zhang (2019), varying-
coefficient FAR (VC-FAR) by Xu et al. (2017) and adaptive FAR (AFAR) respectively Chen and Li (2017). Table 1 com-
pares the features of the various models to be reviewed in the paper. We will detail the model setup and estimation pro-
cedure as follows.

The rest of the paper is outlined as follows. In Section 2 we present the classical FAR based models under various
scenarios. We detail the model setup and elaborate on the estimation procedures. Section 3 describes the functional

TABLE 1 Features of the reviewed models

Features FAR FPC FARX pFAR VFAR CFPC WFAR
VC-
FAR AFAR

Serial dependence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multivariate functional series ✓ ✓

Seasonality ✓

Causal relation to exogenous variables ✓ ✓

High-dimensionality (in # of series or
predictors)

✓ ✓

Nonstationarity ✓ ✓

Abbreviations: AFAR, adaptive FAR model; CFPC, common functional principal component; FAR, functional auto-
regressive; FARX, FAR model with exogenous variables; FPC, functional principle component; pFAR, partial FAR;
VFAR, vector FAR; VC-FAR, varying coefficient-FAR; WFAR, warping FAR.
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data—the natural gas flow curves and the empirical features. Section 4 contains the numerical results of various
models, and we compare and discuss these results. Section 5 contains the conclusions.

2 | MODELS

In this section, we review the recently developed FAR models that can be used for different scenarios.

2.1 | Functional time series and expansion

The classical estimation techniques such as the ML are not privileged in the FAR models possibly due to the infinite
dimensional parameter space. It is therefore necessary to conduct regularization before estimation. One popular idea is
to decompose the infinite-dimensional functional series to finite parameter space via orthonormal basis expansion with
the information loss controlled. In fact, functional series could be roughly classified into two categories: periodic and
nonperiodic. Fourier basis (Chen & Li, 2017; Xu et al., 2017) are usually applied to fit periodic functions, and the spline
or B-splines (Liu et al., 2016) are more suitable for nonperiodic smooth functions. Other popular basis functions include
functional eigenbasis (Kong, Xue, Yao, & Zhang, 2016) and Gaussian basis functions (Matsui, Kawano, &
Konishi, 2009; Matsui & Konishi, 2011). In this paper, we consider three popular functional expansion methods, that is,
Fourier expansion, spline expansion and functional eigenbasis expansion. Readers can refer to Ramsay and
Silverman (2005) for a good review of functional basis expansion.

Let H be a real and separable Hilbert space with a countable and orthonormal basis {ek, k ∈ Z} and the inner prod-
uct < � , � > induces the norm k � k. Define a sequence of random curves {Yt(τ), t ∈ Z} in H over a time domain τ∈T .
Here Yt τð Þ : Ω,A,Pð Þ! H,ℬHð Þ is a measurable function, where Ω,A,Pð Þ is a probability space and ℬH is a Borel
σ-field defined on the functional Hilbert space H. Without loss of generality, we set T = 0,1½ �, and consider L2 separable
Hilbert space, that is, we consider Yt(τ)∈L2([0, 1]). Function Yt(τ) can be expanded as a linear combination of a set of
functional building blocks Φk, called basis functions:

Yt τð Þ=
X∞
k=1

ckΦk τð Þ

The parameters c1, c2, …, cK are the coefficients of the expansion.
Fourier expansion: The Fourier series is:

Φ0 = I 0,1½ �,Φ2k τð Þ=
ffiffiffi
2

p
cos2πkτ,Φ2k−1 τð Þ=

ffiffiffi
2

p
sin2πkτ,

for k = 1, 2, …, ∞ , and we obtain Fourier basis expansion for Yt(τ):

Yt τð Þ= at,0 +
X∞
k=1

bt,kΦ2k−1 τð Þ+ at,kΦ2k τð Þ½ �, ð1Þ

where at, 0, bt, k and at, k denote the constant, cosine and sine Fourier basis coefficients.
Spline expansion: Alternatively, we can use the B-spline basis functions:

B j,m τð Þ= τ−w j

w j+m−1−w j
B j,m−1 τð Þ+ w j+m−τ

w j+m−w j+1
B j+1,m−1 τð Þ,m≥2, ð2Þ

where m denotes the order of a spline, w1 ≤ � � � ≤ wJ + m denote the sequence of knots, and
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B j,1 τð Þ=
1, ifw j ≤ τ<w j+1

0, otherwise:

�

In the spline expansion, we obtain:

Yt τð Þ=
X∞
k=1

at,kBk,m, ð3Þ

where at, k is the B-spline coefficient for the function Yt(τ).
Functional eigenbasis expansion: Functional eigenbasis expansion is data-driven without a predetermined basis and

is widely used in functional principal component analysis. It is popular when there is no clue or prior knowledge on
important features and unsupervised learning is preferred.

Suppose Yt(τ) has mean function  Yt τð Þð Þ= μ τð Þ and covariance function ν(π, τ) :L2([0, 1])!R, π, τ∈ [0, 1],
given by

ν π,τð Þ=Cov Yt πð Þ,Yt τð Þð Þ= Yt πð Þ−μ πð Þð Þ Yt τð Þ−μ τð Þð Þf g:

The eigenfunctions of ν(π, τ) are called functional principle components (FPCs), obtained by decomposing the
covariance operator of the curves under independence. We define the covariance operator Υ :L2 Tð Þ!L2 Tð Þ with the
covariance function ν and obtain the FPCs denoted as ϕj j≥ 1 by

Υϕ j

� �
τð Þ= λ jϕ j τð Þ, ð4Þ

where the corresponding eigenvalue of the covariance operator Υ is denoted as λj. The eigenfunctions, ϕj, are assumed
to be orthonormal with

Ð
ϕj(τ)ϕm(τ)dτ = 0, for all m 6¼ j and normalized to unit norm. The statistical approach is to

obtain the orthonormal functions ϕ1, ϕ2, … with the maximal variances of the principal scores Var(ξj), where the func-
tional principal component scores at time t defined as

ξt,j =
ð
T
Yt πð Þ−μ πð Þ½ �ϕ j πð Þdπ: ð5Þ

Given the orthogonality of ϕj and ϕl for j 6¼ l, it follows that  ξ jξl
� �

=0 for j 6¼ l. We have  ξ2j

� �
= λ j and  ξ j

� �
=0.

Then the function Yt(τ) has the Karhunen–Loève expansion as:

Yt τð Þ= μ τð Þ+
X∞
j=1

ξtjϕ j τð Þ, ð6Þ

where the coefficients ξtj are the functional principal component scores at time t inheriting the serial dependence
in Yt(τ).

2.2 | FAR model under stationarity

In this section, we present the FAR model and its derivation in a stationary framework, where the first two moments of
the dynamic dependence are constant over time.

2.2.1 | The FAR model

Recall a sequence of stationary random curves {Yt(τ), t ∈ Z} in L2([0, 1]) defined in Section 2.1. Suppose that there exists
a Hilbert–Schmidt operator ρ(�) from H to H which is bounded linear and admits a representation
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ρ �ð Þ=
P∞

j=1e j < �,v j > f j, where {vj} and {fj} are two orthonormal bases of H. The parameter ej is a real sequence satisfy-
ing

P∞
j=1e

2
j <∞ and converging to zero. The FAR model of order p, i.e., FAR(p), is defined as:

Yt τð Þ−μ τð Þ=
Xp
j=1

ρ j Y t− j τð Þ−μ τð Þ
� �

+ εt τð Þ,

where μ(τ) is the mean function of Yt(τ), Yt − j denotes jth lag of curve Yt and εt(τ) is a strong H-white noise with zero
mean and finite second moment E k εt(τ)k2 < ∞. It is common to have order 1 in functional time series analysis. Mean-
while, we refer to Kokoszka and Reimherr (2013) for a multiple testing procedure to determine order p if FAR(1) is not
adequate.

An implementable form of the Hilbert–Schmidt operator is to use a convolution kernel operator to represent ρ, see
Pumo (1998), Mokhtari and Mourid (2003) and Mas and Pumo (2018). We obtain:

Yt τð Þ−μ τð Þ=
Xp
j=1

ð1
0
ϕ j τ−πð Þ Yt− j πð Þ−μ πð Þ

� 	
dπ+ εt τð Þ, ð7Þ

where ϕj(τ) ∈ L2([0, 1]) is the kernel function of the operator specifying the serial dependence of the curve on its own
past value. The kernel ϕ is usually taken to be an even function with kϕk2 < 1 and k � k2 denotes the standard L2 norm.
Xu et al. (2017) and Chen, Koch, and Xu (2019) relaxed the assumption on kernel for more flexibility. Yet both studies
support the choice in real data analysis as the contribution coming from the odd function part is trivial. Model (7) is
only one kind of implementable form of the ARH process of order p (ARH(p)) defined in Bosq (2000) which is associ-
ated with more general forms of operators in H. In this review study, we consider this form (7) with kernel of form ϕ(τ)
due to its popularity in the literature. We refer to Bosq (2000) for detailed generalizations.

The functional terms of observations, kernels and innovations in (7) can be expanded with the functional basis
introduced in Section 2.1. As an illustration, we detail the expansion of model (7) using Fourier basis and spline basis
below. A similar estimation procedure can be applied to other FAR based models covered in this review study.

Fourier basis expansion for the FAR: Due to the orthonormal properties of the basis, it is easy to derive a closed form
solution for the FAR models with the Fourier basis expansions. We apply the trigonometric basis functions in L2([0, 1])
defined in (2.1) to expand the functional terms in (7):

Yt τð Þ= at,0 +
X∞
k=1

bt,kΦ2k−1 τð Þ+ at,kΦ2k τð Þ½ �,δ τð Þ=ω0 +
X∞
k=1

ηkΦ2k−1 τð Þ+ωkΦ2k τð Þ½ �,

ϕ j τð Þ= c j,0 +
X∞
k=1

d j,kΦ2k−1 τð Þ+ c j,kΦ2k τð Þ
� 	

,εt τð Þ= ϵt,0 +
X∞
k=1

et,kΦ2k−1 τð Þ+ ϵt,kΦ2k τð Þ½ �,

where δ(τ) is the intercept function defined as δ τð Þ= μ τð Þ−
Pp

j=1

Ð 1
0 ϕ j τ−πð Þμ πð Þdπ . at, 0, at, k, bt, k denote the constant,

cosine, and sine Fourier basis coefficients corresponding to the observed curves Yt(τ), and thus have known values; cj, 0, cj,
k, dj, k are associated with the unknown serial dependence function ϕj(τ); ω0, ωk, ηk are related to the intercept function
δ(τ), and ϵt, 0, ϵt, k, et, k are that corresponding to the innovation εt(τ), see Chen et al. (2018) and Chen, Koch, and Xu (2019).

Plugging Fourier expansions into (7) and rearranging the equations, we obtain the recursive relationship of the Fou-
rier coefficients for all k = 1, …, ∞,

at,0 =ω0 +
Xp
j=1

c j,0at− j,0 + ϵt,0,

at,k =ωk +
Xp
j=1

1ffiffiffi
2

p c j,kat− j,k−
Xp
j=1

1ffiffiffi
2

p d j,kbt− j,k + ϵt,k,

bt,k = ηk +
Xp
j=1

1ffiffiffi
2

p c j,kbt− j,k +
Xp
j=1

1ffiffiffi
2

p d j,kat− j,k + et,k:

ð8Þ
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The functional observation and functional parameters are now characterized by their discrete Fourier coefficients.
The estimation problem of the FAR model has now been converted to a problem of estimating the Fourier coefficients.

Spline basis expansion for the FAR: Splines are generally applicable for smooth curves, but it is relatively difficult to
obtain an explicit solution. With the B-spline basis functions in L2([0, 1]) defined in (2) we expand the functional terms
in (7) as follows:

Yt τð Þ=
X∞
k=1

at,kBk,m, δ τð Þ=
X∞
k=1

ηkBk,m, ϕ j τð Þ=
X∞
k=1

c j,kBk,m, εt τð Þ=
X∞
k=1

ϵt,kBk,m,

where at, k, ηk, cj, k and ϵt, k are, respectively, the B-spline coefficients for the observed functional data Yt, the intercept
function δ(τ), the unknown kernel functions ϕj(τ), and the innovations εt. Using the B-spline expansions, we can repre-
sent the FAR model of order 1 in terms of the B-spline coefficient relations:

at,k = ηk + ϵt,k +
X∞
i=1

×
X∞
j=1

w j+m−w j+1

w j+m−w j
−
w j+m+1−w j+2

w j+m+1−w j+1

� 

c j−ck

( )
×
wi+m−wi

m
at−1,i, ð9Þ

for all k = 1, …, ∞. The FAR model (7) can be solved by estimating the B-spline coefficients, see Chen, Chua, and
Härdle (2019).

2.2.2 | Sieve method

There are, again, an infinite number of functional basis coefficients after expansion since k = 1, …, ∞ in Equations (8)
and (9). Obviously, it is computationally infeasible to estimate the coefficients in infinite dimensional parameter spaces
with a finite number of sample. To enable estimation with a finite sample, the method of sieves developed by
Grenander (1981) has been extensively used in FDA and has good consistency properties (Chen, 2007). In particular,
the sieve method constructs a sequence of subspaces Θmnf g, called sieves, of the original infinite-dimensional space Θ.
The sieves need to be compact and nondecreasing with Θmn⊆Θmn +1⊆� � �⊆Θ, and the union of the subspaces [Θmn must
be dense in Θ.

Specifically, let Θmnf g denote the finite-dimensional linear space of certain polynomials, say trigonometric polyno-
mials, on [0, 1] of degree mn or less, that is

Θmn = fK τð Þ∈L2 jK τð Þ= θ01 0,1½ � +
Xmn

k=1

θkΦ2k τð Þ+
Xmn

k=1

ϑkΦ2k−1 τð Þ,

Xmn

k=1

k2θ2k + k2ϑ2k ≤ ζmn,θ0,θk,ϑk∈R,τ∈ 0,1½ �g,

where {θ0, θk, ϑk} are the coefficients for functional terms in the expansion. Here ζ is a positive constant that ensures
the constraint is satisfied without sacrifice of the growth rate of mn, and mn ! ∞ as n ! ∞, that is, the number of
parameters increases with the sample size. Sieve method provides a tool to represent the relationship of an infinite
number of parameters in a finite subspace: the mnth sieve space spanned by the first mn functional basis. The hyper-
parameter mn controls the smoothing degree and balances the bias and variance of the approximation projected on the
sieve space. Some common approaches can be used to select the optimal mn, such as pseudo-versions of Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC) (Yao, Müller, & Wang, 2005), leave-one-out cross vali-
dation (Rice & Silverman, 1991) and combined BIC and AIC (Kong et al., 2016). See Geman and Hwang (1982), Chen
and Shen (1998) and Chen (2007) for more theoretical details and an explanation of the implementations of sieves.

Under the sieves assumption, the unknown parameters in the coefficients relationship in (8) or (9) are reduced to a
subspace k = 1, …, mn. The estimation of the FAR model in (7) is thus transformed to estimation of a finite number of
unknown coefficients from the Fourier or B-spline expansions. Under the assumption that the coefficients of the inno-
vation, ηt, 0, ηt, k, ωt, k, are IID Gaussian distributed with zero mean and variance σ2k , the relationship of the unknown
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coefficients can be solved using MLE or least square estimator (LS) methods with closed-form solution and good asymp-
totic properties, see for example, Chen and Li (2017).

2.3 | FARX and pFAR for exogenous variables

Functional data or quasi functional data usually exhibit both serial dependence across time and causal dependence on
exogenous variables such as economic factors and temperature. To utilize the rich information, the FAR model with
eXogenous variable (FARX) and partial FAR (pFAR) model extends the classic FAR model by incorporating the effect of
exogenous covariates. The FARX takes into account functional type exogenous covariate, and the number of covariates
is usually small. Alternatively, the pFAR model enables the consideration of large-dimensional covariates with mixed
data types, including both functional covariates such as the lagged curves and scalar covariates such as economic factors.
As such, pFAR model can simulateneously handle the serial dependence and causal inference in a unified framework.

2.3.1 | The FARX model

Let X ℓð Þ
t τð Þ,ℓ=1,…,q

n o
denote the real continuous exogenous functions defined in H over the same time domain as

Yt(τ). The functional covariates are assumed to be stationary, with time invariant mean functions μ 1ð Þ
x ,…,μ qð Þ

x . Chen
et al. (2018) proposed the FARX model of order p defined as:

Yt τð Þ−μy τð Þ=
Xp
j=1

ð1
0
ϕy,j τ−πð Þ Yt− j πð Þ−μy πð Þ

� 	
dπ+

Xq
ℓ=1

ð1
0
ϕx,ℓ τ−πð Þ X ℓð Þ

t−1 πð Þ−μ ℓð Þ
x πð Þ

h i
dπ+ εt τð Þ,

ð10Þ

where ϕy, j and ϕx, ℓ are the kernel operators for j = 1, …, p, and ℓ = 1, …, q with ϕ(�, �) ∈ L2 and kϕ(�, �)k2 < 1 rep-
resenting the impact of the p lagged curves and q exogenous variables respectively. Without loss of generality, we adopt
even functions for the kernels.

The FARX model in (10) is a generalized version of the FAR(p) model in (7) with q number of exogenous functional
predictors. Following the similar expansion as in the classic FAR model derived in Section 2.2, Chen et al. (2018) obtain
the relationship of expansion coefficients under the sieve Θmn , which yields a closed form solution for the FARX model.
We refer to Chen et al. (2018) for the detailed procedure for the FARX estimator and its asymptotic properties.

2.3.2 | The pFAR model

In the big data era, there are often large scale features with mixed data types. The dynamics of the functional response
can be described not only with the lagged functional covariates, but there may also be some causal dependence with
ultra-high dimensional exogenous scalar covariates. Let ztℓ,ℓ=1,…,df gnt=1 denote d exogenous scalar covariates with
mean values μ 1ð Þ

z ,…,μ dð Þ
z . The number of scalar covariates, d, is usually large. Chen, Koch, and Xu (2019) introduced the

pFAR(p) model defined as:

Yt τð Þ−μy τð Þ=
Xp
j=1

ð1
0
ϕy,j τ−sð Þ Yt− j sð Þ−μy sð Þ

� 	
ds+

Xd
ℓ=1

ϕz,ℓ τð Þ zt−1,ℓ−μ ℓð Þ
z

h i
+ εt τð Þ, ð11Þ

where the kernel operators ϕy, j ∈ L2([0, 1]) control the serial dependence with j = 1, …, p and the kernel operators ϕz,

ℓ ∈ L2([0, 1]) measure the impact of the large-scale scalar covariates with ℓ = 1, …, d. The pFAR model in (11) is one of
the generalized versions of the FAR(p) model in (7) with a large number of scalar exogenous variables.

Direct estimation of pFAR easily causes overparametrization and overfitting due to the curse of dimensionality,
making interpretation difficult and prediction inaccurate. Regularized estimation provides a remedy. Instead of
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assuming all the covariates are relevant, we could select key elements and groups (i.e., a combination of elements) that
are essentially driving the dynamics of the response variable. Among others, Tibshirani (1996) proposed Lasso for vari-
able selection under sparse regularity. See also adaptive Lasso (Ivanoff, Picard, & Rivoirard, 2016), smoothly clipped
absolute deviation (SCAD; Aneiros, Ferraty, & Vieu, 2015), and least angle regression selection (LARS; Efron, Hastie,
Johnstone, & Tibshirani, 2004). In addition to single variable selection, grouping structures often arise where a number of
variables belong to a particular predetermined group. Group Lasso (Friedman, Hastie, & Tibshirani, 2010; Xu &
Ghosh, 2015) and group SCAD (Huang, Breheny, & Ma, 2012) focus on group selection, which, however, does not yield
sparsity within a group. On the other hand, sparse group Lasso (Simon, Friedman, Hastie, & Tibshirani, 2013) and multi-
variate sparse group Lasso (Li, Nan, & Zhu, 2015) are able to detect both the active groups and the active elements within
the group simultaneously. In the pFAR framework, Chen, Koch, and Xu (2019) assume that there exist certain group
structures among the large number of exogenous variables and only a few of them are significant. The sparse group Lasso
penalty (Friedman et al., 2010; Li et al., 2015) is applied to achieve the group and individual variable selection. The regu-
larized estimation is conducted without knowing the number and location of the active groups and elements.

Following a similar expansion as in the FAR model in Section 2.2 under the approximating sieves Θmn , the relation-
ship of coefficients for model (11) is obtained. Next, Chen, Koch, and Xu (2019) adopt the two-layer sparsity assumption
for both groups and elements given the high-dimensional mixed-type covariates. For this more challenging problem,
there is no closed-form estimator. The regularized pFAR model is estimated via least squares with the two-layer sparsity
as penalty function:

min
B

1
2n

kY−
X
g∈G

X gð ÞBgk2F + λ
X
g∈G

ηg kBgk2 + α
X
i, j

jBi,j jÞ
( )

where k � kF is the Frobenius norm. Y= y>1 ,…,y>n
� �>

and X= x>1 ,…,x>n
� �>

with yt = at,0,bt,1,at,1,…,bt,mn ,at,mnð Þ> ,
xt = y>t−1,…,y>t−p,zt−1,1,…,zt−1,d

� �>
. B denotes the unknown Fourier coefficients of the kernel functions {ϕy, j, j = 1, …,

p} and {ϕz, ℓ, ℓ = 1,…, d}. Assume B contains G groups, and Bg denotes the group of g with g∈ 1, …, G. G denotes the
group structure set, that is Bg∈G for group g∈G. X( g) and Bg refer to the submatrix of X and B corresponding to group
g respectively. ηg is a positive group weight and a default choice of ηg is the square root of the group size; see Huang
et al. (2012) and Simon et al. (2013). The tuning parameter λ≥ 0 is for groups. When λ = 0, the penalty reduces to Lasso.
When λ increases, the group sparsity increases and becomes more important. The other tuning parameter α≥ 0 controls
the sparsity for the individual variables. When α = 0, the penalty becomes group Lasso. When α increases, the element
sparsity involves a larger weight and becomes more important. Various criteria have been proposed to choose the pen-
alty parameters, for example, cross-validation (Rice & Silverman, 1991) and BIC (Wang, Li, & Tsai, 2007) and forward-
looking criterion by optimizing the out-of-sample forecast accuracy (Chen, Koch, & Xu, 2019). We refer to Chen, Koch,
and Xu (2019) for the detailed procedure for the pFAR estimator and its asymptotic properties.

2.4 | Multivariate models: VFAR and CFPC

In the literature the univariate FAR models is extended to multivariate framework where multiple functional time
series Y kð Þ

t τð Þ are observed simultaneously, k = 1, …, K. The multiple functional time series, which can also be referred
as multiple groups (each sequence of functional time series is referred as one group), exhibit both serial dependence
and lead–lag cross-dependence among each other. Among others, we discuss the vector FAR (VFAR) model for moder-
ate dimensions of functional time series and also the CFPC approach that can be used to reduce the dimensionality of
ultra-high dimensional functional time series.

2.4.1 | The VFAR model

Without loss of generality, we consider two functional time series. Nevertheless, the derivation can be easily extended
to higher dimensions. Denote the bivariate series of curves by Y 1ð Þ

t τð Þ and Y 2ð Þ
t τð Þ at t = 1, …, n. Chen, Chua, and

Härdle (2019) proposed the vector FAR (VFAR) model of order p for the bivariate time series defined as:
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Y 1ð Þ
t −μ1

Y 2ð Þ
t −μ2

" #
=
Xp
k=1

ρ11,k ρ12,k

ρ21,k ρ22,k

" #
Y 1ð Þ

t−k−μ1

Y 2ð Þ
t−k−μ2

" #
+

ε 1ð Þ
t

ε 2ð Þ
t

" #
ð12Þ

where ρ11, k, ρ12, k, ρ21, k, ρ22, k are the operators that show the serial cross-dependence among the curves on their kth
lagged values. Again, the operators are bounded linear operator from H to H. The innovation processes ε 1ð Þ

t and ε 2ð Þ
t are

strong H−white noise as defined before and not necessarily cross-independent. VFAR model in (12) is one of the gener-
alized versions of the FAR(p) model in (7) for two dimensional functional time series. As before, every ρ is written in
the form of a convolution kernel Hilbert–Schmidt operator as ϕ11, ϕ12, ϕ21 and ϕ22 respectively with ϕxy∈L2([0, 1]) and
kϕxyk2 < 1 for xy = 11,12,21 and 22. Following the similar expansion as in the classic univariate model under sieve Θmn ,
for example, the B-spline expansion as in Chen, Chua, and Härdle (2019), the relationship of the B-spline coefficients
are derived for the VFAR. We refer to Chen, Chua, and Härdle (2019) for the detailed procedure for the VFAR estima-
tor and its asymptotic properties.

2.4.2 | Common functional principal component

When the dimensions of functional time series is high, factor models based on CFPC technique can be used to reduce
dimensionality. Zhang et al. (2017) considered common FPC (CFPC) for multiple functional time series which requires
the same eigen-structure across all groups of curves and makes the projected basis comparable among multiple groups.
In specific, based on the functional eigenbasis expansion in (4), in CFPC the covariance operators Υg have shared ortho-
normal eigenfuntions ϕj for G groups, where ϕg1,j

=ϕg2,j
for 1≤ g1, g2≤G, while the eigenvalues λg, j are different indi-

cating the heterogeneity among the groups. After extracting the CFPCs across all the groups of functional time series,
the classic time series modeling is applied to each individual functional time series, that is, the series of the common
functional principal scores. For group g the covariance function is written as:

νg π,τð Þ=
X∞
j=1

λg,jϕ j πð Þϕ j τð Þ:

The eigendecomposition in the CFPC framework becomes:

ð1
0
νg π,τð Þϕ j πð Þdπ= λg,jϕ j τð Þ, Υgϕ j

� �
τð Þ= λg,jϕ j τð Þ, subject to ϕ j,ϕl

D E
= δjl: ð13Þ

Approximating the integral of the covariance function using quadrature techniques, the eigenequation in (13) can
be approximated as:

ð1
0
νg π,τð Þϕ j πð Þdπ≈

XL
ℓ=1

wℓνg πℓ,τð Þϕ j πℓð Þ

=�νg τð ÞTw*�ϕ j,

where �νg τð Þ= νg π1,τð Þ,…,νg πL,τð Þ
� �T

, w = (w1,…,wL)
T are quadrature weights, �ϕ j = ϕ j π1ð Þ,…,ϕ j πLð Þ

� �T
and * is a

Hadamard product and L is the number of discrete arguments of quadrature expansion. As the covariance function is
symmetric, it yields to:

Υϕ j =VgW �ϕ j,

where W is a diagonal (L × L) matrix with wl in the elements and Vg = (νg(πℓ, πk))ℓ, k is a (L × L) matrix with the covari-
ance function values at the quadrature points, �ϕ j = ϕ j π1ð Þ,…,ϕ j πLð Þ

� �T
. Therefore, the eigenequation in (13) is rewrit-

ten as

VgW �ϕ j = λg,j�ϕ j, subject to the condition of orthonormality �ϕ jW �ϕ
T
ℓ = δ jℓ:
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Assuming the weights to be positive, the approximated eigenequation is obtained in the following form,

W 1=2VgW
1=2u j = λg,ju j, subject to u j,uℓ

� �
= δ jℓ, ð14Þ

where u j =W 1=2�ϕ j:

After selecting p factors corresponding to the largest component scores, denoted as ξ gð Þ
t,j for j = 1, …, p defined in (5),

we can adopt the classic time series modeling to estimate and forecast the component scores, for example, AR model
and VAR model. We refer to Zhang et al. (2017) for the detailed procedure for the CFPC estimator and its application.

2.5 | Under nonstationarity: WFAR, VC-FAR And AFAR

The above models assume time homogeneity where the dynamics of time series is stable. It means that the structure of
the serial- and cross-dependence as well as the association to exogenous variables are always constant. Although
stationarity probably holds in some cases, it is more realistic to ask, “what if there exists a structural change due to sea-
sonality?” Or even more challenging, “what if there is an unforeseeable regime shift on either mean or cross depen-
dence?” Seasonal variations and unstable turbulence take place in practice, especially in economic and finance spheres.
In this section, we present the warping FAR (WFAR) model, the varying-coefficient FAR (VC-FAR) and adaptive FAR
(AFAR) for nonstationary functional time series. The WFAR model is used to separate seasonal variation from the time
series. The VC-FAR model is designed to handle nonstationarity with smooth changes whereby the operators (parame-
ters) vary smoothly over time and can be locally approximated by a function of time. The AFAR model is more flexible
and can model nonstationary time series with both smooth or abrupt structural changes of the underlying process.

2.5.1 | Warping FAR

In practice, functional time series may exhibit seasonal variations and time evolution which are driven by different
dynamic movements. Seasonal variations are defined as the existence of phase swings in some curves at every period of
seasons. For example, in the energy sector, phases of hourly electricity prices within a day may be different on week-
ends compared to weekdays. A separation of the amplitude and phase variations is of great interest in order to discover
a broad common diurnal pattern of the curves without the impact of seasons. In addition, it helps understanding of the
seasonal changes in curves and will enhance the forecast accuracy. Chen, Marron, and Zhang (2019) proposed the
Warping FAR (WFAR) model to simultaneously account for phase and amplitude variations of functional time series
with seasonality, where the seasonal phase variations in functional curves are separated from the amplitude changes
using a warping (seasonal adjustment) methods, afterwards the seasonally-adjusted curves are used in FAR framework.

We denote the warping functions γ(s), where type s refers to the group of curves repeating in each season, for exam-
ple, week days in weekly seasonality. Chen, Marron, and Zhang (2019) proposed the WFAR model of order p defined as
follows:

X sð Þ
t τð Þ =Y sð Þ

t τð Þ∘γ sð Þ
t ð15Þ

Xt τð Þ−μx τð Þ =
Xp
j=1

ρ j Xt− j τð Þ−μx τð Þ
� �

+ εt τð Þ, ð16Þ

where X sð Þ
t τð Þ denotes the seasonally-adjusted curve obtained in a warping process Y sð Þ

t τð Þ∘γt . μx(τ) is the mean function
of Xt(τ). The warping function γt is estimated following the nonparametric approach proposed by Srivastava, Wu,
Kurtek, Klassen, and Marron (2011), where the amplitude evolution of the curves remains unchanged in the seasonal
adjustment. The serial dependence of the warped curves in (16) is then modeled with the classic FAR model with ker-
nel operator ρj∈L2([0, 1]).

The forecasts of the curves are obtained by warping back the deseasonalized curve forecasts with the respective
warping functions of the same type. For an h-step-ahead forecast, we have
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Ŷ
sð Þ
t+ h τð Þ = X̂

sð Þ
t+ h τð Þ∘ γ sð Þ

h i−1
τð Þ, ð17Þ

where [γ(s)]−1 is the inverse of γ(s). We refer to Chen, Marron, and Zhang (2019) for the detailed estimation procedure of
the warping function and numerical analysis of the WFAR model.

2.5.2 | Varying-coefficient FAR

There are nonstationarity cases with changing time variations. The varying coefficient FAR (VC-FAR) and the adaptive
FAR (AFAR), are defined with time dependent Hilbert–Schmidt operator (kernel function) as:

Yt τð Þ−μ τð Þ=
Xp
j=1

ð1
0
ϕt,j τ−πð Þ Yt− j τð Þ−μ πð Þ

� 	
dπ+ εt τð Þ, ð18Þ

where ϕt, j(τ) ∈ L2([0, 1]) is the kernel function for a certain time point t with kϕtk2 < 1 and k � k2 denotes the standard
L2 norm. Both VC-FAR and AFAR are designed for nonstationary functional time series. However, the VC-FAR relies
on smoothing transition depending on time t and its estimation is performed with time varying kernels. The Adaptive
FAR, on the other hand, does not make any assumption on the type of structural change and its estimation is con-
ducted based on sequential testing procedure under local homogeneity assumption.

In the VC-FAR framework proposed by Xu et al. (2017), the kernel ϕt, j(τ) is time dependent and is required to be a
smoothing function over time. Therefore, after functional expansion in (8), the coefficients of the functional basis are
time dependent. Here, we give an illustration when the functional terms are expanded with Fourier basis, when p = 1.

After expanding the curves with the Fourier basis under the sieve assumptions, the unknown Fourier coefficients
assumed to be continuous with time t, that is, θ tð Þ= θ0 tð Þ>,θ1 tð Þ>,…,θmn tð Þ>

� �>
for k = 1, …, mn, where θ0(t) = (ω0(t),

c0(t))
> and θk(t) = (ωk(t), ηk(t), ck(t), dk(t))

>. A first order Taylor expansion of the time dependent Fourier coefficients of
the kernel and intercept function yields

c0 tð Þ≈c0 sð Þ+ c 1ð Þ
0 sð Þ t−sð Þ,ck tð Þ≈ck sð Þ+ c 1ð Þ

k sð Þ t−sð Þ,dk tð Þ≈dk sð Þ+ d 1ð Þ
k sð Þ t−sð Þ,

ω0 tð Þ≈ω0 sð Þ+ p 1ð Þ
0 sð Þ t−sð Þ,ωk tð Þ≈ωk sð Þ+ω 1ð Þ

k sð Þ t−sð Þ,ηk tð Þ≈ηk sð Þ+ η 1ð Þ
k sð Þ t−sð Þ,

for s in a local neighborhood of t. We denote the kth order derivatives of the coefficient functions θ(s) as θ(k)(s). The esti-
mation of the unknown parameters can be estimated by minimizing the following local least square:

θ̂ sð Þ, θ̂ 1ð Þ
sð Þ

� �
=argmax

θ,θ 1ð Þ

Xn
t=1

l θ sð Þ, t,Yð ÞJh t−sð Þ, ð19Þ

where Y is the set of all the transformed data series at,0,at,k,bt,kf gnt=1 for k = 1, 2, …, mn, and

l θ sð Þ, t,Yð Þ= at,0− ω0 sð Þ+ω 1ð Þ
0 sð Þ t−sð Þ

� �
− ct,0 + c 1ð Þ

0 sð Þ t−sð Þ
� �

at−1,0

� �2

+
Xmn

k=1

at,k− ωk sð Þ+ω 1ð Þ
k sð Þ t−sð Þ

� �
−

1ffiffiffi
2

p ck sð Þ+ c 1ð Þ
k sð Þ t−sð Þ

� �
at−1,k

�

+
1ffiffiffi
2

p dk sð Þ+ d 1ð Þ
k sð Þ t−sð Þ

� �
bt−1,k


2

+ bt,k− ηt,k + η 1ð Þ
k sð Þ t−sð Þ

� ��

−
1ffiffiffi
2

p ct,k + c 1ð Þ
k sð Þ t−sð Þ

� �
bt−1,k +

1ffiffiffi
2

p dt,k + d 1ð Þ
k sð Þ t−sð Þ

� �
at−1,k


2
#
:
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Jh(t − s) denotes the rescaled kernel function J t−s
h

� �
=h , and J(�) is set to be the Gaussian kernel function in the

numerical analysis of this review study.
To facilitate notations, Xu et al. (2017) define A0 = (a1, 0, a2, 0, …, an, 0)>, Ak = (a1, k, a2, k, …, an, k)> and Bk = (b1,

k, b2, k, …, bn, k)>,

Y 0 =

1 a0,0 1−s a0,0 1−sð Þ

1 a1,0 2−s a1,0 2−sð Þ

..

. ..
. ..

. ..
.

1 an−1,0 n−s an−1,0 n−sð Þ

0
BBBBBBB@

1
CCCCCCCA
,

Y 1
k =

1 0 a0,k −b0,k 1−s 0 a0,k 1−sð Þ −b0,k 1−sð Þ

1 0 a1,k −b1,k 2−s 0 a1,k 2−sð Þ −b1,k 2−sð Þ

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 0 an−1,k −bn−1,k n−s 0 an−1,k n−sð Þ −bn−1,k n−sð Þ

0
BBBBBBB@

1
CCCCCCCA
,

Y 2
k =

0 1 b0,k a0,k 0 1−s b0,k 1−sð Þ a0,k 1−sð Þ

0 1 b1,k a1,k 0 2−s b1,k 2−sð Þ a1,k 2−sð Þ

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 1 bn−1,k an−1,k 0 n−s bn−1,k n−sð Þ an−1,k n−sð Þ

0
BBBBBBB@

1
CCCCCCCA
,

Yk = Y 1
k Y 2

k

� �>
,

W =diag Jh 1−sð Þ,Jh 2−sð Þ,…,Jh n−sð Þf g,W 2 = diag W ,Wf g:

Furthermore, elements of θ(s) and θ(1)(s) are partitioned and grouped into two components, and denoted as

β0 sð Þ= ω0 sð Þ,c0 sð Þ,ω 1ð Þ
0 sð Þ,c 1ð Þ

0 sð Þ
� �>

,

βk sð Þ= ωk sð Þ,ηk sð Þ,ck sð Þ=
ffiffiffi
2

p
,dk sð Þ=

ffiffiffi
2

p
,ω 1ð Þ

k sð Þ,η 1ð Þ
k sð Þ,c 1ð Þ

k sð Þ=
ffiffiffi
2

p
,d 1ð Þ

k sð Þ=
ffiffiffi
2

p� �>
:

We obtain the following estimators which minimize (19),

β̂0 sð Þ= Y>
0 WY 0

� �−1
Y>

0 WA0, β̂k sð Þ= Y>
k W 2Yk

� �−1
Y>

k W 2
Ak

Bk

� 

:

Eventually we find the local linear estimators for kernel functions of Hilbert–Schmidt operator at time s as follows,

ω̂0 sð Þ, ĉ0 sð Þð Þ> = l1β̂0 sð Þ, ω̂k sð Þ, η̂k sð Þð Þ> = l12β̂k sð Þ, ĉk sð Þ, d̂k sð Þ
� �>

=
ffiffiffi
2

p
× l22β̂k sð Þ,

with the selection matrices defined by l1 = (I2, 02 × 2), l
1
2 = I2,02× 6ð Þ, and l22 = 02× 2, I2,02× 4ð Þ and I2 denotes the identity

matrix with a degree of 2. We refer to Xu et al. (2017) for the detailed procedure for the VC-FAR estimation and the the-
oretical properties of its estimator.
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2.5.3 | Adaptive FAR

In a more general setup where both the location and the form of structural changes are unknown, AFAR proposed by
Chen and Li (2017) is an appropriate choice. The AFAR framework is the same as defined in model (18), but the kernel
operator ϕt(τ) is time dependent and does not need to qualify as a smoothing function.

Under time-homogeneity with the constant parameters, the AFAR model is obviously reduced to the classic FAR
model in (7). In a more realistic situation with p = 1, where the unknown coefficient denoted by θt = (ct0,
ctk, ωt0, ωt0, ηtk, σt0, σtk) are time dependent, the estimation of AFAR is conducted under the assumption of local homoge-
neity. That is, at a fix time point t there exists a local interval It = [t − ℓt, t] with 1 < ℓt < t over which all the included
observations can be well described by a local FAR model with approximately constant parameters, that is, θt≍ constant.
Simultaneously we require that the modeling bias under this local parametric assumption is small, that is, the small model-
ing bias condition (Belomestny, Spokoiny, et al., 2007). Over interval It, the abovementioned FAR model under stationarity
can be safely used for parameter estimation. The estimated parameter over It denoted as θ̂t is called adaptive estimator.

In reality, the local homogeneity interval It is unknown and the number of possible candidates is large, for example,
as many subsamples as there are past sample periods, and it also can be computationally expensive to search among all
possible interval candidates in the samples. Belomestny et al. (2007) shows that an optimal choice of the interval of
local homogeneity can be obtained via an adaptive procedure based on likelihood ratio testing. Likewise, Chen and
Li (2017) adopted a sequential testing to detect such interval from S candidate intervals It = I 1ð Þ

t ,…, I Sð Þ
t

n o
with I 1ð Þ

t �
�� � � I Sð Þ

t to alleviate the computational burden in practice. To each interval there exists a corresponding local estimator
obtained using method at Section 2.2, denoted by ~θ

sð Þ
t , which is called weak estimator.

A sequential testing procedure is adopted to select the longest one from the S candidates that does not contain any
breaks and obtain θ̂t. The process of parameter estimation starts from the smallest interval I 1ð Þ

t , where the local homoge-
neity is assumed to be true. The corresponding adaptive estimator is referred as θ̂

1ð Þ
t = ~θ

1ð Þ
t . With the next iteration, a lon-

ger interval I sð Þ
t for s = 2, …, S is selected, and checked using a test statistic as follows:

T sð Þ
t = L I sð Þ

t ;~θ
sð Þ
t

� �
−LðI sð Þ

t ; θ̂
s−1ð Þ
t Þ

��� ���1=2,
where L I sð Þ

t ;~θ
sð Þ
t

� �
and L I sð Þ

t ; θ̂
s−1ð Þ
t

� �
are the local log-likelihood over interval I sð Þ

t using the weak estimator to be tested
for local homogeneity in the current step and using the adaptive estimator accepted in the previous step, respectively.
The statistic T sð Þ

t measures the divergence of the hypothetical AFAR model and the time varying model accepted from
the previous step. If the test statistics is significantly large, it means the local interval I sð Þ

t does not satisfy the local
homogeneity condition and the hypothetical FAR model considerably diverges from the time varying model with the
accepted parameter in the previous step. It leads us to reject the null hypothesis and stop the algorithm process. If the
null hypothesis is not rejected, we accept the local homogeneity in the local interval and accept the adaptive estimator
to be θ̂

sð Þ
t = ~θ

sð Þ
t : The iteration stops when it detects a change or reaches the longest candidate interval. The final selected

interval will be the last accepted interval before the stop. After the identification of the local interval of homogeneity,
the FAR model and its variation under stationarity can be used to describe the local dynamics. We refer to Chen and
Li (2017) for the detailed algorithm of the sequential testing procedure and theoretical properties of the AFAR model.

3 | DATA: NATURAL GASFLOWS

Natural gas, as a key energy resource for Germany and Europe, is distributed over the country with a high-pressure gas
pipeline network of more than 11,000 km in length. Gas flows at the more than 1,000 entry- and exit-points of the net-
work are recorded every hour and are available as daily gas curves. The future demand and supply of the natural gas
flows are potentially influenced by many factors, for example, the cycles of working routines, the temperatures in differ-
ent locations of the gas transmission network, the market prices, and the supply of renewable energy resources. A num-
ber of gas markets are shifting towards more short-term planning, namely, day-ahead contracts, which can be
challenging for the operators in the dispatching centre (Chen et al., 2018). In order to increase the efficiency of the net-
work operation, it is important to predict future natural gas consumption with high accuracy.

We consider the natural gas flows at two municipal energy supplier-nodes in the German high-pressure natural gas
transmission network. The data cover a 2-year period from 1 October Y1 to 30 September Y3, comprising 730 days,
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where Y1 and Y3 denotes the years of the dataset. The years are hidden for confidentiality reasons. The gas flow is
recorded as supply and demand with an hourly time resolution over 24 hr, 7 days a week. The two nodes (locations),
labeled as M1 and M2 respectively, are demand nodes, that is, they are gas outflows from the network and serve resi-
dential and small commercial constituents. Both nodes are located near the city of Frankfurt, Germany. To provide an
interpretable comparison between the two nodes, the gas flows are normalized such that each node has zero mean and
unit variance. The hourly gas flow data are converted to daily flow curves by smoothing over the 24-hourly observations
on each day using the Fourier expansion, motivated by the periodic characteristics of the energy data. Figure 1 displays
the flow curves for each node. A strong annual seasonality can be observed in the two nodes, driven by the working
routines of households. Despite differing trends and seasonality, Figure 2 displays the sample autocorrelations of the
hourly gas flow at 9 a.m. and sample cross correlation surfaces of the daily gas flow curves at nodes M1 and M2. As
shown, there exist significant serial dependence and positive correlation across all hours with a gradual decreasing
trend as lag increases for both nodes.

Besides the gas flow data, we also have a large number of exogenous variables, namely 85 environmental and eco-
nomic variables. These include four daily market price values in different networks, that is, NCG, GASPOOL, TTF, and
Zeebruegge, three hourly renewable energy variables, that is, solar, wind-onshore and wind-offshore; and hourly tem-
peratures in 78 locations, which are further split into four geographic zones and each of which is separately considered
as a group. Because the variables vary in scale - the maximum value of the variable TTF, for example, is 2.90 and the
maximum value of the variable wind-on-shore is 30, 158—the exogenous scalars are also normalized. Figure 3 presents
the normalized observations of the 4 price variables, 3 renewable energy variables, and the average temperature vari-
ables within the 4 geographical zones covering 78 locations respectively.

4 | FORECASTING RESULTS

In this section, we demonstrate the application results of the FAR models in energy forecasting of natural gas flows
described in Section 3. We demonstrate how to use the different FAR models to obtain forecasts based on the fitted
dynamics of the high resolution natural gas flows. Although our implementation focuses on energy functional time
series, the models and methods can be easily adapted to analyze other functional data in diverse areas.

4.1 | Model setup

We consider the classic FAR, pFAR, FPC, CFPC, WFAR, and AFAR models in the real data implementation to demon-
strate the modeling of serial dependence, high-dimensional exogenous covariates, multivariate dimensional curves and

FIGURE 1 Daily gas flow curves at two representative nodes from 1 October Y1 to 30 September Y3
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nonstationarity in functional time series analysis. We use the first 548 daily natural gas curves from 1 October Y1 to
31 March Y3 to initialise the out-of-sample prediction. The forecast exercise starts from the 549th curve dated on 1 April
Y3, and ends at the last curve on 30 September Y3 in a total of 182 forecast days. For each forecast point, we always use
the period consisting of all historical data for the FAR, pFAR, FPC, and CFPC models, while applying the seasonal
adjustment technique for the WFAR model and adaptive technique to identify the interval of local homogeneity for the
AFAR model. The parameters are estimated over the adopted periods at each time point and the fitted model is then
used to compute 1- and 14-step-ahead forecast of the natural gas curves which refers to short and long term forecast
respectively. For the dimensionality of sieve mn, we set mn = 1 for pFAR model as in Chen, Koch, and Xu (2019) and
use mn = 23 for the FAR and AFAR models as in Chen and Li (2017). We choose seven factors for the FPC and CFPC
techniques. For the pFAR model with exogenous variables, we use all the 85 exogenous covariates where sparse group
Lasso and Lasso are adopted respectively for variable selection.

We measure forecast accuracy in terms of level and the out-of-sample goodness-of-fit. To facilitate comparison, we
convert back to the original gas flow data when computing the forecast accuracy. Specifically, we compute the hourly
mean absolute percentage error (MAPE) and the out-of-sample R2 for h-step-ahead forecast as

MAPEs =
1

jT− t0 j
XT
t= t0

Yt+ h τsð Þ− Ŷ t+ h τsð Þ
Yt+ h τsð Þ

����
����,s=1,…,24,

R2 = 1−

P24
s=1

PT
t= t0

Yt+ h τsð Þ− Ŷ t+ h τsð Þ
� �2

P24
s=1

PT
t= t0

Yt+ h τsð Þ− �Yt+ h τsð Þð Þ2
,

where interval [t0, T] indicates the forecast period. Ŷ t+ h τsð Þ is the forecast of Yt+ h(τs) at time t+ h and hour s. �Yt+ h τsð Þ
is the historical average of the hourly flows up to time t.

FIGURE 2 Sample autocorrelations of the gas flows at 9 a.m. and sample cross-correlations surfaces of gas flows among 24 hr at M1

and M2 from 1 October Y1 to 30 September Y3
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4.2 | Result

Tables 2 and 3 report the MAPE and out-of-sample R2 of 1-day and 14-days-ahead forecast at the two nodes for all FAR
type models. The best performing model for each node is underlined and the second best is marked in bold.

The results show that pFAR(7) performs best and the improvement becomes more significant when the forecast
horizon increases from 1-day to 2 weeks (14 days). For example, for 1-day-ahead forecast, pFAR(7) gives the best fore-
cast results 13 out of 24 times compared to other models at node M1 and 15 out 24 at node M2. However, the difference
in forecast accuracy between the best and worst performing models is not that much with MAPE varying from 8.75% to
9.51%, and out-of-sample R2 ranges from 91.50% to 88.86%, which indicates that all models have very good perfor-
mance. While for a longer term forecast, pFAR(7) improves the performance of MAPE from the worst 21.30% (FPC) to
16.87% at M1, and from 34.47% (CFPC) to 24.70% at M2. This indicates that some environmental and economic vari-
ables truly affect the demand and supply of natural gas flows, and incorporating the essential lagged gas flow curves
and exogenous factors could help improve forecasting performance. In the pFAR model, selected via sparse group
Lasso, the active factors are found to be economically essential. For example, we find that the price effects are weak in
both nodes, but solar energy has a more significantly negative effect on M1, while the wind variable has a greater posi-
tive effect on M2. Gas flows at both nodes are independent to the zone-2 temperature.

FAR(7) is the second best compared to the rest of models for 1-day-ahead forecast. For example, at node M1, FAR
(7) beats other models 4 times out of 24, and comes second best with 9 out of 24. It also has the second best out-of-
sample R2 at node M1. These values become 9 out of 24 and 15 out of 24 for node M2. It is worth noting that the predic-
tion accuracy of the FAR with lag order 7 is better than FAR with lag order 1. This indicates that incorporating higher
order lags of natural gas flow curves improves the forecast results at both nodes, which is consistent to the findings in
sample autocorrelation analysis in Section 3.

However, when h moves to 14, the AFAR model is the second best for most of the 24 hr forecast, and shows promis-
ing prediction performance in forecasting gas flow at both nodes. Although for h = 1 the forecast results of the AFAR
model is only slightly better than the constant FAR(1), it shows more significant improvement when h = 14. Given that

FIGURE 3 Exogenous scalar variables: four prices, that is, NCG, GASPOOL, TTF, and Zeebruegge; three renewable energy sources,

that is, solar, wind-onshore and wind-offshore, and average temperature of four zones from 1 October Y1 to 30 September Y3, where Y1 and

Y3 denote the years
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the AFAR model is flexible and can be safely used for both stationary and nonstationary functional data, the superior
prediction performance of the AFAR over the FAR models indicates that the gas flow data is likely to be nonstationary,
a situation which the stationary models are not capable of handling. Moreover, when the forecast horizon increases,
the deviation of reality (nonstationary data) from the modeling assumption (stationary FAR models) becomes severe
and leads to poor forecast accuracy as we observe in this illustration. The AFAR, though delivering lower accuracy
given the increase of forecast horizon, is taking advantage of being able to identify local homogeneous intervals in the
forecasting experiment and thus still provides relatively stable accuracy. As such the relative forecast accuracy of AFAR
over the FAR models improved for longer term forecasting.

Overall, we can see some trade-off between the complexity of the modeling and the accuracy of the forecasting
results. The models with complex but heuristic structure such as pFAR, AFAR outperform simple models such as FAR
(1) models. Furthermore, the prediction results obtained with the WFAR model are close to the FAR(1) model at both
nodes, as there is no evidence of seasonal variations in natural gas curves and the warping function is estimated to be
close to one. The factor modeling, FPC and CFPC, do not show outstanding performance of gas flows at two nodes for
both forecasting horizons. This is possibly because the two models rely on independence assumption when extracting
factors from covariance decomposition, whereas the data are not independent but serially correlated. Also, there is nei-
ther significant improvement in modeling with two series of curves (CFPC) compared to modeling with individual
series (FPC). This may be explained by the insignificant joint dynamic and cross-dependence within the two series.

In summary, the functional time series models produce accurate and stable out-of-sample forecast accuracy for
short term gas curve prediction across the two nodes with various features. For long term forecast, the performances of
all models become weaker. Despite that FAR model with large-scale exogenous variables of mixed data type, pFAR,
shows the most successful forecast performance in both nodes and both forecast horizons. Outstanding performance of
the pFAR model benefited from the consideration of serial dependence of stochastic processes and the incorporation of
essential functional and scalar covariates simultaneously. Furthermore, adaptively selecting the intervals with time-
varying lengths contributes to the success of AFAR model for stationary as well as nonstationary functional data, and
the benefit becomes more significant for longer term forecasting. It is advantageous to consider proper lags for FAR
type models. Although factor model based on (C)FPC techniques as well as WFAR models only provide competitive
performance in natural gas forecasting, it is a data-driven method and can be applied in other applications of functional
time series with higher dimensions and seasonal variation.

The relative forecast accuracy of the alternative models depends on the data's features. For example, while the func-
tional time series models generally provide better prediction accuracy for M1 than M2, the pFAR seems superior for
M2. This is because the pFAR model benefits from incorporating some exogenous variables—such as temperature and
renewable energies—that are more relevant to predict the movement of gas in M2 than that in M1, whereas other FAR
models do not take into account the exogenous variables.

It is worth noting that the prediction results in this review paper do not give a general ranking for the FAR based
models. The best-performing model depends on the particular application. We would like to remind readers that the
relative performance of the models may also vary for different data and different time windows. Meanwhile, we noticed
that in the previous works of Chen and Li (2017), the impact of data sampling has been investigated and the similar
outperformance of FAR is observed.

5 | CONCLUSION

In this paper, we provide a review study on the recently developed FAR modeling for univariate and multivariate func-
tional data with serial dependence in both stationary and nonstationary framework. Specifically, we present the FAR
models and their variations that can be applied under different scenarios. These models include the classic FAR model
under stationarity, the FARX and pFAR model dealing with multiple exogenous functional variables, and large-scale
mixed-type exogenous variables respectively, the VFAR model and CFPC technique to handle multiple dimensional
functional time series, and the WFAR, VC-FAR and AFAR model to solve seasonal variations, slow varying effects and
the more challenging cases of structural changes or breaks respectively. We introduce three smoothing (expansion)
methods and elaborate the statistical techniques of projecting the series of curves onto finite parameter space and esti-
mating the dynamics with sieve. We provide details of the model setup and estimation procedure with a closed-form
estimator or penalized estimator for different models.
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We discuss the models' applicability and illustrate the numerical performance along with real data of natural gas
flows in the high-pressure gas pipeline network in Germany. We conduct 1- and 14-days-ahead out-of-sample forecasts
of the gas flow curves at two municipal energy supplier-nodes. We measure forecast accuracy in terms of MAPE and
out-of-sample R2. We find that the functional time series models generally produce competitive and stable out-of-
sample forecast accuracy for the gas flow curves at both nodes. In particular, the FAR model with large-scale exogenous
variables of mixed data type, pFAR, shows good forecast performance benefiting from the consideration of serial depen-
dence of stochastic processes and the incorporation of essential functional and scalar covariates simultaneously. Fur-
thermore, it is also advantageous to consider proper lags for FAR type models, and adaptively select the local
homogeneity intervals for both stationary and nonstationary functional series using the AFAR model. Although factor
models based on (C)FPC techniques and WFAR models only provide competitive performance in natural gas forecast-
ing, it is data-driven and can be applied in different applications of high-dimensional functional time series with sea-
sonal variation.
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