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Cross-Modal Recipe Retrieval:
How to Cook this Dish?

Jingjing Chen, Lei Pang, and Chong-Wah Ngo(B)

Department of Computer Science, City University of Hong Kong,
Kowloon Tong, Hong Kong

{jingjchen9-c,leipang3-c}@my.cityu.edu.hk, cscwngo@cityu.edu.hk

Abstract. In social media users like to share food pictures. One intel-
ligent feature, potentially attractive to amateur chefs, is the recommen-
dation of recipe along with food. Having this feature, unfortunately, is
still technically challenging. First, the current technology in food recog-
nition can only scale up to few hundreds of categories, which are yet to
be practical for recognizing ten of thousands of food categories. Second,
even one food category can have variants of recipes that differ in ingre-
dient composition. Finding the best-match recipe requires knowledge of
ingredients, which is a fine-grained recognition problem. In this paper,
we consider the problem from the viewpoint of cross-modality analysis.
Given a large number of image and recipe pairs acquired from the Inter-
net, a joint space is learnt to locally capture the ingredient correspon-
dence from images and recipes. As learning happens at the region level
for image and ingredient level for recipe, the model has ability to gener-
alize recognition to unseen food categories. Furthermore, the embedded
multi-modal ingredient feature sheds light on the retrieval of best-match
recipes. On an in-house dataset, our model can double the retrieval per-
formance of DeViSE, a popular cross-modality model but not considering
region information during learning.

Keywords: Recipe retrieval · Cross-modal retrieval · Multi-modality
embedding

1 Introduction

Food recognition is generally regarded as a hard problem, due to diverse appear-
ances of food as a result of non-rigid deformation and composition of ingredients.
Recently, the problem has started to capture more attention [1–4] partly due to
the success of deep learning technologies. The accuracy of food recognition can
be as high as 80% on the benchmark datasets such as Food101 [2], FoodCam-
256 [5] and VIREO Food-172 [6]. The success gives light to the development of
techniques for auto dietary food tracking [1,7,8] and nutrition estimation [9],
which has long been recognized as a challenge not only in multimedia [8,10] but
also health and nutritional science [11].
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Fig. 1. Although recipe (a), (b) and (c) are all about “Yuba salad”, only recipe (a) uses
the exactly same ingredients as the dish picture. Retrieving best-match recipe requires
fine-grained analysis of ingredient composition.

Nevertheless, the existing efforts are mostly devoted to recognizing a pre-
defined set of food categories, ranging from 100 to 256 categories [2,3,5,6].
Extending to large-scale recognition, for example tens of thousands food cate-
gories, remains an area yet to be researched. In this paper, we pose food recogni-
tion as a problem of recipe retrieval. Specifically, given a food picture, of whether
the category has been seen in the training model, the aim is to retrieve a recipe
for the food. The advantages of having recipe, rather than the name of food cat-
egory, as output are numerous. Sharing food pictures in social media has been
a trend. The ability to recommend recipes along will benefit users who want to
cook a particular dish, and the feature is yet to be available. In addition, recipe
provides rich information, such as cooking methods, ingredients and their quan-
tities, which can facilitate the estimation of food balance and nutrition facts.
The challenge of recipe retrieval, nevertheless, comes from the fact that there
could be many recipes named under the same categories, each of which differs in
the composition of ingredients. Figure 1 shows an example, where recommending
the right recipe for “Yuba Salad” indeed requires also fine-grained recognition
of ingredient composition.

This paper explores the recent advances in cross-modality learning for
addressing the aforementioned problems. Specifically, given food pictures and
their associated recipes, our aim is to learn a model that captures their corre-
spondence by learning a joint embedding space for visual-and-text translation.
We exploit and revise a deep model, stacked attention network (SAN) [12], orig-
inally proposed for visual question-answering for our purpose. The model learns
the correspondence through assigning heavier weights to the attended regions
relevance to ingredients extracted from recipes. For the task of recipe retrieval,
fortunately the learning does not require much effort in labeling training exam-
ples. There are already millions of food-recipe pairs, uploaded by professional
and amateur chefs, on various cooking websites, which can be freely leveraged
for training. We demonstrate that using these online resources, a fairly decent
model can be trained for recipe retrieval with minimal labeling effort. As input to
SAN includes ingredients, the model has higher generalization ability in recogniz-
ing food categories unseen during training, as long as all or most ingredients are
known. Furthermore, as ingredient composition is considered in SAN, the chance
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of retrieving the best-match recipes is also enhanced. To this end, the contri-
bution of this paper lies in addressing of food recognition as a recipe retrieval
problem. Under this umbrella, the problem is turned into cross-modality feature
learning, which can integrally model three inter-related problems: scalable food
recognition, fine-grained ingredient recognition and best-match recipe retrieval.

2 Related Work

Analysis of recipes has been studied from different perspectives, including
retrieval [6,13,14], classification [15,16] and recommendation [17]. Most of the
approaches employ text-based analysis based upon information extracted from
recipes. Examples include extraction of ingredients as features for cuisine clas-
sification [15] and taste estimation [16]. More sophisticated approaches model
recipes as cooking graphs [13,18] such that graph-based matching can be
employed for similarity ranking of recipes. The graph, either manually or semi-
automatically constructed from a recipe, represents the workflow for cooking
and cutting procedures of ingredients. In [13], multi-modality information was
explored, by late fusion of cooking graphs and low-level features extracted from
food pictures, for example-based recipe retrieval. Few works have also studied
cross-modality retrieval [6,14,17]. In [17], recognition of raw ingredients was
studied for cooking recipe recommendation. Compared to prepared food where
ingredients are mixed or even occlude each other, raw ingredients are easier
to recognize. In [14], classifier-based approach was adopted for visual-to-text
retrieval. Specifically, the category of food picture is first recognized, followed
by retrieval of recipes under a category. As classifiers were trained from UPMC
Food-101 dataset [2], retrieval is only limited to 101 food categories. The issues
in scalability and finding best-match recipes are not addressed. The recent work
in [6] explored ingredient recognition for recipe retrieval. Using ingredient net-
work as external knowledge, the approach is able to retrieve recipes even for
unseen food categories. Different from [6], this paper aims to learn a joint space
that can inherently capture the visual-text commonality for retrieval.

Cross-modality analysis has been actively researched for multimedia retrieval
[19–21]. Frequently employed algorithms include canonical correlation analysis
(CCA) [22] and partial least squares (PLS) [23], which find a pair of linear trans-
formation to maximize the correlation between data from two modalities. CCA,
in particular, has been extended to three-view CCA [24], semantic correlation
matching (SCM) [19], deep CCA [25] and end-to-end deep CCA [26] for cross-
modality analysis. Among variants of model, deep visual semantic embedding
(DeViSE) [20] is generally used and usually exhibits satisfactory performance.
These models, nevertheless, consider image-level features, such as fc7 extracted
from deep convolutional network (DCNN), and usually ignore regional features
critical for fine-grained recognition. One of the exceptions is deep fragment
embedding (DFE) proposed in [21], which aligns image objects and sentence
fragments while learning the visual-text joint feature. However, the model is not
applicable here for requiring of R-CNN [27] for object region detection. In food
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domain, there is yet to have any algorithm for robust segmentation of ingredi-
ents, which can be fed into DFE for learning.

3 Stacked Attention Network (SAN)

Figure 2 illustrates the SAN model, with visual and text features respectively
extracted from image and recipe as input. The model learns a joint space that
boosts the similarity between images and their corresponding recipes. Different
from [12], where the output layer is for classification, we modify SAN so as to
maximize the similarity for image-recipe pairs. As SAN considers spatial infor-
mation, attention map can be visualized by back projection of embedded feature
into image.

Fig. 2. SAN model inspired from [12] for joint visual-text space learning and attention
localization.

3.1 Image Embedding Feature

The input visual feature is the last pooling layer of DCNN – Pool5 – that retains
the spatial information of the original image. The dimension of Pool5 feature is
512×14×14, corresponding to 14×14 or 196 spatial grids of an image. Each grid
is represented as a vector of 512 dimensions. Denote fI as the Pool5 feature and
is composed of regions fi, i ∈ [0; 195]. Each region fi is transformed to a new
vector or embedding feature as following:

vI = tanh(WIfI + bI) (1)

where vI ∈ R
d×m is the transformed feature matrix, with d as the dimension

of new vector and m = 196 is the number of grids or regions. The embedding
feature of fi is indexed by i-th column of vI , denoted as vi. The transformation
is performed region-wise, WI ∈ R

d×512 is the transformation matrix and bI ∈ R
d

is the bias term.
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3.2 Recipe Embedding Feature

A recipe is represented as a binary vector of ingredients, denoted as r ∈ R
t. The

dimension of vector is t corresponding to the size of ingredient vocabulary. Each
entry in r indicates the presence (1) or absence (0) of a particular ingredient in
a recipe. As Pool5 feature, the vector is embedded into a new space as following

vR = tanh(WRr + br) (2)

where WR ∈ R
d×t is the embedding matrix and br ∈ R

d is the bias vector. Note
that, for joint learning, the embedding features of recipe (vR ∈ R

d) and Pool5
region (i-th column of vI) have the same dimension.

3.3 Joint Embedding Feature

The attention layer is to learn the joint feature by trying to locate the visual food
regions that correspond to ingredients. There are two transformation matrices,
WI,A ∈ R

k×d for image I and WR,A ∈ R
k×d for recipe R, mimicking the attention

localization, formulated as following:

hA = tanh(WI,AvI ⊕ (WR,AvR + bA)) (3)

pI = softmax(WPhA + bP ) (4)

where hA ∈ R
k×m, pI ∈ R

m, WP ∈ R
1×k. Note that pI aims to capture the

attention, or more precisely relevance, of image regions to a recipe. The sig-
nificance of a region fi is indicated by the value in the corresponding element
pi ∈ pI .

The joint visual-text feature is basically generated by adding the embed-
ding features vI and vR. To incorporate attention value, regions vi are linearly
weighted and summed (Eq. 5) before the addition operation with vR (Eq. 6), as
following:

ṽI =
m∑
i=1

pivi (5)

u = ṽI + vR (6)

where ṽI ∈ R
d, and u ∈ R

d represents the joint embedding feature.
As suggested in [12], progressive learning by stacking multiple attention lay-

ers can boost the performance, but will heavily increase the training cost. We
consider two-layer SAN, by feeding the output of first attention layer, u(1), into
the second layer to generate new joint embedding feature u(2) as following

h
(2)
A = tanh(W (2)

I,AvI ⊕ (W (2)
R,Au + b

(2)
A )) (7)

p
(2)
I = softmax(W (2)

P h
(2)
A + b

(2)
P ) (8)

˜
v
(2)
I =

∑
i

p
(2)
i vi (9)

u(2) =
˜

v
(2)
I + u (10)
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As p
(2)
I indicates the region relevancy, the attention map can be visualized by

back projecting the attention value pi to its corresponding region fi, followed by
upsampling to the original image size with bicubic interpolation.

3.4 Objective Function

To this end, the similarity between food image and recipe is generated as follow-
ing:

S < vI ,vR >= tanh(Wu,su
(2) + bs) (11)

where Wu,s ∈ R
d and bs ∈ R is bias. S < vI ,vR > outputs a score indicating the

association between the embedding features of image and recipe. The learning
is based on the following rank-based loss function with a large margin form as
the objective function:

L(W,Dtrn) =
∑

(vI ,v
+
R,v−

R)∈Dtrn

max(0,� + S < vI ,v
−
R > −S < vI ,v

+
R >) (12)

Fig. 3. Multi-task VGG model in [6] offering pool5 and deep ingredient features for
cross-modal joint space learning.

The training set, Dtrn, consists of triples in the form of (vI ,v
+
R,v

−
R), where

v+
R (v−

R) is true (false) recipe for food vI . The matrix W represents the network
parameters, and � ∈ (0, 1) controls the margin in training and is cross-validated.

4 Experiments

4.1 Settings and Evaluation

Here we detail the parameter setting of SAN. The dimension of embedding fea-
ture is set to d = 500 for both Pool5 regional and recipe feature, while the
dimension for hA is k = 1, 024 for Eqs. 3 and 7. Through cross-validation, the
hyper parameter � for the loss function is set as 0.2. SAN is trained using sto-
chastic gradient descent with momentum set as 0.9 and the initial learning rate
as 1. The size of mini-batch is 50 and the training stops after 10 epochs. To pre-
vent overfitting, dropout [28] is used. The pool5 feature can be extracted from
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any DCNN models. We employed the multi-task VGG released by [6], which
reported the best performances on two large food datasets, VIREO Food-172
[6] and UEC Food-100 [3]. The model, as shown in Fig. 3, has two pathways,
one for classifying 172 food categories while another for labeling 353 ingredients.
For a fair comparison, all the compared approaches in the experiment are using
multi-task VGG features, either pool5 or deep ingredient feature (fc7), as shown
in Fig. 3.

As the task is to find the best possible recipe given a food picture, the
following two measures are employed for performance evaluation:

• Mean reciprocal rank (MRR): MRR measures the reciprocal of rank position
where the ground truth recipe is returned, averaged over all the queries. This
measure assesses the ability of the system to return the correct recipe at the
top of the ranking. The value of MRR is within the range of [0, 1]. A higher
score indicates a better performance.

• Recall at Top-K (R@K): R@K computes the fraction of times that a correct
recipe is found within the top-K retrieved candidates. R@K provides an intu-
itive sense of how quickly the best recipe can be located by investigating a
subset of the retrieved items. As MRR, a higher score also indicates a better
performance.

4.2 Dataset

The dataset is composed of 61,139 image-recipe pairs crawled from the “Go
Cooking”1 websites. Each pair consists of a recipe and a picture of resolution
448×448. The dataset covers different kinds of food, like Chinese dishes, snacks,
dessert, cookies and Chinese-style western food. Each recipe includes the list
of ingredients and cooking procedure. As the recipes were uploaded by ama-
teurs, the naming of ingredients is not always consistent. For example, “carrot”
is sometimes called as “carotte”. We manually rectified the inconsistency and
compiled a list of 5,990 ingredients, both visible and non-visible (e.g., “honey”),
from these recipes. The list, represented as a binary vector indicating the pres-
ence or absence of particular ingredients in a recipe, serves as input to the SAN
model. Note that in some cases the cooking and cutting methods are directly
embedded into the name of ingredient, for example, “tofu” and “tofu piece”,
“egg” and “steamed egg”.

The dataset is split into three sets: 54,139 pairs for training, 2,000 pairs
for cross-validation, and 5,000 pairs for testing. Furthermore, we selected 1,000
images from the testing set as queries to search against the 5,000 recipes. The
queries are sampled in such a way that there are around 45% of them (446
queries) belonging to food categories unknown to SAN and multi-task VGG
models. In addition, around 85% of the queries have more than one relevant
recipe. We recruited a homemaker, who has cooking experience, to manually
pick the relevant recipes for each of the 1,000 queries. The homemaker was

1 https://www.xiachufang.com.
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instructed to label relevant recipes based on title similarity in recipes, titles that
are named differently because of geography regions or sharing almost the same
cooking procedure with similar key ingredients. For example, the dish “sauteed
tofu in hot and spicy sauce” is sometimes called as “mapo tofu” in the restaurant
menu. In the extreme case, some queries have more than 60 relevant recipes. On
average each query has 9 number of relevant recipes. Note that the testing queries
are designed in these ways so as to verify the two major claims in this paper, i.e.,
the degree in which the learnt model can generalize to unseen food categories
(Sect. 4.4) and the capability in finding the best-matched recipe (Sect. 4.5).

4.3 Performance Comparison

We compared SAN to both shallow and deep models for cross-modal retrieval
as following. The inputs to these models are the deep ingredient feature (fc7)
of multi-task VGG model and the ingredient vector of 5,990 dimensions. The
Pool5 feature is not used due to high dimensionality (14×14×512). As reported
in [29], simply concatenating the features from 14×14 grids performs worse than
fc7 in visual recognition.

• Canonical Correlation Analysis (CCA) [22]: CCA is a classic way of learning
latent subspace between two views or features by maximizing the correlation
between them. Two linear mapping functions are learnt for projections of
features into subspace.

• Partial Least Squares (PLS) [23]: Similar to CCA, PLS learns two linear map-
ping functions between two views. Instead of using cosine similarity as in CCA,
PLS uses dot product as the function for measuring correlation.

• DeViSE [20]: DeViSE is a deep model with two pathways which respectively
learn the embedded features of recipe-image pairs to maximize their similar-
ities. Note that, instead of directly using word2vec as in [20], the embedded
feature of ingredients is learnt from the training set of our dataset. This is
simply because word2vec is learnt from documents such as news corpus [30]
and lacks specificity in capturing information peculiar to ingredients. Different
from SAN, DeViSE is not designed for attention region localization.

• DeViSE++: We purposely included a variant of DeViSE, which takes the
hand-cropped regions of food as input to the deep model. The cropping high-
lights the target food region and basically removes the background or irrelevant
part of food pictures. The aim of using DeViSE++ is to gate the potential
improvement over DeViSE when only food region is considered, and more
importantly, to justify the merit of SAN in identifying appropriate attention
region in comparison to hand-cropped region.

Table 1 lists the results of different approaches. Deep models basically out-
perform shallow models in terms of recall at the depth of 20 and beyond. In
contrast to PLS, which does not perform score normalization, CCA manages to
outperform DeViSE in terms of MRR and R@K for K < 20. Among all these
approaches, the proposed model SAN consistently exhibits the best performance
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Table 1. MRR and R@K for recipe retrieval. The best performance is highlighted in
bold font.

Method MRR R@1 R@5 R@10 R@20 R@40 R@60 R@80 R@100

CCA 0.055 0.023 0.079 0.123 0.182 0.262 0.329 0.371 0.413

PLS 0.032 0.009 0.039 0.073 0.129 0.219 0.284 0.338 0.398

DeViSE 0.049 0.016 0.060 0.108 0.182 0.300 0.391 0.456 0.524

DeViSE++ 0.05 0.016 0.059 0.105 0.174 0.307 0.404 0.471 0.531

SAN 0.115 0.048 0.161 0.249 0.364 0.508 0.601 0.671 0.730

across all the measures. Compared to DeViSE, SAN achieves a relative improve-
ment of 130% in MRR and doubles its performance at R@20, which is fairly
impressive.

Despite the encouraging performance by SAN, the value of R@1 is only
around 0.05. Figure 4 shows some successful and near-miss examples. The first
two pictures show query images where all visible ingredients are clearly seen.
SAN manages to retrieve the ground-truth recipe at top-1 rank in such cases. In
the third example, SAN ranks “grilled salmon” higher than “fried salmon” as the
current model does not consider cooking attributes. In addition, SAN overlooks
the beef and peanuts which are mixed and partially occluded by salmon, while
confused by the ingredients of similar appearance, i.e., caviar and red pepper,
bean sprout and basil. The last query image shows an example of how non-visible
ingredients, flour in this example, affect the ranking. The flour is used to make
the dish into round shape, and this knowledge does not seem to be learnt by
SAN.

Fig. 4. Examples of top-3 retrieved recipes (ranked from top to bottom). Ground-truth
recipe is marked in green. The ingredients in different colours have different meanings:
green – true positive, purple – true positive but non-visible in dish, red – false positive.
(Color figure online)
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Fig. 5. (a) Examples contrasting the manually cropped region (green bounding box),
(b) the learnt attention region (masked in white) by SAN. (Color figure online)

Another result worth noticing is that there is no performance difference
between DeViSE and DeViSE++. While DeViSE is not designed for attention
localization, the model seems to have the ability to exclude irrelevant back-
ground regions from recognition. To provide further insights, Fig. 5 shows some
examples visualizing the attention regions highlighted by SAN and in contrast to
hand-crafted regions. In the first example, the region attended by SAN is about
the same as the region manually cropped. In this case, DeViSE+ and SAN use
to have similar performance. The next two examples highlight the superiority of
SAN in excluding soup and foil as attention regions, which cannot be not easily
done by simple region cropping. SAN significantly outperforms DeViSE in such
examples. Finally, the last example shows a typical case that SAN only high-
lights part of dishes as attention. While there is no direct explanation of why
certain food regions are ignored by SAN for joint space learning, it seems that
SAN has the ability to exclude regions that are vague and hard to be recognized
even by human.

4.4 Finding the Best Matches Recipes

Recalled that around 85% of query images have more than one relevant recipe.
This section examines the ability of SAN in identifying the best (or ground-truth)
recipe from the testing set composed of 5,000 recipes. To provide insights, we
select the queries that retrieval at least one relevant recipe (excluding ground-
truth recipe) within the top-5 position for analysis. We divide the selected queries
into 7 groups based on the number of relevant recipes. Table 2 lists the perfor-
mance. As can be seen from the table, the difficulty of finding best-match is
proportional to the number of relevant recipes. Compared of DeViSE, SAN gen-
erally shows better performance for R@1. As the number of recipes increases,
they tie in performance. Nevertheless, while looking deeper into the list, SAN
consistently outperforms DeViSE in terms of R@5 and R@10. Two main reasons
that ground truth recipe are not ranked higher are due to occluded ingredients
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and use of different non-visible ingredients. Two such examples include the last
two pictures in Fig. 4.

Table 2. Performance comparison between SAN and DeViSE in retrieving best-match
recipes.

R@1 R@5 R@10

Recipe # Query # SAN DeViSE SAN DeViSE SAN DeViSE

2–3 33 0.21 0.15 0.67 0.48 0.82 0.76

4–7 66 0.18 0.17 0.56 0.53 0.70 0.67

8–11 54 0.17 0.15 0.54 0.30 0.60 0.50

11–15 38 0.13 0.08 0.47 0.39 0.63 0.55

16–30 48 0.06 0.06 0.46 0.39 0.62 0.52

31–61 25 0.08 0.08 0.28 0.26 0.44 0.44

4.5 Generalization to Unknown Categories

Table 3 further shows the performance of SAN to unseen categories. As expected,
the performance is not as good as that for the food categories known to SAN
and multi-task VGG. When the ingredients of unknown food categories are pre-
viously seen and can be correctly identified, SAN performs satisfactorily. In
contrast, when some ingredients, especially key ingredients, are unknown, the
model will likely fail to retrieval relevant recipes.

Table 3. Generalization of SAN to unseen food categories.

Query # MRR R@1 R@5 R@10 R@20 R@40 R@60 R@80

Known category 554 0.125 0.054 0.175 0.263 0.394 0.535 0.623 0.698

Unknown category 446 0.103 0.04 0.143 0.231 0.327 0.475 0.572 0.637

5 Conclusion

We have presented a deep model for learning the commonality between image
and text at the fine-grained ingredient level. The power of model comes from the
ability to infer attended regions relevant to ingredients extracted from recipes.
This peculiarity enables retrieval of best-match recipes even for unseen food cat-
egory. The experimental results basically verify our claims that the model can
deal with unknown food categories to the extent that at least key ingredients are
seen during the training. In addition, SAN exhibits consistently better perfor-
mance than DeViSE, showing the advantage of fine-grained ingredient analysis
at the regional level for best-match recipe retrieval.
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The current model can be extended to explicitly model cooking attributes,
which could address some limitations identified in the experiments. In addition,
as the attention layers couple both visual and text features, the embedding
features cannot be offline indexed and have to be generated on-the-fly when
the query image is given. This poses limitation on retrieval speed for online
application, which is an issue needs to be further researched.
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