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Abstract—There has been growing interest in creating in-
telligent agents in virtual worlds that do not follow fixed
scripts predefined by the developers, but react accordingly
based on actions performed by human players during their
interaction. In order to achieve this objective, previous ap-
proaches have attempted to model the environment and the
user’s context directly. However, a critical component for
enabling personalized virtual world experience is missing,
namely the capability to adapt over time to the habits and
eccentricity of a particular player. To address the above
issue, this paper presents a cognitive agent with learning
player model capability for personalized recommendations.
Specifically, a self-organizing neural model, named FALCON
(Fusion Architecture for Learning and Cognition), is deployed,
which enables an autonomous agent to adapt and function
during the players’ interaction. We have developed personal
agents with adaptive player models as tour guides in a virtual
world environment. Our experimental results show that we are
able to learn user models that evolve and adapt with players
in real time. Furthermore, the virtual tour guides with player
models outperform those without adaptive player modeling in
terms of recommendation accuracy.

Keywords-player modeling; virtual world; learning agents

I. INTRODUCTION

Virtual world has become a popular platform used in a va-

riety of contexts, including teaching in classrooms, informal

learning, distance learning, business, and e-commerce [1].

Studies in South Korea have recently shown that users prefer

virtual world to television [2]. Gartner even predicted that

80 percent of the Internet users will be actively participating

in non-gaming virtual world by the end of 2011.

A typical research problem in virtual world is to incor-

porate intelligent learning agents to improve its interactivity

and playability. Indeed, learning in a virtual world, just like

in the real world, poses many challenges not addressed by

traditional machine learning algorithms. In particular, learn-

ing in virtual world is typically unsupervised, without an

explicit teacher to guide the agent in learning. Furthermore,

it requires an interplay of a myriad of learning paradigms.

However, most virtual worlds tend to constrain agents’ ac-

tions to a very coarse level, dictated by hard coded rules [3],

[4], [5]. In the recent few years, there has been growing

interest in creating intelligent agents in virtual worlds that

do not follow fixed scripts predefined by the developers, but

react accordingly based on actions performed by the players

during their interaction. In order to achieve this objective,

previous approaches have attempted to model the dynamic

environments and user’s immediate context [6], [7], [9], [10].

However, they typically ignored a significant component of

making the virtual world experience much more intense and

personalized for players, namely the capability to adapt over

time to the habits as well as eccentricity of a particular

player.

To address the inadequacy of previous work, in this

paper, we present a self-organizing neural model, named

TD-FALCON (Temporal Difference - Fusion Architecture

for Learning and Cognition) [11], for creating intelligent

learning agents in virtual worlds. By incorporating TD-

FALCON, an agent is able to learn from sensory and evalua-

tive feedback signals received from the virtual environment.

In this way, the agent needs neither an explicit teacher nor

a perfect model to learn from. Performing reinforcement

learning in real time, it is also able to adapt itself to the

variations in the virtual environment and changes in the user

behavior patterns.

More importantly, to enable more dynamic and personal-

ized experience, we propose to incorporate adaptive user

modeling with our learning personal agents. Specifically,

a two-channel fusion ART [12], [13], is used for learning

player models during the players’ interaction. By formulat-

ing cognitive codes associating agent’s recommendation to

user feedback, fusion ART learns direct player models of

the users’ likes and dislikes.

We have developed learning personal agents using TD-

FALCON with adaptive user modeling in a 3-D virtual world

called Youth Olympic Village (YOV) Co-Space. In this

application, the learning personal agents are designed to be-

friend human users and proactively offer them personalized

functions and services in the virtual environment [14]. Our

experimental results show that we are able to learn player

models that evolve and adapt with player during run time.

Furthermore, the virtual tour guides with adaptive player

models outperform those without player models. Although

the idea of player modeling has been proposed before,

most of these works do not work in conjunction with a

reinforcement learning agent. Furthermore, even few have
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attempted to provide any quantitative assessment.

The rest of this paper is organized as follows. In section

II, we give a brief review of the related work. In section III,

we describe the case study on the YOV Co-Space. In section

IV, we provide the algorithm of fusion ART. In section V, we

present the procedure and methods of using TD-FALCON

for learning personal agents in real time. We provide the

methods for using two-channel fusion ART for adaptive user

modeling in section VI. In section VII, we describe how we

integrate player models with personal agents. In section VIII,

we report the results of the empirical experiments. The final

section concludes and highlights future work.

II. RELATED WORK

Player modeling in computer games and virtual worlds

have recently attracted the interest in both the academia and

the computer games industry.

In the domain of interactive storytelling, many researchers

employed player modeling to learn the player’s preferred

style of play, and then uses that model to select the content

of an interactive story [15], [16]. Similarly, Charles and

McNeill proposed to use player modeling to facilitate player-

centered game design, in the form of providing a more

appropriate level of challenge, smoothening the learning

curve, and enhancing the gameplay experience [17].

Comparing with most other games, poker games can be

seen as a pioneer of player modeling as it already has shown

a great impact on success. Lockett and Miikkulainen made

use of coarse approximations to game-theoretic player rep-

resentations to improve the performance of software players

in Limit Texas Hold ’Em poker [18]. Also, Baker et.al.

investigated the impact of Bayesian opponent modeling upon

the evolution of a player for a simplified poker game [19].

Unlike virtual world, player models are relatively simple in

poker games which are divided into three or four categories.

In contrast, virtual world presents a much more complex

environment. As such, simple strategies may not work.

Houlette defined the concept of player models and dis-

cussed the strategies for design, implementation and in-

tegration for general games such as First Person Shoot-

ing [20]. However, he didn’t present any experimental result

to support his theory. Other researchers, such as Hladky

and Bulitko, successfully predicted opponent positions by

evaluating hidden semi-Markov models and particle filters in

First Person Shooting games [21]. Heijden et.al. discussed

an approach to organizing units by learning the effectiveness

of a formation and directly applying learned formations

according to the classification of the opponent player in

Real-Time Strategy games [22]. However, all these work

employ offline learning which can not deal with the changes

in the players’ behaviour during run-time.

All the work described above have involved the use of

player models in games with specific motivations. However,

to the best of our knowledge, there has been very few work,

if any, integrating player models with reinforcement learning

agents in virtual world that can adapt to the habits and

eccentric of a particular player dynamically. Our work is

motivated by such a consideration.

III. A CASE STUDY ON YOV CO-SPACE

Co-Spaces are virtual worlds developed for mirroring a

real physical world in terms of look-and-feel, functions and

services. The objective of the Youth Olympic Village (YOV)

Co-Space is to introduce the YOV and the hosting country

to visitors around the world in an interactive and playable

manner. To achieve this objective, we are in the process of

developing and populating human-like cognitive agents in

the form of autonomous avatars that roam in the landscape

of YOV Co-Space. The agents are designed to be aware

of its surrounding and can interact with users through their

human avatars. With the autonomous avatars befriending

and providing personalized context-aware services to human

avatars, we aim to make the content and services readily

available to the users.

Figure 1. The architecture of Co-Space.

Figure 1 shows the architecture of Co-Space. As illus-

trated in this framework, the TD-FALCON based personal

agent works in conjunction with the search agent in recom-

mending functions and services to the users. Specifically, the

personal agent determines the appropriate type of services to

recommend whereas the search agent retrieves the specific

services based on the environment situations as well as the

users’ context parameters. Figure 2 provides a screenshot

of the virtual world, showing a personal agent serving the

user.

IV. FUSION ART

Fusion ART [23] is based on multi-channel Adaptive

Resonance Associative Map (multichannel ARAM) [24], an

extension of predictive Adaptive Resonance Theory (ART)

networks. Whereas predictive neural network models, such

174



Figure 2. A screenshot of TD-FALCON based personal agent in Co-Space.

as ARTMAP network [25] and ARAM [8], learn multi-

dimensional mappings between the input and output pat-

terns, fusion ART formulates cognitive codes associating

multi-modal patterns across multiple input channels.

The generic network dynamics of fusion ART, based on

fuzzy ART operations [25], is described as follows.

Figure 3. The architecture of fusion ART.

Input vectors: Let S = (s1, s2, . . . , sn) denote the state

vector, where si ∈ [0, 1] indicates the value of sensory input

i. Let A = (a1, a2, . . . , am) denote the action vector, where

ai ∈ [0, 1] indicates the preference of a possible action i.
Let R = (r, r) denote the reward vector, where r ∈ [0, 1] is

the reward signal value and r is given by r = 1 − r. The

whole input vectors are with complement coding.

Activity vectors: Let xck denote the F ck
1 activity vector for

k = 1, . . . , 3. Let y denote the F2 activity vector.

Weight vectors: Let wck
j denote the weight vector associ-

ated with the jth node in F2 for learning the input patterns

in F ck
1 for k = 1, . . . , 3. Initially, F2 contains only one

uncommitted node. An uncommitted node is one which has

not been used to encode any pattern and its weight vector

contains all 1s.

Parameters: The FALCON’s dynamics is determined by

choice parameters αck ≥ 0, learning rate parameters βck ∈
[0, 1], contribution parameters γck ∈ [0, 1] and vigilance

parameters ρck ∈ [0, 1] for k = 1, . . . , 3.

The FALCON pattern processing cycle comprises of five

key stages, namely code activation, code competition, ac-

tivity readout, template matching, and template learning, as

described below.

Code activation: A bottom-up propagation process first

takes place in which the activities of the category nodes

in the F2 field are computed. Specifically, given the activity

vectors xc1,xc2,xc3, for each F2 node j, the choice function

Tj is computed as follows:

Tj =
3∑

k=1

γck
|xck ∧wck

j |
αck + |wck

j |
, (1)

where the fuzzy AND operation ∧ is defined by (p∧q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡∑

i pi for

vectors p and q.

Code competition: A code competition process follows

under which the F2 node with the highest choice function

value is identified. The system is said to make a choice

when at most one F2 node can become active after the code

competition process. The winner is indexed at J where

TJ = max{TJ : for all F2 node j}.
When a category choice is made at node J , yJ = 1 and yj =
0 for all j �= J . This indicates a winner-take-all strategy.

Activity readout: The chosen F2 node J performs a readout

of its weight vectors into the input fields F ck
1 such that

xck(new) = xck(old) ∧ wck
J . (2)

The resultant F ck
1 activity vectors are thus the fuzzy AND of

their original values and their corresponding weight vectors.

Template matching: Before the node J can be used for

learning, a template matching process checks that the weight

templates of node J are sufficiently close to their respective

input patterns. Specifically, resonance occurs if for each

channel k, the match function mck
J of the chosen node J

meets its vigilance criterion ρck:

mck
J =

|xck ∧wck
J |

|xck| ≥ ρck. (3)

If any of the vigilance constraints is violated, mismatch reset

occurs in which the value of the choice function TJ is set

to 0 for the duration of the input presentation. The search

process then selects another F2 node J until a resonance is

achieved.

Template learning: Once a resonance occurs, for each

channel ck, the weight vector wck
J is modified by the

following learning rule:

w
ck(new)
J = (1− βck)w

ck(old)
J + βck(xck ∧w

ck(old)
J ). (4)

When an uncommitted node is selected for learning, it

becomes committed and a new uncommitted node is added

to the F2 field. Fusion ART thus expands its network

architecture dynamically in response to the input patterns.
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V. LEARNING PERSONAL AGENT

Our personal agent is based on TD-FALCON [11] that

employs a three-channel fusion ART (Figure 4) and in-

corporates Temporal Difference (TD) methods to estimate

and learn value functions of action-state pairs Q(s, a) that

indicates the goodness for a learning system to take a certain

action a in a given state s. Such value functions are then used

in the action selection mechanism, also known as the policy,

to select an action with the maximal payoff. TD-FALCON

algorithm selects an action with the maximal Q-value in a

state s by enumerating and evaluating each available action

a by presenting the corresponding state and action vectors

S and A to FALCON.

Figure 4. TD-FALCON architecture.

TD-FALCON has the properties such as self-adaptation,

generalization, TD learning, fast and stable real-time learn-

ing. These make TD-FALCON a suitable candidate for

building learning agents in virtual world. By incorporating

TD-FALCON, an agent will be able to learn from sensory

and evaluative feedback signals received from the virtual

environment without involving human supervision and in-

tervention. In this way, the agent needs neither an explicit

teacher nor a perfect model to learn from. Performing

reinforcement learning in real time, it is also able to adapt

itself to the variations in the virtual environment and changes

in the user behavior patterns. Furthermore, by incorporating

temporal difference learning, TD-FALCON agents can over-

come the issues, such as the absence of immediate reward

(or penalty) signals in virtual world by estimating the credit

of an action based on what it will lead to eventually.

The general sense-act-learn algorithm of TD-FALCON is

summarized in Table I.

A. State Representation

The input state of the personal agent consists of five

sets of attributes, namely time, location, player’s request,

player’s interest and player’s current activity. A summary of

these attributes together with the possible values is given in

Table II. All attributes adopt a binary encoding scheme in

the state vector. Although we include user request as part

of the state space, the agents are intended to work without

explicit user request. In other words, they are supposed to

proactively make recommendation based on user’s interest,

context and situation.

B. Action Space Representation

The personal agent is designed to determine the most

appropriate service for recommendation to its user. The

action field thus consists of recommendations of five types of

services, namely hotel, dinning, YOV, place of interest and

shopping. Using a binary encoding scheme, the action vector

is represented as a = (a1, a2, . . . , a5), where aj = 1 and

ak = 0 for all k �= j indicate that action j is recommended.

C. Computing Reward Signals

The reward function r(t) is defined as a synthesis of the

player’s feedback and mood as r(t) = (f(t) + m(t))/2,

where f is an explicit reward based on the user feedback

through the dialog menu and f is an implicit reward value

suggested by the gestures of the user. The dialog menu

enables a player to choose among ”wonderful”, ”thanks”,

”good”, ”fair”, and ”leave me alone”, which correspond

to a reward value of 1, 0.75, 0.25 and 0 respectively.

Meanwhile, we obtain a player’s mood by observing the

gestures of the player. Gestures, such as waving, dancing,

and jumping, indicate a positive reward of 1 since they

indicate satisfaction with the service. In contrast, a reward of

0 is given to gestures, such as angry and walk away, which

suggest unhappiness.

VI. LEARNING PLAYER MODELS

We adopt a two-channel fusion ART (Figure 5) for

learning player models. Essentially, the model performs

supervised learning through the pairing of the input patterns

and teaching signals received from the virtual environment

without involving human supervision and intervention. If

an initial user profile is available, the model first creates

cognitive nodes that associate the attributes specified in the

player’s profile with positive reward signals. During play

time, the player model learns the user’s likes and dislikes by

formulating cognitive codes associating the attributes of the

agent’s recommendations to users’ feedbacks. For example,

if the agent recommends a Japanese restaurant ”Dozo” and

the user likes it, the attribute corresponding to Japanese

in the player’s profile and the reward attribute are set to

’1’ while other attributes are set to ’0’. Fusion ART then

encodes these patterns into a cognitive code. Performing

supervised learning in real time, it is also able to adapt itself

to the changes in the user preference patterns.

During the learning mode, given the input space S and

output space A, the system first performs code activation

and code competition (as described in Section IV) to select a

winner J . Before node J can be used for learning, a template

matching process checks that the weight templates of node

are sufficiently close to their respective input patterns. If

the chosen node J violates its vigilance criterion, the search

process then selects another F2 node J under the revised

vigilance criterion until a resonance is achieved. Once a node
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Table I
GENERIC FLOW OF THE TD-FALCON ALGORITHM

1. Initialize the FALCON network
2. Given the current state s, for each available action a in the action set A, predict the value of the action Q(s,a)

by presenting the corresponding state and action vectors S and A to FALCON.
3. Based on the value functions computed, select an action a from A following an action selection policy.
4. Perform the action a, observe the next state s′, and receive a reward r (if any) from the environment.
5. Estimate the value function Q(s, a) following a temporal difference formula given by ΔQ(s, a) = αTDerr

6. Present the corresponding state, action, and reward (Q-value) vector, namely S, A and R, to FALCON for learning.
7. Update the current state by s = s′.
8. Repeat from Step2 until s is a terminal state.

Figure 5. A two channel fusion ART architecture for supervised learning
of user models.

Table II
ATTRIBUTES AND POSSIBLE VALUES IN THE STATE SPACE FOR

PERSONAL AGENT

Attributes Values
Time Morning, lunch Time, Afternoon

Dinner Time, Evening, Bed Time
Player’s Central, North, South, East
Location West
Player’s Hotel, Dining, YOV Venue, Place of
Request Interest(POI), Shopping, Unknown
Player’s Dining, YOV, POI, Shopping
Interest unknown
Player’s Hotel, Dining, YOV, POI
Activity Shopping, Unknown

J is selected for firing, for each channel k, the weight vector

is modified by the template learning rule.

In a predicting mode, fusion ART receives input patterns

from one or more input fields and predicts the patterns in

the remaining fields. The predicting process follows three

key steps, namely, code activation, code competition, and

activity readout. In case of more than one winners during the

code competition process, these nodes perform a combined

activity readout. Furthermore, the players’ general interest

could be inferred based on the assumption that the greater

the number of player’s preferences in one general category,

the more the player is interested in this category. In this way,

player’s interest in the state space of personal agent (shown

in Table II) will be updated over run-time.

A. Input Space Representation

The input space of the player model consists of six sets

of attributes, namely Preferred Hotel Class, Favorite Type of

Food, Consumption Level, Favorite Type of Sports, Favorite

Type of POI and Favorite Type of Shopping. A summary of

these attributes together with the possible values is given in

Table III. All attributes adopt a binary encoding scheme in

the state vector.

Table III
ATTRIBUTES AND POSSIBLE VALUES IN THE STATE SPACE OF PLAYER

MODEL

Attributes Values
Preferred 5 star, 4 star, 3 star and below
Hotel Class
Favorite Type Chinese, Western, International, Taiwanese,
of Food Seafood, Indian, Mexican, Korean, Thai, Halal,

Italian, Singapore, Japanese, French, Steamboat,
Nonya and Peranakan, Vegetarian, Vietnamese

Consumption Level Luxury, Medium, Budget
Favorite Type Aquatics, Archery, Athletics, Badminton,
of Sports Basketball, Boxing, Canoe-Kayak, Cycling,

Fencing, Football, Gymnastics, Modern
Pentathlon, Rowing, Sailing, Shooting, Table
tennis, Triathlon, Volleyball, Weightlifting, Judo,
Hockey, Equestrian, Handball, Taekwondo,
Wrestling, Tennis

Favorite Church, Memorial, Mosque,
Type of POI Palace, Temple, Zoo
Favorite Type Children and Maternity, Electrical and Electronic,
of Shopping IT and Telecommunication, Art and Craft,

Jewellery and Watch, Fashion and Accessory,
Entertainment and Music, Leather good
and Footwear, Health and Pharmacy and Toilet

B. Output Space Representation

The player model is defined to simulate players with

different background, personalities and interests. As a start,

our action field only consists of two attributes: Like and

dislike, represented using the binary encoding scheme.

VII. INTEGRATING PLAYER MODEL WITH PERSONAL

AGENT

The architecture of the overall recommendation agent,

incorporating the personal agent, the search agent, and the

player model, is shown in Figure 6. As illustrated in this

framework, we incorporate the two-channel fusion ART

based player model together with the personal agent and

the search agent in recommending functions and services

177



to the users. Specifically, the personal agent determines the

appropriate type of services to recommend, such as hotel,

restaurant, YOV, POI and shopping according to the current

environment situation and user’s context. Fusion ART then

infers the player model especially player special preference

and updates the personal agent with the players’ current

general interests during the interplay. By incorporating the

personal agent with the adaptive user model, the system

would be more adaptive to the players’ habits and eccentric-

ity. Based on the output of the personal agent and the player

model’s inferred result, the search agent works like a search

engine that handles the retrieving of requested information

from the database.

A typical example of how the various components work

together is described as follows: When it is near dinner

time, the personal agent suggests the service of providing the

restaurant information to the player. Meanwhile, the player

model indicates that this player prefers Japanese cuisine.

Hence, the query of Restaurant and Japanese will be passed

to the search agent, and Japanese restaurants with the highest

matching scores will be recommended to the player. As the

player requests for different restaurants, other cuisine types

will be learnt by player model and updated as the player’s

interest after competing with other categories of general

interest. Hence, during the following play time, the personal

agent will give updated recommendations accordingly.

Figure 6. The architecture of recommendation agent.

VIII. EMPIRICAL EXPERIMENTS

Our previous study [14] showed that the TD-FALCON

based personal agents can adapt to the environment and

improve their performance in real time. In this paper, we

investigate whether we are able to learn player models that

evolve and adapt with players during run time using fusion

ART. Furthermore, we wish to evaluate the performance

of the personal agents with adaptive player models in

comparison with those without player models. Based on

these considerations, we conduct three sets of experiments,

namely experiments with static player profile, experiments

with evolving player profile and experiments without player

registered profile. Player registered profiles are the personal

information captured by the system during user registration.

Learning user models with and without initial profiles pro-

vide different challenges to fusion ART.

For the personal agents, we build a TD-FALCON network

comprising 33 nodes in the sensory field, five nodes in the

action field, and two nodes in the reward field. The parameter

setting of TD-FALCON is shown in Table IV which has been

proven to perform well in YOV Co-Space.

Table IV
TD-FALCON PARAMETER SETTING FOR PERSONAL AGENTS.

FALCON Parameters Values

Choice parameter(αc1,αc2,αc3) 0.1, 0.1, 0.1
Learning rates(βc1,βc2,βc3) 1.0, 1.0, 1.0
Contribution parameter(γc1,γc2,γc3) 1/3, 1/3, 1/3
Baseline vigilance parameter(ρc1,ρc2,ρc3) 1.0, 1.0, 1.0
TD Learning Parameters
TD learning rate α 1
Discount factor γ 0
Initial Q-value 0
ε-greedy Action Policy Parameters
Initial ε value 0.5
ε decay rate 0.0002

For learning user models, we build a fusion ART network

comprising 130 nodes in the input space field and two

nodes in the output field. Moreover, in order to evaluate

our system performance empirically, we design an automatic

test procedure using synthetic player models, simulating the

player’s feedback to the agent’s service based on a set of

player logic. By matching the agent’s recommendations with

the player’s expectation, we are able to compute reward

signals that can be used to guide the agent in learning.

A sample set of player logic is given in Table V as an

illustration, where x is a value of Player’s Interest in Table II

and P is a set of the player’s preference corresponding to

the values in Table III.

Table V
LOGIC FOR GENERATING REWARDS BASED ON A SYNTHETIC PLAYER

MODEL P.

IF Time = Lunch or Dinner Time,
Activity != Dinning, Request = Unknown,

EXPECT Recommend restaurant with attributes ai ∈ P

IF Time = Lunch or Dinner Time,
Activity = Dinning, Request = Unknown,
Interest contains x

EXPECT Recommend x with attributes ai ∈ P

IF Time = Bed Time, Request = Unknown
EXPECT Recommend Hotel with attributes ai ∈ P

As the main role of the personal agents is to provide

services to the players, we evaluate their performance by

the accuracy of the service provided to the players over a

period of time.
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1) Experimenting with Static Player Profile: In this set

of experiment, the player profile will not evolve during run-

time. Fusion ART uses a default set of parameter values as

listed in Table VI. The recommendation accuracy with static

user profile averaged at 100-trial intervals over 3000 trials

are shown in Figure 7. The results, obtained after averaging

across five sets of experiments, generally indicate that the

agents are able to gradually improve their performance

through user feedback continuously over time. We can

observe that when there is no change in the player profile, the

performance is largely similar at all interaction cycles. This

is because player registered profiles are beneficial to player

model. They can be considered as the prior knowledge to

initialize the player model.

Table VI
FUSION ART PARAMETER SETTING FOR PLAYER MODELS.

Fusion ART Parameters Values

Choice parameter(αc1,αc2) 0.1, 0.1
Learning rates(βc1,βc2) 1.0, 1.0
Contribution parameter(γc1,γc2) 0.5, 0.5
Baseline vigilance parameter(ρc1,ρc2) 1.0, 0.0
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Figure 7. Recommendation accuracy of recommendation agents with
registered player profile.

2) Experimenting with Evolving Player Profile: In this

set of the experiments, we evolve the player profile during

run-time to investigate how the agents may cope with a shift

in player’s interests. After 1500 learning trials, we changed

20% of the interest in synthetic player model by shifting the

player’s preference from Japanese to seafood and steamboat

and from Aquatics to Sailing and Table Tennis. Moreover,

we add in new preferences after 1500 learning trials to shift

the user’s general interest from dinning to shopping.

As shown in Figure 8, the recommendation accuracy

of both systems are largely similar over the first 1500

learning trials, which are consistent with the previous set

of experiments. As the target player profile evolves after

1500 learning trials, both of them suffer a critical drop in

performance at the next 100 trials. However, they all manage

to improve the performance afterwards. Even without the

learning player model, due to the learning ability of the per-

sonal agent, it can adapt and give general recommendations

according to the feedbacks from the players. However, as

the player profile has changed, the recommendation agent

without a player model does not have the capability of

adapting to the new interest and preferences. Hence, the rec-

ommendation agent with learning player model significantly

outperform its counterpart after the player profile evolves.
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Figure 8. Recommendation accuracy of recommendation agent with
evolving player profile.

3) Experimenting without Player Registered Profile: All

the above mentioned experiments rely on the player’s reg-

istered profile. However, in a realistic environment, players

may not always fill in their information. They may log into

the Co-Space by using a ”guest” account. We note that this

is more challenging because it requires the capability of

learning from zero knowledge. In this set of experiments, we

evaluate such a scenario. During the experiment, the player’s

preference exactly follows the setting of last experiment. The

performance of learning player model, in terms of prediction

accuracy, can be found in Figure 9.
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Figure 9. Recommendation accuracy of recommendation agent without
registered player profile.
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Since there is no more ”pre-inserted hints”, recommenda-

tion agent without a learning player model suffers a more

significant drop of more than 50% comparing with that in

the previous set of experiments. In contrast, fusion ART,

despite without the player registered profile, quickly learns

from zero knowledge and adapts to the player. Even after

significant changes of player’s interest, it manages to regain

an accuracy of more than 80% eventually.

IX. CONCLUSIONS

The main objective of our work is to make the players’

experience in virtual worlds more intense and personalized

by employing learning player model technologies. In this

paper, we have focused on the capability of agents to adapt

over time to the habits and eccentricity of a particular

player in virtual worlds. To this end, we present a personal

agent based on FALCON, which enables an autonomous

agent to adapt and function in a dynamic environment, and

augmented it with an adaptive player model for personalized

services in virtual worlds.

Our experimental results have thus far supported the valid-

ity of our multi-agent approach. While the study presented

in this paper uses player models more tightly with the search

agent, moving forward, we wish to expand the input state

of personal agents by incorporating the user model directly.

This will give rise to a richer user’s context to enhance the

decision making of personal agents. We also want to extend

the player models to incorporate personal traits and other

complex attributes so as to serve the players better.
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