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Cognitive Agents Integrating Rules and Reinforcement
Learning for Context-Aware Decision Support

Teck-Hou Teng and Ah-Hwee Tan
School of Computer Engineering and Intelligent Systems Centre

Nanyang Technological University
{teng0032, asahtan}@ntu.edu.sg

Abstract
While context-awareness has been found to be effective

for decision support in complex domains, most of such de-
cision support systems are hard-coded, incurring signifi-
cant development efforts. To ease the knowledge acqui-
sition bottleneck, this paper presents a class of cognitive
agents based on self-organizing neural model known as
TD-FALCON that integrates rules and learning for sup-
porting context-aware decision making. Besides the abil-
ity to incorporate a priori knowledge in the form of sym-
bolic propositional rules, TD-FALCON performs reinforce-
ment learning(RL), enabling knowledge refinement and ex-
pansion through the interaction with its environment. The
efficacy of the developed Context-Aware Decision Sup-
port(CaDS) system is demonstrated through a case study
of command and control in a virtual environment.

1. Introduction
Quality decision is made through astute application of

choiced decision-making techniques on a selection of fo-
cused and directed information. Context-aware application
achieves this end by focusing on the who, where, when
and what to determine the why of a decision-making sce-
nario [4]. It leverages on such contextual information to
characterize the situation of a decision-maker.

There is a wide spectrum of context-aware applications
such as in the area of information retrieval [1], information
logistics [9], pervasive computing [10] and decision support
in complex domains [6]. However, all of these works em-
phasized the use of context-aware information and required
significant knowledge acquisition effort. The techniques for
learning and autonomous expansion of knowledge for these
systems were notably missing.

Context-aware Decision Support (CaDS) system exploits
contextual information for focused situation assessment and
goal-oriented decision support. In this paper, we present
a CaDS system that is capable of learning and refining
symbolic knowledge through RL. This CaDS incorporates
a group of entity agents, one for each entity in the envi-
ronment and a shared situation-awareness model. Specif-
ically, we adopt a self-organizing neural model known as

TD-FALCON [11] as the inference engine to each entity
agent. As a generalization of ART [2], TD-FALCON learns
multi-channel mapping simultaneously across multi-modal
input patterns in an online and incremental manner. Due to
its compatibility with rule-based knowledge representation,
a class of propositional rules can be inserted conveniently
into the FALCON network structure. More importantly, the
refinement of such rules and the discovery of new rules is
guided by temporal difference(TD) learning method.

Our proposed CaDS system is evaluated using a com-
mand and control problem domain known as Missions-on-
Mars. The simulation is purposefully highly dynamic with
hostile entity agents and unexpected occurrence such as ad-
hoc goal injection and terrain changes. Our experiments
show that the entity agent with the TD-FALCON infer-
ence engine achieves superior level of robustness and per-
formance over an alternative rule-based engine known as
DROOLS [8].

The rest of the paper is organized as follows. We be-
gin with the presentation of the overall CaDS architecture
and its core capabilities in Section 2. Next, the rule han-
dling technique is detailed in Section 3. Description of the
simulation scenario is provided in Section 4 and the exper-
iment results are presented in Section 5. The final section
concludes and provides a brief discussion of future work.

2. CaDS Architecture
The CaDS architecture (see Fig 1) incorporates a group

of entity agents, one for each entity in the environment, and
a shared situation-awareness model. The CaDS is supported
by a real-time, multi-player, open source game simulation
engine known as GECCO [7].

Figure 1: The CaDS Architecture.

The situation-awareness model is based on Endsley’s



three layer proposal [5] with an addition of a terrain model
for the command and control domain. Knowledge about
the environment is received at the Perception layer of the
situation-awareness model. It is then interpreted and as-
sessed at the Comprehension layer. To support anticipatory
decision-making, the Projection layer predicts future states
based on the understanding of the current situation.

The entity agent supports the decision-making processes
of the user in a command and control setting for timely and
effective decisions. Each entity agent has a set of goals
and strategies, which form the basis of the entity’s behav-
iors (see Fig 2). The goals and strategies are translated into
executable structures such as missions, plans and actions.
Together with the physical attributes such as location and
health level constitute the context from which an agent is
able to provide a customized set of views and services of the
shared situation-awareness model to its user. The situation-
awareness model is constantly updated with the user’s con-
text and the information on the environment. The important
events are then highlighted to the user in accordance to their
significance in the given context.

DROOLS was used as the inference engine that oper-
ates on propositional rules in a prior implementation [6].
Over here, it is substituted by novel self-organizing neural
model known as TD-FALCON, that integrates rule-based
knowledge and learning, as the inference engine of the en-
tity agents. This neural model is utilitised by entity agent
with context-aware capabilities for event classification, ac-
tion recommendation, and mode selection.

Figure 2: The entity agent model.

Event Classification - This context-aware capability pre-
vents information overloading by presenting an event oc-
currence as an information, warnting or alert to the user.
An event that is classified as an information is relevant to
the user but does not affect the attainment of its goal. Event
that may affect the chance of attaining the goal is issued as
a warning while event that is certain to jeopardize the at-
tainment of the goal is flagged as an alert.
Action Recommendation - An entity agent provides deci-
sion support to the user by recommending a list of possible
action choices that is inline with the current situation model
and the user’s context. An entity agent compiles a ranked
list of four action choices out of the six action choices,
namely Resume, Increase Speed, Decrease Speed, Reroute,
Set to Required Speed and Wait, for a given situations.

Mode Selection - The level of autonomy of the entity agent
is indicated by the choice of decision modes. Three deci-
sion modes - Auto, Recommend and Don’t Know - are de-
fined in the CaDS. The entity agent automatically chooses
the best option available for the current situation in the Auto
mode. Recommend mode is used when the selected option
is of high consequence, wherein the entity agent provides
a ranked list of the options for the human operator for the
final decision. Don’t Know mode is used when the entity
agent does not recognize the current situation and/or it can-
not respond with an appropriate action.

3. Symbolic Rule Handling
The sensory and motor fields of FALCON correspond

well to the antecedents and the consequents of propositional
rules. A reward factor which corresponds to the feedback
field is included as a performance metric on the rule. There-
fore, a priori knowledge on a problem domain can be for-
mulated as propositional rules and inserted into a FALCON
network. This helps to improve learning efficiency and pre-
diction accuracy. Prior to insertion, translation of the rules
is required to bridge the gap in knowledge representation.
Rule Representation - FALCON is well-equipped to pro-
cess a class of propositional rules whose consequents is im-
plied from the antecedents with a reward factor. The reward
factor is included to quantify the quality of the response as
recommended by rule with respect to the overall outcome
of a given task.

Formally, each propositional rule P has a set of an-
tecedents X that gives rise to a set of consequents Y with a
reward factor r, i.e., P : X

r−→ Y where X , Y and r can be
defined as

X =
N∧

n

xn, Y =
M∧

m

ym, r ∈ [0, 1]

where
∧

indicates the logical AND operator, N is the num-
ber of antecedents and M is the numer of consequents such
that the propositional rule P can thus be expressed as

IF x1 ∧ . . . ∧ xn ∧ . . . xN

THEN y1 ∧ . . . ∧ ym ∧ . . . yM

REWARD r ∈ [0, 1]

whose elements xn and ym can be commonly defined as
{(as, vt)|as ∈ X, vt ∈ Vs} where as is an attribute hav-
ing a value vt, X is the universe set of attributes, Vs is the
domain of values for attribute as and r is the reward fac-
tor for propositional rule P . Each rule has an unique com-
bination of antecedents and consequents. In addition, the
consequents are not dependent on its previous values, i.e.,
X ∩ Y = ∅.
Rule Translation - For insertion into the FALCON model,
each feature of the symbolic rule has to be translated into an
equivalent vector format. Specifically, an attribute as with
T possible values whose attribute-value pairs (as, vt) is to
be translated into a vector as below.
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[(bs1, b
c
s1), (bs2, b

c
s2), . . . , (bst, b

c
st), . . . , (bsT , bc

sT )]

such that each of the complement-coded 2-bit vector
(bst, b

c
st) [3] is defined in accordance to

(bst, b
c
st) =

��
�

(1, 0) if as = vt

(0, 1) if as �= vu where u �= t
(0, 0) attribute has no effect

(1)

The concatenated vector of the complement-coded vectors
for every attribute-value pairing of attribute as is known as
the attribute vector and it has the dimension (2×|Vs|). The
antecedent vector of the rule is a further concatenation of S
attribute vectors which will cause it to have the dimension
of

∑S
s (2 × |Vs|) where S ≡ |X|. All the attributes are

represented in the antecedent vector regardless of whether
they are considered in the rule P . Similarly, the consequent
vector is the concatenation of the attribute vectors based on
element ym of the set of consequents. The reward vector is
comprised of the reward factor r and its complement 1− r,
i.e., (br, b

c
r) = (r, 1 − r).

In the context of FALCON, for each propositional rule
P , the antecedent vector is known as the state vector S, the
consequent vector is known as the action vector A while the
reward vector R is taken as it is. Hence, each propositional
rule P will translate to an unique pattern set F comprising
of S, A and R, i.e., P{X, Y, r} → F{S,A,R}
Rule Insertion - After translation, the state S, action A and
reward R vectors are inserted into FALCON through the it-
erative performance of the code activation, code competi-
tion, template matching and template learning procedure as
described in [11]

During rule insertion, the vigilance parameters ρck are
each set to 1 to ensure that only identical attribute vectors
are grouped into the same recognition category. The perfect
mismatch phenomenon detects contradictory rules in which
the system tries to raise the sensory field vigilance ρs above
1 in response to a mismatch in the motor field.

All the inserted rules are assumed to be distinct. Un-
less there is a perfect match to any existing nodes, any other
dissimilar patterns are learned by FALCON as a cognitive
node. Hence, there are as many cognitive nodes as the num-
ber of inserted propositional rules.

4. Case Study: Mission-on-Mars
The Mission-On-Mars platform aims to be an adequate

model for a complex and dynamic decision-making prob-
lem domain. The Explorer ER100 and the Alien are two
entity agents while the HQ and Base Alpha are passive
landmarks within this platform. The entity agents navi-
gate through the terrain with the aid of a sensor network
(see Fig 3) that is deployed over the terrain. Both agents
are assumed to have complete knowledge about the ter-
rain through this sensor network. For example, information
on whether the path is blocked or unblocked is available
through the sensor network.

The Explorer ER100 is tasked to navigate through the
sensor network to its destination using the most efficient and
safest route. The Alien is tasked to patrol along a section of
the sensor network. The Alien is hostile to the Explorer
ER100. It can inflict health damages to the Explorer ER100
in a close encounter. Thus, the Explorer ER100 is expected
to avoid contact with the Alien as much as possible. In ad-
dition, the Explorer ER100 is able to respond to three types
of goals and two types of terrain events.

The challenge is for Explorer ER100 to respond to ad-
hoc goal injection, terrain changes as well as threats from
the Alien entity agent. The Explorer ER100 can choose an
action from the set of action choices mentioned in Section 2.
It is expected to select one of these action choices based on
the situation-awareness model and the context information
(see Fig 2) with the aid of the inference engine.

Figure 3: An illustration of context-aware decision support.

5. Experiments

The objective of the experiments is to evaluate the suit-
ability of TD-FALCON as an inference engine for the entity
agent operating in a complex decision-making domain. It is
required to provide accurate response to scenarios using a
priori knowledge as well as learned knowledge. The exper-
iments compare the prediction accuracy of TD-FALCON
trained using two learning paradigms - RL and supervised
learning (SL), each with or without a priori knowledge
and also against another rule inference engine known as
DROOLS. SL and DROOLS are included for baseline com-
parison against the RL approach.

There are nine rules for action recommendation, another
nine rules for mode selection and six rules for event classi-
fication with a total of 24 attributes as the rule antecedents
and three attributes as the rule consequents. For demonstra-
tion purpose, it is sufficient to only include the results on the
action recommendation context-aware capability over here.

The rule inference engines are evaluated using 281 real-
istic situations from the Mission-On-Mars platform. TD-
FALCON is separately trained using SL and RL. TD-
FALCON is taught the expected response when an incorrect
response is provided during SL. With RL, TD-FALCON is
only provided with a reward signal indicating the correct-
ness of its recommendation.
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TD-FALCON operates in the PERFORM mode to de-
rive a response from its knowledge base while it gets
into the LEARN mode to update this knowledge base.
TD-FALCON operates with baseline vigilance ρck =
{0.2, 0.8, 0.5} for the state, action and reward fields respec-
tively in the LEARN mode while it has ρck = {0.0} in
the PERFORM mode. Both modes use a common set of
values for the following sets of parameter: choice param-
eters αck = {0.1, 0.001, 0.001}, learning rate βck = 1.0
for fast learning and contribution parameter γck = 1

3 for
k = 1, 2, 3.

From Fig 4, DROOLS yields a consistent prediction ac-
curacy of 97.15% while TD-FALCONs trained using SL
achieve 100% prediction accuracy ealier than those trained
using RL. This is expected as SL teaches the expected re-
sponses to TD-FALCON while RL requires more iterations
to explore the solution space for suitable responses. The
absence of learning capability accounts for the stagnant per-
formance of DROOLS.
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Figure 4: Comparison of action choice prediction accuracy

The profile of the prediction accuracy plots of the TD-
FALCONs trained with and without rules in Fig 4 are quite
closely matched. The inherent inadequacy of the inserted
rules is also highlighted by the lower initial prediction ac-
curacy of the configurations with rule insertion over those
without rule insertion. This indicates the reduced role of
the a priori knowledge after the acquisition of more so-
phisticated knowledge. The learning mechanism of TD-
FALCON is able to supersede the less adequate rules with
those that are able to provide more accurate responses.
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Figure 5: Comparison of the number of cognitive nodes cre-
ated

Fig 5 plots the creation of the cognitive nodes from each

of the experiment configurations. The production of cog-
nitive nodes plateaus as the prediction accuracy approaches
100% accuracy. This indicates that TD-FALCON has ac-
quired sufficient knowledge to provide the appropriate re-
sponses to all the situations. Generalization is observed as
the number of positive nodes created is significantly lesser
than the situations that it has to respond to.

6. Conclusions
A CaDS architecture with TD-FALCON that is able

to integrate rules and perform RL for context-aware deci-
sion support has been presented. The capability of TD-
FALCON as an adaptive rule inference engine has been
clearly illustrated and the efficacy of our approach has been
demonstrated. It is able to learn and achieve performance
level which exceeds that of existing rule inference engine.
Upcoming work shall include online code evaluation and
pruning procedure to maintain the network at a compact
size. Further enhancement to the learning algorithm can be
achieved through the integration with the symbolic rule han-
dling algorithm and the use of negative knowledge. Other
opportunities for enhancements shall be explored to bring
about positive and incremental contributions.
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