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†DSO National Laboratories
‡CAE Singapore (S.E.A.) Pte. Ltd.

Abstract—Training of combat fighter pilots is often con-
ducted using either human opponents or non-adaptive computer-
generated force (CGF) inserted with the doctrine for conducting
air combat mission. The novelty and challenges of such non-
adaptive doctrine-driven CGF is often lost quickly. Incorporating
more complex knowledge manually is known to be tedious and
time-consuming. Therefore, a study of using adaptive CGF to
learn from the real-time interactions with human pilots to extend
the existing doctrine is conducted in this work. The goal of this
study is to show how an adaptive CGF can be more effective
than a non-adaptive doctrine-driven CGF for simulator-based
training of combat pilots. Driven by a family of self-organizing
neural network, the adaptive CGF can be inserted with the
same doctrine as the non-adaptive CGF. Using a commercial-
grade training simulation platform, two human-in-the-loop (HIL)
experiments are conducted using the adaptive CGF and the non-
adaptive doctrine-driven CGF to engage two diverse groups of
human pilots in 1-v-1 dogfights. The quantitative results and
qualitative assessments of the CGFs by the human pilots are
collected for all the training sessions. The qualitative assessments
show the trainee pilots are able to match the adaptive CGF to
the desirable attributes while the veteran pilots are only able to
observe some learning from the adaptive CGF. The quantitative
results show that the adaptive agent needs a lot more training
sessions to learn the necessary knowledge to match up to the
human pilots.

I. INTRODUCTION

There are numerous challenges to ensure the efficient and
accurate transfer of human-level knowledge into autonomous
knowledge-based system [1]. Often, the knowledge engineers
are not the subject matter experts and vice versa. This inability
to correctly transfer the expert knowledge into the expert
systems [2] is leading to the irrecoverable lost of rich sources
of knowledge, severely limiting the applications of existing
expert systems [3].

Many works in artificial intelligence [4] use human as
their main source of inspiration. After the Deep Blue su-
percomputer [5], the IBM Watson was created to, again,
successfully challenge the human experts in their area [6].
The approach used in these works is to learn from human
the knowledge that can be used against them. Such leveling
up of knowledge serves to further the intellectual horizon
of the human counterparts. One such area of application is
in the simulator-based training of human pilots for combat
missions [7]. The non-deterministic adaptation of the adaptive
CGF to the evolving situations has much greater training value
to the trainee pilots than a non-adaptive doctrine-driven CGF.

This work builds on an earlier work [8] to learn counter
strategies in 1-v-1 air combat scenario. The learning of counter
strategies was earlier carried out against a non-adaptive
doctrine-driven CGF. Inserted with the same doctrine, learning
was shown converging to the winning air combat maneuvers

after a brief encounter. In this work, learning of the counter
air combat maneuvers is similarly carried out using a fusion
architecture for learning and cognition (FALCON) integrated
with a temporal difference (TD) method known as the TD-
FALCON [9]. Using reinforcement learning, it adapts during
its real-time interactions with the environment. In this work,
the convergence threshold is significantly raised by inviting
the participation of the human pilots instead of using the non-
adaptive rule-based CGF for the same learning task.

Two HIL experiments were conducted using a group of
trainee pilots and a group of veteran combat pilots. The pilots
engage in 1-v-1 air combat against either an adaptive CGF or
a non-adaptive doctrine-driven CGF. The identity of the CGFs
are hidden from the pilots as it is part of this study to find
out whether the pilots are able to match the adaptive CGF
with the desirable attributes. From the 1st HIL experiment,
the adaptive CGF showed some amount of adaptation to score
a temporary advantage over the trainee pilots. The adaptive
CGF was also correctly matched to the desirable attributes by
the trainee pilots in their qualitative assessments of the CGFs.
Using slightly changed conditions for the 2nd HIL experiment,
the veteran combat pilots were able to observe some amount of
adaptation by the adaptive CGF. But the ongoing adaptation of
the adaptive CGF to the unfamiliar conditions led the veteran
pilots to feel it is not learning fast enough.

The rest of the paper is organized as follows. A survey of
the related works is presented in Section II. A summary of the
learning strategy of TD-FALCON is presented in Section III.
This is followed by the descriptions of the 1-v-1 air combat
scenario between the CGFs and the pilots in Section IV.
Details on how the HIL experiment and the questionnaires are
designed are provided in Section V. This is followed by the
presentation of the execution details of the HIL experiments
and also the analysis and the discussions of the experimental
results in Section VI. Last but not least, the implications
arising from this work and the future works to build on this
work are presented in Section VII.

II. RELATED WORK

This work is an exploratory study on using adaptive CGF to
learn counter air combat strategies to the combat pilots while at
the same time providing some training value to the air combat
pilots. Some amount of knowledge-based techniques have long
been used in various aspects of the simulators [10]. Artificial
intelligence techniques were specifically used in the earlier
training simulators for improving the user experience [11].
Improvement in the air combat ability of the trainee pilots
against computer-driven adversary was also reported [7].
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An earlier use of neural network technique to adapt the
helicopter system to the learning curve of the trainee pilot
during training was outlined [12]. Another recent work used
a bio-inspired immune system paradigm with a neural flight
controller to select and construct air combat maneuvers for
1-v-1 air combat maneuvering [13]. However, there is no
direct participation of the human pilots similar to this work.
In another work, genetic algorithm demonstrated using small
conventional fighting units to build large formation tactics.
Several offline simulations were conducted using large aircraft
formations. Though the developed tactics are compatible to the
existing combat principles, the effectiveness of the discovered
air combat tactics against human pilots in real-time flying
remains unvalidated.

Several knowledge acquisition and elicitation strategies for
building up expert systems were proposed [1]. The STRADS
program is an example of discovering knowledge for poten-
tial combat scenarios through simulation [14]. Learning by
observation [15] and by interactions [16] remain some of
the popular approaches in learning directly from a human.
Similar to the concept of learning in the wild [17], this work
does not require any extra effort from the human pilots for
learning counter air combat strategies. The pilots are only
required to focus on flying their virtual aircraft to the best of
their ability. However, learning in [17] is conducted on e-mail
communications between humans, not on the more complex
learning of counter strategies.

The dynamic and fluid nature of air combat is not suitable
for the use of any artificial maieutic strategy such as the one
reported in [18]. The learning approach used in this work is
for learning during the real time interactions between two ad-
versarial entities. In this respect, the Deep Blue supercomputer
and the DeepQA project are similar. However, the Deep Blue
supercomputer only succeeded in challenging a chess master
using efficient search technique and unrivalled hardware. This
leaves the DeepQA project [6] the only work that come close
to the online learning approach used in this work. However, it
remains unclear how well it scales for the learning of counter
air combat maneuvering strategies.

III. THE REINFORCEMENT LEARNING MODEL

The adaptive CGF is driven by a self-organizing neural
network known as FALCON. Based on the adaptive resonance
theory (ART), it can learn and generalize on the situations
incrementally. Using reinforcement learning, knowledge is
discovered during real-time interactions with the environment.

A. FALCON Model and Processes

The FALCON network [19] employs a 3-channel architec-
ture (Fig. 1), comprising of a category field F c

2 and three input
fields, namely a sensory field F c1

1 for representing current
states, an action field F c2

1 for representing actions, and a
reward field F c3

1 for representing reinforcement values. A brief
summary of the FALCON generic network dynamics, based
on fuzzy ART operations [20], is described below.
Input vectors: Let S = (s1, s2, . . . , sn) denote the state
vector, where si ∈ [0, 1] indicates the sensory input i.
Let A = (a1, a2, . . . , am) denote the action vector, where
ai ∈ [0, 1] indicates a possible action i. Let R = (r, r̄)
denote the reward vector, where r ∈ [0, 1] is the reward signal
value and r̄ (the complement of r) is given by r̄ = 1 − r.

Fig. 1. The FALCON Architecture.

Complement coding is used to normalize the magnitude of
the input vectors to prevent the code proliferation problem.
Activity vectors: Let xck denote the F ck

1 activity vector for
k = 1, . . . , 3. Let yc denote the F c

2 activity vector. Upon input
presentation, xc1 = S, xc2 = A, and xc3 = R.
Weight vectors: Let wck

j denote the weight vector associated
with the jth node in F c

2 for learning the input patterns in F ck
1

for k = 1, . . . , 3.
Parameters: The FALCON’s dynamics is determined by
choice parameters αck > 0 for k = 1, . . . , 3; learning
rate parameters βck ∈ [0, 1] for k = 1, . . . , 3; contribution
parameters γck ∈ [0, 1] for k = 1, . . . , 3 where

∑3
k=1 γ

ck = 1;
and vigilance parameters ρck ∈ [0, 1] for k = 1, . . . , 3.
Code activation: A bottom-up propagation process first takes
place in which the activities (known as choice function values)
of the cognitive nodes in the F c

2 field are computed. Specifi-
cally, given the activity vectors xc1, xc2 and xc3 (in the input
fields F c1

1 , F c2
1 and F c3

1 respectively), for each F c
2 node j, the

choice function T c
j is computed as follows:

T c
j =

3∑
k=1

γck
|xck ∧wck

j |
αck + |wck

j |
where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡ ∑

i pi for
vectors p and q.
Code competition: A code competition process follows under
which the F c

2 node with the highest choice function value is
identified. The winner is indexed at J where

T c
J = max{T c

j : for all F c
2 node j}

When a category choice is made at node J , ycJ = 1; and
ycj = 0 for all j �= J . This indicates a winner-take-all strategy.
Template matching: Before node J can be used for learning,
a template matching process checks that the weight templates
of node J are sufficiently close to their respective activity
patterns. Specifically, resonance occurs if for each channel
k, the match function mck

J of the chosen node J meets its
vigilance criterion:

mck
J =

|xck ∧wck
J |

|xck| ≥ ρck

If any of the vigilance criteria is violated, mismatch reset
occurs. The choice function T c

J is set to 0 for the duration
of the input presentation. Another F c

2 node J using a revised
vigilance criterion until a resonance is achieved. This search
and test process is guaranteed to end as FALCON will either
find a committed node that satisfies the vigilance criterion or
activate an uncommitted node which would definitely satisfy
the vigilance criterion due to its initial weight values of 1s.
Template learning: Once a node J is selected, for each
channel k, the weight vector wck

J is modified by the following
learning rule:

w
ck(new)
J = (1− βck)w

ck(old)
J + βck(xck ∧w

ck(old)
J )
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For an uncommitted node J , the learning rates βck are
typically set to 1. For committed nodes, βck can remain as
1 for fast learning or below 1 for slow learning in a noisy
environment. When an uncommitted node is selecting for
learning, it becomes committed and a new uncommitted node
is added to the F c

2 category field.

B. Incorporating Temporal Difference Method

Outlined in Fig. 2, the TD-FALCON algorithm [9] incorpo-
rates Temporal Difference (TD) methods to estimate and learn
the value functions of state-action pairs Q(s, a) that indicates
the goodness for taking a certain action a in a given state
s. This is learned as the feedback signal and is used in the
selection of the action choices.

1: Initialize FALCON
2: Sense the environment and formulate a state representation s
3: Use Action Selection Policy to decide between Exploration and

Exploitation
4: if Exploration then
5: Use Exploration Strategy to select an action choice from action

space
6: else if Exploitation then
7: Use Direct Code Access to select an action choice from

existing knowledge [21]
8: end if
9: Use action choice a on state s for state s′

10: Evaluate effect of action choice a to derive a reward r from the
environment

11: Estimate the Q-value function Q(s, a) following a temporal
difference formula given by ΔQ(s, a) = αTDerr

12: Present state S, action A and reward R vectors for Adaptation
13: Update the current state s = s′
14: Repeat from Step 2 until s is a terminal state

Fig. 2. The TD-FALCON Algorithm

Iterative Value Estimation: A value function based on a
temporal difference method known as Bounded Q-Learning is
used to iteratively estimate the value of applying action choice
a to situation s. The estimated Q-value Q(s, a) is learned
by TD-FALCON during reinforcement learning. The temporal
difference of the value function is iteratively estimated using

ΔQ(s, a) = αTDerr(1−Q(s, a))

where α ∈ [0, 1] is the learning parameter, the term (1 −
Qj(s, a)) allows the adjustment of Q-values to be self-scaling
in such a way that it will not be increased beyond 1.0 and
TDerr is the temporal error term which is derived using

TDerr = r + γmax
a′

Q(s′, a′)−Q(s, a)

where γ ∈ [0, 1] is the discount parameter and the
maxa′ Q(s′, a′) is the maximum estimated value of the next
state s′ and r is either the intermediate or terminal reward.

C. Adaptive ε-Greedy Action Selection Policy

Using this policy, exploration is performed with a probabil-
ity of ε where ε ∈ [0, 1] [22]. An interval success rate φ which
is derived using φ = ws

wn
where ws is the number of successful

trials within wn training iterations is used to revise ε as 1−φ
after every wn training iterations. The revised ε is linearly
decayed over the next wn training iterations using an ε-decay
rate δ which is derived using ε

wn
. Such an approach gradually

increases exploitation of the learned knowledge within wn

training iterations. This allows it to incrementally evaluate the
effectiveness of the learned knowledge for the situations.

IV. 1-V-1 AIR COMBAT BETWEEN THE CGFS AND THE
HUMAN PILOTS

The problem domain in this work is based on a classical 1-v-
1 pursuit-evasion problem in three-dimensional airspace [23].
The CGF controls the virtual entity named FalconX while the
pilot controls the virtual entity named CGFPlayer. Both of
them are tasked to out-maneuver each other to enter into a
position to eliminate each other using AIM-9 missiles. Unlike
[8], this work investigates how well an adaptive CGF can
respond to the human pilots as compared to a non-adaptive
CGF in 1-v-1 dogfights.

A. The Computer-Generated Forces

An adaptive CGF and a non-adaptive doctrine-driven CGF,
driven separately by the same ART-based self-organizing neu-
ral network known as TD-FALCON, are used in this work.
The state space and the action space for the CGFs and the
evaluative feedback used by the adaptive CGF are described.
The State Space: The state space is automatically extracted
from the air combat maneuver (ACM) doctrine using the
technique outlined in [8]. As illustrated in Fig. 3, the extracted
state space is a fusion of relative parameters such as range and
angular position, own entity ACM parameters such as current
maneuver, maneuver lock status and own entity parameters
such as altitude and air speed. A total of 15 attributes are
extracted from the ACM doctrine.

Fig. 3. The Extracted State Space

The Action Space: The CGFs have to identify the effective
air combat maneuvers to out-maneuver the pilots to get into
a good position to fire the AIM-9 missile at the opponent.
A combination of 13 defensive and offensive air combat
maneuvers are available to the CGFs during the dogfights.
Unlike the pilots, the CGFs cannot control the execution of
the pre-defined air combat maneuvers.
Evaluative Feedback: This is used to steer the reinforcement
learning to achieve the desired effect of the learning task.
There are the intermediate reward for the intermediate states
and the terminal reward for the terminal states. The interme-
diate reward communicates the effect of the chosen response
at the intermediate states. The terminal reward quantifies the
outcome at the terminal states. Details on these two types of
evaluative feedback can be found in [8].

B. The Human Pilots

Two groups of pilots from different air force organisations
are invited for the HIL experiments. The first group of pilots
comprises of two trainee pilots and the second group of pilots
comprises of three veteran pilots. Such an arrangement allows
a broader assessment of the CGFs.
Trainee Pilots: The first group of participants are trainee
RSAF (Republic of Singapore Air Force) pilots in their 20s.
They had completed their basic military training stint and
were specialising to fly the fighter jets. They had no prior
experience on the use of the commercial-grade simulation
platform used in this work. However, almost all of them
have some experience with flying in some game-like flight
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simulators. Studies have shown that this can translate to better
performance when it comes to actual flight [24].
Veteran Pilots: The second group of participants are veteran
CAF (Canadian Air Force) combat pilots. They had served
their country in actual air combat missions as fighter jet
pilots. They have retired from regular services and are the
subject matter experts (SMEs) to a multinational Canadian-
based simulator manufacturer CAE R©Inc. Being the SMEs to
the simulator products used in the HIL experiment, the veteran
pilots are familiar with the handling of the modeled aircraft.

V. THE HUMAN-IN-THE-LOOP (HIL) EXPERIMENT

A design methodology of the HIL experiment to ensure
sufficient amount of quantitative and qualitative data is col-
lected is presented over here. Also included is the design of the
trial and session questionnaires used for collecting qualitative
assessments of the CGFs by the human pilots.

A. Designing the HIL Experiments

Unlike an earlier work [8] where the experiments are
conducted between two CGFs, human pilots are invited to
fly against the CGFs in the HIL experiments. The human
factor [25] raises the need for a well-considered set of timing
parameters. Therefore, the following design methodology is
used to derive these timing parameters.

Let C denotes a set of CGFs and P denotes a set of pilots. A
continuous 1-v-1 air combat between a CGF where CGF ∈
C and a pilot P where P ∈ P is taken to be a sortie. The sortie
terminates when either the CGF or the pilot P is eliminated
or when neither of them can eliminate each other after a pre-
determined duration Tsortie minutes (advised by the SME).

Let Cnf (P ) be the set of CGFs who has not flown against
pilot P and Cf (P ) be the set of CGFs who has flown against
pilot P , each trial is comprised of Nsorties sorties between
a pilot P and a CGF where CGF ∈ Cnf (P ). Pilot P is
required to fly Nsorties number of sorties with each CGF
and it can be derived using

Nsorties =

⌊
Talert

Tsortie

⌋
(1)

where Talert is an estimated duration (in minutes) the pilot is
able to continuously fly the simulated aircraft without any sign
of simulator sickness [25]. An intermission of TTR minutes
is included for completing a trial questionnaire and to get
some amount of rest before the next trial. Therefore, using
(1), the expected maximum duration Ttrial of each trial is
derived using

Ttrial = Nsorties × Tsortie + TTR (2)

After each trial, the CGF is moved from Cnf (P ) to Cf (P ).
The subsequent trial is for pilot P to engage in 1-v-1 air
combat against CGF ′ where CGF ′ ∈ Cnf (P ). A session
is completed when Cnf (P ) ≡ ∅ and Cf (P ) ≡ C. The
intermission at the end of each session is extended by TSR

minutes. This is for the completion of a trial questionnaire, a
session questionnaire and to get some amount of rest before
the next session. Therefore, using (2), the expected maximum
duration Tsession of each session Sx is derived using

Tsession = |C| × Ttrial + TSR (3)

Let Pnf be the set of pilots who have not flown and Pf

be the set of pilots who has flown, on the completion of each
session, pilot P is moved from Pnf to Pf . A cycle of the HIL

experiment is completed when Pnf ≡ ∅ and Pf ≡ P. Using
(3), the number of cycles Ncycle of the HIL experiments can
be completed by each pilot P in a day is derived using

Ncycle =

⌊
Tday

Tsession × |P|
⌋

(4)

where Tday is the agreed amount of flying time (in minutes)
in a day by the pilots. Using this approach ensures all pilots
will fly the same number of cycles with all CGF types. Using
(4), the total number of sorties Ndogfight(CGF,P ) a CGF
has with each pilot P in a day is derived using

Ndogfight(CGF,P ) = Ncycle ×Nsorties (5)

From (5), the total amount of time pilot P spent flying
against a CGF is derived using

Tdogfight(CGF,P ) = Ndogfight(CGF,P ) × Tsortie (6)

The HIL experiment combines the sorties flown by all pilots
against the same CGF. In this way, the desired number of
sorties N ′

sorties(CGF ) for the CGF can be obtained in half
the time. Using (6), the number of days required for the HIL
experiment THIL is derived using

THIL = |C| × N ′
sorties(CGF ) × Tsortie

Tdogfight(CGF,P ) × |P|
A schedule for the HIL experiment is drawn up using

the derived timing parameters. From experience, the HIL
experiment is able to complete ahead of such a planned
schedule. Smooth execution of the HIL experiment enhances
the credibility of the experimental results.

B. The Questionnaires

The quantitative results from the HIL experiment reveals
only the final outcome of the sortie. For a more balanced
evaluation of the CGF, qualitative assessments are used to
capture aspects of the CGFs missed by the quantitative results.
The questionnaires are issued to the pilots after each trial
and session. The pilots are requested to assess the CGF
on the following attribute - predictable, intelligent, skillful,
challenging, adaptive and aggressive. The pilots are briefed
on the agreed definition of the attributes and the different
frequencies of occurrence to minimize any ambiguity in their
interpretations. Therefore, the pilots are assumed to conduct
their qualitative assessments of the CGFs using a similar level
of understanding of the terms.
Trial Questionnaire: After each trial, the pilots are required
to complete a trial questionnaire comprising of the first five
attributes. Given that the requested attributes are qualitative
in nature, it is only reasonable and possible for the pilots to
conduct their assessments using the following perceived fre-
quencies of occurrence: never, rarely, sometimes, frequently,
most of the time and always.
Session Questionnaire: After each session, the pilots are
also required to complete a session questionnaire. Unlike the
trial questionnaire, the pilot ranks all the CGF types he had
flown against during that session using all six attributes. A
CGF is ranked more highly when it is showing more of the
specific attributes in comparison to the other CGF. During
ranking, to conceal their underlying characteristics, the CGFs
are presented to the pilots as CGF-A and CGF-B in their order
of appearance.
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VI. EXPERIMENTS AND RESULTS

Two independent HIL experiments were conducted using
the trainee pilots and the veteran pilots. The purpose of the
experiments is to study, in comparison to a non-adaptive
doctrine-driven CGF, how well the adaptive CGF is adapting
against the pilots in 1-v-1 air combat scenario and to also
gather qualitative assessments from the pilots on these two
types of CGF.

A self-organizing neural network known as TD-FALCON
is used to drive the adaptive CGF (L-CGF) and the non-
adaptive CGF (S-CGF). The learning mechanism of the TD-
FALCON is disabled for the S-CGF. The same air combat
doctrine is inserted into the L-CGF and the S-CGF using the
technique described in [8]. The parameters identified for the
TD-FALCON are presented in Table I. The HIL experiment
is designed using Talert = 75 minutes, Tsortie = 5 minutes,
TTR = TSR = 5 minutes and Tday ≥ 480 minutes.

TABLE I
PARAMETERS OF TD-FALCON AND ACTION SELECTION POLICY

DA−FACLON Parameters
Choice Parameters (αc1, αc2, αc3) 0.1,0.1,0.1
Learning Rates (βc1, βc2, βc3) 1.0,1.0,1.0
Contribution Parameters (γc1, γc2, γc3) 0.33,0.33,0.33
Perform Vigilance (ρc1p , ρc2p , ρc3p ) 0.0,0.0,0.45
Learn Vigilance (ρc1l , ρc2l , ρc3l ) 0.0,1.0,0.45
Temporal Difference Learning Parameters
Learning Rate α 0.5
Discount Factor γ 0.1
Initial Q-Value 0.5
ε-Greedy Policy Parameters
Initial ε Value 0.0
ε Decay Rate 0.0005
Window Size wn 5

A. Descriptions of the HIL Experiment

The physical set-up and the execution procedures of the
HIL experiment are described here. The specific handling of
the CGFs during the HIL experiment is also included as part
of the execution procedures.
Physical Set-Up: The HIL experiment is conducted using
the flight training simulator set-up illustrated in Fig. 4. The
physical set-up comprises one unit of desktop workstation
WS1, two units of desktop computer DC1 and DC2 and a pair
of joysticks to simulate the HOTAS in the cockpit of a fighter
jet. The joysticks are connected to the desktop computer DC1
running the commercial-grade simulator software known as
STRIVE CGF R©Studio. The dynamics and physics of flying
the simulated aircraft within the three-dimensional airspace
and the effects of the missiles launched from the simulated
aircraft are modeled using the STRIVE CGF R©Studio.

Fig. 4. An illustration of the physical set-up of the HIL experiment.

From Fig. 4, DC1 is connected to the desktop computer
DC2 running the cognitive engine in a client-server configu-
ration illustrated in Fig. 5. The ICON R©interface facilitates the
communication between DC1 and DC2. DC1 is also connected
to the desktop workstation WS1 designated as the Image
Generator (IG) for generating the Out-of-The-Window (OTW)
view used by the pilots. It can generate a multi-channel three-
dimensional panoramic OTW view of 100o horizontal and
56o vertical of the airspace. A head-up display (HUD) unit
is superimposed onto the OTW view to provide an artificial
horizon, the altitude, the rate of climb, the air speed, the G-
meter and the compass heading of the aircraft. The weapons
aiming system is omitted from the HUD.

Fig. 5. An illustration of the client-server set-up between the AI terminal
and Simulator terminal

Execution Procedures: A team comprising of the pilot, the
co-pilot and the support crews are necessary for the HIL
experiment. The pilot does the actual flying of the simulated
aircraft to engage in 1-v-1 dogfights with a CGF. Due to the
restricted view of the airspace arising from using a single
channel IG, the co-pilot provides additional information such
as the elevation and general position of the opponent when it
is not in the OTW view. The co-pilot gathers such information
using the ACMD wireframe display and the CGFStudio Map
in DC1 (see Fig. 4).

In addition, the co-pilot also records the number of missiles
fired and the final outcome of the sortie using a recording
form. Any other observations are included as remarks in it as
well. The recorded number of missile fired indicates the level
of difficulty in engaging the CGFs during the 1-v-1 dogfight.
However, it is omitted from the experimental results presented
in this paper. The recordings of the final outcome is used
as the quantitative results of the HIL experiment. The other
observations are recorded for a better understanding of the
actual proceedings of the sorties.

The support crews comprising of the AI team and the simu-
lator team ensure the smooth execution of the HIL experiment.
The simulator team is needed to make speedy recovery of the
HIL experiment when there is any technical glitches. The pilot
flies against either the L-CGF or the S-CGF during a trial. On
top of not revealing the identity of the CGF to the pilots, the
order of appearance of the CGFs during the session is also
randomized. To collect the same amount of experimental data
from all the pilots with all the CGFs, the AI team needs to
ensure the correct CGF is used for the trials.

Both CGFs are inserted with the same doctrine at the very
first sortie. Only the L-CGF updates its knowledge base by
learning its interactions with the human pilots. The AI team
is required to ensure the updated knowledge base is used for
the subsequent trials involving the L-CGF with any of the
pilots. The AI team is also required to ensure the correct set
of initial conditions is used for the trials when there is more
than one set of initial conditions.
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B. Air Combat with the Trainee Pilots

Two trainee pilots took turns to be the pilot and the co-
pilot in this HIL experiment. Like [8], a gun-fight scenario
modelled using the initial conditions illustrated in Fig. 6 is
used. This HIL experiment is comprised of six sessions of two
trials per session and 15 sorties per trial. Each trial contributes
a quantitative data point and qualitative data point.

Fig. 6. An illustration of the gun-fight initial conditions used for the HIL
experiments with the trainee pilots

Fig. 7. Comparisons of the qualitative assessments of the L-CGF and the
S-CGF by the trainee pilots using the trial questionnaire (higher score means
higher perceived rate of occurrence).

Qualitative Data: From the plot of aggregated numerical
score of the qualitative assessments in Fig. 7, both trainee
pilots unanimously rated the S-CGF to be more predictable
than the L-CGF. As gathered from the same set of trial ques-
tionnaires, the L-CGF is also perceived to be more intelligent,
more skillful, more challenging and more adaptive than the
S-CGF.

Fig. 8. Direct comparisons of the L-CGF and the S-CGF by the trainee
pilots using the session questionnaire (higher score means higher perceived
rate of occurrence).

From Fig. 8, direct comparison between the L-CGF and the
S-CGF reveal mostly similar viewpoints both trainee pilots
have of the CGFs. However, both trainee pilots perceived the
L-CGF to be more predictable than the S-CGF when compar-
ing them directly. Another observation is the gap between the
CGFs is wider in a direct comparison than when the CGFs
are assessed individually.

Fig. 9. Plots of the quantitative data from the 1-v-1 dogfights between the
L-CGF and the trainee pilots

Quantitative Data: From Fig. 9, the L-CGF is observed
drawing more and winning less at its 1st trial with the trainee
pilots. This is followed by an upward trend of L-CGF winning
both trainee pilots more at the 3rd trial. Using the learned
knowledge, the L-CGF is still able to draw more with both
trainee pilots at the 4th trial. However, both trainee pilots
caught up with the L-CGF from the 5th trial onwards.

Fig. 10. Plots of the quantitative data from the 1-v-1 dogfights between the
S-CGF and the trainee pilots

In contrast, as shown in Fig. 10, the non-adaptive S-CGF
is losing to both trainee pilots for more than 50% in most
of the trials. At other times, it appears to be drawing more
with the trainee pilots. Given that the S-CGF is non-adaptive
and the same initial conditions are used for all the trials, the
fluctuations of the plots in Fig. 10 is due to the ongoing
adaptation of the trainee pilots. This fact is slightly masked in
Fig. 9 as the L-CGF is also adapting to the trainee pilots in
those trials.

C. Air Combat with the Veteran Pilots

This HIL experiment involved three veteran pilots engaging
in 1-v-1 dogfights with the L-CGF and the S-CGF. The same
set of experiment parameters presented in Table I is used here.
However, the initial conditions are fundamentally changed to
reflect a missile-fight scenario rather than a gun-fight scenario.
This change is recommended by the veteran pilots because
the AIM-9 missiles rather than the aircraft gun are used to
eliminate the opponents. Therefore, two new sets of initial
conditions illustrated in Fig. 11 are used. Also, unlike the
preceding HIL experiment, this HIL experiment is comprised
of nine sessions. Due to the changing conditions during this
HIL experiment, the number of trials flew by each veteran
pilots are different.
Qualitative Data: From the plot of the aggregated numerical
scores of the qualitative assessments in Fig. 12, three veteran
pilots perceived the L-CGF to be more predictable, less
intelligent, less skillful, less challenging but more adaptive
than the S-CGF. The gap between the intelligent, skillful,
challenging and adaptive attributes are smaller compared to
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Fig. 11. Illustrations of the two missile-fight initial conditions used in the
2nd HIL experiment

the same type of qualitative assessments by the trainee pilots
shown in Fig. 7. In comparison, the overall opinion of the
CGFs by the veteran pilots appears to be lower than that of
the trainee pilots.

Fig. 12. Comparisons of the qualitative assessments of the L-CGF and the
S-CGF by the veteran pilots using the trial questionnaire.

From Fig. 13, the qualitative assessments of the CGFs by the
veteran pilots using the session questionnaires reveal a similar
opinion shown in Fig. 12. It is in similar contrast to that of the
trainee pilots in their direct comparison of the CGFs shown in
Fig. 8. In this direct comparison, the L-CGF is perceived to be
more predictable, less intelligent, less skillful, less challenging,
less adaptive but more aggressive than the S-CGF by all the
veteran pilots.

Fig. 13. Direct comparisons of the L-CGF and the S-CGF by the veteran
pilots using the session questionnaire.

Quantitative Data: From Fig. 14, the L-CGF is shown losing
to veteran pilot P2 for the 1st four trials. Subsequently from
the 5th trial onwards, the L-CGF draws more with the veteran
pilot P2. Notably, L-CGF scored a sortie win against veteran
pilot P2 at the 6th trial. This HIL experiment continued with
veteran pilot P1 at the 7th and 8th trial. Using the knowledge
learned from the 1-v-1 air combat with veteran pilot P2, L-
CGF is able to draw for quite a number of sorties with veteran
pilot P1. Veteran pilot P3 flew with the L-CGF for a single
trial of 15 sorties at the 9th trial. The L-CGF was also able

to achieve draws with veteran pilot P3 for quite a number of
sorties.

Fig. 14. Plots of the quantitative data from 1-v-1 dogfight between the
L-CGF and the veteran pilots

From Fig. 15, the S-CGF is shown losing to the veteran
pilot P2 consistently for the 1st four trials. Imprecise timing
of the maneuvers and using different strategies at the 5th and
6th trial allow the non-adaptive S-CGF to score a number of
draws with veteran pilot P2. The time required by the veteran
pilot P1 to adapt to the S-CGF also resulted in a number of
draws with the S-CGF. The number of draws is reduced at his
2nd trial with the S-CGF. At the 9th trial, the need for the
veteran pilot P3 to adapt to the S-CGF resulted in more draws
between them.

Fig. 15. Plots of the quantitative data from 1-v-1 dogfight between the S-CGF
and the veteran pilots

D. Discussions

Two HIL experiments are conducted to study the perfor-
mance of the adaptive CGF engaging in simulated 1-v-1 air
combat against two groups of human pilots. The first group of
human pilots comprising of two trainee pilots went through the
HIL experiment using a gun-fight scenario against an adaptive
CGF (L-CGF) and a non-adaptive CGF (S-CGF). Using blind
qualitative assessment of the CGFs, both trainee pilots were
able to match the desirable attributes to the L-CGF. From
Fig. 8, the qualitative differences between the CGFs become
more apparent when both of them are compared directly.

The quantitative results in Fig. 9 show the L-CGF losing to
the trainee pilots due to the lack of desirable counter-strategies
at the earlier trials. Over time, L-CGF is shown to be able
to win more against the trainee pilots as it discards the bad
strategies and learn the effective strategies. However, being
better at adapting to the changing conditions, the trainee pilots
are able to identify the more effective strategies against the L-
CGFs at the later trials.

Three veteran combat pilots participated in the 2nd HIL
experiments. At their request, the initial conditions were
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changed to reflect a missile-fight scenario rather than a gun-
fight scenario. Therefore, two missile-fight scenarios were used
for the 2nd HIL experiments. Using the new scenarios, the
veteran pilots were able to see the L-CGF changing to the
defensive strategies after a number of sorties. However, it did
not survive long enough to a similar kind of outcome observed
in Fig. 9.

In contrast to the 1st HIL experiment, the defensive strate-
gies are more effective against the human pilots than the
offensive strategies in the chosen missile-fight scenarios. From
Fig. 14, the L-CGF is still able to pick up some defensive
strategies to manage a number of draws with the veteran
pilots at the later trials. On the whole, the CGFs have greater
difficulties winning against the veteran pilots. As a result,
unlike the trainee pilots, the veteran pilots are not able to
match the desirable qualitative qualities to the adaptive CGF.
In this case, the adaptation of the L-CGF caused it to perform
worse for most of the trials in the 2nd HIL experiment.

VII. CONCLUSION

This work was conducted in collaboration with a multi-
national simulator manufacturer to assess the performance
of the adaptive CGF driven by TD-FALCON for training
human pilots on 1-v-1 air combat. Two HIL experiments were
conducted using commercial-grade simulation platform. Two
trainee pilots and three veteran pilots were invited to assess
the performance of the adaptive CGF (L-CGF) with respect
to a non-adaptive doctrine-driven CGF (S-CGF). The identity
of the CGFs is hidden from the pilots. Trial and session
questionnaires are used to assess the CGFs qualitatively.

Wartime casualties are often the victim of the opponents
with the unexpected maneuvers. Therefore, the pilots need to
be trained to respond well to such opponents. An adaptive
CGF is more suitable for the modeling of such opponent than
a non-adaptive doctrine-driven CGF. This is evident from the
initial challenges the adaptive CGF posed to the trainee pilots
and also to veteran pilots at different times. Unlike the non-
adaptive doctrine-driven CGF, this element of surprise is ever
present in the adaptive CGF. The matching of the desirable
attributes to the adaptive CGF by the trainee pilots is another
sign of its value in the training simulator. On the other hand,
the veteran pilots have helped us to be aware that the adaptive
CGF is not adapting well for the missile-fight scenarios.

Though the adaptive CGF is shown to be better than the
non-adaptive doctrine-driven CGF, it is still far from being
able to match up to its human counterparts. Firstly, the
adaptive CGF needs to improve on its adaptation rate with
respect to the human pilots. Secondly, the adaptive CGF need
to capable of adapting to fundamentally different strategies
such as choosing between defensive and offensive strategies
correctly. Beyond that, the execution of the HIL experiments
can also be improved further. These are all the hot issues
that should be adequately addressed for an adaptive CGF
to be effective against a human opponent. In addition, there
are plans to extend the use of the learning system to learn
team coordination using a cognitive architecture with higher
cognitive functions [4].
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