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Improving Rumor Detection by Promoting
Information Campaigns with Transformer-based

Generative Adversarial Learning
Jing Ma, Jun Li, Wei Gao*, Yang Yang, and Kam-Fai Wong

Abstract—Rumors can cause devastating consequences to individuals and our society. Analysis shows that the widespread of rumors
typically results from deliberate promotion of information with unknown veracity aiming to shape the collective public opinions on the
concerned news event. In this paper, we attempt to combat such chaotic phenomenon with a countermeasure by mirroring against how
such chaos is created in order to make automatic rumor detection more robust and effective. Our idea is inspired by adversarial
learning method originated from Generative Adversarial Networks (GAN). We propose a GAN-style approach, where a generator is
designed to produce uncertain or conflicting voices, further polarizing the original conversation threads with the intention of pressurizing
the discriminator to learn stronger rumor indicative features from the augmented, more challenging examples. We reveal that feature
learning effectiveness is highly relevant to the quality of generated parody, viz., how hard it is to get distinguished from real posts. Given
the strong natural language generation performance of transformer, we propose a transformer-based method to improve the generated
posts, so that they appear to be closely responsive to the source post and retain the authentic propagation structure and context of
information. Different from traditional data-driven approach to rumor detection, our method can capture low-frequency but more salient
non-trivial discriminant patterns via adversarial training. Extensive experiments on THREE benchmark datasets demonstrate that our
rumor detection methods and the transformer-based model achieve much better results than state-of-the-art methods.

Index Terms—Information Campaigns, Rumor Detection, Generative Adversarial Networks, Transformer, Self-attention.

F

1 INTRODUCTION

THe proliferation of rumors is a rampant phenomenon
on social media. Rumor producers can cause devastat-

ing influences by manipulating public events. Information
campaigns are frequently carried out by rumor makers via
social networks to promote controversial memes, fake news,
etc. with high volume of misinformation that is produced
to compete with genuine information for dragging peo-
ple’s attention on to bogus claims. For example, during
the US 2016 presidential election, Russia reportedly had
coordinated thousands of “social bots” like covert human
agents and automated programs to spread false information
about the candidates by corroborating each other1. The
widespread of rumors has triggered huge debates and has
already unprecedentedly influenced US politics since then.
In this paper, we attempt to “fight the evil with itself” to
make automatic rumor detection more robust and effective.

Social psychology literature defines a rumor as a story or
a statement whose truth value is unverified or deliberately
false [1]. Fact-checking websites such as snopes.com and
politifact.com rely on manual effort to track and debunk
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Technology of China, China.
E-mail: lj 321@std.uestc.edu.cn, dlyyang@gmail.com

• Wei Gao is with Singapore Management University, Singapore.
E-mail: weigao@smu.edu.sg

• Kam-Fai Wong is with The Chinese University of Hong Kong, HK.
E-mail: kfwong@se.cuhk.edu.hk

Manuscript received April 19, 2005; revised August 26, 2015.
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rumors, which have obvious limitation on efficiency and
coverage. Existing automated methods typically resort to
supervised classifiers trained on a wide range of features
crafted from message contents, user profiles and diffusion
patterns [2], [3], [4], [5], [6]. To avoid feature engineering
effort, data-driven models were exploited more recently and
demonstrated state-of-the-art detection performances. For
example, Ma et al. [7] employed recurrent neural networks
(RNNs) to learn hidden features from text content of rele-
vant posts regarding given claims for detecting rumors. Yu
et al. [8] used convolutional neural networks (CNNs) for
obtaining local-global features from the relevant posts.

Nevertheless, existing data-driven approaches typically
rely on capturing indicative responses such as skeptical and
disagreeing opinions for detection. Rumor producers can
take advantage of promoted campaigns to entangle public
opinions or influence collective stances to get it widely
disseminated and amplified. This poses a major techni-
cal challenge to data-driven methods as discriminant text
patterns become distorted in substance. Various conflicting
and uncertain voices that co-exist can seriously disturb the
learning (or extraction) of useful features. Figure 1 illustrates
a case of promoted campaign for the rumor about “Saudi
Arabia beheads first female robot citizen”2, which shows
how the popular indicative patterns expressing skepticism
and disagreement such as “fake news”, “not sure”, “no

2. While being true that Saudi Arabia indeed has conferred its first
“female” robot citizenship, it is false that the country beheaded the
robot. It would be a valuable future research direction to investigate
further from language understanding perspective for identifying which
exact portion(s) of the claim makes it as a rumor or being false.
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Fig. 1: Sample responses to a rumor claim about “Saudi
Arabia beheads its first female robot citizen” in a promoted
campaign. Social bots activities are marked as red box. The
supportive responses are listed at left side and denial (or
uncertain) responses at right side. Patterns captured by
existing methods are marked by dashed rectangles, and
patterns that can be missing are marked by solid rectangles.

truth” are inundated by the promoted posts. Therefore, de-
veloping a more robust feature learner for rumor detection
is urgently desirable.

To the best of our knowledge, no existing rumor detec-
tion model has been focused on dealing with such pro-
moted information campaign directly except our recent
work [9], where we conducted a preliminary study by
making use of adversarial learning framework to enhance
the representation learning of current data-driven methods
for detection and classifying rumors in social media. Our
idea is motivated from the common problem that models
trained on existing rumor detection datasets are vulnerable
to information campaign, as genuine patterns can be pushed
towards the long tail by the campaign such that useful
features are weakened intentionally. Therefore, we proposed
a novel method [9] based on Generative Adversarial Net-
works (GAN) [10], [11], in which a RNN-based generator
is designed to produce campaign-like voices, and a rumor
discriminator is learned to be more robust by capturing
the low-frequency but non-trivial features. The overview
of our proposed method is shown in Figure 2. This paper
is a natural extension of our previous work [9] by 1) re-
placing the original sequence-to-sequence generator with a
Transformer-based framework to greatly strengthen the post
sequence representation and generation so as to improve
the robustness of the detector; and 2) performing more
in-depth experiments and analysis based on two balanced
datasets (TWITTER and WEIBO) and an unbalanced dataset
(PHEME), on which we obtain superior performance with
the new rumor detection model.

Overall, we present a radically new rumor detection
method by leveraging the mechanism of information cam-
paign and promoting it in a controlled manner in order

Fig. 2: The overview framework for our GAN-style rumor
detection model, where G and D denote the generator and
discriminator, the latent context vector is the source context
of the claim to produce campaign-like voices.

to achieve more robust and effective detection. Our seem-
ingly counter-intuitive idea is inspired by GAN [10], [11],
where a classifier learns to distinguish whether an instance
is from real world, and a generative model is trained to
confuse the discriminator by generating approximately re-
alistic examples. The harder are the generated examples to
be distinguished from real-world ones, the stronger is the
discriminator that can be learned. We train our generator
to output challenging examples by mimicking a campaign
promotion where misleading narratives and misled grass-
roots conversations are mixed in uncertain and conflicting
voices, so as to push the discriminator to strengthen feature
learning from such difficult examples by capturing more
useful discriminating patterns. Unlike typical GAN-style
models such as in computer vision [11] which aim to learn a
stronger generator, our goal however is to force our rumor
detector, i.e., the discriminator, to be more discriminative and
robust. It is worth noting that the choice of discriminator is
orthogonal to our proposed framework which can be easily
replaced with any existing rumor detection model without
any other change to our GAN-style architecture.

Intuitively, why can such a GAN-style method do better
in feature learning? As shown in Figure 1, various users
engagements can easily break the past data-driven methods
that typically resort to repetitive patterns in responding
posts. Due to the effect of generated campaign, the high-
frequency patterns such as “fake news” or “no truth”
commonly occurring in the responses to rumor claims and
“be true/sure” in those to non-rumor claims become less
discriminative. Therefore, the discriminator is expected to
be able to adaptively focus on capturing the relatively
less salient but useful patterns such as “onion-style” and
“be nuts”. Achieving this is non-trivial as their frequencies
are relatively low and used to be paid no much attention
in existing feature learning methods. Meanwhile, we also
need to retain the discriminant power of the high-frequency
patterns which are seriously distorted by the manipulation
of campaigns.

Furthermore, a problem of our generative model pro-
posed in [9] is that the real post sequences are encoded into
one fixed length vector, from which decoder decodes the
generated posts at each time step. Each time step in the
model corresponds to a continuous time interval defined
over the input sequence of posts (see Section 3 for detail).
This may make it difficult for the model to cope with long
post sequences, rendering the contents of the generated
posts at each time step similar to each other. For promoting
information campaigns, we expect to diversify word usage
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and viewpoints in the generated posts at different time steps
while keeping them topically coherent with that of the real
posts. Inspired by the success of transformer network, we
propose a novel generative model based on transformer.
Different from using the fixed length vector to generate
the whole sequence, our model devises a specific context
vector at each decoding step, which can lead to diversified
content being obtained by attending over the real input
posts. We believe that generating a sequence of campaign-
like post representations which embed more lifelike uncer-
tain or conflicting voices would benefit adversarial learning.
Meanwhile, the self-attention mechanisms used both in
transformer encoder and decoder are expected to retain the
properties of the generated sequence representation being in
consistency with that of the real posts. We conduct extensive
experiments on THREE microblog datasets of different lan-
guages and show that 1) the proposed GAN-style method
yields substantial improvements over the state-of-the-art
baselines; 2) the transformer-based model is more effective
in generating campaign-like post threads representations;
and 3) our method performs particularly well on early
rumor detection which is crucial for timely intervention.

The main contributions of our paper are four-fold:
• This is a significant extension of the first generative

approach for rumor detection using a text-based GAN-
style framework in our recent work [9], where we make
the text generator and discriminator strengthen each
other for enhancing the adversarial training of rumor-
indicative representations.

• We model rumor dissemination as generative infor-
mation campaigns for generating confusing training
examples to challenge the discriminator against its
detection capacity. Furthermore, we enhance the text
generator using transformer to produce more hard-to-
distinguish campaign-like examples by leveraging the
attention mechanisms to model the correspondence of
replying posts across different time intervals during the
spread of the source post. As a result, the generated text
representations at each interval can be better aligned
with the real-world posts semantically.

• Under the GAN-style framework, we boost our dis-
criminator by training it on a set of more challenging
examples replenished by the generator and reinforcing
it to be focused on learning low-frequency discrimina-
tive features.

• We experimentally demonstrate that our model is
more robust and effective than state-of-the-art baselines
based on three public benchmark datasets for the tasks
of rumor classification and early detection in social
media.

2 RELATED WORK

In this section, we provide a review of the research work on
three different topics that are related to our study.

2.1 Rumor Detection

Automatic rumor detection in social media stems from
the pioneering study of information credibility on Twit-
ter [12]. Following that, numerous studies [3], [13], [14],

[15] proposed to learn a supervised classifier by utiliz-
ing a wide range of features crafted from post contents,
user profiles and propagation patterns. Zhao et al. [16]
focused on early rumor detection by utilizing pre-defined
regular expressions (e.g., “really?”, ”whaaat?!”, etc.) to find
questioning and denying tweets as the key for debunking.
Subsequent studies worked on capturing temporal traits
for understanding rumor diffusion. Friggeri et al. [17] and
Hannak et al. [18] studied misinformation cascades by an-
alyzing relevant comments on Facebook and Twitter with
web links linking to specific rumor debunking websites.
Kwon et al. [5], [6] introduced a time-series-fitting model
based on the temporal properties of tweet volume. Ma et
al. [4] extended the model using dynamic time series to
capture the variation of social context features over time. On
Twitter datasets collected during five breaking news stories,
Zubiaga et al. [15] experimented Conditional Random Fields
that leverages context learnt during an event for rumor
detection. These approaches attempted to improve rumor
detection performance via sophisticated pre-processing and
feature engineering.

Data-driven methods are proposed to automatically cap-
ture rumor-indicative patterns from large-scale datasets.
Ma et al. [7] employed recurrent neural networks (RNN),
specifically LSTM and GRU, to learn hidden features from
text content of relevant posts with respective to given claims
for detecting rumors. Recently, they studied to mutually
reinforce stance detection and rumor classification in a
neural multi-task learning framework [19]. Alkhodair et
al. [20] used an RNN model to detect breaking news rumors
with an effect of mitigating news topic shift. Yu et al. [8]
used convolutional neural networks (CNN) to obtain local-
global features from the relevant posts sequence. To extract
useful clues jointly from content semantics and propagation
structures, kernel learning models [21], [22] and recursive
neural networks [23] (RvNN) were exploited to differentiate
various types of rumors based on the propagation trees of
concerned claims. In recent years, attention mechanisms are
successfully utilized for rumor detection. For example, the
attention-based RvNN model [24] was designed to selec-
tively focus on evidential posts in the propagation tree, and
the Post-Level self-Attention Networks (PLAN) [25] was
proposed to model latent dependencies between any pair of
microblog posts in a cascade. However, these methods are
less robust because they are purely data-driven and vulner-
able to deliberate data manipulation and adversarial attack.
For instance, when the thread corresponding to a rumorous
claim is manipulated by adding amount of posts of support
mouthpiece, the performance of these models may suffer.
Yang et al. [26] proposed a rumor detection model by sim-
ulating Camouflages on Graph with Adversarial Training
(CGAT), where four pre-defined camouflage strategies are
utilized to dynamically add perturbations on the graph-
structured social network to fool the rumor discriminator.
However, previous studies [2], [4], [8], [19] show the graph
structure (e.g., follow relations, reply/retweet relations) for
rumor detection is not always available. Here we focus on
the more general problem of content manipulation without
considering the attack of graph structure. As with most of
previous works, we formulate the task as classification at
event (or claim) level where an event is comprised of a set
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of relevant posts.

2.2 Adversarial Learning
Our work is inspired by the idea of adversarial learning
based on Generative Adversarial Networks [10]. GAN are
previously used to generate images [27], [28], [29] through
a min-max game, in which a generative model is trained to
generate real-like examples to fool a discriminative model.
More specifically, there are two players under the adversar-
ial framework, i.e., a generator G and a discriminator D.
The learning process is that the generator tries to cheat the
discriminator, but the discriminator tries to classify the fake
and real instances correctly.

In recent years, GAN has demonstrated superior perfor-
mance in a variety of Natural Language Processing (NLP)
tasks, such as textual entailment [30], reading comprehen-
sion [31], dialog generation [32] and sentiment analysis [28].
Different from these previous works aiming to obtain an
effective generator, we attempt to 1) build a stronger ru-
mor detector via constructing a powerful generator that
produces campaign-like posts more difficult for the dis-
criminator to detect; and 2) differentiate rumors and non-
rumors rather than the real and generated data, resulting in
a different GAN mechanism.

2.3 Transformer Networks
Transformer is originally introduced as a sequence-to-
sequence architecture, consisting of an encoder and a de-
coder. The encoder maps the input sequence into a dense
vector, which is then fed into the decoder to generate an
output sequence. Different from the conventional sequence-
to-sequence model, transformer utilizes a multi-head self-
attention mechanism [33] where a given element attends to
the other elements in the same sequence. This process forces
words related to each other to combine together, regardless
of their positions in the sequence.

Due to the excellent capability of extracting latent
features, transformer demonstrates state-of-the-art perfor-
mance on various NLP tasks, such as sentence represen-
tation [34], neural machine translation [33], generative di-
alogues [35], machine reading comprehension [36] and se-
mantic labeling [37]. Motivated by the successful applica-
tions of transformer, we propose a transformer-based model
to generate the campaign-like social media posts represen-
tations, and adopt adversarial learning network to make a
more robust rumor discriminator. This is the first instance
of applying transformer in GAN for rumor detection task.

3 PROBLEM STATEMENT

In general, rumor detection task can be defined as a binary
classification problem, which aims to learn a classifier from
training claims labeled as rumor or non-rumor for predict-
ing the label of a test claim. A claim is a factual (rather than
opinionated) assertion or statement that something is true,
such as the example statement “Saudi Arabia beheads its
first female robot citizen” in Figure 1.

Typically, a claim is short which contains very limited
context. For reliable feature extraction, in the task of rumor
detection on social media (e.g., Twitter, Sina Weibo, etc.),

a claim is commonly represented by a set of posts (e.g.,
tweets, or microblog posts in general) relevant to the claim
which can be collected via the search function of social
media platforms (e.g., Twitter search). Specifically, we rep-
resent a rumor dataset as a set of examples {X}, where
each X = (y, x1x2 . . . xT ) is a tuple representing a given
claim: the ground-truth label y ∈ {R,N} of the claim (i.e.,
Rumor or Non-Rumor) and a sequence of relevant posts
x1x2 . . . xT , where each xt can represent a post or more
generally a batch of posts in a time interval, and is indexed
with a time step t. Thus, a claim can be considered as a time
sequence of relevant posts. For clarity, we write a claim X
as Xy , that is, XR denotes a rumor and XN a non-rumor.

4 GENERATIVE ADVERSARIAL LEARNING FOR
RUMOR DETECTION

Information campaigns pose tremendous challenges to ex-
isting rumor detection models since frequent patterns in-
dicative of veracity become distorted and misleading. Our
basic idea is to strengthen representation learning of rumor
indicative features, inspired by the mechanism of generative
adversarial learning [10]. We propose a GAN-style model
where a generator attempts to promote campaigns by gen-
erating hard examples and a discriminator aims to identify
robust features to overcome the difficulty.

Unlike the recent event adversarial model EANN [38]
for multi-modal fake news detection and the neural user
response generator TCNN-URG [39] for early detection, our
idea and the adopted mechanisms are significantly different.
Compared to EANN, our model learning is not only adver-
sarial but also generative, for which we build a transformer-
based post generator to fool the discriminator. Compared
to TCNN-URG, our method is based on the GAN-style
learning framework where the generator is just one of its
components and our transformer-based generator demon-
strates much better generation quality than the Two-Level
Convolutional Neural Network (TCNN) used in the model
which is crucial for improving the detection performance.

Unlike the common goal of a GAN discriminator which
is to differentiate real and generated data, the goal of our
discriminator is to classify rumor and non-rumor claims,
which is orthogonal to the purpose of a general GAN dis-
criminator. The key technical challenge is that our generator
needs to effectively fool the discriminator by generating
controversial posts to be added into each instance X to blur
rumor and non-rumor classes from information credibility
point of view, instead of generating new instances. This sug-
gests the crucial distinction of our model with the general
GAN model learning.

4.1 Controversial Example Generation

The goal of our generative model is to produce uncertain or
conflicting voices conditioned on a given claim, making it
hard to be differentiated as a rumor or non-rumor simply
based on the used repetitive patterns. A straightforward
way is to twist or complicate the opinions expressed in the
original data via a handful of rule templates. For instance,
we can 1) incorporate enquiry or questioning expressions
such as “really?”, “is it true?” etc. into responding posts;
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2) negate the stance of a post by adding a “not” after a
“be” verb; and/or 3) apply antonym replacement at certain
parts of the keywords, e.g., by replacing “fake” with “true”,
“right” with “wrong”, etc. However, it is difficult to gener-
alize these rules for formally producing controversial voices
of all kinds of possibilities. A general approach would be to
cast our generator as trainable model that can cover a wide
range of variations of expressions.

To this end, we design two generators, one for distorting
non-rumor to make it look like a rumor, and the other for
“whitewashing” rumor so that it looks like a non-rumor:
1) GN→R generates skeptical or opposing voices against
non-rumor claims; and 2) GR→N generates supportive ut-
terances towards rumor claims. We formulate a function fg
as:

X ′y = fg(Xy) =

{
GN→R(Xy) if y = N ;

GR→N (Xy) if y = R
(1)

where Xy is an original instance from training set which is
either a rumor or a non-rumor, and X ′y is the transformed
instance with the generator while the label remains intact.

One might question how to validate the generated posts
is “opposing” or “supportive”. We would like to provide
some explanations on this further:

• Our design choice is that the model does not really gener-
ate any textual posts, and instead the generated informa-
tion of our model is retained as vectorial presentations.
This is because, from modeling point of view, 1) word-
level generation will suffice for adversarial learning to
work; 2) it can prevent malicious actors from abusing
the generator to generate rumor campaigns in the real
world. Also, the generated representation is not of an
individual post, but of a batch of posts falling into each
time interval. For this reason, there is no easy way to really
output the textual posts. Note that our goal is to improve
rumor detection performance via generation rather than
the performance of producing campaign texts.

• The generation of adversarial examples is designed to be
controlled and validated internally by the discriminator
in the adversarial learning process (as described in Sec-
tion 5.2). For instance, GN→R is guided to generate ex-
amples that can flip the judgement of discriminator from
non-rumor to rumor while whether the generated content
can flip the class label is validated by the discriminator
as part of the adversarial learning. Therefore, we do not
need any explicit validation of the generation at text level.
Our intuition is that adding controversial narratives tends
to flip the prediction from non-rumor to rumor (since
rumor is roughly characterized as receiving more uncer-
tain and controversial feedbacks), and this shall hold true
the other way round, meaning that if the discriminator
flips its judgement from non-rumor to rumor it is very
likely that the added information makes the posts threads
more controversial. Basically, our generator is designed
to generate posts representations that are able to flip the
discriminator’s prediction.

We will describe the relevant technical detail of the genera-
tor in this section.

Fig. 3: Framework of our generator with a neural seq-to-
seq model. x′t is the transformation of xt, assuming that the
length of output sequence equals to that of the input.

4.1.1 RNN-based Generator

Considering the time sequence structure of posts in each
instance, we use a sequence-to-sequence model [40], [41]
for the generative transformation, which is illustrated in
Figure 3. We encode an input sequence of relevant posts Xy

into a dense vector via a RNN encoder, and then generate
the transformed sequence of posts X ′y from it via an RNN
decoder.

GRU-RNN Encoder: We batch relevant posts into time
intervals and treat each batch of posts as a single unit in
the time sequence, following the similar time segmentation
described in [7]. Using RNN, we map each input unit
xt ∈ Xy at time t into a hidden vector ht, for which we
use GRU [42] to store the hidden representation:

x̃t = xtE (2)

ht = GRU(x̃t, ht−1; θg) (3)

where xt is the input unit represented as a vector of tf*idf
values of vocabulary words computed from the posts falling
into the t-th interval, andE ∈ RK×d denotes the embedding
matrix. Note that we prune the vocabulary by keeping the
top-K terms according to their tf*idf values, so the input
dimension is K . In this way, xt is a sparse vector, and E
transforms xt into a dense d-dimensional vector x̃t to rep-
resent the content at t-th interval. GRU(·) denote standard
GRU transition equations, ht−1 refers to the hidden state
of xt−1, and θg represent all the parameters of GRU. The
state of the last time step hT from the encoder will be the
representation of Xy . Note that the sequence length T is not
fixed which can vary with different instances.

Noticeably, we batch the posts into time intervals be-
cause we have only a single output unit indicating the
class at claim level while there could be a large number of
relevant posts for a claim which can result in an excessively
long post sequence if we treat each xt as an individual
post, making it impractical to use sequential models like
RNN and transformer from the efficiency point of view. We
choose tf*idf instead of transformer encoder to represent
each interval because 1) transformer generally treats word
sequence as input, while there could be tens of thousands
of posts in a time interval resulting in an extremely long
sequence, which is not effective nor efficient for model
training; and 2) we empirically formulate a time interval as
a bag of words involved, which is also consistent with the
previous works [7], [8], [24], but transformer is not designed
for handling such unordered textual data.
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Fig. 4: The framework of Transformer-based generator.
{x1, . . . , xT } is the tf*idf vector of the original posts se-
quence, and {x′1, . . . , x′T } is the vector containing words of
the generated campaign-like posts.

GRU-RNN Decoder: The decoder transforms hT into
the generated sequence X ′y = x′1x

′
2 . . . x

′
T . Each unit is se-

quentially generated using GRU followed by a pre-defined
output function. In each time step t, an output layer maps
the hidden state h′t which is obtained via GRU into the
target representation x′t+1 of a batch of posts by computing
a distribution over all vocabulary words:

h′t = GRU(x′t, h
′
t−1; θ′g)

x′t+1 = f(Vgh
′
t + bg)

(4)

where h′t−1 is the hidden state of x′t−1 and θ′g represents all
the parameters inside the GRU3. In consistent with the form
of input vector, the function f is defined to generate a vector
of probability distribution over the vocabulary indicating
the possible words appeared in each interval. Specifically,
Vg and bg are trainable parameters to transform h′t into a
K-dimensional vector, and f(·) is an activation function to
generate a positive vector, e.g., ReLU, Sigmoid, Softmax, etc.

Particularly, the output of the decoder is either the word
distribution or possible set of words with weights, which
ignores the order of words. Previous studies [7], [8], [16]
showed that cue terms itself can be indicative signals to
identify rumors. On the other hand, the vector provides
the keywords appearing in the campaign-like posts, capable
of conveying salient information. From modeling point of
view, we do not need to actually generate posts since 1)
word-level generation will suffice for adversarial learning
to work; 2) it can prevent malicious actors from abusing the
generator to generate rumor campaigns in the real world.

4.1.2 Transformer-based Generator
A critical defect of the naive RNN-based generator is the
incapability of capturing long-term dependencies of input
sequences. For example, the generated campaign-like posts
may be agnostic about the posts propagated at earlier time
steps. Because the decoder is built on top of a singular vector
hT . Such a model cannot preserve long-distance information

3. Note that each generator (GR→N or GN→R) corresponds to a
unique sequence-to-sequence model. The encoding and decoding GRUs
have similar yet different set of parameters: θg and θ′g .

of the input [33]. Intuitively, information campaigns could
happen throughout diffusion process, especially early-stage
promotion could contribute to the widespread propaga-
tion of information. Therefore, we propose a transformer-
based generator by creating shortcuts between the gen-
erated vector and the entire input post sequence, which
shares similar intuition with the transformer-based Neural
Machine Translation [33]. Figure 4 gives an overview of our
transformer-based generator, which consist of two modules:
a Transformer Encoder and a Transformer Decoder.

Transformer Encoder: Previous studies [5], [6], [22]
reveal that rumor detection can benefit from taking into
account the order of the input sequence. Thus, we utilize
the positional encoding method in the conventional Trans-
former. Let t denote the position of xt, and note that in our
setting xt corresponds to a batch of posts at the t-th time
interval. Then the Position Embedding (PE) is defined as:

PE(t,2i) = sin

(
t

100002i/d

)
PE(t,2i+1) = cos

(
t

100002i/d

) (5)

where d is the dimension of xt, and thus i ∈ [0, d2 − 1).
To incorporate propagation properties, we redefine Eq. 2 to
concatenate the textual contents and positional embedding.

x̃t = xtE + PEt (6)

where PEt ∈ Rd is a combination of sine and cosine
functions, which encode the position of t in a post sequence.

Given a sequence of real posts x = {x̃1, x̃2, · · · , x̃T },
in the Multi-Head Attention layer, the input sequence x is
firstly transformed into multiple subspaces with different
linear projections. Attention functions are then applied to
generate the output states:

Oh = softmax

(
Qh ·Kh>

√
dh

)
· V h (7)

where {Qh,Kh, V h} are respectively the query, key and
value representations,

√
dh is the scaling factor and dh

represents the dimensionality of the h-th head. Finally, the
output of the representation is regarded as a concatenation
of all the heads, which followed by a normalization layer
and a feed-forward network.

Transformer Decoder: The decoder aims to generate
the controversial voices {x′1x′2 · · ·x′T } based on the original
sequence {x1x2 · · ·xT }, where each x′i is the distortion for
xi. To this end, we again utilize two attention mechanisms:
(1) a masked multi-head self-attention layer to deduct the
unseen time steps for the generated sequence; and (2) an
encoder-decoder attention layer to enhance the correlations
between the input sequence and the generated sequence.

Specifically, for the the generated sequence, after adding
the positional embedding and linear transformation, we
obtain [Qh

M ,K
h
M , V

h
M ] representing the query, key and value

of the h-th head. In the Masked Multi-head Attention Layer,
a matrix for masking M ∈ RT×T is defined to let the current
step only attend over the previous time steps. Then the
output of the masked attention layer is computed by:

Oh
M = softmax

(
Qh

M ·Kh
M
>

√
dh

+M

)
· V h

M (8)
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The updated representation of each generated time step
is fed into a Normalization layer. To enhance the correlations
between xi and x′i, we obtain the query and key based on
the output of the encoder, and the value based on the gen-
erated sequence. Then an encoder-decoder attention layer
which works like the self-attention mechanism is applied
to update representation of the generated voices, which
followed by a feed-forward and Normalization layers.

We now translate the obtained dense context vector into
a vector indicating the possible words appearing in the t-th
interval. The transformation is the same as that in Eq. 4.

Summary: Considering individual posts as input can
only learn the semantics of individual posts but may fail
to capture useful trend properties. Capturing the seman-
tic trends hidden in post sequence during the lifecycle of
information propagation is important for rumor detection.
Our transformer-based model could enhance the represen-
tation learning of each time interval by attending over the
other intervals having the similar trend properties, since the
properties of trend have been encoded in the representa-
tions of sub-sequence of posts (i.e., the sequence of time
intervals). Also, while both the RNN-based generator and
the transformer-based generator aim to model sequences
of time intervals, we conjecture that the transformer-based
generator would be better due to the generally stronger
representation power of transformer.

4.2 Rumor Discriminator

With the training data augmented from the generative pro-
cessing, the discriminator learns to capture more discrimina-
tive features, especially low-frequency non-trivial patterns.

Our design choice of the discriminator is to allow the
framework to use an existing rumor detection model with-
out any other change to our GAN-style architecture. Our
goal is to improving the effectiveness of discriminator via
generating challenging training examples, instead of chang-
ing the discriminator itself by introducing more complex
model structure into it such as creating a transformer-based
discriminator. We believe this setting helps better justify
the effectiveness of our GAN-based framework as a whole
even though it only uses a less a powerful discriminator.
Specifically, we consider three widely-used rumor detection
models as the discriminator.

4.2.1 Bag-Of-Words (BOW) Rumor Detection Model
BOW model is a fundamental method of many NLP tasks.
Based on the frequency of the words which appear in the
relevant posts at t-th time step, we obtain the one-hot vector
to represent xt. Then we concatenate the vectors at each time
step, which is then fed into a trainable classifier:

X = x1 ⊕ x2 . . .⊕ xT (9)

where⊕ denotes the concatenation operation of two vectors,
and x1 ∈ RV is a vector with V as the vocabulary size. Thus
X ∈ RV×T represents the claim diffusion.

Our BOW model consists of two linear layers to map X
to a hidden space, and utilize a 2-class softmax function to
get the predicted probability of being a rumor or non-rumor.

ŷ = softmax(W 2
d (W 1

dX + b1d) + b2d) (10)

where W 1
d , b

1
d and W 2

d , b
2
d are the parameters corresponding

to the linear layers of the discriminator.

4.2.2 RNN-based Rumor Detection Model
Given an instance (either original or generated), the RNN
model [7] first maps relevant posts xt at the t-th time step
into a hidden vector st using GRU:

st = GRU(xt, st−1; θd) (11)

where st−1 is the previous hidden vector and θd denotes all
the GRU parameters in discriminator.

Following [7], we feed the hidden vector sT at the
last time step as the representation into a 2-class softmax
function for classifying the instance:

ŷ = softmax(Wd · sT + bd) (12)

where ŷ is the vector of predicted probabilities over the two
classes, Wd is the weight matrix of output layer and bd is the
trainable bias.

4.2.3 CNN-based Rumor Detection Model
Similar to the RNN-based model, CNN is successfully uti-
lized for rumor detection [8]. Different with RNN-based
model, the core idea of the CNN-based model is to capture
the local rumor-indicative patterns from the post sequence
via fixed-sized windows. Specifically, the post sequence is
firstly represented as a matrix S = [x1;x2; . . . ;xT ]. The
CNN-based model consists of two-level feature extractors.
In the first level, a convolutional layer with a kernel with d
as the window size is used to capture the local feature of S:

z[i] = Conv(S[:, i : i+ d]; θW ) (13)

where Conv(·) denotes convolution with the Frobenius in-
ner product, S[:, i : i+d] is the i-th to the (i+d)-th columns
of the event matrix S, and θW denotes the kernel weights.

Based on the local features, a k-max-pooling layer is
utilized to pick the top k conspicuous features to filter
salient information:

zk = max-poolingk({z[1], . . . ,z[T − d]}) (14)

Repeating the above operation to the second feature
extractor, i.e., a convolutional layer and a max-pooling layer,
we again obtain a high-level local feature matrix zc to
extract c largest features. The prediction layer uses a fully-
connected network to transform the feature matrix into a
low-dimensional vector, which is followed by a softmax
function for prediction the same as that in Eq. 12.

5 MODEL TRAINING

5.1 Discriminator Training

The discriminator loss is defined as the square error between
distributions of the predicted and the ground-truth class:

LD(ȳ, ŷ) = ||ȳ − ŷ||22 + λ||ΘD||22 (15)

where ȳ and ŷ are respectively the ground-truth and pre-
dicted class probability distributions, ΘD are discriminator
parameters, ||.||2 is the L2 regularization term over ΘD , and
λ is the trade-off coefficient.
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Fig. 5: Overview of our GAN-style rumor detection model.
GN→R (GR→N ) is a generator. D denotes the discriminator.

5.2 Generator Training

In this encoder-decoder framework, fg(Xy) defines the pol-
icy that generates the representation of controversial posts
which are used to confuse the discriminator based on the
input Xy . A crucial issue is how to control the generator
to generate the needed controversies. To this end, we use
the performance of discriminator as a reward to guide the
generator. The architecture and control mechanism of our
GAN-style model is shown in Figure 5, which consists
of an adversarial learning module and two reconstruction
modules (one for rumor and the other for non-rumor).

Adversarial learning module: In our model, the gen-
erators are encouraged to produce campaign-like instances
to fool the discriminator so that discriminator can be fo-
cused on learning more discriminative features. Such a goal
suggests a special training objective resembling adversarial
learning [10]. We formulate adversarial loss as the negative
discriminator loss based on the generator-augmented data:

LAdv = −LD(ȳ, ŷ) (16)

where LD(·) is the loss between the ground-truth class prob-
ability distribution ȳ and the predicted class distribution ŷ.

We combine the generated examples and original ones
to augment the training set by taking the union of them, i.e.,
{{Xy} ∪ {X̃y}}, where X̃y = Xy ⊕ X ′y is the elementwise
addition of the representations of original and generated
examples. Note that the elementwise addition has the ef-
fect to cancel out influential high-frequency patterns and
promote the chance of important yet less frequent patterns
for being selected. Meanwhile, we do not want to seriously
weaken those useful features in the original example. Thus,
the original example Xy is combined with X̃y for training.

Reconstruction module: It is likely that the generator
could distort the original example towards unexpected di-
rection by changing some essential aspects of a story. For
example, the theme of “Saudi beheads robot citizen” might
get distorted as “Saudi planned to invade Qatar” which is
irrelevant and not helpful. To avoid that, we introduce a
reconstruction mechanism to make the generative process
reversible. The idea is that the opinionated voices will be
reversible through two generators of opposite direction so
as to minimize the loss of fidelity of information. We define
the reconstruction function as follows:

X ′′y = fr(Xy) =

{
GR→N (GN→R(Xy)) if y = N ;

GN→R(GR→N (Xy)) if y = R
(17)

Algorithm 1: Generative adversarial training.
Input : A set of training claims {X}, learning rate ε

1 Initialize ΘG, and ΘD with random weight values;
2 for epoch from 1 to maxIter do
3 for each mini-batch {{XN},{XR}} do
4 Generate {X̃N}:

{XN ⊕GN→R(XN )} → {X̃N};
5 Generate {X̃R}:

{XR ⊕GR→N (XR)} → {X̃R};
6 Augment training set:{

{XN} ∪ {X̃N}, {XR} ∪ {X̃R}
}

;

/* Minimize loss w.r.t. ΘG */
7 Compute gradient ∇(ΘG);
8 Update generators: ΘG ← ΘG − ε∇(ΘG);

/* Maximize loss w.r.t. ΘD */
9 Compute gradient ∇′(ΘD);

10 Update discriminator: ΘD ← ΘD − ε∇′(ΘD);
11 end for
12 end for

where X ′′y is the reconstructed instance from an original
instance Xy via two opposite generators. We formulate the
difference between X ′′y and Xy as a reconstruction loss:

LRec =
1

T

T∑
t=1

||xt − x′′t ||2 (18)

where xt and x′′t are the t-th unit representing in the original
and reconstructed batch of posts at time step t, T is the posts
sequence length, and || · ||2 is the L2-norm of a vector.

Objective of optimization: The overall loss function
of our GAN-style adversarial learning is defined as linear
interpolation of LAdv and LRec, and the objective of adver-
sarial learning takes the following min-max form:

max
ΘD

(
min
ΘG

(αLAdv + (1− α)LRec)

)
(19)

where α is the trade-off coefficient between adversarial and
reconstruction losses, ΘG are generator parameters, and ΘD

are discriminator parameters. In the min-max process, we
first optimize ΘG by minimizing adversarial loss LAdv (i.e.,
maximizing discriminator loss LD) and reconstruction loss
LRec to generate confusing but reversible examples; we then
optimize discriminator parameters ΘD for classification by
maximizing adversarial loss LAdv (i.e., minimizing discrim-
inator loss LD), and note that LRec is independent of ΘD .

5.3 Overall Training

Algorithm 1 presents the iterative training process of the
generators and discriminator in our GAN-style framework.
Unlike original GAN [10] for obtaining better generators,
our goal is to reinforce the discriminator to be more discrim-
inative and generalizable. The discriminator is trained to
differentiate the veracity, i.e., rumor and non-rumor, instead
of real and generated examples, which is different from
standard GAN, while the generator is trained to generate
examples that are hard to identify rumors from non-rumors.

The generator and discriminator are alternately trained
using stochastic gradient decent with mini-batches [43].
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TABLE 1: Statistics of the datasets
Statistic TWITTER PHEME WEIBO
Total # of Posts 822,924 105,354 2,796,938
Total # of Users 407,288 50,593 2,856,741
# of Claims 992 6,425 4,664
# of Non-Rumors 498 4,023 2,351
# of Rumors 494 2,402 2,313
Avg. time length 2,226 hours 15 hours 1,507 hours
Avg. # of posts 829 16 599
Max # of posts 41982 346 51271
Min # of posts 10 1 1

In each epoch, controversial examples are generated and
augmented into the original training data. We optimize the
generator and discriminator against the augmented training
examples with Eq. 19 that enforces a min-max game through
steps 8-11 in Algorithm 1. In the training, we initialize model
parameters with uniform distribution and update them by
the derivative of the loss through back-propagation [44];
we set the maximum epoch number as 200; the vocabulary
size as 5,000, hidden vector dimension as 100, and tune
the hyper-parameters α, λ and ε using a held-out dataset;
we chop relevant posts into a time sequence following [7]
which takes variable length dependent of specific instance.
For the transformer-base model, the dimension of input post
embedding, feed-forward layer, the head number and the
dropout rate are respectively set as 300, 600, 5 and 0.5.
We use ADAM optimizer [45] to speed up convergence.
We warm up the training process with 1,500 steps for the
generator and 4,000 steps for the discriminator. We initialize
the learning rate as 0.0005 and the batch size is 50. The
training process ends when the model converges or the
maximum epoch number is met.

6 EXPERIMENTS AND RESULTS

6.1 Datasets
We resort to three public datasets TWITTER [7], PHEME [46]
and WEIBO [7] for experimental evaluation4. The three
datasets were used for binary classification of rumor and
non-rumor with respect to a claim via its relevant tweets.
In particular, PHEME were collected based on 5 breaking
news, thus its claims overlap more than TWITTER which
was collected based on the claims reported on snopes.com.
Moreover, the number of instances of the two classes
in TWITTER and WEIBO is more balanced than that in
PHEME, with which we will analyze the performance of
our model on the balanced and unbalanced datasets. The
reason we choose these datasets is that they are collected
and widely used for the problem of rumor detection on
social media, i.e., differentiating rumors from non-rumors.
Statistics of the resulting datasets are given in Table 1.

6.2 Settings and Protocols
We made comparisons among the following models: 1) DT-
Rank: A Decision-Tree-based Ranking method that identi-
fies trending rumors [16] through searching for disputed

4. This PHEME dataset is not the one widely used for
stance detection [47]. It is defined specifically for rumor de-
tection: https://figshare.com/articles/PHEME dataset of rumours
and non-rumours/4010619.

claims; 2) DTC: A Decision Tree Classifier for model-
ing Twitter information credibility [2] using various hand-
crafted features; 3) SVM-TS: A linear SVM classifier using
time series to model the chronological variation of social
context features [4]; 4) BOW: A naive baseline for rumor de-
tection representing the texts using bag-of-words; 5) RNN:
A RNN-based rumor detection model [7] with GRU for
representation learning of relevant posts over time; 6) CNN:
A CNN-based model for misinformation identification [8]
for learning rumor representations by framing the relevant
posts as fixed-length sequence. 7) TCNN-URG: The Two-
Level Convoluational Neural Network with User Response
Generator [39]; 8) GAN (GENERATOR+DISCRIMINATOR):
Our GAN-style learning model where the GENERATOR can
be RNN or TRANSFORMER and the DISCRIMINATOR can be
BOW, RNN or CNN.

We implement DT-Rank, DTC using Weka5, SVM-TS
using LibSVM6 and all neural-network-based models with
Pytorch7. We use micro-averaged and macro-averaged F1
score, and class-specific precision, recall and F-measure as
evaluation metrics. We hold out 10% of each dataset for
tuning the hyper-parameters, and conduct 5-fold cross-
validation on the rest of data. We implemented all these
models under comparison and release our source codes8.

6.3 Results and Analysis
Table 2 demonstrates the performance of all the compared
models based on the three datasets. The results indicate that
our GAN-based models basically yield much better perfor-
mance than all the baselines, which confirms the advantage
of generative adversarial learning and Transformer-based
generator for rumor detection task.

The three baselines in the first group using hand-crafted
features perform worse than the three purely data-driven
baselines in the second group, indicating that they are
limited with respect to learning rumor-indicative features.
Among them, SVM-TS is relatively better because it incorpo-
rate additional temporal information into the conventional
models. The results of DT-Rank are poor due to the low
coverage of the patterns in the three datasets it defined.

In the second group, BOW performs surprisingly well
which is comparable to or even outperforms using hand-
crafted features which confirms the advantage of using
the simplest data-driven approach. RNN performs the best
among all the baselines, since it takes advantage of deep
neural networks to capture complex hidden features indica-
tive of rumors beyond explicit and shallow patterns.

TCNN-URG is a CNN-based early detection approach
that utilize user responses generated based on the claim
text and historical user responses. So, TCNN-URG performs
comparable with the three data-driven baselines in the sec-
ond group on PHEME and WEIBO. But the claim text is not
contained in TWITTER, that is the reason why the result of
TCNN-URG is not satisfactory. Although TCNN-URG and
our GAN-based method focus on generating additional user
responses, our GAN-based method perform better because

5. www.cs.waikato.ac.nz/ml/weka
6. www.csie.ntu.edu.tw/∼cjlin/libsvm
7. pytorch.org
8. https://github.com/majingCUHK/Rumor GAN
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TABLE 2: Results of comparison among different models. (Prec.: precision; Rec.: recall; F1: F-score.)
(a) TWITTER dataset

Method Non-Rumor Rumor
Micro-F1 Macro-F1 Prec. Rec. F1 Prec. Rec. F1

DT-Rank 0.666 0.663 0.716 0.519 0.602 0.652 0.814 0.724
DTC 0.734 0.732 0.778 0.675 0.723 0.694 0.794 0.741
SVM-TS 0.798 0.798 0.823 0.760 0.790 0.778 0.837 0.807
BOW 0.774 0.774 0.811 0.761 0.761 0.746 0.833 0.787
CNN 0.820 0.821 0.829 0.810 0.819 0.815 0.831 0.823
RNN 0.835 0.835 0.852 0.812 0.832 0.821 0.858 0.839
TCNN-URG 0.706 0.695 0.722 0.682 0.689 0.714 0.719 0.702
GAN (RNN+BOW) 0.791 0.791 0.830 0.733 0.779 0.761 0.850 0.803
GAN (RNN+CNN) 0.851 0.851 0.853 0.852 0.852 0.853 0.850 0.851
GAN (RNN+RNN) 0.862 0.862 0.885 0.833 0.858 0.843 0.892 0.866
GAN (TRANS+BOW) 0.802 0.801 0.794 0.815 0.804 0.813 0.788 0.799
GAN (TRANS+CNN) 0.863 0.862 0.892 0.831 0.859 0.839 0.896 0.866
GAN (TRANS+RNN) 0.871 0.871 0.890 0.851 0.868 0.855 0.893 0.873

(b) PHEME dataset

Method Non-Rumor Rumor
Micro-F1 Macro-F1 Prec. Rec. F1 Prec. Rec. F1

DT-Rank 0.657 0.545 0.695 0.867 0.772 0.472 0.239 0.317
DTC 0.670 0.625 0.687 0.837 0.755 0.572 0.435 0.494
SVM-TS 0.717 0.610 0.832 0.786 0.814 0.318 0.541 0.405
BOW 0.756 0.718 0.822 0.824 0.823 0.636 0.592 0.613
CNN 0.754 0.733 0.803 0.816 0.804 0.702 0.653 0.661
RNN 0.775 0.745 0.825 0.840 0.832 0.667 0.643 0.658
TCNN-URG 0.774 0.756 0.809 0.837 0.823 0.711 0.668 0.688
GAN (RNN+BOW) 0.775 0.748 0.786 0.881 0.831 0.750 0.599 0.666
GAN (RNN+CNN) 0.798 0.779 0.820 0.869 0.844 0.756 0.680 0.716
GAN (RNN+RNN) 0.819 0.807 0.754 0.858 0.856 0.761 0.754 0.757
GAN (TRANS+BOW) 0.781 0.753 0.787 0.892 0.836 0.767 0.595 0.670
GAN (TRANS+CNN) 0.807 0.790 0.829 0.871 0.850 0.764 0.699 0.730
GAN (TRANS+RNN) 0.821 0.809 0.858 0.858 0.857 0.765 0.760 0.760

(c) WEIBO dataset

Method Non-Rumor Rumor
Micro-F1 Macro-F1 Prec. Rec. F1 Prec. Rec. F1

DT-Rank 0.732 0.731 0.726 0.749 0.737 0.738 0.715 0.726
DTC 0.831 0.830 0.815 0.847 0.830 0.847 0.815 0.831
SVM-TS 0.857 0.859 0.878 0.830 0.857 0.839 0.885 0.861
BOW 0.850 0.849 0.954 0.742 0.835 0.782 0.963 0.863
CNN 0.914 0.913 0.942 0.883 0.907 0.900 0.944 0.919
RNN 0.899 0.899 0.940 0.852 0.894 0.865 0.946 0.904
TCNN-URG 0.854 0.853 0.841 0.877 0.858 0.870 0.830 0.849
GAN (RNN+BOW) 0.931 0.931 0.948 0.912 0.930 0.915 0.949 0.932
GAN (RNN+CNN) 0.929 0.929 0.944 0.913 0.928 0.915 0.945 0.930
GAN (RNN+RNN) 0.940 0.939 0.953 0.926 0.939 0.928 0.952 0.940
GAN (TRANS+BOW) 0.935 0.935 0.950 0.919 0.935 0.921 0.951 0.936
GAN (TRANS+CNN) 0.933 0.933 0.949 0.917 0.932 0.919 0.949 0.934
GAN (TRANS+RNN) 0.952 0.952 0.960 0.944 0.952 0.944 0.960 0.952

1) TCNN-URG produce user responses similar to the his-
torical posts thus no new pattens could be captured; and
2) TCNN-URG requires long claim text, which may not be
generalize well on our three datasets with shorter claim text.

On balanced dataset TWITTER and WEIBO, our adver-
sarial models outperform their counterparts in baselines
that are not generative adversarial. The improvements of
our models over these baselines range from 3.6% (1.0%)
to 5.2% (5.9%) on TWITTER (WEIBO) in terms of accuracy,
indicating that the adversarial learning with the generative-
discriminative process is generally helpful and effective.
Among our three GAN-based models in the third group,
GAN (RNN+RNN) performs the best, since both genera-
tor and discriminator explore the sequential nature of the
relevant posts. Our extension of GAN-based model us-
ing transformer consistently outperforms their counterparts

without transformer, suggesting the effectiveness of our
transformer-based adversarial learning for enhancing the
conflicting voices generation. We also observe that GAN
(TRANS+RNN) achieve the best in accuracy, since it take
advantages of the sequential nature and the representation
power of transformer. Furthermore, rumor detection task
emphasizes the identification performance on the rumor
category. GAN (TRANS+RNN) achieves the highest recall on
rumor category, indicating that more rumors can be found.

6.3.1 Results on unbalanced dataset PHEME
In Table 2(b), we observe that all the feature engineering-
based systems perform worse than the data-driven method.
We conjectured that CNN should be comparable to RNN
because both can learn deep latent features from data. This
turned out to be incorrect on PHEME where CNN performs
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much worse. The reason is that RNN can inherently deal
with variable-length sequence while CNN is essentially not
a sequential model. All the post sequences are zero-padded
into the same length when using CNN. We observe that
the relevant posts per claim in PHEME is significantly
fewer than TWITTER and WEIBO (see Table 1), rendering
lots of zero-valued input units to CNN that can worsen
convolution operations, but RNN can easily get rid of zero
input units by shortening sequence length.

Our proposed GAN-based approaches outperform their
counterparts without adversarial learning. Specifically, the
improvement made by GAN-style framework ranges from
4.9% to 8.6% in terms of macro-F1. We observe the improve-
ment obtained on TWITTER/WEIBO datasets is relatively
lower than that on PHEME. Two reasons may prevent
further improvements on TWITTER/WEIBO: 1) The post
content associated with PHEME claims overlap heavily
since they come from only 5 breaking news, rendering high-
frequency patterns more sensitive to topical categories than
veracity categories. The claims in TWITTER/WEIBO dataset
are however easier to classify as per veracity since each of
them is an independent news topic, making high-frequency
patterns well correlated to veracity rather than topic9. The
potential of GAN-style learning by promoting the chance
of low-frequency patterns is thus somewhat limited on
TWITTER/WEIBO. 2) In addition to overlapping topics,
PHEME is harder to classify also because there are only 16
posts per claim in average, thus useful information available
is relatively limited based on the conventional data-driven
method. In contrast, generating more high-quality posts for
each claim is helpful for model generalization.

Among all the GAN-based methods, we observe the
superiority of using the transformer-based generator is rela-
tively less obvious on PHEME dataset than that of using the
RNN-based generator. This might be due to the generally
short-length post sequence in PHEME dataset, which veri-
fies the hypothesis we made in Section 4.1.2 that transformer
can effectively cope with long post sequence.

6.4 Early Rumor Detection
Early alerts of rumors can prevent further spreading of
rumorous contents. By setting a detection checkpoints of
“delays” that can be either the time elapsed or the count
of corresponding posts since the first posting, only tweets
posted no later than the checkpoints is available for model
evaluation. The performance is evaluated by the detection
accuracy (i.e., micF) obtained at each checkpoint. To satisfy
each checkpoint, we incrementally scan test data in order of
time until the target time delay or post volume is reached.

Figure 6 shows the performance of GAN (TRANS+RNN)
and GAN (TRANS+CNN) versus GAN (RNN+RNN) (the
best performed GAN-based model without transformer),
RNN (the best performed data-driven system), SVM-TS (the
best system using feature engineering) and TCNN-URG (an
early-detection-specific algorithm) at various checkpoints.

Clearly, the accuracies of all systems increase with
elapsed time or post counts and our GAN-based mod-
els grow more quickly and start to supersede the other

9. This can be confirmed by the relatively higher performance of all
models on TWITTER/WEIBO.

baselines at the early propagation stage. Particularly, GAN
(TRANS+RNN) only need around 10 (7) hours or about
30 (20) posts on TWITTER/WEIBO (PHEME) to achieve
the comparable performance of the best baseline model,
i.e., RNN, which needs about 36 (24) hours or around
100 (50) posts on TWITTER/WEIBO (PHEME), indicat-
ing superior early detection performance of our method.
GAN (TRANS+RNN) achieves 83.3% (80.5%) accuracy on
TWITTER (PHEME) within 12 hours and 91.4% accuracy
on WEIBO within 8 hours, that is much faster than other
models. This is because generation component can enrich
training data at early stage when the volume of real posts is
generally low. Moreover, on PHEME, all the systems keeps
comparable performance at the first 6 hours or 10 tweets
because the number of non-rumor is much larger than the
rumors, and the methods are better off on the majority class.

We also examine the impact of transformer mechanism
on early detection by comparing GAN (RNN+RNN) and
GAN (TRANS+RNN). We observe that they perform com-
parably using less than 8-hour or about 10 tweets on the
three datasets, indicating that the RNN-based generator per-
form well compared with the Transformer-based generator
for the short sequence posted at early stage. With more
posts available, the length of the posts increases and GAN
(TRANS+RNN) exceeds GAN (RNN+RNN), suggesting that
generating conflicting voices consistent with the properties
of original post sequence is helpful to early detection task.

6.5 Case Study

We conduct experiments to explain why the generator can
boost the discriminator in an adversarial manner. We sample
a rumor and a non-rumor claim from TWITTER. With the
real post sequence of each claim as input, we output the de-
coded vector at each time step via the generative model and
list the words with higher value. Specifically, we analyze the
behavior of RNN-based generator and Transformer-based
generator respectively used in GAN (RNN+RNN) and GAN
(TRANS+RNN), due to their superior performances.

In Table 3, we observe that 1) the generations although
seemed non-grammatical are relevant to the input claim;
2) the generations can distort the real posts by using con-
flicting or uncertain expressions, e.g., the supportive terms
(like “believing”, “confirms”) in the rumor claim, and the
questioning patten (like “suspect”, “right?”) in the non-
rumor claim; 3) incorporating the generations counterbal-
ances the discriminative power of high-frequency patterns
(in yellow), implying a higher chance of lower-frequency
features (in blue) being captured by the discriminator; 4)
the generated voices from our GAN (TRANS+RNN) show
obvious temporal pattens consistent with the properties of
the input, e.g., the generated keywords (underlined) at each
time step closely correspond to that of real posts.

Given the limited number of claims in the datasets,
our models perform reasonably well. This is because there
are a good number of relevant tweets per claim, where
many indicative patterns exist, such as those highlighted
keywords and phrases in Table 3. Therefore, the feature
space is not sparse, which is generally advantageous for
generators to generate diverse campaign-style texts and for
the discriminator to capture discriminative features.
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(a) TWITTER (elapsed time) (b) PHEME (elapsed time) (c) WEIBO (elapsed time)

(d) TWITTER (tweets count) (e) PHEME (tweets count) (f) WEIBO (tweets count)

Fig. 6: Results of rumor early detection

TABLE 3: Examples of original and generated posts for a Non-rumor claim (left) and a rumor claim (right). (ts: time step)
Claim [Non-rumor] Anti-U.S. beef protest draws 100,000 S.Koreans [Rumor] American soldier was refused service at a gas station

ts Post Contents ts Post Contents

1 An article in the WSJ says 9,000 people in South Korea
marched in protest against US beef

2 American soldier in uniform refused service in BO-
GALUSA, LOUISIANA! ENOUGH IS ENOUGH

Real 2 Dont think I’ll ever understand South Korea. Current
protests stemming ostensibly from US beef - really?

3 Anyone near Bogalusa LA. join this protest at gas station
who refused service to a US Soldier

Posts 8 South Koreans Fill Streets of Seoul to Continue Protest
Against U.S. Beef Imports: For the past two ..

11 Bogalusa, LA - National Guardsmen service rejection
story most likely not true...

48 U.S. beef protester fined for embezzlement (Yonhap) A
Seoul court fined a South Korean protester W1 million..

43 Outrageous ! Soldier denied service Bogalusa gas sta-
tion at center of protest

1 horrible report that society chaos, public right 2 Oh, soldiers who nationwide defend hero refused.
GN→R 2 sign + rt ! video are that horrible, suspect 3 Many citizen protest, joke ?
or 8 protests are stopped, believe? breaking video show 11 Reported Should wait truth in protest, does agrees ?
GR→N protesters scare of... 43 Allegedly videotaped not clearly. Citizen looks happy,

48 correct ? protesters guard health. jokes right ? heartwarming, not disgusting
1 protesters against about some america foods. what 2 Protest soldier refused in gas service.trust ?

GN→R jokes ? What happen? 3 Any guy near LA maybe protest this soldier refused.
or 2 officials should say some things about the chaos of

american foods right ? people suspect it.
11 Reports maybe wrong, official statement is right, wait-

ing
GR→N 8 Happening shows people may mad about

american beef. what is officials statement ?
43 Hahahaha, fact of gas following officials, everyone

believing
(Trans) 48 may be another controversy ban US foods, right ?

6.6 Discussion

How to apply the proposed framework in real-world. The
task of online rumor detection is generally more challenging
due to the heavily unbalanced distribution between rumors
and non-rumors in real-world systems. As per our statistics
based on Snopes.com since January 2015, the proportions of
claims under the non-rumor category is around 76% [19].
Particularly, the ratio of rumors versus non-rumors are
dynamically changed over time, and it is very difficult (if
not impossible) to know what the actual ratio is in the
real world. However, although our model is not trained
on extremely unbalanced data, we think that our proposed
method could be practically applied on the online rumor
detection task. Specifically, the GAN-based model could be
re-trained periodically with the emerging data, and predict

the class for unseen claims. To enhance the learning for
the non-trivial rumor indicative patterns, the training data
could also be artificially balanced by using various sam-
pling techniques, such as down-sampling the major classes
and/or over-sampling the minor class.

GAN-based models can learn more robust features partic-
ularly for rumor detection. The Existing text-based rumor
detection systems are vulnerable to adversarial campaign.
Our proposed GAN-style detection method is targeted to
enhance the representation learning by training on the
enriched campaign-like posts representations to make the
detector stronger. Intuitively, the usually strong discriminat-
ing patterns like high-frequency words are counter-balanced
via the artificially promoted campaigns by the algorithm,
which allows those hidden but useful patterns to become
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more salient so that the discriminator could thus strive to
capture them more easily. Note that our model also contains
a special treatment to avoid the useful features in the orig-
inal data from being seriously weakened by the generated
content (see Section 5.2). Thus, the model can learn more
robust feature representations for rumor detection. Basically,
our method models rumor detection problem as a process
of better countering information campaign by promoting
the campaign at the first place, and such mechanism is not
typically viable in most other NLP applications.

7 CONCLUSION AND FUTURE WORK

We propose a novel GAN-style model that can generate and
exploit the effect of information campaigns for better ru-
mor detection. Our neural-network-based generators create
training examples to confuse rumor discriminator so that
the discriminator is forced to learn more powerful features
from the augmented training data. Furthermore, we propose
to strengthen the generators to make more real-like voices
based on transformer networks. Results on three real-world
datasets show that: 1) our method is more effective and
robust compared with state-of-the-art baselines; and 2) our
extended models with transformer-based generators make
further improvements over the original GAN-style models.

For future work, we will explore two issues: 1) we only
enhance the sequential rumor detection models in this pa-
per. But more complex propagation structures have shown
usefulness for rumor detection [21], [22], [23]. We will use
GAN to generate structured data to boost rumor detection.
2) Besides the textual information of the relevant posts, we
will incorporate more information types (e.g., user profiles,
post time, etc.) for improving our GAN-style models.
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