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Abstract—Though not a fundamental pre-requisite to efficient
machine learning, insertion of domain knowledge into adaptive
virtual agent is nonetheless known to improve learning effi-
ciency and reduce model complexity. Conventionally, domain
knowledge is inserted prior to learning. Despite being effective,
such approach may not always be feasible. Firstly, the effect
of domain knowledge is assumed and can be inaccurate. Also,
domain knowledge may not be available prior to learning. In
addition, the insertion of domain knowledge can frame learning
and hamper the discovery of more effective knowledge. Therefore,
this work advances the use of domain knowledge by proposing to
delay the insertion and moderate the effect of domain knowledge
to reduce the framing effect while still benefiting from the
use of domain knowledge. Using a non-trivial pursuit-evasion
problem domain, experiments are first conducted to illustrate
the impact of domain knowledge with different degrees of truth.
The next set of experiments illustrates how delayed insertion of
such domain knowledge can impact learning. The final set of
experiments is conducted to illustrate how delaying the insertion
and moderating the assumed effect of domain knowledge can
ensure the robustness and versatility of reinforcement learning.

I. INTRODUCTION

In machine learning, use of domain knowledge is not
regarded as a fundamental pre-requisite [9]. It is nonetheless
a known approach for improving the learning efficiency of
self-organizing neural networks [13], [18]. Domain knowledge
improves learning efficiency by framing the learning process.
Such framing of the learning process is used to positive
outcome in [13], [18]. On the other hand, framing can be
detrimental when the degree of truth on its estimated effect to
the situations of the domain knowledge diverges significantly
from the ground truth. Therefore, taking a less näive approach
as seen in [5] and similar to [3], domain knowledge is not
assumed to be flawless.

Domain knowledge of human origin can have different
effects on the situations and may also have different degrees
of truth on the assumed effect to these situations. A Delayed
Rule Insertion (DRIN) Algorithm is proposed to allow the
insertion of domain knowledge either prior to learning or
during learning. DRIN incorporates a Rule Effect Moderation
(REM) technique proposed to overcome the negative impact of
domain knowledge whose assumed effect diverges significantly
from the ground truth.

The contributions of this work are illustrated using a non-
trivial 1-v-1 Pursuit-Evasion (PE) problem domain. Pursued by

a Red entity agent using deterministic strategies, a Blue entity
agent uses a self-organizing neural network based on FAL-
CON [10] to learn action policies for evading the Red entity
agent. Based on the Adaptive Resonance Theory (ART) [2],
FALCON learns incrementally through real-time interactions
with the environment. Domain knowledge of different degrees
of truth is defined for this PE problem domain. Learning
efficiency is measured using the Mission Completion rates
and the model complexity is determined using the Node
Population.

Three sets of experiments are performed to illustrate the
contributions of this work. The first set of experiments is
conducted to illustrate the effect of the domain knowledge
with different degrees of truth on the learning outcome. The
second set of experiments is conducted to illustrate the effect
of delaying the insertion of such domain knowledge on the
learning outcome using the proposed DRIN Algorithm. The
final set of experiments is conducted to illustrate how DRIN
is used with REM to overcome the negative impact of using
such domain knowledge.

The presentation of this work continues with an updated
survey of recent works on the use of domain knowledge in
Section II. This is followed by a brief introduction of FALCON
in Section III. Details on the use of domain knowledge and the
proposed solution to overcome the challenges are presented in
Section IV. The Pursuit-Evasion problem domain is introduced
briefly in Section V. The experiments and the results are
presented in Section VI. This work concludes in Section VII
with a brief write-up on the future work.

II. RELATED WORKS

Most recent works that use domain knowledge for applica-
tion development and for improving the performance of plan-
based models and self-organizing neural networks are surveyed
here. Some of these most recent works include combining
the use of ontology-based domain knowledge with context,
intelligent planning and behavior informatics to create a multi-
agent-based smart home healthy lifestyle assistant system
(SHLAS) [21]. The authors had highlighted that the SHLAS
is made intelligent using healthy domain knowledge.

The ACKTUS architecture is proposed to allow domain
experts to incorporate domain knowledge without the need
to be proficient in knowledge engineering [5]. Agents imple-
mented using the BDI framework conduct tailored dialogues



with domain experts and other users. Similar to [21], the
reliability of domain knowledge is assumed in their work.

Sharing of domain knowledge is also seen as a critical
aspect of grid monitoring [8]. Use of small and incomplete
amount of domain knowledge was shown leading to significant
improvement of a classical planner’s performance [1]. Domain
knowledge represented as predicates and facts is used in
answer set programming to initialize and revise the POMDP
belief distributions [20].

Most similar to this work, an alternative approach of
handling inaccurate domain knowledge is seen in [3] for plan-
based reward shaping. In contrast, this work is based on
learning of procedural knowledge. Widely used for agent-based
simulations, cognitive agent implemented using FALCON is
used to provide context-aware decision support [13]. Adaptive
computer-generated force (CGF) is also implemented using
FALCON to evolve 1-v-1 air combat maneuvering strategies
against another CGF [17] and also the human pilots [16]. In
addition, FALCON is known to perform better when compared
to other function approximators [11], [15].

III. THE LEARNING MODEL

A self-organizing neural network model based on FAL-
CON [10] is used for an adaptive virtual agent. By learning
multi-dimensional mappings across states, actions and values
in an online and incremental manner, FALCON enables rein-
forcement learning of both value and action policies in real
time.

A. Structure and Operating Modes

Seen in Fig. 1, the FALCON network [10] employs a 2-
layer architecture, comprising an input-output (IO) layer and a
knowledge layer. The IO layer has three input fields, namely
a sensory field F c1

1 for accepting state vector S, an action
field F c2

1 for accepting action vector A, and a reward field
F c3
1 for accepting reward vector R. The category field F c

2 at
the knowledge layer stores the committed and uncommitted
cognitive nodes. Each cognitive node j has three fields of
weights wck

j for k = {1, 2, 3}.

Fig. 1. The FALCON Architecture.

The FALCON network has three modes of operations -
INSERT, PERFORM and LEARN. The mode of operation de-
termines how the various parameters should be used. It is made
compact using a confidence-based pruning strategy presented
in Section III-C. Algorithmically, FALCON is considered to
have an inner layer (outlined in Algorithm 1) and an outer
layer [15](outlined in Algorithm 2).

B. Temporal Difference Method

Outlined in Algorithm 2, the outer layer of FALCON
incorporates Temporal Difference (TD) methods to estimate

Algorithm 1 The Inner FALCON Layer
Require: Activity vectors xck and all weight vectors wck

j for k = {1, 2, 3}
1: for each F c

2 node j do
2: Code Activation: Derive choice function T c

j using

T c
j =

3∑

k=1

γck
|xck ∧wck

j |
αck + |wck

j |
where the fuzzy AND operation (p ∧ q)i ≡ min(pi, qi), the norm
|.| is defined by |p| ≡ ∑

i pi for vectors p and q, αck ∈ [0, 1] is the
choice parameters, γck ∈ [0, 1] is the contribution parameters

3: end for
4: repeat
5: Code Competition: Index of winning cognitive node J is found using

J = argmax
j

{T c
j : for all F c

2 node j}
6: Template Matching: Derive mck

J to determine whether resonance is
attained using

mck
J =

|xck ∧wck
J |

|xck| ≥ ρck

where ρck ∈ [0, 1] are the vigilance parameters
7: if vigilance criterion is satisfied then
8: Resonance State is attained
9: else

10: Match Tracking: Modify state vigilance ρc1 using

ρc1 = min{mck
J + ψ, 1.0}

where ψ is a very small step increment to match function mck
J

11: Reset: mck
J = 0.0

12: end if
13: until Resonance State is attained
14: if operating in LEARN/INSERT mode then
15: Template Learning: modify wck

J using

w
ck(new)
J = (1− βck)w

ck(old)
J + βck(xck ∧w

ck(old)
J )

where βck ∈ [0, 1] is the learning rate
16: else if operating in PERFORM mode then
17: Activity Readout: Read out the action vector A of cognitive node J

using
xc2(new) = xc2(old) ∧wc2

J

Decode xc2(new) to derive action choice a
18: end if

and learn value function Q(s, a) of state-action pair that
indicates the goodness of taking action choice a in state s [12].
On receiving the ground truth on the effect of action choice
a on state s, a TD formula estimates the Q-value of action
choice a on state s. This estimated Q-value is then used as
the teaching signal to FALCON to learn the association of
state s and action choice a.

Algorithm 2 The Outer FALCON Layer
1: Initialize FALCON
2: Sense the environment and formulate a state representation s
3: Apply Direct Code Access [11] on Inner FALCON layer to exploit existing

knowledge to select action choice a
4: if action choice a not identified then
5: Explore action space A using Knowledge-based Exploration [14]

strategy to select action choice a
6: end if
7: Use action choice a on state s for state s′
8: Obtain ground truth r on the effect of action choice a to state s
9: Estimate the Q-value function Qnew(s, a) using ΔQ(s, a) = αTDerr

10: if action choice a is positive to state s then
11: Use updated Qnew(s, a) in (2) to adapt Υ
12: end if
13: Present {S, A, R} to Inner FALCON layer for Learning
14: Update the current state s = s′
15: Repeat from Step 2 until s is a terminal state



Iterative Value Estimation: A temporal difference method
known as Bounded Q-Learning [12] is used iteratively to
estimate the value of applying action choice a to state s. The
Q-value update function is given by

Qnew(s, a) = Q(s, a) + αTDerr(1−Q(s, a)), (1)

where α ∈ [0, 1] is the learning parameter and TDerr is the
temporal error term which is derived using

TDerr = r + γmax
a′

Q(s′, a′)−Q(s, a),

where γ ∈ [0, 1] is the discount parameter and maxa′ Q(s′, a′)
is the maximum estimated value of the next state s′. It
is notable that in TD-FALCON, the values of Q(s, a) and
maxa′ Q(s′, a′) are in turn estimated using the same FALCON
network.

C. Knowledge Pruning

Ineffective learned knowledge needs to be pruned for more
efficient operation. Therefore, a confidence-based pruning
strategy similar to the one seen in [10] is adapted to prune
the cognitive nodes that encode such ineffective knowledge.

Specifically, each cognitive node j has a confidence level
cj where cj ∈ [0.0, 1.0]and an age σj where σj ∈ [0,R]. A
newly committed cognitive node j has an initial confidence
level cj(0) and an initial age σj(0). The confidence level cj
of cognitive node j picked for action selection and updating
is reinforced using

cnewj = coldj + η(1 − coldj ),

where η is the reinforcement rate of the confidence level for all
cognitive nodes. After each training iteration, the confidence
level of all cognitive nodes is decayed using

cnewj = coldj − ζcoldj

where ζ is the decay rate of the confidence level for all
cognitive nodes. At the same time, the age σj of cognitive
node j is also incremented.

The age attribute σj of cognitive node j prevents it from
being pruned when σj = σj(0), cj = cj(0) and cj < crec

where crec is the recommended confidence threshold. A cog-
nitive node j is pruned only when cj < crec and σj ≥ σold

where σold is the old age threshold.

IV. USE OF DOMAIN KNOWLEDGE

The modus ponens argument form is used by FALCON
for deciding how to respond to the situations. Such argument
form involves the use of domain knowledge represented using
propositional rules. Specifically, a propositional rule used to
represent an unit of domain knowledge is defined as follows.

Rj : IF Xj THEN Yj EFFECT pj

where Xj is the antecedent, Yj is the consequent and pj is
the assumed effect of propositional rule Rj . Details on how
domain knowledge with different degrees of truth can impact
learning and the proposed solution for overcoming the known
challenges are presented.

A. Known Challenges

Inserting domain knowledge to initialize the learning model
frames the learning process. The aim of such an approach is
to promote exploitation of not easily learned knowledge and
to also reduce failure rate due to exploration. However, the
framing effect of using domain knowledge can hamper the
discovery of more effective knowledge.

The conventional approach of inserting domain knowledge
to initialize the learning model is not suitable when domain
knowledge is not available prior to learning. An ability to insert
domain knowledge during the learning process is required.
In addition, it may also be desired to delay the insertion of
domain knowledge even when it is available prior to learning.
This is to allow the learning model some amount of settling
time. Therefore, an approach for a delayed insertion of domain
knowledge is presented in Section IV-C.

The ground truth on the effect of the domain knowledge
may deviate significantly from its assumed effect. Such domain
knowledge is considered to have different degree of truth on
its assumed effect to the situations with respect to the ground
truth. The Rule Effect Moderation (REM) technique proposed
in Section IV-D is aimed at overcoming the negative impact
of such domain knowledge.

B. Domain Knowledge with different degrees of truth

Like in [3], domain knowledge of human origin is recog-
nised to be flawed at times. Therefore, there can be acute short-
comings using such domain knowledge. Therefore, inaccuracy
in assuming the effect of the domain knowledge is inherent
to such an approach. Specifically, the estimated effect of the
domain knowledge to the situations can diverge significantly
from the ground truth.

Given an inserted rule Rj recommending action choice aj
for situation s, Rj has an assumed effect pj such that pj ∈
[0, 1]. The ground truth on the quantitative effect of action
choice aj on situation s is denoted using rj such that rj ∈
[0, 1]. Using Υ such that Υ ∈ [0, 1] to discriminate the positive
and negative rules, the ground-truth variance σgt(j) of rule Rj

is defined as
σgt(j) = rj −Υ

while its assumed-effect variance σae(j) is defined as

σae(j) = pj −Υ

Using σgt(j) and σae(j), the following degrees of truth on
rule Rj can be defined.

Definition 1 (True-Positive Rule): Rule Rj is a true-
positive (TP) rule when σgt(j) ≥ 0 and σae(j) ≥ 0

Sample RTP : IF EnemyDirection=North
THEN EvadeDirection=South
ptp = 0.75, rtp = 0.65

Definition 2 (True-Negative Rule): Rule Rj is a true-
negative (TN) rule when σgt(j) < 0 and σae(j) < 0

Sample RTN : IF EnemyDirection=North
THEN EvadeDirection=North
ptn = 0.05, rtn = 0.15

Definition 3 (False-Positive Rule): Rule Rj is a false-
positive (FP) rule when σgt(j) < 0 and σae(j) ≥ 0.



Sample RFP : IF EnemyDirection=North
THEN EvadeDirection=North
pfp = 0.75, rfp = 0.65

Definition 4 (False-Negative Rule): Rule Rj is a false-
negative (FN) rule when σgt(j) ≥ 0 and σae(j) < 0.

Sample RFN : IF EnemyDirection=North
THEN EvadeDirection=South
pfn = 0.05, rfn = 0.65

The degree of truth of the sample rules are based on
Υ = 0.5. The TP and TN rules are propositional rules with
convergent effects while the FP and FN rules are propositional
rules with divergent effects. The concepts of TP, TN, FP
and FN are considered for measuring precision and recall
probability in [8].

C. Delayed Insertion of Domain Knowledge

Conventionally, propositional rules are inserted into virtual
agent prior to learning [13], [18]. Such approach is known
to be effective for improving learning efficiency. However,
such framing of the learning process is positive only when
the domain knowledge turns out to be TP or TN. However, it
will have an opposite effect when the domain knowledge turns
out to be FP or FN.

Therefore, delayed insertion of domain knowledge is ex-
plored in this work. The hypothesis here is that delaying the
insertion of domain knowledge of unknown degree of truth can
help to minimize the framing effect while still allowing the vir-
tual agent to benefit from the inserted domain knowledge. This
hypothesis is based on the fact that FALCON begins learning
using high Υ, i.e., Υ → 1.0. During learning, Υ is adapted
to better reflect the ground truth necessary for separating the
action policies with positive and negative impacts using

Υ(t+ 1) = min(νΥ(t) + (1− ν)Qnew(s, a),Υ(t)) (2)

where ν is the adaptation rate of Υ and Qnew(s, a) is an
updated estimation of the Q-value of cognitive node j with
action choice a known to be effective to situation s. Delaying
the insertion of domain knowledge allows the adaptation of
Υ to be closer to the ground truth of the simulated scenario.
Therefore, the Delayed Rule Insertion (DRIN) algorithm is
proposed to facilitate the investigation of such hypothesis.

Unlike [13], [18] where domain knowledge is inserted prior
to learning, explicit indication on when to insert the domain
knowledge has to be specified using tinsert. Specifically, the
DRIN algorithm (outlined in Algorithm 3) inserts domain
knowledge R only when t ≡ tinsert. The insertion of domain
knowledge commences with the selection of a propositional
rule Rj from R for translation.

The translation process involves translating antecedent Xj

into the state vector S, the consequent Yj into the action vector
Aj and encoding the moderate effect p′j as the reward vector
Rj . The translated rule Rj represented using the triad tuple
{Sj ,Aj ,Rj} is presented to FALCON for learning using the
Inner FALCON layer outlined in Algorithm 1 with ρck = 1.0
for k = {1, 2, 3}.

Using ρck = 1.0 for k = {1, 2, 3} ensures that only
identical set of state, action and reward vectors are grouped

Algorithm 3 The Delayed Rule Insertion Algorithm
Require: tinsert , domain knowledge R and FALCON
1: if t ≡ tinsert then
2: for each propositional rule Rj ∈ R do
3: Translate antecedent Xj as state vector Sj

4: Translate consequent Yj as action vector Aj

5: Encode pj as reward vector Rj

6: Insert triad tuple {Sj ,Aj ,Rj} into FALCON using ρck = 1.0
7: end for
8: end if
9: return FALCON

into the same cognitive node. Thus, each inserted rule Rj leads
to a committed cognitive node encoding the {Sj ,Aj ,Rj} triad
tuple as its weight templates. Hence, as many cognitive nodes
as the propositional rules can be committed for learning the
inserted domain knowledge.

D. The Divergent Effect of FP Rules

Delaying the insertion of domain knowledge only allows
FALCON to build up its own knowledge base and to adapt Υ
using (2) without any effect of framing. Domain knowledge of
unknown degree of truth is still inserted into FALCON with
the intention of improving the learning efficiency.

The adapted Υ is used as the reward field vigilance crite-
rion ρc3 for the selection of cognitive nodes when FALCON
is operating in the perform and learn mode. Inserted rule Rj

with assumed effect pj ≥ Υ has higher probability of being
selected. In this sense, committed cognitive nodes that learn
TN and FN rules will have lower probability of being selected
while the committed cognitive nodes that learn the TP and FP
rules have higher probability of being selected.

Selecting committed cognitive nodes with TP rules is
expected to be positive to the learning process. However,
selecting committed cognitive nodes that learn FP rules can
be negative to the learning process. Committed cognitive node
j that learns a FP rule RFP can be selected because pfp ≥ Υ.
The assumed effect pj is learned as the Q-value Q(s, a) of
cognitive node j. Using the Bounded Q-Learning method (see
(1)), existing learning mechanism of FALCON is capable of
correcting such distortion of the assumed effect pfp of the FP
rules only after several training iterations.

Algorithm 4 Delayed Rule Insertion with Rule Effect Moder-
ation (DRIN-REM)
Require: tinsert , domain knowledge R and FALCON
1: if t ≡ tinsert then
2: for each propositional rule Rj ∈ R do
3: Translate antecedent Xj as state vector Sj

4: Translate consequent Yj as action vector Aj

5: p′j = min (pj ,Υ)
6: Encode p′j as reward vector Rj

7: Insert triad tuple {Sj ,Aj ,Rj} into FALCON using ρck = 1.0
8: end for
9: end if

10: return FALCON

Therefore, DRIN is augmented with a Rule Effect Mod-
eration (REM) strategy to overcome the framing effect of
the FP rules. Outlined in Algorithm 4, when rule Rj1 is
inserted at t = tinsert such that tinsert > 0, the DRIN-REM



strategy moderates the assumed effect pj1 with respect to Υ.
Specifically, regardless of the underlying degree of truth of
the domain knowledge which is unknown at the moment of
insertion, the moderated effect of rule Rj1 will be the smaller
value of either pj1 or Υ. The following hypothesis is formed
based on the use of the proposed DRIN-REM strategy.

Hypothesis 1: Applying the DRIN-REM strategy can re-
ject the use of FP rules while accepting
the use of TP rules.

Lemma 1 (Rejects Cognitive Node with FP Rule): For
cognitive node j1 with assumed effect pj1 encoding a FP rule,
the DRIN-REM strategy can reject the use of cognitive node
j1.

Proof 1: Applying Algorithm 4, Rule Rj1 with assumed
effect pj1 is inserted as cognitive node j1 at t = tinsert and
using p′j1 = min (pj1 ,Υ).

At t = t1 such that t1 > tinsert, cognitive node j1 is
selected to recommend action choice aj1 for situation s1.

At t = t2 such that t2 = t1 + 1, an immediate reward rj1
is returned as the ground truth of the effect action choice aj1
has on situation s1 such that action aj1 is negative to situation
s1.

Using (1), Q-value of cognitive node j1 is revised such
that Qnew(s1, aj1) < ρc3 and ρc3 ≡ Υ

∴ at t = t3 such that t3 > t2 and when J = j1, cognitive
node j1 is rejected ∵ mc3

J=j1
< ρc3�

Lemma 2 (Accepts Cognitive Node with TP rule): For
cognitive node j2 with assumed effect pj2 encoding a TP
rule, the DRIN-REM strategy can accept the use of cognitive
node j2.

Proof 2: Applying Algorithm 4, Rule Rj2 with assumed
effect pj2 is inserted as cognitive node j2 at t = tinsert and
using p′j2 = min (pj2 ,Υ).

At t = t1 such that t1 > tinsert, cognitive node j2 is
selected to recommend action choice aj2 for situation s2.

At t = t2 such that t2 = t1 + 1, an immediate reward rj2
is returned as the ground truth of the effect action choice aj2
has on situation s2 such that action choice aj2 is positive to
situation s2.

Using (1), Q-value of cognitive node j2 is revised such
that Qnew(s2, aj2) ≥ Υ

Knowing aj2 is positive to s2, Qnew(s2, aj2) is used to
updated Υ using (2) and ρc3 ≡ Υ

∴ at t = t3 such that t3 > t2 and J = j2, cognitive node
j2 is accepted ∵ mc3

J=j2
≥ ρc3�

Corollary 1: Given that Lemma 1 and Lemma 2 are true,
Hypothesis 1 is satisfied using the DRIN-REM strategy.

V. THE PURSUIT-EVASION PROBLEM DOMAIN

The PE problem domain is a popular choice in the field
of game theory [6] as well as machine learning [7], [17].
For the required level of complexity, the same non-trivial PE
problem domain used in [14] is used. Therefore, only a brief
introduction of the problem domain is provided.

Fig. 2. The 2D Grid-Based Environment.

Two virtual agents known as the Blue entity agent and the
Red entity agent are seen in Fig. 2. The Red entity agent is
hostile towards the Blue entity agent. The two-dimensional
environment has two safe areas where the Blue entity agent
will be safe from the Red entity agent. Both entity agents are
constantly moving in this virtual environment.

The Red entity agent is tasked to search for the Blue entity
agent while the Blue entity agent is tasked with a mission of
searching the areas. The Red entity agent eliminates the Blue
entity agent by contacting it while the Blue entity agent cannot
retaliate. In an encounter, the Red entity agent pursues the
Blue entity agent using deterministic pursuits strategies while
the Blue entity agent learns evasive strategies to improve on
its chance of evading the Red entity agent. The state space
forms the primary source of information and the action space
contains the available action choices for both entity agents.

A. The State Space

A Situation-Awareness Model [4] is used for knowing the
operating environment. It is comprised of the Perception layer,
the Comprehension layer and the Projection layer. Eight types
of multi-valued attributes based on the information of the
enemy and the terrain giving around 3.2876 × 104 possible
situations are defined.

Four types of attributes comprising of the Enemy-Direc-
tion, SafeArea-Direction, Enemy-Orientation and Adjacent-
Location give a total of 90 possible combinations to make up
the Perception layer. Three other types of attributes comprising
of Enemy-Location, Enemy-Proximity and Traversability giv-
ing a total of 3.2778 × 104 possible combinations makes up
the Comprehension layer. The Projection layer is comprised
of a single type of attribute known as the projection of threat
which gives a total of 8 possible combinations for a single
adversary scenario.

B. The Action Space

The Blue entity agent evades the pursuit of the Red entity
agent by moving in a particular compass direction. Therefore,
the action space is comprised of the eight compass directions
- north, northeast, east, southeast, south, southwest, west and
northwest. Therefore, the effect of moving in a particular evade
direction to the situation is learned and may be exploited for
subsequent decision-making cycles.

C. The Reward Space

A number of sensory information is used to quantify the
ground truth r on the effect of the action choices to the



situations. Agent’s proximity to Adversary, agent’s orientation
with respect to the direction of adversary, spaciousness of
selected destination, agent’s proximity to safe area, presence of
obstacle in selected destination and attacked by adversary are
included as reward attributes in this Pursuit-Evasion problem
domain. Specifically, trends of these reward attributes are used
to derive the ground truth of action choice a on situation s.

VI. EXPERIMENTAL RESULTS

Several experiments are conducted to gradually lead to the
main contributions of this work. Experiments are presented
in Section VI-A to first establish the effects of the domain
knowledge with different degrees of truth on the learning
outcome. This is followed by the experiments in Section VI-B
to illustrate the DRIN algorithm using tinsert = 90 and Υ0 =
0.475. Results from the experiments conducted to illustrate the
DRIN-REM strategy are then presented in Section VI-C.

TABLE I. THE CONTROLLED PARAMETERS

FALCON Parameters for k = {1, 2, 3}
Choice Parameters αck {0.1, 0.1, 0.1}
Contribution Parameters γck {0.5, 0.5, 0.0}
Learning Rates βck {1.0, 1.0, 1.0}
Perform/Learn Vigilance ρckp/l {0.0, 0.0/1.0,Υ}
TD Learning Parameters
Learning Rate α 0.5
Initial Q-Value 0.5
Discount Factor γ 0.1
Pruning Parameters
Confidence decay rate ζ 0.003
Confidence reinforcement rate η 0.05
Old age σold 20 iterations

Four sets of rules comprising of 128 propositional rules
each were used for the experiments. Each experiment was
conducted for 500 training iterations. Each set of experimental
results was aggregated using 20 runs of the same configu-
ration. By further averaging every 40 data points, plots of
the experimental results were produced using just 12 data
points to present the general trend of each configuration.
With the exception of the naı̈ve response (RandomResponse)
configuration, all other configurations were implemented using
FALCON with the controlled parameters seen in Table I.
The same Pruning and Knowledge-based Exploration [14]
strategies were used for all configurations.

A. Domain Knowledge with Different Degrees of Truth

Results from experiments conducted using propositional
rules with four different degrees of truth (see Section IV-B)
on its estimated effect are first presented here. Using Algo-
rithm 3, domain knowledge is inserted into FALCON using
tinsert = 0 (DirectInsert-*). Comparisons are made with the
naı̈ve approach (RandomResponse), FALCON without domain
knowledge (LearningOnly) and the use of just the domain
knowledge (*-RulesOnly).

From the Mission Completion plots seen in Fig. 3, the FN
and TN rules appear to have similar effect on the Mission
Completion rates while the TP rules have slightly better
Mission Completion rates than the FN and TN rules. Of the
four sets of domain knowledge, the FP rules have the worst
effect on the Mission Completion rates. The use of the inserted
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Fig. 3. Comparison of Mission Completion rates using domain knowledge
with different degrees of truth
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Fig. 4. Comparison of Node Population using domain knowledge with
different degrees of truth

FP rules is confirmed by the 100% exploitation rates seen at
the bottom plot of Fig. 3. Direct insertion of TP, FN and
TN rules into FALCON are seen allowing higher Mission
Completion rates than when FALCON begins learning without
domain knowledge. In contrast, as seen in Fig. 3, the insertion
of FP rules has significant negative impact on the Mission
Completion rates.

The number of rules used for the experiments can be seen
in the node population of the TN-RulesOnly and the FN-
RulesOnly configurations in Fig. 4. Also seen in Fig. 4, the
insertion of TP and FP rules into FALCON has led to the
spiking of the node population. In contrast, the insertion of
TN and FN rules is not seen having similar effect on the node
population. In addition, FALCONs inserted with the TN, FN
and FP rules saturate to lower node population than FALCON
inserted with the TP rules.

B. Delayed Insertion of Domain Knowledge

In this section, experiments are conducted to determine
whether the delayed insertion (tinsert = 90) of (TP, TN, FP
and FN) domain knowledge can reduce the framing effect illus-
trated in Section VI-A. Comparisons are made with the direct



insertion (tinsert = 0) of domain knowledge. Specifically, this
is an illustration of the DRIN strategy outlined in Algorithm 3.
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Fig. 5. Comparison of Mission Completion rates using delayed insertion of
domain knowledge

From Fig. 5, compared to the direct insertion of TN rules,
delaying the insertion of TN rules appears to have positive
impact on the Mission Completion rates. This is due to the
absence of the framing effect of the TN rules. In contrast,
lower Mission Completion rates are seen for the delayed
insertion of the FN rules. However, there is no lowering of
the Mission Completion rates after the delayed insertion of
the FN rules. Compared to the direct insertion of TP rules, a
slight lowering of the Mission Completion rates is seen for the
delayed insertion of the TP rules. More notably, delaying the
insertion of FP rules does not reduce its negative impact at all.
As seen in Fig. 5, the negative impact is seen right after the
insertion of the FP rules.
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Fig. 6. Comparison of Node Population using delayed insertion of domain
knowledge

Similar spiking effects of the node population from the
delayed insertion of TP and FP rules are seen in Fig. 6. In
contrast, the delayed insertion of FN rules leads to a slight
delay in the reduction of the node population to a similar level
as the DirectInsert-FN+Learning configuration. In comparison
to the direct insertion of TN rules, the delayed insertion of the

same rules leads to small spike in the node population. It is
seen falling to similar node population earlier than when the
TN rules are inserted prior to learning. Despite the insertion of
domain knowledge with different degrees of truth, all versions
of FALCON saturate to node population below that of the
LearningOnly configuration.

C. Delayed Insertion with Rule Effect Moderation

The recovery in the Mission Completion rates from the
(direct or delayed) inserted FP rules in Fig. 5 illustrates the
effort required to overcome the framing effect. In view of such
observations, the DRIN-REM strategy is proposed to speed up
the recovery process while still allowing FALCON to benefit
from the use of TP rules. Therefore, experiments are conducted
to illustrate the impact of the DRIN-REM strategy on the use
of TP and FP rules for when tinsert = 0 and tinsert = 90.
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Fig. 7. Comparison of Mission Completion rates of FALCON integrated with
REM technique and inserted with TP and FP rules
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Fig. 8. Comparison of Node Population of FALCON integrated with REM
technique and inserted with TP and FP rules

It is seen in Fig. 7 that using DRIN-REM with tinsert = 90
to insert the TP rules is effective in eliminating the slight dip of
the Mission Completion rates seen in just delaying the insertion
of the TP rules. More notably, the sharp decline in the Mission
Completion rates seen for the delayed insertion of the FP rules



is no longer evident when DRIN-REM is used. As important
to note is using DRIN-REM with tinsert = 0 to insert FP
rules does not overcome its negative impact. Therefore, only
by using the DRIN-REM strategy with tinsert � 0 to insert
the domain knowledge can the negative impact of the FP rules
be overcome while still benefiting from the use of the TP rules.

From Fig. 8, in comparison to the spikes in the node
population seen for delayed insertion of the TP (DelayedInsert-
TP+Learning) and FP (DelayedInsert-FP+Learning) rules, us-
ing DRIN-REM is more effective in controlling the node
population of FALCON inserted with these two types of do-
main knowledge (see DelayedInsert-TP+Learning+REM and
DelayedInsert-FP+Learning+REM). Specifically, there is only
a slight increase in node population for the use of DRIN-
REM on the FP rules and no observable increase in node
population when DRIN-REM is used on the TP rules. Over
time, all versions of FALCON saturate to similar levels of
node population.

VII. CONCLUSION

The use of domain knowledge is advanced by including
considerations for domain knowledge with different degrees
of truth on its estimated effect to the situations. This is
an inevitable shortcoming arising from the use of domain
knowledge of human origin. In addition, domain knowledge
cannot always be expected to be available prior to learning. It
is also recognized that the insertion of domain knowledge into
the adaptive virtual agent may frame the learning process and
hampers the discovery of more effective knowledge. Therefore,
this work is seen filling an important knowledge gap in the
use of domain knowledge to improve learning efficiency and
reduce model complexity.

Firstly, we establishes that domain knowledge can exist
in one of the following degrees of truth - true-positive (TP),
true-negative (TN), false-positive (FP) and false-negative (FN)
- of the domain knowledge. To respond effectively to such
rules and address the above-mentioned issues, we proposed the
DRIN algorithm to insert domain knowledge using tinsert ≥
0. In addition, the estimated effect of the inserted domain
knowledge has to be modulated using the proposed REM
strategy. An analytical presentation on how the combined use
of DRIN and REM strategies can handle domain knowledge
with different degrees of truth in a robust manner to improve
learning efficiency is also provided.

Using a non-trivial Pursuit-Evasion problem domain, the
first set of experimental results illustrates the use of domain
knowledge with different degrees of truth on the learning out-
come. The second set of experimental results illustrates the use
of the DRIN Algorithm with tinsert = 90 to insert the same
sets of domain knowledge. The third set of experimental results
illustrates the use of the DRIN-REM strategy with tinsert = 90
on selected sets of domain knowledge. Observations made on
the third set of experimental results confirm the efficacy of
the DRIN-REM strategy for addressing the stated challenges
pertaining to the use of domain knowledge.

As seen in [19], machine learning is yet to be fully explored
for many other forms of knowledge representation. Therefore,
we aim to follow up this work with an investigation on how
the proposed DRIN-REM strategies can be applied to different
forms of argument and knowledge representation schemes.

Given that the complexity of the knowledge learned is in
direct correlation to the complexity of the problem domain,
it is also necessary to identify problem domains with the right
amount of complexity to explore machine learning based on
more complex knowledge representation schemes.
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