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ABSTRACT

Relationships between companies serve as key channels through
which the effects of past stock price movements and news events
propagate and influence future price movements. Such relation-
ships can be implicitly found in knowledge bases or explicitly repre-
sented as knowledge graphs. In this paper, we propose Knowledge-
Enriched Company Embedding (KECE), a novel multi-stage attention-
based dynamic network embedding model combining multimodal
information of companies with knowledge from Wikipedia and
knowledge graph relationships from Wikidata to generate company
entity embeddings that can be applied to a variety of downstream
investment management tasks. Experiments on an extensive set
of real-world stock prices and news datasets show that the pro-
posed KECE model outperforms other state-of-the-art models on
key investment management tasks.

CCS CONCEPTS

« Computing methodologies — Neural networks; Artificial
intelligence; Knowledge representation and reasoning.
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1 INTRODUCTION

Investments in stocks can generate substantial returns but also
present significant risks. Forecasting of stock prices is hence an
important task. However, forecasting individual stock prices is
challenging as stock price time series are inherently noisy. Most
methods for forecasting stock prices focus on individual stocks
and do not capture underlying real-world relationships between
companies that encapsulate valuable information on future stock
price movements. For example, due to lead-lag effects, a drop in the
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Figure 1: Overview of classical approach versus KECE

stock price of one company could be a leading indicator of the future
price movements of other related stocks. Relationships between
companies serve as key channels through which the effects of past
stock price movements and news events propagate and influence
future price movements. E.g., a significant stock price movement of
one supplier company could influence the stock prices of companies
in the former’s supply chain; an adverse news event affecting one
company could also influence the stock prices of other companies
in the same industry due to fears of similar events affecting these
companies.

Stock price correlations (or co-variances) are usually used to
measure such effects. Correlations provide an indication of the
similarity and dissimilarity of companies based on stock prices, and
are commonly used for financial tasks such as investment portfolio
selection, allocation and risk measurement, where the focus is on
managing an investment portfolio comprising a large number of
stocks, with the objective of minimizing risk while maximizing
returns. However, there are a number of limitations associated with
correlations. Correlations may be spurious. They are unable to
capture non-linear relationships. Correlations are also not designed
to be applied directly to unstructured data such as textual news
information.
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The availability of knowledge bases (KB) and graphs (KG) pro-
vides an alternative source of information on causal relationships
between companies, e.g., parent-subsidiary, common product-type
relationships, that can help address spurious correlations. Com-
panies are present as entities within KBs such as Wikipedia, and
relationships between companies can also be extracted from KGs
such as Wikidata[43].

Instead of stock price correlations, we can instead use deep learn-
ing to generate latent representations or embeddings of companies
to represent them in a high dimensional space that captures non-
linear relationships among these companies and rich semantics of
companies found in unstructured textual information(e.g., news).

The key idea in this paper is therefore to utilize knowledge from
KBs and KGs together with textual information from financial news
to enrich company entity embeddings for financial tasks. We focus
on generating company embeddings that not only capture time
varying multimodal data from different sources - numerical stock
prices, textual news or blogs, but also incorporate knowledge from
KBs and KGs. Such an approach, which injects stronger relational
inductive biases within the model, will effectively guide model
learning[12] and generate embeddings that can be used for many
downstream tasks.

An overview of our proposed approach, compared against the
classical historical price-correlation based approach, is depicted
in Figure 1. Classical time series-based methods like the auto-
regressive integrated moving average (ARIMA)[41] do not incorpo-
rate unstructured data nor company knowledge. Several recent
works apply deep learning to financial time series forecasting
but are designed for uni-variate and multi-variate numerical data
only[13, 29, 36, 38]. [3, 4, 7, 16, 20, 47] apply NLP methods on un-
structured textual input to perform financial forecasting, but they,
together with the above-mentioned ones do not capture explicit
causal relationships. Most of these works are also trained to make
point predictions, and hence do not generate company embeddings
for use in wide range of predictive tasks. They also fail to differen-
tiate companies with different price dynamics and volatility, which
is an important aspect to consider when measuring similarities
and dissimilarities between companies. Hence, our proposed model
KECE aims to offer several technical breakthroughs: i) jointly cap-
ture time-varying data with different modalities so that semantically
rich dynamic embeddings can be learnt; ii) enable the propagation
of information between companies based on underlying relation-
ships to reflect real-world financial market dynamics; iii) enrich
company embeddings with knowledge extracted from KBs and KGs
to provide relational inductive bias to guide model learning; and iv)
differentiate companies with different price dynamics and volatility.
Our key contributions are as follows:

o To our knowledge, this is the first work to propose an ap-
proach that generates company embeddings that jointly cap-
tures time-varying structured and unstructured information
from multiple modalities with knowledge from KBs and KGs.

e We propose a dynamic knowledge-based attention mecha-
nism to dynamically weight the relevance of textual infor-
mation (e.g. news, blogs) to companies across time.

e We propose a dual-stage attention-based model to encode
and fuse time-varying multimodal features, before applying
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graph message passing to propagate company representa-
tions based on KG relationships.

e We propose a quantile regression training objective so that
the model can differentiate between companies with different
price dynamics and volatilities.

e Our experiments, which cover six datasets that are more ex-
tensive than most past works, show that KECE consistently
out-performs state-of-the-art models on key investment man-
agement tasks - returns forecasting and investment portfolio
allocation.

2 RELATED WORK

As this work involves financial time series forecasting, and the
generation of network embeddings for company entities that are
inter-connected in knowledge graphs, we review key related works
in these areas.

Financial Time Series Forecasting ARIMA[41], which includes
a variety of time series models such as autoregression (AR), moving
average (MA), and autoregressive moving average models (ARMA),
is a well studied classical method for time series forecasting, and
has been commonly applied to financial time series. It is however
not suitable for our multimodal and multi-variate setting. Classical
multi-variate methods, such as VAR[30] which extends AR, can-
not address our requirements as they are designed for numerical
data but not unstructured data such as textual news articles. They
are also unable to generate embeddings of company entities. Deep
learning methods have been increasingly applied to time series
forecasting. Deep feed-forward neural networks[36], convolutional
neural networks[38] and recurrent neural networks[13, 29] have
been applied to time series forecasting. A detailed review of these
works can be found in [21, 28, 37, 40]. Many of these models are
however designed for structured numerical inputs and uni-variate
settings. Even when designed for multi-variate settings[8, 39], they
do not capture causal real-world relationships between entities.

StockEmbed [4], a work that is closely related to ours, uses
unstructured textual news articles to learn stock (or company) em-
beddings which are then used for investment portfolio allocation.
Their approach is similar to other works that study the influence of
news on stock prices[3, 7, 16, 20, 47] but differs from these works
as StockEmbed focuses on capturing mutual effects between news
articles and stock embeddings. It however does not capture causal
relationships between stocks. Trained on a binary classification
task (up/down price movements), StockEmbed does not distinguish
between companies with different stock price dynamics and volatil-
ities. Further, the work was only applied to a small sample of 140
companies using relatively old news datasets, whereas we conduct
experiments that cover more than 2000 companies and use more
recent news datasets.

Network Embeddings There are several related works on net-
work embedding approaches which could be applied to a network
of company entities. [23] applies a variational autoencoder (VAE)
[22] framework to learn the node embeddings of networks. [33]
uses two VAE channels to jointly encode and decode the node
adjacency matrix and another node feature matrix. [34] extends
[33] to co-embed both attributes and nodes of partially labelled
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networks. Multinomial VAE([26] is a VAE-based approach that gen-
erates embeddings of heterogeneous network using a multinomial
distribution instead of the Bernoulli distribution used in [23]. Graph

neural network (GNN) is another approach which composes mes-
sages based on network features, and propagates them to update the
embeddings of nodes and/or edges over multiple neural network
layers[12, 15]. Several GNN-based models have been developed.
In particular, Graph Convolutional Network(GCN)[24] aggregates
features of neighboring nodes and normalizes the aggregated repre-
sentations by the node degrees. GraphSAGE[18] further considers
mean, LSTM or pooling aggregation methods. Unlike GCN, Graph-
SAGE samples only a fixed number of neighbors for representation
aggregation. Graph Attention Network(GAT)[42] assigns neighbor-
ing nodes with different importance weights during aggregation
using additive attention. There are also GNN models designed for
time varying networks or networks where the nodes have time
varying attributes[1, 5, 9, 11, 17, 25, 45, 48]. However, these models
are not designed for networks where the node attributes are mul-
timodal financial time series. A few recent works[8, 14, 32] apply
GNN:ss to prediction tasks on financial time series data, but these
models were designed for attributes that are numerical only.

Among these works, Relational Stock Ranking(RSR)[14] is most
closely related to ours as it captures causal relationships between
companies using a graph-based model related to GCN. However,
RSR is designed only for numerical information, and could not
generate embeddings to capture unstructured textual information,
or information from other modalities.

3 KNOWLEDGE-ENRICHED COMPANY
EMBEDDING
Figure 2 depicts the architecture of our proposed Knowledge-Enriched

Company Embedding (KECE) model. KECE represents companies
in a network G = (V, E, X), where V represents a set of company
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nodes, E represents relationships between companies extracted
from KGs, X represents sequences of multimodal attributes asso-
ciated with companies. KGs such as Wikidata include real-world
relationships E between companies V, e.g., company A is-parent-
company-of company B, or company A is-competitor-of company
B, which can be extracted to form the network G. More details on
the KG extracted from Wikidata that we use for experiments in this
paper are provided in Section 4.1. While we include only numerical
stock prices and textual news data in X = {X"#™ X'€X!} in this
paper, KECE can be further extended to incorporate data of other
modalities in our future work.

Given a time step t, we define X}“‘m (t) = [x;‘”m (t-K), ..., x;”“"" (t—
1)] to be the sequence of numerical price-related data associated
with company v; over a window of K time steps up to time step ¢ —1.
The matrix representing the numerical data of all company nodes at
time step ¢ with window size K is X" () € RIVXKxd™™
d"™™ is the embedding dimension size.

Similarly, we define X*¢*!(t) = [x!¢*!(t — K), .., x!®*! (¢t - 1)]
to be the sequence of textual news articles over the same window
period. Initially, the textual news are not associated with any spe-
cific company, and the news articles are binned into each time step.
KECE extracts from X?¢*!(t) the sequence of textual features at
time step ¢ of window size K relevant to company v; as )N(;e” ) =
[R5 (£ = K), .., $4¥0 (£ = 1)]. We use X'e¥ (1) € RIVIXEXA™ o
encode the textual data for all company nodes where d*¢*? is the
embedding dimension size.

KECE then uses the structural KG relationship-based network
information and multimodal information to learn company embed-
dings Z € RIVIXd where d is the company embedding dimension
size. We use quantile loss as the objective function to train KECE
model. The goal is to learn Z that can perform prediction of stock
returns at different percentiles, i.e., §(¢)? where p = {0.16,0.5,0.84}.
Percentile 50% (p = 0.5) corresponds to median returns. Lower and
upper percentiles of 16% (p = 0.16) and 84% (p = 0.84) are chosen
based on the width (i.e. one standard deviation) of a normal distri-
bution (68%), corresponding to the volatility of returns, a typical
measure of risk in finance. More details on the tasks are provided
in Section 4.2.

In the following, we elaborate on the processing steps in the
KECE model.

Dynamic Knowledge & Attention-based Text Extraction.
This step extracts textual features relevant to each company v; for
time step ¢ — k of window size K, )Z}e’”(t) = [xj(t=K), -, %j(t=
1)]. Each x;(t—k) is extracted following the steps shown in Figure 3.

For 1 < k < K, the news articles at time step ¢ — k are combined.
Each news article is first encoded using a pre-trained Wikipedia2Vec
[10] model which represents both words and entities in Wikipedia
in a common embedding space. We choose Wikipedia2Vec over
other embedding models such as Word2Vec[35] or BERT[2] so
that we are able to capture the rich knowledge present within the
Wikipedia KB.

We initialize the company embedding at the beginning of train-

where

dtext

ing as z; by the entity embeddings of the company v ; in Wikipedia2Vec

(instead of random initialization). This strengthens the mutual ef-
fects between the textual news features and company embeddings
so that more relevant textual features can be extracted.
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As the embeddings of companies can drift across time, we per-
form the dynamic embedding update step to update z; with numeri-
cal value x;‘”m(t —k), ie:

Zj(t-k) = LeakyReLU(Linear(zﬂ|x}‘”m(t —k)) (1)

where Linear is a simple fully-connected linear layer.

We then use an attention mechanism to extract relevant textual
features. We first encode all articles at time step t—k as £/¢X! (t—k) €
RINe-k1Xd" ™ Ghere N;_j denotes the set of news articles at time
step t — k. Each news article is encoded by averaging the pre-
trained Wikipedia2Vec word embeddings of the article’s words.
We then compute the inner product of the dynamically updated
company embedding Zj(t — k) with each encoded news article
n; € N;_i to get the attention score: score;j = n; - Zj(t — k). The
attention score is then normalized to obtain the attention weights:
_ exp(score;;)

" Xnen,_; exp(scorei;)’
features across the set of news articles for each time step t — k:

-k = > ayn; )

n; Ny

aij which are used to weight the textual

The output of this step across all company entities and the window
period is hence X*¢*(t) € RIVIxXKxd' et

Attention-Based Sequential Encoding. Next, we concatenate
X'e*t(+) and X™™(t) to form multimodal time series sequence
X(t) € RIVIXKX(@™™+d"*") " A qelf attention mechanism based
on the transformer [6] is chosen to encode the multimodal time
series sequence as they have been shown to be more efficient and
perform better than recurrent mechanisms[44]. We add fixed po-
sitional encodings P € REX(d@™™+d"*") 35 described in [6] and
apply linear layers to generate queries, keys and values from the
multimodal time series sequence - Q;(t) = Linear(X;(t) + P),
Kj(t) = Linear(X;(t) + P), Vj(t) = Linear(X;(t) + P). Learnt posi-
tional encodings can also be utilized, but we did not do so as, like [6],
we did not see a significant improvement in task performance with
learnt positional encodings. We apply scaled dot-product attention

Qi(nK;(nT
Vanum 4 gtext

followed by a residual connection with layer normalization (Layer-
Norm), and finally a feed-forward network (FFN):

XJ’-(t) = softmax( YVi(t) 3

Hj(t) = FFN(LayerNorm(X]'-(t) +X; (1) (4)

where H;(t) € REX(d™7+dex)

Temporal Fusion. Representations at each time step are com-
bined with temporal attention fusion, which weights the contri-
butions of each time step based on its self-discovered importance.
A non-linear transformation is applied to the representations to
obtain a scalar G;(t — k) for each time step in the window where
ke {1, ,K}:Gj(t—k) = WD tanh(W O H;(t — k) + b), where
W and W are learnable weight matrices and b is the bias vec-
tor. We normalize each G;(t — k) to obtain the weights: f;(t — k) =

exp(Gj(t-k))

TE exp(G (1K) We then fuse the representations of the time
=1
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series sequence:
K
H(t) = > Bj(t = k)H;(t = k) )
k=1

where H]’(t) € R(@™M+d")

Dot-Product Attention-Based Graph Message Passing,. For
this step, we use a dot-product attention-based graph message
passing module to propagate the fused company representations
across Wikidata KG relations E. This module uses multiplicative
attention and differs from GAT[42] which uses additive atten-
tion. We chose multiplicative attention as it is more efficient and
demonstrated better performance. For each layer in the dot-product
attention-based graph message passing module, we take the fused
0 _

representation H ]'.(t) and apply a linear transformation s ;

W(l)HJ’.(I_l)(t) where W) is a learnable weight matrix of the

I Jayer, and H]/A(lfl) (t) is the company representation from an
earlier layer. We compute the pair-wise un-normalized attention
score between company node v; and each of its neighbors, say
company node v with a dot-product operation: e(,llz = sJ(.l> . s,(cl).
Attention scores are computed to weight the hidden representations
received by company node v; from its neighboring nodes N(v;):
) exp(e;) .
@, = o= The final step in each layer aggregates
PR Do en(o)) exple; i)
the hidden representations received by node j from its neighbors
N(vj), weighted by the attention scores:

o= Y

v €N (05)

@ ©
After two layers of message passing (representing the two-hop
neighborhood), we represent the resultant hidden state for each
company as HJ’.’(t). More layers can be added to enable messages
to be passed over more hops, but we find that this leads to over-
smoothing[46] and negatively impacts performance. Hj’.’(t) is then
projected into one or more dimensions (corresponding to the num-
ber of quantiles q) with a single linear layer: yf (t) = Linear(HJf’(t)).

Quantile Regression KECE is trained by jointly minimizing
the quantile loss:

L= Z QuantileLoss(y?(t), g}f(t)) 7)
peP
where p = {0.16, 0.5, 0.84}; QuantileLoss(y; (), §;(t), p) = p(y;(t)—
§j (1) + (1= p)(Gj(t) —y;(t)) per [27]; and y;(t) is the log return
on day t, defined as y;(t) = log price;j(t) — log pricej(t — 1). We
use quantile loss for training so that the model is more robust to the
variations in price dynamics and volatilities of different companies.

4 EXPERIMENTS
4.1 Datasets

To evaluate KECE and other models, we conduct experiments with
three news datasets which differ significantly, either in the time
span or the content as depicted in Table 1. Each dataset consists of
both news articles and stock market price-information collected at
daily time-steps over different time spans. The three news article
sources are: i) older Reuters financial news article dataset (RE1)
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from [3]! that has been used in a number of other works; ii) more
recent Reuters financial news article dataset (RE2) that we extracted
using the Newsfilter.io API; and iii) Investing.com news dataset
(INV)?, which contains news articles and commentaries from a
much broader range of sources that include mainstream providers
as well as blogs.

We also collected daily stock market price-related information -
opening, closing, low & high prices, and trading volumes - of two
separate stock markets - NYSE and NASDAQ - from the Center
for Research in Security Prices. We include all companies in NYSE
and NASDAQ with transactions in the respective time periods, and
only filter out stocks that were not traded for an extended period,
specifically more than 10% of trading days in the respective time
periods.

For inter-company relationships, we use Wikidata, one of the
largest and most active collaboratively constructed KGs. Compa-
nies such as Google, Apple and Microsoft are present within the
Wikidata KG as entities, and relationships between them, e.g., Al-
phabet as a parent company of Google (first-order), both Apple
and Microsoft are producing computer hardware (second-order),
can be extracted from Wikidata. We extracted instances of 57 first
and second-order relationship-types identified by [14] from the
Wikidata dumps dated 15 Jan. 2018 and 7 Jan. 2019 and paired with
the older RE1, and newer RE2/INV datasets respectively. The RE1
news dataset pre-dates the earliest Wikidata dumps>. We never-
theless adopt it following many previous works in financial fore-
casting, e.g., StockEmbed[4], one of the key baselines in our exper-
iments. Notwithstanding this, the RE2-NYSE/NASDAQ and INV-
NYSE/NASDAQ datasets are paired with the KG constructed from
the Jan. 2019 Wikidata dump which is reasonably close to the end
of the time spans. Furthermore, the coverage of the six datasets
(RE1-NYSE, RE1-NASDAQ, RE2-NYSE, RE2-NASDAQ, INV-NYSE,
INV-NASDAQ) used in this paper - over the time period 2006-2020,
covering more than 2,000 companies and more than 300,000 articles
in total - is more extensive than most existing works and provides
strong assurance to our experiment findings.

4.2 Experiment Setup

Our experiments compare KECE with state-of-the-art baselines on
two key investment management tasks:

o Returns forecasting: For this task, we predict returns for
the percentiles p = {0.16,0.5,0.84}. The evaluation metric
is quantile loss, as defined in Equation 7. We present re-
sults for the total quantile loss across all percentiles, as well
as at individual percentiles. The datasets are divided into
non-overlapping training/validation/test sets in the ratios
0.6/0.2/0.2%.

IThe original dataset also included news articles from Bloomberg, but these are no
longer available for download.

ZSubset extracted from https://www.kaggle.com/gennadiyr/us-equities-news-data
3The earliest Wikidata dumps were from 2014. However, we used Wikidata dumps
from 15 Jan. 2018 and 7 Jan. 2019 as we found that knowledge graphs extracted from
earlier Wikidata dumps were too sparse to be useful for our experiments, e.g. average
knowledge graph node degrees for companies in RE1-NYSE is 0.3 for the Jan. 2016
Wikidata dump and 1.1 for the Jan. 2017 Wikidata dump, compared with 5.8 for the
the Jan. 2018 Wikidata dump and 7.6 for the Jan. 2019 Wikidata dump.

“4For the INV-NYSE and INV-NASDAQ datasets, we adjusted the starting date of the
test sets to be after the 7 Jan 2019 date of the Wikidata dump used to construct the
KG so datasets are divided in the ratios 0.6/0.22/0.18. No adjustment was made to
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Table 1: Overview of datasets

RE1- RE1- RE2- RE2- INV- INV-

NYSE NASDAQ NYSE NASDAQ NYSE NASDAQ
Time span 20 Oct. 2006 to 26 Nov. 2013 | 1 Jan. 2014 to 31 Dec. 2020 | 1 Jan. 2014 to 13 Feb. 2020
No. of articles 87,064 66,779 198,718
No. of companies (nodes) 1,235 723 1,385 854 1,433 893
No. of KG relationships (edges) 7,120 1,468 9,430 3,976 10,360 4,414
Average node degree 5.77 2.03 6.81 4.66 7.23 4.94

e Investment portfolio allocation: The aim of the invest-
ment portfolio allocation task is to optimize the proportion
of capital invested in each stock in a portfolio, by finding an
optimal set of weights W that minimizes portfolio risk for a
given target return. The mean-variance risk minimization
model by Markowitz [31] is formulated with the objective

minyy risk = wisw

subject to W1 Rhist — E9 WT1 = 1,0 < W/ < 1, where
RISt is a vector of percentage stock returns over a selected

historical period {1,-- -, 7} and E'9% is the targeted expected

return of the portfolio. ¥ is typically the historical co-variances
of stock prices. We compute an alternative X for this task

by taking the cosine distances between the company em-

beddings of companies v; and vy generated by each model,

i.e.5,

Z;‘,k = cosine(zj, zx)

and use it to obtain the weights W via mean-variance risk
minimization. This is a predictive task as we are using the
resultant weights W to invest in stocks in year 7 + 1 in this
paper; and then measuring the portfolio returns realized in
this future period: E"¢* = WTR"¢4! where R"¢4 is a vector
of realized percentage stock returns over the selected future
period. Given that the aim is to maximize portfolio returns
while minimizing portfolio risk (volatility), we choose risk-

adjusted realized portfolio returns over the selected future
Ereal

o Ereal) ’
where o(E"¢%) is portfolio return volatility, defined as the
one standard deviation of the portfolio returns over the same
future period. Like [4], we conduct this evaluation with the
walk-forward approach, i.e. we train the models using the
first 7 years of data and measure E in year 7 + 1. We similarly
perform the optimization over a range of targeted expected
returns E9% € {0.05,0.10, 0.15, 0.20, 0.25, 0.30}, which cover
the range of typical cases in real-world portfolio allocation
(to cater to different investment preferences). The results
shown are the averages for 7 € {2,3,4,5,6} for the RE1-
NYSE/NASDAQ dataset; and 7 € {2,3, 4, 5} for other datasets,
decided based on the length of the time span covered by each

period as the evaluation metric, defined as: E =

RE1-NYSE and RE1-NASDAQ datasets as they pre-date the 15 Jan 2018 date of the
Wikidata dump used to construct the corresponding KG. No adjustment was made to
RE2-NYSE and RE2-NASDAQ datasets as the starting date of the test sets are already
after the 7 Jan 2019 date of the Wikidata dump used to construct the KG.

5 An important point to note is that %’ needs to be positive semi-definite (PSD). One
reason is that risk cannot be negative. £’ computed from cosine distances between
embeddings is not guaranteed to be PSD. Where the PSD condition is not met, we use
Higham [19] to estimate the nearest PSD matrix.

of these datasets. We assume that there are 252 trading days
in each year.

Baselines and settings. For both tasks, we compare KECE
against LSTM and GRU models as baselines, as well as strong state-
of-the-art baselines closest to our work as described in Section 2 -
StockEmbed[4] and RSR[14]. StockEmbed[4] is chosen as a state-of-
the-art baseline that captures textual information for stock forecast-
ing. RSR[14] is chosen as a state-of-the-art baseline that captures
causal relationships between stocks. For the investment portfolio
allocation task, we additionally compare with the performance of
the classical historical co-variance method. To train KECE, we chose
the window period K = 5 days based on experiments with different
window periods K € {5, 10, 15, 20}. A longer window period did not
lead to better performance, and differences in performance between
KECE and baselines were generally consistent across all window
periods. The window period K = 5 days corresponds to one trad-
ing week, and is also closest to the window period of 4 days used
in StockEmbed[4]. A pre-trained Wikipedia2Vec[10] model which
generates embeddings with a dimension of 100 is used. The dimen-
sions of the company embeddings is also fixed at 100. An Adam
optimizer with a learning rate of 0.001 with a cosine annealing
scheduler is used. Models are implemented in Pytorch and trained
for 100 epochs on a 3.60GHz AMD Ryzen 7 Windows desktop with
NVIDIA RTX 3090 GPU and 64GB RAM.

4.3 Results

4.3.1 Returns forecasting. Tables 2-4 set out the results relating
to returns forecasting. KECE outperforms all baselines on the totals
and majority of the specific percentiles. We notice greater disper-
sion in performance on the percentiles p = 0.16, 0.84, as compared
to p = 0.50, with KECE doing relatively better than the other base-
lines for these percentiles. This supports our point on the need to
differentiate between companies with different price dynamics and
volatilities, particularly when one is not just interested in making
a point prediction, but capturing similarities and dissimilarities of
companies. We also see slightly better performance for KECE on
the RE1/RE2 news datasets relative to the baselines than on the
INV news dataset, which could be due to the more diverse sources
of textual news information in the INV news dataset. The diver-
sity may have made it more challenging to capture the mutual
effects between the textual information and company embeddings.
Among the baselines, RSR generally does better, which indicates
the importance of capturing relationships between companies.

4.3.2 Investment portfolio allocation. Figure 4 sets out the re-
sults relating to investment portfolio allocation. KECE consistently
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Figure 4: Investment portfolio allocation results. Vertical axis shows risk-adjusted realized portfolio returns E; horizontal axis

shows targeted expected returns E'9‘. Higher E is better.

Table 2: Returns forecasting results (RE1). Lower is better.
Best performing model(s) in bold for totals; in italics for spe-
cific percentiles for this and subsequent tables.

RE1-NYSE RE1-NASDAQ
Model Total | p=0.16 p=0.50 p=0.84 | Total | p=0.16 p=0.50 p=0.84
LSTM 0.0523 | 0.0187 0.0189 0.0147 | 0.0662 | 0.0233 0.0236 0.0193
GRU 0.0523 | 0.0187 0.0189 0.0147 | 0.0661 | 0.0233 0.0236 0.0192
RSR 0.0525 | 0.0187 0.0189 0.0149 | 0.0663 | 0.0233 0.0236 0.0194
StockEmbed 0.0535 | 0.0189 0.0191  0.0155 | 0.0664 | 0.0236 0.0237  0.0191
KECE 0.0494| 0.0160 0.0189 0.0145 | 0.0630| 0.0203 0.0236 0.0191

Table 3: Returns forecasting results (RE2)

RE2-NYSE RE2-NASDAQ
Model Total | p=0.16 p=0.50 p=0.84 | Total | p=0.16 p=0.50 p=0.84
LSTM 0.1032 | 0.0359 0.0360 0.0313 | 0.1073 | 0.0371 0.0378 0.0324
GRU 0.1029 | 0.0359 0.0359 0.0311 | 0.1074 | 0.0371 0.0376  0.0327
RSR 0.1030 | 0.0359 0.0362  0.0309 | 0.1023 | 0.0371 0.0375 0.0277
StockEmbed 0.1034 | 0.0359 0.0359 0.0316 | 0.1065 | 0.0371 0.0373  0.0321
KECE 0.0985| 0.0318 0.0359 0.0308 | 0.1002 | 0.0320 0.0372 0.0310

Table 4: Returns forecasting results (INV)

INV-NYSE INV-NASDAQ
Model Total | p=0.16 p=0.50 p=0.84 | Total | p=0.16 p=0.50 p=0.84
LSTM 0.0644 | 0.0226 0.0231 0.0188 | 0.0743 | 0.0259 0.0266 0.0218
GRU 0.0640 | 0.0225 0.0230 0.0184 | 0.0737 | 0.0259 0.0265 0.0213
RSR 0.0630 | 0.0225 0.0220 0.0185 | 0.0726 | 0.0258 0.0254 0.0213
StockEmbed 0.0637 | 0.0225 0.0223 0.0188 | 0.0737 | 0.0260 0.0265 0.0213
KECE 0.0603| 0.0196 0.0223 0.0184 | 0.0689| 0.0220 0.0257 0.0212

outperforms all baselines across all datasets. The newer datasets
- RE2-NYSE/NASDAQ and INV-NYSE/NASDAQ - appear to pose

Table 5: Ablation Study (using RE1-NYSE). £ computed for
E'9" = 0.05 with testing dataset as selected future period.

Returns Forecasting Port. Allocation

Ablation Total  p=0.16 p=0.50 p=0.84 E

w/o textual info. 0.0512  0.0170  0.0189  0.0153 18.4%

w/o network info. 0.0516 0.0187 0.0189  0.0140 18.9%

w ran. init. comp. embed.  0.0504 0.0170  0.0189  0.0145 22.3%

w/o dyn. update of comp ~ 0.0494 0.0160 0.0189  0.0145 22.9%
embed.

GAT for graph message-  0.0500 0.0159  0.0189  0.0152 22.4%
passing

KECE 0.0494 0.0160  0.0189  0.0145 23.3%

a greater challenge to some models. We see models such as Stock-
Embed (for RE2-NYSE) and RSR (for INV-NYSE) return negative
risk-adjusted portfolio returns E across all targeted expected re-
turns E’9%, which indicate that the embeddings generated by these
models failed to capture similarities/dissimilarities between compa-
nies that hold in a future period, leading to sub-optimal weights W.
As such, performance on this task provides a clear indication of the
quality of the company embeddings generated by KECE and the
baseline models. The performance of StockEmbed and RSR were
different for the RE2-NYSE and INV-NYSE datasets due to the mar-
ket volatility subsequent to Feb. 2020 caused by Covid-19, which
is captured in RE2-NYSE but not INV-NYSE. This and the general
variability in performance of the baselines across the datasets indi-
cates the sensitivity of these models to different data distributions,
which KECE, because of the range of information it captures, is less
affected by.

4.4 Ablation Studies

Table 5 sets out the results of the ablation studies. We vary key
aspects of the KECE model, namely: (a) excluding textual input and
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related module (w/o textual info.); (b) excluding network input
and related module (w/o network info.). We see that this leads to
a significant drop in both the performance for returns forecasting as
well as the investment portfolio returns, indicating the importance
of effectively capturing these inputs. For KECE with random initial-
ization of the company embeddings (w rand. init. comp. embed.)
instead of using the entity embeddings in Wikipedia2Vec, we see
that the drop in performance is less, but nonetheless material. Next,
we evaluate KECE without the step of updating the initial company
embeddings with numerical time series information before using it
for the text extraction step (w/o dyn. update of comp. embed.).
While there is no impact on returns forecasting performance, it
does lead to a slightly lower risk-adjusted portfolio returns. We
finally observe that KECE using the proposed dot-product attention-
based graph message passing module performs better than the more
commonly used GAT (GAT for graph message-passing).

4.5 Discussion

Based on the results of the experiments, we observe that being able
to capture causal knowledge-based relationships significantly im-
proves performance on investment returns forecasting and portfolio
allocation tasks. KECE'’s performance across different percentiles
p in returns forecasting, and across different targeted expected
returns E'9 for investment portfolio allocation is more consis-
tent than the baseline models, which could be due to it being less
affected by spurious correlations in stock prices since it captures
causal knowledge-based relationships. We also see that textual news
information, which contain valuable knowledge-based information,
plays a key role in performance on these tasks. Greater variability
in the sources of news information, e.g. RE1/RE2 vs. INV, can lead
to differences in performance. This is likely due to differences in
the style and nuances of textual information in mainstream news
and blogs. Despite these differences, KECE is still able to perform
well. Overall, we find evidence to support the usefulness of captur-
ing multimodal information and enriching such information with
knowledge from KBs and KGs to generate company embeddings
for downstream investment management tasks.

5 CONCLUSION AND FUTURE WORK

The key insight demonstrated in this paper is that knowledge from
KBs and KGs can be utilized to enrich multimodal information
and generate embeddings of companies to improve performance
on important downstream investment management tasks. We also
showed that the proposed KECE outperforms recent state-of-the-
art models consistently and by a significant margin in a number of
instances. The datasets used in this paper are more extensive than
most works and provide strong assurance on the validity of these
results across different time periods, companies and types of textual
information. Nonetheless, there is still potential scope for further
work on the usefulness of this approach for other stock markets,
other asset classes (e.g. interest rates and foreign exchange rates),
other sources of textual information (e.g. from Reddit, Twitter or
Facebook), and information from other modalities (e.g. visual news
images).
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