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A B S T R A C T

This paper presents a novel semi-supervised few-shot image classification method named Learning to Teach
and Learn (LTTL) to effectively leverage unlabeled samples in small-data regimes. Our method is based on self-
training, which assigns pseudo labels to unlabeled data. However, the conventional pseudo-labeling operation
heavily relies on the initial model trained by using a handful of labeled data and may produce many noisy
labeled samples. We propose to solve the problem with three steps: firstly, cherry-picking searches valuable
samples from pseudo-labeled data by using a soft weighting network; and then, cross-teaching allows the
classifiers to teach mutually for rejecting more noisy labels. A feature synthesizing strategy is introduced for
cross-teaching to avoid clean samples being rejected by mistake; finally, the classifiers are fine-tuned with a
few labeled data to avoid gradient drifts. We use the meta-learning paradigm to optimize the parameters in
the whole framework. The proposed LTTL combines the power of meta-learning and self-training, achieving
superior performance compared with the baseline methods on two public benchmarks.

1. Introduction

Today’s deep neural networks (DNNs) often require large amounts
of labeled training data to achieve their best performance (Yann et al.,
2015; He et al., 2016; Shelhamer et al., 2017). However, collecting
sufficient samples with correct labels is expensive for some tasks due
to the scarcity of expert knowledge. In this case, DNNs tend to overfit
and perform poorly with only a few samples.

Researchers have explored a variety of methods in order to over-
come the challenging problem. One commonly used solution is meta-
learning, which follows a unified two-loop training process: (1) Inner-
loop: updating the parameters of the networks (also denoted as base-
learners) with gradient descent on the support set of a single (few-shot)
task; (2) Outer-loop: optimizing the hyper-parameters (also denoted as
meta-learners) needed by the inner-loop on the query sets from multi-
ple tasks. A representative approach is Model-Agnostic Meta-Learning
(MAML), which learns to initialize parameters for the network in order
to fast adapt them to new similar tasks (Finn et al., 2017).

Another intriguing idea is to increase the amount of training data
by exploiting unlabeled samples, which can be obtained much more
quickly and cheaply. A classic and intuitive method is self-training 1u
(Yarowsky, 1995; Triguero et al., 2015; Berthelot et al., 2019) which
first trains a network with labeled data (training the initial model) and
then enlarges the labeled set based on the most confident predictions

∗ Corresponding authors.
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on the unlabeled set (recursive pseudo-labeling). It can outperform
regularization-based methods (Miyato et al., 2016; Laine and Aila,
2017), especially when labeled data is scarce.

However, one critical problem hinders the usage of this semi-
supervised approach for the few-shot scenarios. Specifically, the
pseudo-labeling operation relies heavily on the initial model trained
by using the labeled set. If insufficient labeled samples are provided
to train the initial model, the pseudo-labeling operation will pro-
duce many noisy labels and severely harm the subsequent training
procedures.

To take advantage of self-training for semi-supervised few-shot
classification (SSFSC) and alleviate the interference of noisy labels
produced by pseudo-labeling, we propose a novel learning to teach
and learn (LTTL) method. LTTL follows the same two-loop training
process of meta-learning:

In the inner-loop, the whole process starts with adapting the task-
specific network using the meta-learned initialization parameters just
as (Finn et al., 2017; Sun et al., 2019b; Rusu et al., 2019). And then
three steps are used: (1) searching the informative samples among the
unlabeled set with the proposed soft weighting network (SWN) (we
name this procedure as cherry-picking); (2) performing cross-teaching
for the double-branch classifiers to reject more noisy labeled samples;
(3) fine-tuning the classifiers with only labeled samples from support
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Fig. 1. The two-loop training procedure of LTTL. cherry-picking is used to process unlabeled samples for the inner-loop process. The updating procedure of inner-loop contains 𝑚
steps of re-training and 𝑇 −𝑚 steps of fine-tuning. For re-training process, cross-teaching is used to deal with pseudo-labeled data obtained from cherry-picking. The meta-parameters
[𝛷𝑠𝑤𝑛 , 𝛷𝑠𝑠 , 𝜃′ ] are updated in the outer-loop by using the validation losses 𝐿𝑣

𝑎𝑣𝑔 . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

set to avoid the drifting problem. Although cherry-picking exploits
valuable information from the unlabeled set, the operation relies on the
initial model’s performance, just as the standard self-training process.
It is impossible for cherry-picking to deal with the remaining noisy
labeled samples in the subsequent updating procedure. Therefore, in
this paper, we propose to use double-branch classifiers as the base-
learners and let them update their parameters in a cross-teaching
manner. The noisy labeled samples will be filtered out gradually in the
updating steps. Moreover, in order to solve the problem that the cross-
teaching process may wrongly reject some clean samples, new training
samples are synthesized with the mixup method (Zhang et al., 2018a).

In the outer loop, meta-learners (initialization parameters of the
classifiers and SWN) are optimized by using the validation losses com-
puted with the query set of the task. The whole process is illustrated in
Fig. 1.

In a nutshell, our proposed LTTL learns to accumulate semi-
supervised learning experience from SSFSC tasks to adapt the network
to new similar tasks quickly. The contributions of this paper can be
summarized as

(1) A novel self-training strategy is proposed for semi-supervised
few-shot classification (SSFSC), which effectively exploits unla-
beled data with pseudo-labeling. It can also exploit recursive
training to improve performance.

(2) A novel meta-learned framework for processing unlabeled data,
which prevents the models from drifting due to label noise. The
framework contains several steps: cherry-picking, cross-branch
teaching, and clean data fine-tuning.

(3) Our method achieves satisfying performance on two versions of
ImageNet benchmarks — miniImageNet (Vinyals et al., 2016)
and tieredImageNet (Ren et al., 2018a).

Compared to the conference version of our paper (Li et al., 2019),
this version additionally presents the following contributions:

(1) We propose to use double-branch classifiers with cross-teaching
updating manner to replace the original simple classifier in Li
et al. (2019). Cross-teaching first gradually learn to filter out
noisy labeled samples, and then it synthesizes new training sam-
ples to fetch up the rejected ones, which can effectively reduce
the effect of noisy labeled data and improve the performance.

(2) We use a new evaluation process with a larger meta-test dataset
containing 6000 random unseen tasks, obtaining more stable test
results.

(3) More thorough experiments and analyses are provided to demon-
strate the favorable performance of our method.

2. Related work

Few-shot classification (FSC). Most FSC works are based on super-
vised learning. They can be roughly divided into three categories:
(1) data augmentation based methods (Wang et al., 2018; Xian et al.,
2019; Zhang et al., 2018b) directly deal with the data deficiency prob-
lem in FSC, which conditionally generate training data or features for
classifiers. (2) metric learning methods (Sung et al., 2018; Chen et al.,
2019; Hou et al., 2019) learn a distance metric for image features which
is effective with few training samples. (3) gradient descent methods in
meta-learning (Finn et al., 2017, 2018; Antoniou et al., 2019; Zhang
et al., 2018b; Sun et al., 2019b,a; Liu et al., 2020), which are commonly
used, exploit a two-loop training process that learns meta-learners in
the outer loop to adjust the updating algorithm of base-learners in the
inner loop so that they can be effectively trained on a new few-shot
task. MAML (Finn et al., 2017) and its variants (Finn et al., 2018;
Antoniou et al., 2019) meta-learn the initial parameters for the CNN
model. Zhang et al. (2018b) proposed MetaGAN, which meta-learns to
generate fake samples for the inner loop. In our LTTL, we also adopt
the two-loop training process of the meta-learning framework. Different
from previous works, we propose a new inner-loop updating process
and meta-learners that deal with noisy labels from pseudo-labeled
samples, particularly for semi-supervised few-shot learning.
Semi-supervised few-shot classification (SSFSC). Semi-supervised
learning on FSC tasks aims to improve classification accuracy by adding
many unlabeled data in training. Ren et al. (2018a) proposed three
semi-supervised variants of ProtoNets (Snell et al., 2017), basically
using the Soft 𝑘-Means method to improve the clustering centers (pro-
totypes) with the additional unlabeled data. Liu et al. (2019) proposed
a transductive propagation network (TPN) to propagate labels from
labeled data to unlabeled ones with a relation graph and meta-learned
the key hyperparameters of TPN. Yu et al. (2020) designed a transfer
learning framework to utilize the auxiliary information from labeled
base-class data and unlabeled novel-class data. The model is further
enhanced by using MixMatch (Berthelot et al., 2019). Simon et al.
(2020) learned dynamic classifiers from a few samples based on a sub-
space method. Differently, we build our method based on the classical
and straightforward self-training (Yarowsky, 1995) and meta-learning
method (Finn et al., 2017; Sun et al., 2019b) without requiring a
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new design of a semi-supervised network. Rohrbach et al. (2013)
proposed to further leverage external knowledge, such as the seman-
tic attributes of categories, to solve not only the few-shot but also
zero-shot problems. In this paper, we exploit a simple but effective
semi-supervised technique — self-training (Dong-Hyun, 2013), to en-
hance the inner-loop of meta-learning process for dealing with the
SSFSC problem.
Learning from noisy labels. In our work, pseudo labels can be re-
garded as noisy labels. In the field of noisy label learning, many popular
methods are about sample selection/weighting that automatically ad-
just the weight of noisy samples during training (Ren et al., 2018b; Han
et al., 2018; Arazo et al., 2019; Huang et al., 2019; Li et al., 2020). Their
weighting is often relying on the loss or entropy of each noisy sample.
For instance, Ren et al. (2018b) meta-learned the soft weight for each
training sample. Huang et al. (2019) filtered out samples that have
high average losses after several training epochs. Arazo et al. (2019)
learned a Beta mixture model from the ‘‘loss data’’ and use this model
to assign weights on training samples. Our proposed method utilizes
cross-branch sample selection (Han et al., 2018; Yu et al., 2019; Li et al.,
2020), which is practical and convenient to exploit for our self-training
process.

3. Problem definition and denotation

There are three different training settings for few-shot image clas-
sification: supervised, semi-supervised and transductive settings. In
the standard supervised setting, only a few labeled samples (called
support set) are provided for each novel class. In the transductive
setting, the test samples of novel classes (also called query samples)
are assumed available and regarded as unlabeled samples, which give
additional information about the distribution of novel classes on top of
the support set. In the semi-supervised setting, an additional unlabeled
set is given for providing for training the model, while the query set is
unknown during training and only used at inference time. Our proposed
method adopts the semi-supervised setting as Ren et al. (2018a).

Specifically, the episodic training of meta-learning framework
(Vinyals et al., 2016) is used, which consists of the meta-train and
meta-test phases. The input of the two phases are tasks, not data-
points such as images. Let us revisit the meta-learning framework and
detail the denotations.
Tasks of meta-learning (semi-supervised setting). Tasks used in
meta-learning can be ‘‘sampled’’ or constructed from a large-scale
dataset. For each task, a fixed number of classes are first randomly
sampled (𝐶 classes are totally sampled), and then the corresponding
data points are sampled for each class. Following the settings in Ren
et al. (2018a), these samples are further divided into three splits: a
small labeled training set called support set , another labeled set used
to evaluate the performance called query set , and an unlabeled set
 used for semi-supervised learning.
Meta-train phase. In this phase, the model is trained on multiple
training tasks, such that the trained model can master new concepts
quickly with only a few training samples. Each meta-train episode
contains a two-loop optimization process: Inner-loop is also called base-
learning, where the models 𝜃 (named as base-learners) are updated
through the training loss on the support set  and unlabeled set  by
performing gradient descent:

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼∇𝜃𝑡−1𝐿
(

 ∪; 𝜃𝑡−1
)

, (1)

where 𝛼 is the learning rate used in the inner-loop. Outer-loop is also
called meta-learning, where learnable hyper-parameters 𝛷 (e.g., initial
parameters of the model, which are named as meta-learners) needed by
the base-learning are optimized with the validation loss on the query
set :

𝛷 ← 𝛷 − 𝛽∇𝛷𝐿
𝑣(; 𝜃𝑇 (𝛷)

)

, (2)

where 𝛽 is the learning rate used in the outer-loop. 𝜃𝑇 can be regarded
as a function of 𝛷 here.
Meta-test phase. The performance of meta-train is evaluated in this
phase. Given an unseen (‘‘unseen’’ means there is no overlap of classes
between meta-test and meta-train tasks) task 𝑢𝑛, we train a new
few-shot model with the given support set 𝑢𝑛 as well as unlabeled
set 𝑢𝑛 of the task as Eq. (1), and the learned hyper-parameters 𝛷
are directly used during the training process. We finally evaluate the
model’s performance on the query set 𝑢𝑛 of the task. If there are
multiple unseen tasks, their average accuracy is reported as the final
evaluation.

4. Learning to Teach and Learn (LTTL)

We introduce our proposed LTTL according to the two-loop training
process of meta-learning as in (Finn et al., 2017; Sun et al., 2019b; Rusu
et al., 2019).

4.1. Inner-loop: learning classifiers for each SSFSC task

The inner-loop of our method is illustrated in Fig. 1 (inside the red
box) and Fig. 2. It consists of following several steps: (1) assigning
pseudo labels for the unlabeled dataset  with initially trained
classifiers; (2) applying cherry-picking to pseudo-labeled samples
by using hard-selection and soft-weighting two operations; (3) per-
forming cross-teaching updating process for the double-branch clas-
sifiers; and (4) fine-tuning the classifiers with ‘‘clean’’ data from
the support set. We denote the process that training classifiers with
pseudo-labeled data as re-training.

4.1.1. Pseudo-labeling
Pseudo-labeling is the first step for the inner-loop. This step first

trains task-specific classifiers 𝜃 on the support set . And then pseudo
labels of the unlabeled samples in  are predicted by 𝜃 . We choose
a simple but top-performing method — meta-transfer learning (MTL)
(Sun et al., 2019b) as the baseline. Specifically, MTL fixes the feature
extracting part (convolutional layers) of the network in the inner-loop
and only exploits the final fully-connected (FC) layer as the classifier.
This baseline is more suitable for complex base-learning processes due
to its good property that takes up minor computing resources. We detail
the pseudo-labeling operation for one single classifier in the following.

Given the support set , a classification loss is used to optimize the
classifier 𝜃 by performing a few gradient descent steps:

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼∇𝜃𝑡−1𝐿
(

; 𝜃𝑡−1
)

, (3)

where 𝑡 ∈ {1,… , 𝑇𝑝𝑟𝑒} is the updating step, 𝐿
(

; 𝜃𝑡−1
)

is the classifica-
tion loss (e.g., cross-entropy loss 𝑙𝑐𝑒) computed with :

𝐿
(

; 𝜃𝑡−1
)

= 1
||

∑

(𝑥𝑖 ,𝑦𝑖)∈
𝑙𝑐𝑒

(

𝑓𝜃𝑡−1 (𝑥𝑖), 𝑦𝑖
)

, (4)

where 𝑓𝜃𝑡−1 (⋅) indicates the classifier (the final fully-connected layer)
with parameters 𝜃𝑡−1. The initialization 𝜃0 is given by 𝜃′ meta-learned in
the outer-loop. After the updating process, we feed unlabeled samples
 =

{

𝑥𝑢𝑖
}

to the classifier to get pseudo labels
{

𝑦̂𝑢𝑖
}

as follows,

𝑦̂𝑢𝑖 = argmax
(

𝑓𝜃𝑇𝑝𝑟𝑒 (𝑥
𝑢
𝑖 )
)

, 𝑥𝑢𝑖 ∈ . (5)

The most confident classes selected by the argmax (⋅) function are used
as the labels. Our proposed method has multiple classifiers (denoted
as 𝜃 , where  is the index set). The classifiers are updated identically
by Eq. (3), and the pseudo labels are obtained by using the average
predictions of the classifiers. However, due to the extreme scarcity of
labeled data in the support set, initially trained 𝑓𝜃𝑇𝑝𝑟𝑒 (⋅) may produce
many noisy labels.

3
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Fig. 2. Details of applying LTTL to a single (2-class, 2-shot) task in the inner-loop. (a) Pseudo-labeling and cherry-picking operations for processing the unlabeled set . Hard-
selection and soft weighting are subsequently used in cherry-picking to select informative samples. (b) Cross-teaching operation for rejecting more noisy labels. Double-branch
classifiers with indexes 0 and 1 are used in this process, which reject noisy labeled samples according to the loss values for each other. After re-training with the pseudo-labeled
set 𝑝, the classifiers are further fine-tuned with the clean set  to avoid the drifting problem.

4.1.2. Cherry-picking
After pseudo-labeling, we propose cherry-picking to take advantage

of the obtained pseudo-labeled data. cherry-picking has two main oper-
ations: hard-selection that picks the most confident samples just like
the normal self-training paradigm, and soft-weighting that up-weighs
more informative samples as well as down-weighs less useful ones, as
shown in the third part of Fig. 2.

Specifically, we pick up 𝑍 samples which have the largest prediction
scores (by using the initial classifiers) for each class, thus 𝑍×𝐶 samples
coming from 𝐶 classes are selected in the pseudo-labeled set. We
denoted this newly obtained set as 𝑝. Instead of using 𝑝 directly
in the re-training process, we compute soft weights for the data with
a soft-weighting network (SWN) to enhance the effect of those more
valuable samples. As for the structure design of SWN, the obtained
weights should reflect the relations between samples and the semantic
representations of all the classes, so we refer to a metric-learning FSC
method (Sung et al., 2018) which effectively makes use of relations
between support and query samples for classification.

First, we compute the prototype of each class by averaging the
features of all its samples in the support set (in the 1-shot case, the
unique sample feature is used as the prototype):

𝑃𝑐 =
∑

𝑘 𝑓𝛷𝑠𝑠
(𝑥𝑐,𝑘)

𝐾
, (6)

where 𝑐 ∈ [1,… , 𝐶] is the class index, 𝑘 ∈ [1,… , 𝐾] is the sample index
in one class, 𝑥𝑐,𝑘 ∈ . We use 𝑓𝛷𝑠𝑠

(⋅) to denote the feature extractor
part of the model and 𝛷𝑠𝑠 denotes its parameters. The inputs of 𝑓𝛷𝑠𝑠

(⋅)
are images and the outputs are feature representations.

And then, given a pseudo-labeled sample (𝑥𝑖, 𝑦𝑖) ∈ 𝑝, we concate-
nate its feature with each of 𝐶 prototypes

{

𝑃𝑐
}

and input them to SWN.
The soft weight for the 𝑐th class is as follows,

𝑤𝑖,𝑐 = 𝑓𝛷𝑠𝑤𝑛

([

𝑓𝛷𝑠𝑠
(𝑥𝑖);𝑃𝑐

])

, (7)

where
[

⋅; ⋅
]

is the concatenate operation and 𝛷𝑠𝑤𝑛 denotes the pa-
rameters of SWN. The inputs for the SWN (denoted as 𝑓𝛷𝑠𝑤𝑛

(⋅)) are
concatenated features

[

𝑓𝛷𝑠𝑠
(𝑥𝑖);𝑃𝑐

]

and outputs are the soft weights
{𝑤𝑖,𝑐}. Both 𝑓𝛷𝑠𝑠

(⋅) and 𝑓𝛷𝑠𝑤𝑛
(⋅) are CNNs in our method. After obtaining

{𝑤𝑖,𝑐}, they are further normalized over all the classes through a
softmax layer.

In cherry-picking, hard-section can reject some noisy-labeled data.
However, the operation can only be used at the start of the inner-loop,

and many noisy-labeled samples still remain in the pseudo-labeled set,
which harms the subsequent retraining process.

4.1.3. Cross-teaching of double-branch classifiers
To further reduce the interference of noisy labels after cherry-

picking, we re-design the re-training scheme in the inner-loop, which
can reject more noisy labeled samples dynamically. Specifically, we
refer to the sample selection method in data cleaning (Han et al., 2018;
Yu et al., 2019; Wang et al., 2019; Huang et al., 2019), and improve the
original self-training process using two classifiers 𝜃 ( = {0, 1}), which
allows each one to ‘‘teach’’ the other how to learn with the noisy labels.
We name the new proposed re-training process as cross-teaching, it first
performs cross-selection as well as feature synthesizing for cherry-picked
data, and then updates the parameters of classifiers mutually by letting
them ‘‘teach’’ each other.
Cross-selection & feature synthesizing. During training, the DNN
models tend to first learn knowledge from ‘‘easy’’ samples with small
losses (Arpit et al., 2017). According to this finding, we can leverage
each sample’s loss value to identify noisy labeled ones that are hard to
be rejected by hard-selection. For the classifiers, the samples with the
highest loss values in 𝑝 are filtered out mutually with a reject ratio
𝑅(𝑡), thus more clean datasets can be constructed as:

𝑐
𝑖∕ = argmin′∶|′

|≥𝑅(𝑡)|𝑝
|

𝐿(′; 𝜃𝑖), 𝑖 ∈  (8)

where the subscript ‘‘𝑖∕’’ indicates that two datasets are constructed
in a ‘‘cross-selection’’ manner with the two classifiers 𝜃 , just as in
the methods (Han et al., 2018; Yu et al., 2019) and is illustrated in
the bottom part of Fig. 2. 𝑅(𝑡) is a function of updating step 𝑡, which
changes linearly at first and then remains unchanged after a fixed
number:

𝑅 (𝑡) = min
{

𝑡
𝑡𝑘
𝑟, 𝑟

}

, (9)

where 𝑡𝑘 is the step at which the reject ratio stops changing, and 𝑟
is the final constant reject ratio. Compared to the conventional noisy
data learning tasks, each SSFSC task includes rather fewer training
samples in both the support set  and the pseudo labeled set , so
filtering out estimated noisy labeled samples as in (Han et al., 2018;
Yu et al., 2019; Wang et al., 2019; Huang et al., 2019) may waste
some valuable samples. In order to solve this problem, we synthesize
new datapoints to make up those rejected data. In specific, we use
mixup (Zhang et al., 2018a) which can be easily applied to the samples
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with different categories. This method synthesizes new samples with
the convex combinations of data pairs (𝑥𝑖 and 𝑥𝑗) as well as their
corresponding labels (𝑦𝑖 and 𝑦𝑗):

𝑥𝑠 = 𝜆𝑥𝑖 + (1 − 𝜆) 𝑥𝑗 , (10)

𝑦𝑠 = 𝜆𝑦𝑖 + (1 − 𝜆) 𝑦𝑗 , (11)

where 𝜆 is a variable randomly sampled from the beta distribution
𝐵𝑒𝑡𝑎 (𝛼, 𝛽). This linear combination regularizes the network to prefer
simple linear behavior between training instances, such as to reduce
oscillations in the regions far from them. As indicated in Zhang et al.
(2018a), applying this operation to noisy labeled data can improve the
robustness of model training. However, we empirically find that it is
not quite effective in the more challenging SSFSC tasks (with fewer
training samples). Instead, we choose to synthesize new samples with
the support set , and the obtained augmentation dataset is denoted as
𝑎.
Mutual-teaching for the classifiers updating. After obtaining 𝑐

 and
𝑎, the double-branch classifiers learn to update their parameters in
a mutual-teaching manner for each re-training step (as shown in the
second part of Fig. 2). The classifiers’ parameters are first initialized
as 𝜃,0 ← 𝜃′ , where 𝜃′ ( = {0, 1}) are task-generic parameters meta-
learned by the outer loop. We then update 𝜃,0 by performing gradient
descent steps on three data splits: 𝑐

 ,  as well as 𝑎. Assuming there
are total 𝑇 steps for parameters updating, re-training takes the first
1 ∼ 𝑚 steps (𝑡 ∈ {1,… , 𝑚}), we have

𝜃,𝑡 ← 𝜃,𝑡−1 − 𝛼▽𝜃,𝑡−1𝐿𝑟𝑒
(

; 𝜃,𝑡−1
)

, (12)

where 𝛼 is the learning rate used for gradient descent, and  = ∪𝑐
∪

𝑎. 𝐿𝑟𝑒 denotes the classification loss of re-training steps computed as
follows,
𝐿𝑟𝑒

(

; 𝜃,𝑡
)

=
1

| ∪𝑎
|

∑

(𝑥𝑖 ,𝑦𝑖)∈∪𝑎

𝑙𝑐𝑒
(

𝑓𝜃,𝑡 (𝑥𝑖), 𝑦𝑖
)

+ 1
|

|

|

𝑐

|

|

|

∑

(𝑥𝑖 ,𝑦𝑖)∈𝑐


𝑙𝑐𝑒
(

𝐰𝑖 ⊙ 𝑓𝜃,𝑡 (𝑥𝑖), 𝑦𝑖
)

.

(13)

The conventional cross-entropy losses are computed for samples in
 ∪ 𝑎. And for samples in 𝑐

 , their predictions are weighted by
𝐰𝑖 = {𝑤𝑖,𝑐}𝐶𝑐=1 before going into the softmax layer. As 𝑅(𝑡) starts from 0
and increases linearly, more and more noisy labeled samples are filtered
out mutually by the two classifiers, it seems that they teach each other
how to learn with noisy labels. The process continues until at step 𝑡𝑘
and their performance will become stable since then.

4.1.4. Fine-tuning classifiers with the support set
After 𝑚 re-training steps, the classifiers are further fine-tuned with

only labeled samples (from the support set ) for the rest 𝑇 −𝑚 steps,

𝜃,𝑡 ← 𝜃,𝑡−1 − 𝛼▽𝜃,𝑡−1𝐿(; 𝜃,𝑡−1), (14)

where 𝐿 is the conventional classification loss with the same computing
process as Eq. (4). We find that the fine-tuning process is necessary
to avoid the drifting problem and boost the final performance of our
method.
Iterating ‘‘teach and learn’’ with fine-tuned models. Conventional
self-training often follows an iterative procedure, aiming to obtain a
gradually enlarged labeled set (Yarowsky, 1995; Triguero et al., 2015).
Similarly, our method can be iterated once fine-tuned classifiers 𝜃,𝑇
are obtained, i.e., using 𝜃,𝑇 to predict more reliable pseudo labels
for  and re-train the classifiers again. When the size of  is big
enough, e.g., 100 samples per class, we can split  into multiple
subsets (e.g., 10 subsets and each one has 10 samples) and perform the
‘‘teach and learn’’ process recursively each time on a new subset. We
validate through experiments that first splitting  and then performing
recursive training on subsets obtains better results than that using the
large  and re-training only once.

4.2. Outer-loop: updating meta-learners [𝛷𝑠𝑤𝑛, 𝛷𝑠𝑠, 𝜃′ ]

As described by the meta-train phase (Eq. (2)) in Section 3, gradi-
ent descent methods typically use the final obtained models 𝜃𝑇 (in the
inner-loop) to compute the validation loss on the query set , which
is used for optimizing the meta-learners (Sun et al., 2019b; Finn et al.,
2017). In this paper, we have multiple meta-learners: 𝛷𝑠𝑤𝑛, 𝛷𝑠𝑠 and
𝜃′ (𝛷𝑠𝑠 is originally used in MTL (Sun et al., 2019b)). We propose to
update them with the validation losses calculated at different inner-
loop updating steps, aiming to optimize them particularly towards
specific purposes, as shown in Fig. 1. Specifically, [𝛷𝑠𝑠, 𝜃′ ] work for
both feature extraction and final classification, which affect the whole
self-training process, so we choose to optimize them by using the
average loss after the last updating steps 𝑇 . While 𝛷𝑠𝑤𝑛 produces soft
weights to refine the re-training process, and its quality should be
evaluated by classifiers 𝜃,𝑚 after the final re-training steps 𝑚. Two
optimization functions are as follows,

𝛷𝑠𝑤𝑛 ← 𝛷𝑠𝑤𝑛 − 𝛽1▽𝛷𝑠𝑤𝑛
𝐿𝑣
𝑎𝑣𝑔(; 𝜃,𝑚(𝛷𝑠𝑤𝑛, 𝛷𝑠𝑠, 𝜃

′
 )), (15)

[𝛷𝑠𝑠, 𝜃
′
 ] ← [𝛷𝑠𝑠, 𝜃

′
 ] − 𝛽2▽[𝛷𝑠𝑠 ,𝜃′ ]

𝐿𝑣
𝑎𝑣𝑔(; 𝜃,𝑇 (𝛷𝑠𝑤𝑛, 𝛷𝑠𝑠, 𝜃

′
 )). (16)

where 𝛽1 and 𝛽2 are meta learning rates that are manually set in
experiments. The average loss 𝐿𝑣

𝑎𝑣𝑔 is computed as

𝐿𝑣
𝑎𝑣𝑔(; 𝜃,𝑡(𝛷𝑠𝑤𝑛, 𝛷𝑠𝑠, 𝜃

′
 )) =

1
||

∑

𝑖∈
𝐿𝑣(; 𝜃𝑖,𝑡(𝛷𝑠𝑤𝑛, 𝛷𝑠𝑠, 𝜃

′
𝑖 )). (17)

5. Experiments

We evaluate the proposed LTTL method in terms of few-shot image
classification accuracy in semi-supervised settings. Below we describe
the benchmarks we evaluate, details of settings, and ablation study.

5.1. Datasets and implementation details

Datasets. We conduct our experiments on two subsets of ImageNet
(Russakovsky et al., 2015). miniImageNet was firstly proposed by
Vinyals et al. (2016) and has been widely used in supervised FSC
works (Finn et al., 2017; Ravi and Larochelle, 2017; Sun et al., 2019b;
Rusu et al., 2019; Grant et al., 2018; Franceschi et al., 2018), as
well as semi-supervised works (Liu et al., 2019; Ren et al., 2018a;
Yu et al., 2020; Simon et al., 2020). In total, there are 100 classes
with 600 samples of 84 × 84 color images per class. The 100 classes
are divided into 64, 16, and 20 classes for meta-train, meta-validation,
and meta-test respectively. tieredImageNet was proposed by Ren et al.
(2018a). It includes a much larger number of 608 categories compared
with miniImageNet. These classes are from 34 super-classes which are
divided into 20 for meta-train (351 sub-classes), 6 for meta-validation
(97 sub-classes), and 8 for meta-test (160 sub-classes). The average
image number per class of tieredImageNet is 1281. All images are also
resized to 84 × 84.
Network architectures. The backbone network architecture is adopted
from MTL (Sun et al., 2019b), it contains 4 residual blocks and each
block has 3 convolutional layers with 3 × 3 kernels. At the end of each
block, a 2 × 2 max-pooling layer is applied. The number of filters are
64, 128, 256 and 512 for the 4 blocks respectively. Following residual
blocks, a mean-pooling layer is applied to compress the feature maps
to a 512-dimension embedding. The architecture of the proposed SWN
consists of 2 convolutional layers with 3 × 3 kernels, followed by 2
fully-connected layers with dimensions 8 and 1, respectively.
Ablative settings. In order to show the effectiveness of our method, we
design following settings belonging to two groups: with and without
meta-training. Following are the detailed ablative settings. no selec-
tion denotes performing self-training without using any processing
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Table 1
Classification accuracy (%) of different methods on miniImageNet and tieredIm-
ageNet datasets. There are three parts for each table: Part 1 represents different
semi-supervised few-shot classification (SSFSC) methods, Part 2 represents the
baseline method MTL and Part 3 represents our proposed methods. ‘‘1’’: 4 CONV,
‘‘2’’: ResNet-12, ‘‘3’’: WideResNet-28.
Method miniImageNet

1-shot 5-shot

Masked Soft 𝑘-Means1, Ren et al. (2018a) 50.4 ± 0.3 64.4 ± 0.2
TPN1, Liu et al. (2019) 52.8 ± 0.3 66.4 ± 0.2
Semi DSN1, Simon et al. (2020) 53.0 ± 0.82 69.1 ± 0.62
Masked Soft 𝑘-Means2, Ren et al. (2018a) 62.1 ± 1.8 73.6 ± 0.8
TPN2, Liu et al. (2019) 62.7 ± 1.8 74.2 ± 0.8
TransMatch3, Yu et al. (2020) 63.0 ± 1.01 81.2 ± 0.59

MTL2, Sun et al. (2019b) 61.2 ± 1.8 75.5 ± 0.9

LTL2 (Ours, LST (Li et al., 2019)) 70.1 ± 0.56 78.3 ± 0.26
LTTL2 (Ours, LTT(s)) 71.2 ± 0.59 78.5 ± 0.27

Method tieredImageNet

1-shot 5-shot

Masked Soft 𝑘-Means1, Ren et al. (2018a) 52.4 ± 0.4 69.9 ± 0.2
TPN1, Liu et al. (2019) 55.7 ± 0.3 71.0 ± 0.2
Semi DSN1, Simon et al. (2020) 54.1 ± 0.96 72.1 ± 0.69
Masked Soft 𝑘-Means2, Ren et al. (2018a) 68.6 ± 0.8 81.0 ± 0.8
TPN2, Liu et al. (2019) 72.1 ± 1.8 83.3 ± 0.8

MTL2, Sun et al. (2019b) 65.6 ± 1.8 78.6 ± 0.9

LTL2 (Ours, LST (Li et al., 2019)) 79.0 ± 0.57 84.9 ± 0.28
LTTL2 (Ours, LTT(s)) 80.3 ± 0.54 85.9 ± 0.28

of pseudo labels. hard denotes performing hard-selection for pseudo-
labeled data. hard (𝛷𝑠𝑠, 𝜃′) means using hard-selection and meta-
training [𝛷𝑠𝑠, 𝜃𝑇 ]. soft denotes assigning soft weights for selected
pseudo-labeled data by the meta-trained SWN. recursive applies mul-
tiple iterations of self-training based on fine-tuned models. Noting that
recursive is only used for the meta-test phase, as the meta-trained SWN
can be repeatedly used. We also have a comparable setting to recursive
called mixing in which the whole unlabeled set  is used and run only
one re-training round (see Section 4.1.4).
Ablative settings for the cross-teaching. We further design several
settings to show the effectiveness of the new proposed LTTL method.
Specifically, LTL denotes our original method (LST) in the conference
version (Li et al., 2019). LTT denotes that we use the cross-teaching
framework without using the feature synthesizing method. LTT(pl)
denotes that we use mixup to synthesize new instances from pseudo-
labeled set in order to make up the rejected data after cross-selection.
LTT(s) denotes that we use mixup to synthesize new instances from
support set. LTT(s) is the final version of our method, so LTTL and
LTT(s) are the same method in the following contents.

5.2. Overview for two datasets with related methods

In Table 1, we present our results compared with related methods.
The upper table part presents the results on miniImageNet. We can see
that the proposed LTTL achieves the best performance for the 1-shot
(71.2%) and improves the accuracy by 1.1% compared with LTL (the
method in the conference version). Compared with the baseline method
MTL (Sun et al., 2019b), LTTL improves the performance by 10.0% and
3.0% respectively for 1-shot and 5-shot, which proves the efficiency of
our proposed method with unlabeled data. As for other SSFSC methods,
we can see that Masked Soft 𝑘-Means (Ren et al., 2018a), TPN (Liu
et al., 2019) improve their performance by a large margin (more than
10% for 1-shot and 7% for 5-shot) when they are equipped with pre-
trained deeper backbone and use more unlabeled samples (100 per
class). Compared with them, our LTTL achieves more than 8.5% and
4.3% improvements respectively for 1-shot and 5-shot tasks with the
same amount of unlabeled data on miniImageNet. Compared with the
recently proposed method (Yu et al., 2020), LTTL surpasses TransMatch

by 8.2% for 1-shot, they obtain a better 5-shot accuracy 81.2%, which
may be due to the fact that their method uses a deeper backbone model.

The lower part of the table presents the results on tieredImageNet.
Our proposed LTTL performs best for both 1-shot (80.3%) and 5-shot
(85.9%), and it surpasses LTL by 1.3% and 1.0% for respectively 1-
shot and 5-shot. Compared with MTL (Sun et al., 2019b), LTTL further
improves the results by 14.7% and 7.3% for respectively 1-shot and
5-shot. Moreover, our method also surpasses TPN (ResNet-12) by 8.2%
and 2.6% for 1-shot and 5-shot.

5.3. Ablation study

In Table 2, we provide experimental results for the ablative settings.
Hard-selection & Soft-weighting. Hard-selection operation often
brings improvements. In specific, hard can improve the performance
of 1-shot and 5-shot by 3.5% and 1.0% on miniImageNet, 2.3% and
0.5% on tieredImageNet, compared with no selection. Moreover, re-
cursively repeating the operation (recursive,hard), when dividing a
large number of unlabeled samples into several splits, brings more
than 1% average gain in all the cases. As for soft-weighting, the
meta-trained SWN can enhance the effect of more valuable samples,
leading to better performance. When using SWN individually, soft has
already achieved comparable results with previous SSFSC methods (Ren
et al., 2018a; Liu et al., 2019). When using SWN in cooperation
with hard-selection (hard,soft), the setting achieves 0.9% and 0.8%
improvements on tieredImageNet for 1-shot and 5-shot respectively
compared with hard(𝛷𝑠𝑠, 𝜃′), which also shows that the two operations
are complementary.
Recursive setting. Comparing the results of recursive,hard with hard,
we can see that by doing recursive self-training when updating 𝜃, the
results are improved in both ‘‘meta’’ and ‘‘no meta’’ scenarios. E.g., it
boosts the results by 5.0% when applying recursive training to hard,soft
for miniImageNet 1-shot. However, when using mixing,hard,soft that
learns all unlabeled data without recursive, the improvement reduces by
3.8%. These observations show that recursive self-training can success-
fully leverage unlabeled samples. However, recursive sometimes brings
undesirable results in the cases with ‘‘distractors’’. E.g., compared
with hard, the recursive,hard brings reduction for 1-shot on both two
datasets, which might be due to the fact that disturbances caused by
distracting classes in early recursive stages propagate to later stages.
Even though our method is slightly more sensitive when adding out-of-
distribution samples to the unlabeled dataset, we still obtain the best
results compared with other two methods (Ren et al., 2018a; Liu et al.,
2019). When using the newly proposed cross-teaching (r,h,s+LTT(s)),
consistent improvements are achieved, e.g., 1.3% and 1.0% for 1-shot
and 5-shot respectively on tieredImageNet.

In Table 3, we further provide ablative settings for the proposed
cross-teaching process with three main settings: (1) soft, (2) hard,soft,
which use a small number of unlabeled data (30 per class for 1-shot and
50 per class for 5-shot) as well as (3) recursive,hard,soft (r,h,s), which
uses a larger number of unlabeled data (100 per class for both 1-shot
and 5-shot).
Double-branch classifiers. According to the table, we can see that
using double-branch classifiers and let them teach each other in a cross-
teaching manner often brings improvements. For example, compared
with LTL (the conference version method LST), LTT achieves 0.7%
and 0.6% improvements in 1-shot with hard,soft setting with a small
number of unlabeled data. The performance proves that filtering out
high-loss instances can indeed reject some noisy labeled data in few-
shot tasks. However, the improvements are often minor in w/ cases,
especially the hard selection operation is used (hard, soft as well as
r,h,s), for example, LTT achieves the same result 63.7% as LTL with
hard, soft setting (1-shot on miniImageNet). One reason may be that
this kind of sample selection method is not quite effective when there
are out-of-distribution categories.
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Table 2
Classification accuracy (%) in ablative settings (middle blocks) and related SSFSC works (bottom block), on miniImageNet and tieredImageNet. ‘‘fully supervised’’ means the labels
of unlabeled data are used. ‘‘no meta’’ means SWN is not used in the framework while ‘‘meta’’ means SWN are used and updated by meta-learning. In the bottom rows, we also
list the results of some related methods (Ren et al., 2018a; Liu et al., 2019) ‘‘w/’’ means using unlabeled data from 3 distracting classes that are excluded in the support set.
‘‘r,h,s’’ is the abbreviation for recursive,hard,soft. ResNet-12 (denoted as ‘‘2’’) is used as the backbone.

miniImagenet tieredImagenet miniImagenet w/ tieredImagenet w/

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

fully supervised 80.5± 0.54 83.6± 0.24 86.6± 0.55 88.7± 0.26 – – – –

no meta
no selection 59.6± 0.54 75.2± 0.23 67.4± 0.54 81.2± 0.26 54.8± 0.54 73.2± 0.24 66.0± 0.54 79.4± 0.26
hard 63.1± 0.54 76.2± 0.24 69.7± 0.54 81.7± 0.26 61.2± 0.54 75.1± 0.24 69.0± 0.54 81.0± 0.26
recursive,hard 64.6± 0.53 76.9± 0.24 72.2± 0.56 83.3± 0.27 61.0± 0.57 75.7± 0.26 68.8± 0.57 81.1± 0.28

meta

hard (𝛷𝑠𝑠 , 𝜃′) 64.2± 0.52 76.9± 0.25 74.7± 0.54 83.2± 0.26 62.9± 0.54 75.6± 0.24 73.4± 0.55 82.4± 0.26
soft 63.0± 0.54 76.3± 0.24 73.0± 0.54 83.5± 0.26 61.5± 0.54 75.2± 0.24 71.1± 0.54 82.2± 0.25
hard,soft 65.1± 0.54 77.2± 0.24 75.6± 0.53 84.0± 0.26 63.7± 0.53 76.1± 0.23 74.1± 0.54 83.1± 0.26
mixing,hard,soft 66.3± 0.54 77.6± 0.24 76.7± 0.54 84.2± 0.26 64.7± 0.54 76.6± 0.24 74.9± 0.54 83.3± 0.26
recursive,hard,soft 70.1± 0.56 78.3± 0.26 79.0± 0.57 84.9± 0.28 64.2± 0.56 76.8± 0.27 74.0± 0.58 83.2± 0.28
r,h,s + LTT(s) 71.2± 0.59 78.5± 0.27 80.3± 0.54 85.9± 0.28 64.8± 0.56 76.9± 0.27 74.0± 0.58 83.6± 0.28

Masked Soft 𝑘-Means2 62.1± 1.8 73.6± 0.8 68.6± 1.7 81.0± 0.7 61.0± 1.7 72.0± 0.8 66.9± 1.8 80.2± 0.9
TPN2 62.7± 1.7 74.2± 0.8 72.1± 1.8 83.3± 0.8 61.3± 1.7 72.4± 0.8 71.5± 1.7 82.7± 0.9
Masked Soft 𝑘-Means 50.4± 0.3 64.4± 0.2 52.4± 0.4 69.9± 0.2 49.0± 0.3 63.0± 0.1 51.4± 0.4 69.1± 0.3
TPN 52.8± 0.3 66.4± 0.2 55.7± 0.3 71.0± 0.2 50.4± 0.8 64.9± 0.7 53.5± 0.9 69.9± 0.8

Table 3
Classification accuracy (%) in ablative settings for the cross-teaching framework, on miniImageNet and tieredImageNet. We use three different settings for evaluating the new
proposed framework: ‘‘soft ’’ means only SWN is used to process the pseudo-labeled samples; ‘‘hard,soft ’’ means both hard-selection and SWN are used; ‘‘r,h,s’’ is the final setting
in which recursive self-training is used to exploit large amount of unlabeled data. ‘‘w/’’ means using unlabeled data from 3 distracting classes that are excluded in the support
set. ‘‘r,h,s’’ is the abbreviation for the recursive,hard,soft setting. ResNet-12 is used as the backbone.

miniImagenet tieredImagenet miniImagenet w/ tieredImagenet w/

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

soft

LTL 63.0± 0.54 76.3± 0.24 73.0± 0.54 83.5± 0.26 61.5± 0.54 75.2± 0.24 71.1± 0.54 82.2± 0.25
LTT 63.5± 0.54 76.3± 0.23 73.4± 0.54 83.9± 0.24 61.9± 0.54 75.0± 0.24 71.5± 0.54 82.7± 0.24
LTT(pl) 62.6± 0.54 76.0± 0.24 72.5± 0.53 83.5± 0.25 61.2± 0.54 74.6± 0.24 71.1± 0.53 83.0± 0.24
LTT(s) 64.0± 0.54 76.5± 0.24 74.2± 0.54 84.4± 0.24 62.2± 0.55 75.2± 0.24 72.1± 0.54 83.1± 0.24

hard,soft

LTL 65.1± 0.54 77.2± 0.24 75.6± 0.53 84.0± 0.26 63.7± 0.53 76.1± 0.23 74.1± 0.54 83.1± 0.26
LTT 65.8± 0.55 77.0± 0.25 76.2± 0.54 84.5± 0.26 63.7± 0.54 75.9± 0.24 74.3± 0.55 83.5± 0.24
LTT(pl) 64.9± 0.54 77.2± 0.24 75.6± 0.54 84.6± 0.25 63.4± 0.55 76.1± 0.24 74.0± 0.53 83.9± 0.24
LTT(s) 66.2± 0.54 77.2± 0.23 76.7± 0.54 84.8± 0.25 63.9± 0.54 76.2± 0.24 74.8± 0.54 83.9± 0.24

r,h,s

LTL 70.1± 0.56 78.3± 0.26 79.0± 0.57 84.9± 0.28 64.2± 0.56 76.8± 0.27 74.0± 0.58 83.2± 0.28
LTT 70.3± 0.56 78.1± 0.26 79.3± 0.57 85.5± 0.28 64.5± 0.56 76.9± 0.27 73.9± 0.57 83.6± 0.27
LTT(pl) 70.5± 0.57 78.4± 0.26 79.6± 0.57 85.4± 0.28 64.8± 0.57 76.7± 0.28 73.8± 0.57 83.5± 0.28
LTT(s) 71.2± 0.59 78.5± 0.27 80.3± 0.54 85.9± 0.28 64.8± 0.56 76.9± 0.27 74.0± 0.57 83.6± 0.28

Fig. 3. Classification accuracy using different numbers of re-training steps, e.g. 𝑚 = 2 means using 2 steps for re-training and 38 steps (40 steps in total) for fine-tuning at every
recursive stage. Each curve shows the results obtained at the final recursive stage. LTL: our method (LST) in the conference version (Li et al., 2019); LTTL: the new proposed
teaching and learning framework.

Applying feature synthesizing to support set vs. pseudo-labeled

set. Compared with LTL and LTT, we can see that using feature syn-

thesizing to augment the support set can further improve the proposed

algorithm’s performance. When using small amount of unlabeled sam-
ples with soft and hard,soft settings, LTT(s) achieves more than 1% and
0.5% improvements compared with LTL and LTT for 1-shot, moreover,
it obtains best or comparable performance in recursive,hard,soft (r,h,s)
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Fig. 4. Classification accuracy with different numbers of distracting classes on the miniImageNet and tieredImageNet. We evaluate our proposed LTTL by using different values
for re-training steps 𝑚 and hard-selection number 𝑍. Noting that (a) and (b) share legend, and (c) and (d) share legend.

Fig. 5. Meta-validation accuracy achieved at different numbers (1–15) of recursive stages, on the miniImageNet and tieredImageNet datasets.

for both 1-shot and 5-shot tasks. On the contrary, applying the mixup
operation to pseudo-labeled set often performs poorly, e.g., 62.6% with
soft and 64.9% with hard,soft for 1-shot, which are even worse than the
single-branch LTL. It proves that mixup is not quite effective to deal
with noisy labeled data predicted by few-shot classifiers and using more
noisy labeled samples harms the performance.

In the following, we present the experimental results to evaluate the
key components of LTTL including re-training steps, distracting classes,
pseudo-labeling accuracy, and the effect of recursive stages.
Quantitative analyses on the number of re-training steps. In Fig. 3,
we present the results for different re-training steps (2, 5, 10, 20
and 40) on miniImageNet and tieredImageNet. The figure shows two
different settings respectively: LTL is our method proposed in the
conference version; LTTL that uses new proposed cross-teaching to
learn the classifiers.

In 1-shot cases, the results illustrate that too many re-training steps
may lead to the drifting problem which causes side effects on perfor-
mance, and fine-tuning the classifiers with a few clean (labeled) data
after re-training steps can effectively relieve the problem. Specifically,
both LTL and LTTL achieve their best performance with 10 re-training
steps, while using 5 steps obtains close results. When we do not use
the fine-tuning operation (𝑚 = 40), the performance always declines
obviously. Moreover, compared with LTL, using cross-teaching can
further reduce the effect of noisy labeled data and perform better. In 5-
shot cases, the four figures show similar phenomenon: best performance
are often achieved with more re-training steps (at 20 steps or 40 steps)
for both settings. Drifting problems are not quite obvious for 5-shot,
which may be due to the fact that containing more labeled samples
in the support set leads to more stable self-training (cross-teaching)
process with pseudo-labeled data.
Quantitative analyses on the number of distracting classes. In
Fig. 4, we show the effects of distracting classes on the LTTL and other
related methods (improved versions with MTL) (Ren et al., 2018a; Liu
et al., 2019). We evaluate the proposed method by assigning different
values for re-training steps 𝑚 and hard-selection number (per class) 𝑍.
Specifically, we set 2,10 for 𝑚 and 5,20 for 𝑍 in 1-shot cases. For 5-
shot cases, we use relatively larger values 5,30 for 𝑚 and 5,30 for 𝑍.
It is clear to see that more distracting classes cause more performance
deduction for all methods, e.g., about 6% reduction for 1-shot and 3%
reduction for 5-shot when increasing the number of distracting classes
from 1 to 7.

Table 4
Pseudo-labeling accuracies (%) during the meta-training process, on miniImageNet
(mini) and tieredImagenet (tiered).

Iteration 0 0.2𝑘 0.5𝑘 2𝑘 5𝑘 10𝑘 15𝑘

mini 1-shot 60.0 64.2 66.7 68.3 72.3 73.3 74.0
5-shot 80.0 80.9 82.5 82.8 84.8 84.3 84.0

tiered 1-shot 61.0 72.3 72.0 73.1 77.8 77.7 78.3
5-shot 69.0 86.4 86.3 87.2 88.3 88.5 88.6

Table 5
Pseudo-labeling accuracies (%) at six recursive stages of meta-test, on miniImageNet
(mini) and tieredImagenet (tiered). Stage-1 is initialization.

Stage 1 2 3 4 5 6

mini 1-shot 55.8 63.7 66.8 67.9 68.3 68.6
5-shot 71.3 76.7 77.9 78.1 78.2 78.3

tiered 1-shot 64.8 74.9 77.2 77.9 78.3 78.3
5-shot 80.7 84.5 85.3 85.5 85.5 85.6

Quantitative analyses on the number of recursive stages. During
meta-validation, we search the best values for the number of recursive
stages in 1-shot and 5-shot cases with recursive,hard,soft setting, and the
results are shown in Fig. 5. We observe that our method’s performance
is always saturated after running 6 stages for both 1-shot and 5-shot.
In experiments, we split 100 samples (per class) as the unlabeled set.
At each recursive stage, we sample a subset, i.e., 30 for 1-shot and
50 for 5-shot. After a few stages, the model has sampled and learned
all unlabeled samples, therefore, its performance gets saturated. We
choose the peak values: 6 stages for 1-shot and 5 stages for 5-shot during
meta-test, on both datasets.
The performance of pseudo-labeling. For miniImageNet and tiered-
ImageNet, we record the accuracies of pseudo-labeling for
meta-training and meta-test (based on the setting recursive,hard,soft),
in Tables 4 and 5, respectively. In meta-training, we run the training
process with 15𝑘 meta iterations, it is clear that the accuracy of pseudo-
labeling often grows rapidly from iter = 0 to iter = 5𝑘, and then they
reach saturation. We use 6 recursive stages during the meta-test phase
according to the results from Fig. 5. The accuracy often grows rapidly
for the first three stages. Taking 1-shot case on miniImageNet as an
example, from stage-1 to stage-3, the average accuracy of 6,000 meta-
test tasks increases from 55.8% to 66.8%, and then it only achieves
1.8% gain after the rest three stages.
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6. Conclusion

We propose a novel learning to teach and learn (LTTL) approach
for semi-supervised few-shot classification. For ‘‘learn’’, we introduce
a recursive-learning-based self-training strategy for the inner loop and
meta-learn a soft-weighting network (SWN) to select more informative
samples from the pseudo-labeled set in the outer loop. For ‘‘teach’’, we
leverage the cross-teaching for double-branch classifiers, which allow
one classifier to teach the other one to obstruct the noisy labels accord-
ing to its learning ‘‘experiences’’. From the model evaluation on SSFSC
tasks, we found our approach can achieve consistent improvements
over many few-shot learning methods.
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