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Hierarchical Hidden Markov Model for Rushes
Structuring and Indexing

Chong-Wah Ngo, Zailiang Pan, and Xiaoyong Wei

Department of Computer Science,
City University of Hong Kong, Kowloon, Hong Kong

{cwngo, zerin, xiaoyong}@cs.cityu.edu.hk

Abstract. Rushes footage are considered as cheap gold mine with the
potential for reuse in broadcasting and filmmaking industries. However,
it is difficult to mine the “gold” from the rushes since usually only min-
imum metadata is available. This paper focuses on the structuring and
indexing of the rushes to facilitate mining and retrieval of “gold”. We
present a new approach for rushes structuring and indexing based on
motion feature. We model the problem by a two-level Hierarchical Hid-
den Markov Model (HHMM). The HHMM, on one hand, represents the
semantic concepts in its higher level to provide simultaneous structuring
and indexing, on the other hand, models the motion feature distributions
in its lower level to support the encoding of the semantic concepts. The
encouraging experimental results on TRECVID′05 BBC rushes demon-
strate the effectiveness of our approach.

1 Introduction

In the broadcasting and filmmaking industries, rushes is a term for raw footage,
which is used to generate the final productions such as TV programs and movies.
Only a small portion of the rushes is actually used in the final productions. The
“shoot-to-show” ratio, such as in BBC TV, ranges from 20 to 40. The pro-
ducers see these large amount of raw footage as cheap gold mine. The “gold”
refers to stock footage which is the “generic” clips with high potentials for reuse.
However cataloguing the stock footage is a tedious task, since rushes is unstruc-
tured and relatively inaccessible with only a minimum metadata such as pro-
gram/department name and date. Therefore, it becomes necessary to develop
techniques for the structuring, indexing and retrieval of rushes.

In the past decades, researches on video representation and analysis are mainly
founded on edited videos, e.g., news, sports and movies. The edited videos are
highly structured. More importantly, multiple modalities such as textual, audi-
tory and visual modalities are available for analysis in edited videos. The perfor-
mance of most state-of-the-art video retrieval systems (e.g, Informedia project
[1]) depends on the fusion of these modalities, especially the textual information
which mainly comes from the captions and speech transcripts by OCR and ASR
respectively. In contrast to edited videos, rushes are characterized by unstruc-
tured, natural sounds only and few or no on-screen texts. Thus little textual
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information can be acquired from rushes. These characteristics present a new
aspect of research challenge for rushes retrieval.

In TRECVID′05 [2], several rushes retrieval techniques have been presented
in the pilot task of BBC rushes exploration. All of them are mainly based on
visual information as other modalities are absent or difficult to obtain. Allen and
Petrushin [3] indexed the rushes shots by “visual words” which are the cluster
centroid of color, texture and color+texture. The approach proposed by Foley
et al [4] considered the color and texture features extracted from each keyframe,
as well as the color, texture and shape of the semi-automatically segmented
objects. The system allows the user to select features from either frame or ob-
ject for retrieval. Snoek et al [5] re-attempted their MediaMill system, which
is originally trained to index the 101 high-level concepts for news, to analyze
the BBC rushes. These approaches basically port the retrieval system developed
originally for edited videos directly to the rushes domain. Some issues peculiar
to in rushes are not addressed, such as how to detect and manage the redundant
footage due to low visual quality or unwanted motion. Ngo et al [6] attempted
to solve this problem from the motion point of view. They tested three different
approaches, Finite State Machine (FSM), Support Vector Machine (SVM) and
Hidden Markov Model (HMM) for the characterization of BBC Rushes.

The main focus of this paper is to locate and index the stock footage. We
consider three semantic categories: stock, outtake and shaky. The concept stock
represents the clips with intentional camera motion which have the potential
for reuse, such as capturing an event with still camera and rotating the camera
for a panoramic view. In contrast, those clips with intermediate camera motion,
which are very likely to be discarded in the final production, are denoted as
outtake. Examples include a zoom to get more details and a pan to change to
another perspective. Beside those two extreme cases, we add another category,
shaky, to represent the shaky artifacts which may be discarded or used for special
effects such as to show a emergent situation. For rushes indexing, shot is usually
regarded as the basic unit [3,4,5]. However, since the rushes are raw footage
without editing, a shot may consist of different semantic concepts. Thus, in
order to index rushes effectively, the temporal structure of rushes needs to be
carefully analyzed so that the basic unit can be a subshot, and each subshot
contains only one semantic label.

The problem of structuring and indexing is intertwined in rushes. The dif-
ficulty comes from the following two aspects. One aspect is that the motion
features of the three semantic categories are highly overlapped. For example, a
pan motion may come from a stock of side view on a moving vehicle, or a outtake
of perspective change, or a shaky of one part of swing. The other aspect is that
structuring and indexing rely on each other. Indexing requires the investigation
of the temporal structure. As mentioned, an unstructured shot in rushes may
be too long to be an appropriate unit for indexing. On the other hand, it is also
infeasible to structure the videos without knowing the underlying characteris-
tic of frames. For example, structuring only by motion cannot obtain satisfied
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performance due to the indiscriminate motion features of the three semantic
concepts.

In this paper, we propose a new approach for structuring and indexing the
rushes footage by Hierarchical Hidden Markov Model (HHMM) [7,8,9]. HHMM
is the generalization of HMM with hierarchical structure. We use a two-level
HHMM to encode the three semantic categories and model the sequential changes
of their underlying motion features. Higher-level substates represent the semantic
concepts, stock, outtake and shaky. Each of these substates is a sub-HMM that
has its own substates in the lower level to describe the distribution of the motion
features and their transitions. This hierarchical model, on one hand, can alleviate
the feature overlap problem by taking into account the temporal constraint. For
instance, an outtake pan can be distinguished from a shaky pan by considering
that a shaky pan is very likely to have reverse motions before and after. On
the other hand, the higher-level substates, which address the semantic concepts,
make it possible to simultaneously structure and index the rushes on the whole
sequence. The simultaneous decision on the whole sequence provides a way to
decouple the interdependency between structuring and indexing.

The remaining of this paper is organized as follows. Section 2 describes our
approach for rushes structuring and indexing. We first extract the motion fea-
tures as the observation for each subshot. A two-level HHMM is then applied to
model both the high-level concepts and the low-level motion features to struc-
ture and index the rushes. Section 3 presents the experiment results. Finally,
Section 4 concludes the paper and discusses future work.

2 Rushes Structuring and Indexing by Hierarchical
HMM

Figure 1 illustrates our two-level HHMM structure. On the top is the root state
which is an auxiliary substate to make the structure representable by a single
tree. The first level is a sub-HMM which has three substates to represent stock,
outtake and shaky respectively. Each substate is also a sub-HMM which is further
decomposed into several substates in the lower level. Basically a substate in
this level models certain aspect of low-level feature to support the encoding of
semantic concepts at the higher level. For each semantic concept, we use six
substates, left, right, up, down, in and out, to model the six major movements
respectively in horizontal, vertical and depth directions. Notice that the substates
in each sub-HMM are fully connected. For the simplicity of presenting the figure,
we do not show the edges in Figure 1.

In order to facilitate structuring and indexing, a shot in rushes should be par-
titioned into shorter unit, i.e. subshots. In practice, the subshot string of a shot
forms an observation sequence for HHMM. The subshot should not be too long
so as not to mix different semantic concepts. Meanwhile, it should not be too
short in order to extract robust motion feature. In this paper, we investigate two
kinds of subshot: fixed and adaptive. The former one is obtained through equal
partitioning of a shot into segments of fixed length. Adaptive subshots, on the
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Fig. 1. An illustration of an HHMM of two levels. Solid ellipses denote the substates,
while dotted ellipses denote the sub-HMMs of the HHMM structure.

other hand, are obtained by dividing a shot into segments each with consistent
motion [10]. Both types of subshots have their strength and weakness. The fixed
subshot is easy to obtain in practice, but with inaccurate subshot boundary and
motion feature. Intuitively, adaptive subshot may have better performance due
to good boundary and motion feature. However, since subshot segmentation by
motion itself is a research issue, false and missed detections would introduce un-
der or over segmented subshots that prohibit the finding of underlying semantic
labels. For both fixed and adaptive schemes, over-segmentation at early stage
can be remedied by HHMM if two adjacent segments have the same semantic
labels. Under-segmentation, however, cannot be dealt with by HHMM.

2.1 HHMM Representation

A state in an HHMM actually consists of a string of substates from top to bottom
levels. To denote the substate string from top to level d, we use a bar notation,

kd = q1:d = q1q2 · · · qd, (1)

where the subscripts denote the hierarchical levels. We drop the superscript d for
abbreviation when there is no confusion. Let D denotes the maximum number of
levels and Q denotes the maximum size of any sub-HMM state spaces in HHMM.
Then a HHMM can be specified by the following parameters,

Θ = {A, B, Π, E}. (2)

Explicitly, A denotes the transition probabilities (
D⋃

d=1

Qd−1⋃
k=1

{ad
k}), where ad

k is

the transition matrix at level d with configuration kd−1. B is emission parameter
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which specifies the observation distributions. We assume that the motion fea-

tures comply with Gaussian distribution N(μ, Σ), then B = (
QD⋃
i=1

{μi, Σi}). Sim-

ilarly, let πd
k and ed

k denotes the prior and exiting probabilities at level d, then

Π =
D⋃

d=1

Qd−1⋃
kd=1

πd
k and E =

D⋃
d=1

Qd−1⋃
kd=1

ed
k are the prior and existing probabilities for

HHMM model.

2.2 Motion Feature Extraction

To obtain the observation sequence for HHMM, we extract three dominant mo-
tions, pan, tilt and zoom from each subshot. The inter-frame motion features
are firstly estimated from each two adjacent frames. We apply Harris corner
detector to extract the image feature points, xt, from the frame t. Their corre-
sponding points, xt+1, in the next frame t + 1, are estimated by the Singular
Value Decomposition (SVD) of the 3D tensor structure [10]. Those matched
point pairs in each frame pair are assumed to comply with a single camera mo-
tion model. Since the dominant features for rushes structuring and indexing is
pan, tilt and zoom, 2D camera motion model is sufficient for the representa-
tion of these three motion features. Therefore, we use the 2D 6-parameter affine
model described as,

xt+1 =
[
a11 a12
a21 a22

]
xt +
[

v1
v2

]
,

where [a11, a12, a21, a22, v1, v2]T are estimated from the matched points in the
frame pair using the robust estimator LMedS [11]. RANSAC is not used due
to the requirement of inlier threshold which is not easy to set. The parameter
v1 and v2 characterize the pan and tilt respectively, while the parameter a11
and a22 describe the zoom motion. We extract a 3-dimensional motion feature
vector f = [v1, v2, z = (a11 + a22)/2] for each two adjacent frames. A sequence
of motion vector, {f}, is then obtained from the frame sequence in a subshot.
To suppress the outliers, we use the median, instead of average, motion vector
as the observation for a subshot, that is,

o = median{f}. (3)

Then a T -subshot string of a shot forms an observation sequence for HHMM,
denoted as O = (o1, o2 · · · on · · · oT ).

2.3 HHMM Parameter Learning by EM Algorithm

Given an observation sequence O = (o1, o2 · · · ot · · · oT ), the task of parameter
learning is to find Θ∗ that maximize the likelihood L(Θ). This is estimated by
the Expectation-Maximization (EM) algorithm as in traditional HMM. Given an
old parameter Θ and the missing data K = (k1, k2, · · ·kt · · ·kT ), the expectation
of the complete-data likelihood of an updated parameter Θ̂ is written by
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L(Θ̂, Θ) = E(log p(O, K|Θ̂)|O, Θ) (4)

=
∑
K

p(K|O, Θ) log p(O, K|Θ̂) (5)

∝
∑
K

p(O, K|Θ) log p(O, K|Θ̂) (6)

The E-step estimates the expectation L(Θ̂, Θ), and the M-step finds the value
Θ̂ that maximizes the likelihood.

We define the probability of being in state k at time t and in state k′ at time
t + 1 with transition happens at level d, given O and Θ, as

ξt(k, k′, d)
def
= p(kt = k, kt+1 = k′, e1:d

t = 0, ed+1:D
t = 1|O, Θ). (7)

Similarly, we define the probability of being in state k at time t, given O and Θ,
as follows

γt(k)
def
= p(kt = k|O, Θ). (8)

In E-step, these two auxiliary variables are estimated by forward and backward
algorithm [8]. Then by marginalizing and normalizing the auxiliary variables ξ
and γ in M-step, we can get the updated model parameter L̂ as follows,

π̂d
q (i) =

T−1∑
t=1

∑
q′

∑
q′′

ξt(q′, qiq′′, d − 1)

T−1∑
t=1

∑
q′

∑
q′′

∑
i

ξt(q′, qiq′′, d − 1)
(9)

êd
q(i) =

T−1∑
t=1

∑
q′

∑
k′

∑
d′<d

ξt(qiq′, k′, d′)

T−1∑
t=1

∑
q′

γt(qiq′)
(10)

âd
q(i, j) =

T−1∑
t=1

∑
q′

∑
q′′

ξt(qiq′, qjq′′, d)

T−1∑
t=1

∑
q′

∑
q′′

∑
j

ξt(qiq′, qjq′′, d)
(11)

μ̂k =

T∑
t=1

otγt(k)

T∑
t=1

γt(k)
(12)

Σ̂k =

T∑
t=1

(ot − μk)(ot − μk)T γt(k)

T∑
t=1

γt(k)
(13)
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2.4 Structuring and Indexing by Viterbi Algorithm

Our final goal is to structure and index rushes with the three semantic categories.
Instead of deciding the subshots once at a time, such as using SVM, HHMM can
perform simultaneous structuring and indexing upon the whole subshot string.
Given an observation sequence of a shot, O = (o1, o2 · · · ot · · · , oT ), we apply
Viterbi algorithm [8] to obtain the underlying optimal state sequence, K∗ =
(k∗

1 , k∗
2 · · · , k∗

t , · · · , k∗
T ). Each k∗ actually has two variables to indicate the sub-

states of semantic label and motion feature in the two-level HHMM. The final so-
lution is found the higher-level variable string, K1∗ = (k1∗

1 , k1∗
2 · · · , k1∗

t , · · · , k1∗
T ),

which forms the indices of the semantic concepts for a shot. Meanwhile, the
variations in the variable string K1∗ indicate the locations of the semantic con-
cept boundary. Therefore, by using Viterbi algorithm on the subshot string,
the simultaneous structuring and indexing for a rushes shot can be efficiently
achieved.

3 Experiments and Results

We randomly select 60 videos (about 400k frames or 4.5 hours) from BBC rushes
of TRECVID′05 corpus to evaluate our approach. The videos are manually struc-
tured and indexed with the semantic labels: stock, outtake and shaky. We divide
the videos equally into two set: 30 videos for training and 30 videos for testing.

We partition each video into shots by [12] and each shot is further decomposed
into subshots. For fixed subshot, we empirically set the fixed duration to one
second. For adaptive subshot, we use the motion-based finite state machine [10]
to partition shot into subshots. Each subshot, both fixed and adaptive, is labeled
with the three categories based on the ground truth manually marked by human
subjects. The two-level HHMM are then trained with EM algorithm. Since only
the higher-level labels are available, this is a mixed learning procedure. In other
words, the learning at higher level is supervised, while the learning at lower level
is unsupervised. For abbreviation, we name the HHMM of fixed and adaptive
subshots as F-HHMM and A-HHMM respectively.

We compared the proposed HHMM with our previous work presented in
TRECVID′05 [6]. In [6], we experimented three approaches: Finite State Machine
(FSM), Hidden Markov Model (HMM) and Support Vector Machine
(SVM). Table 1 summaries and contrasts the properties of different approaches.
FSM and HMM models are flattened HHMM with only the higher level. FSM
is actually a simplified HMM that the fuzzy transitions in HMM become de-
terministic. SVM, instead of modeling feature distribution, discriminates the
three semantic concepts by hyper-plane in feature space. Therefore, from the
structure’s point of view, HHMM has a two-level hierarchical structure, while
the others are flattened. We use Radial Basis Function (RBF) as the kernel
for SVM. Meanwhile, Gaussian distribution is used as kernel function in HMM
and HHMM. Inside the FSM states, thresholding is used to determine which
category an observation belongs to. We applied adaptive subshot detection for
FSM and A-HHMM, while using fixed subshot for the others. Notice that we use
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Table 1. Comparison of different method’s properties

Subshot #Structure #Feature Kernel
FSM adaptive flattened 3 threshold
SVM fixed flattened 9 RBF
HMM fixed flattened 9 Gaussian

F-HHMM fixed hierarchical 3 Gaussian
A-HHMM adaptive hierarchical 3 Gaussian

nine-dimensional feature for HMM and SVM. Besides the three motion features
(Section 2.2), we also use the motion variations as additional features in order
to improve the discriminative power of a flattened structure. The details can be
found in [6].

3.1 Rushes Indexing

Table 2 and Table 3 show the indexing results of the training and testing videos
respectively. The results are evaluated based on the number of frames being
correctly or wrongly classified. The results show that HHMM outperforms the
other approaches. Overall, we have about 96% accuracy on stock, 40% on out-
take and 60% on shaky in the testing set. The results of SVM indicate that the
feature distributions of the three semantic concepts severely overlapped among
each other. Thus even the classification accuracy on training set is pretty low.
SVM assumes that the observations are independent and neglect the temporal
relationship between subshots. For example, a shaky tilt is more likely to be
followed by a reverse tilt in the same shaky segment rather than an outtake
tilt. By exploiting the temporal relationship, HHMM presents some improve-
ment compared to SVM. Through experiments, hierarchical HMM shows better
performance than flat HMM, particularly the accuracy of shaky is significantly
improved. The reason perhaps lies in the fact that the movement of shaky arti-
facts usually has patterns such as swinging between left and right. The temporal
relationship of the shaky can be captured by HHMM as a unique sequential pat-
tern for recognition. The improvement of outtake, nevertheless, is less obvious
than shaky. An outtake is usually a single movement, such as a zoom to get
details or a pan to get another side of the scene. Thus the amount of sequential
information to be captured by HHMM is limited. The sequential pattern of a
shaky can be more distinctive if the turning points of motion are correctly lo-
cated. This is why A-HHMM has better shaky accuracy than F-HHMM since
the adaptively segmented subshots have more expressive power in describing the
temporal structure of the shaky segments.

3.2 Rushes Structuring

The results of structuring are basically assessed based on the accuracy of the
subshot boundaries between the three categories. However, compared to shot
boundaries, the subshot boundaries are fuzzy and the exact locations (in term
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Table 2. The indexing accuracy on the training video set

Stock Outtake Shaky
Recall Prec. Recall Prec. Recall Prec.

FSM 0.815 0.981 0.802 0.118 0.011 0.050
SVM 0.827 0.990 0.701 0.162 0.715 0.239
HMM 0.927 0.970 0.329 0.137 0.311 0.339

F-HHMM 0.977 0.980 0.602 0.512 0.440 0.497
A-HHMM 0.976 0.983 0.648 0.551 0.546 0.515

Table 3. The indexing accuracy on the testing video set

Stock Outtake Shaky
Recall Prec. Recall Prec. Recall Prec.

FSM 0.756 0.968 0.844 0.128 0.000 0.000
SVM 0.778 0.975 0.456 0.120 0.362 0.182
HMM 0.909 0.929 0.375 0.196 0.043 0.067

F-HHMM 0.959 0.953 0.489 0.342 0.328 0.523
A-HHMM 0.962 0.963 0.408 0.427 0.624 0.597

Table 4. The structuring accuracy in both training and testing video set

Training Testing
Recall Prec. Recall Prec.

FSM 0.614 0.282 0.593 0.279
SVM 0.769 0.281 0.763 0.289
HMM 0.461 0.419 0.395 0.379

F-HHMM 0.615 0.712 0.610 0.605
A-HHMM 0.707 0.725 0.582 0.611

of frame) are not easy to identify even with careful human inspection. In the
experiments, a subshot boundary is counted as correct as long as we can find
a matched boundary in the ground-truth within 1-second time frame. In our
ground-truth, there are 83.4% of boundaries for transitions between stock and
outtake, 16.3% between stock and shaky and 0.3% between shaky and outtake.
Table 4 shows the structuring results in both training and testing set. From the
table, we can find that HHMM has the best results with about 70% accuracy
in training set and 60% in testing set. Compared with other approaches, the
precision has more obvious improvement than the recall. This shows that by
considering the hierarchal relationship among the features, we can remarkably
remove the false alarms while retaining the correct boundaries.

4 Conclusion and Future Work

In this paper, we have presented a novel approach for rushes structuring and
indexing, which is one key component to mine the “gold” in rushes for film
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producers. By taking into account the sequential patterns of the motion fea-
tures, the proposed two-level hierarchical hidden Markov model is capable of
modeling statistical mapping from low-level motion features to high-level se-
mantic concepts: stock, outtake and shaky. Experimental results show that our
approach significantly outperforms other methods based on SVM, FSM and
HMM. Currently, we only utilize motion features. Other indicators such as the
visual qualities of a film and the cues derived from multi-modal features can be
incorporated to further improve the accuracy of locating stock footage.
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