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Abstract

Motivated by the fresh produce industry, this paper studies a farmer’s joint cultivation and

fertilizer (a representative farm input) application decisions facing uncertainties in crop’s open

market price, harvesting cost, and farm yield, where yield is stochastically increasing in the

fertilizer application rate. We develop a two-stage stochastic program that captures the trade-

offs facing a farmer growing a commodity crop in a single season to maximize the expected

profit. We then use the model to evaluate the expected optimal harvest volume (a measure of

food security). Our analytical analysis is complemented with numerical experiments calibrated

to data. We characterize how the farmer’s optimal decisions, profitability as well as the expected

optimal harvest volume are affected by fertilizer and cultivation costs and farm yield uncertainty.

We find that these effects can be counterintuitive and significantly different from those when

only cultivation decision is optimized (as considered in the extant literature); specifically when

these effects induce the farmer to change the two decisions in opposite directions. For example,

an increase in fertilizer cost may incent the farmer to cultivate more farmland. Another example

is that a reduction in cultivation cost or yield variability may decrease the expected optimal

harvest volume. This result is useful for policymakers as it demonstrates that commonly used

policies in practice, such as distributing discount vouchers for seed procurement (which reduces

the cultivation cost) or increasing the availability of disease-resistant seeds (which reduces yield

variability) that have been devised for increasing crop production level may backfire.

Keywords: Farm planning, agriculture, integrated optimization, fertilizer, yield uncertainty,

price uncertainty, open market, fresh produce, food security, harvesting
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1 Introduction

In this paper, we study the decisions related to farm planning for a farmer growing a commodity

crop in a single season. Although applicable to several agricultural industries, our analysis is

motivated by the fresh produce (e.g., fruits and vegetables) industry, one of the largest agricultural

industries in the world. In the U.S. alone, for instance, this industry is valued at $104.7 billion in

2016, and annual per capita consumption of fruits and vegetables has been increasing at a much

faster pace than that of traditional crops (such as wheat), due to, for example, growing awareness

of more balanced diets and availability of more disposable income (Ahumada and Villalobos, 2009).

Farm planning in the fresh produce industry involves several decisions that present challenges for

the farmer. At the beginning of the growing season, the farmer needs to decide the size of farmland

to cultivate incurring a cultivation cost—which accounts for plowing and tilling of farmland as well

as procurement and sowing of seeds—while facing uncertainty in farm yield due to unfavorable

weather conditions and infestation of pest and diseases. At this stage, the farmer also needs to

decide the quantity of farm inputs to apply on the cultivated farmland, including fertilizer (to

increase soil’s nutrients), pesticides (to protect the crop from pests), and herbicides (to protect the

crop from weeds). One common feature of these farm inputs is that their application, though costly,

improves the yield. In this paper, we consider fertilizer as a representative farm input and focus

on fertilizer application decision. At the end of the growing season, after the yield is realized, the

farmer needs to decide the harvest volume based on the crop’s profit margin; that is, the difference

between crop’s open market price and harvesting cost. In practice, significant fluctuations in open

market price are commonly observed for a variety of reasons, including its dependence on the

farmer’s yield (Kazaz and Webster, 2011)—as the yields for other farmers in close proximity share

similar characteristics and collectively affect the crop’s aggregate supply—as well as changes in

macroeconomic conditions and industry regulations (Li et al., 2022). The harvesting cost also shows

significant variation specifically when the farmer needs to acquire additional harvesting resources

(beyond what is available internally) at the end of the growing season because, crucially, the

acquisition cost depends on the demand for these resources. In the fresh produce industry, because

most fruits and vegetables are harvested by hand, labor is the most critical resource among the

harvesting resources (that also include containers, harvesters, and carriers) and labor cost is the

main determinant of harvesting cost.1 In this industry, the limiting nature of harvesting labor

is empirically well documented (see, for example, Gunders and Bloom (2012)) and it is common

1For example, in the U.S. fresh produce industry labor costs account for about 42% of the variable production
expenses for farms (Calvin and Martin, 2010).
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practice to hire seasonal workers for harvesting at the end of the growing season. The labor cost

of these seasonal workers shows significant variation (see, for example, Richards (2018)) because

it depends on the farmer’s yield: the yields for other farmers in close proximity share similar

characteristics and collectively affect the demand for these workers. In summary, uncertainties

in crop’s open market price and harvesting cost should also be taken into account in making the

cultivation and fertilizer application decisions.

In recent years farm planning in agricultural industries, including the fresh produce industry

have experienced additional challenges. As reported by Hayashi (2022), costs and uncertainties in

the farming environment have increased across all agricultural industries due to a variety of factors,

including severe weather events, regional conflicts, and the Covid-19 pandemic. It is common

knowledge that global warming and climate change have led to an unprecedented number of climate-

induced shocks across the globe and, as highlighted by Tigchelaar et al. (2018), these shocks are

a major contributor to increasing crop yield variability worldwide. As illustrated in Figure 2

of the U.S. Department of Agriculture (USDA) report, commodity prices for fresh produce have

shown significant variability in recent years, more so than other commodities such as grains (USDA

Economic Research Service, 2020). Besides the Covid-19 pandemic, recent changes in immigration

laws in several countries have led to labour shortages (Gunders and Bloom, 2017) and as a result,

increase in wages for harvesting labour. For example, blueberry farmers in the U.K. face significant

challenges for finding harvesting labor as a result of Brexit because most of the seasonal workers

come from the European Union (Partridge, 2021). The cultivation and fertilizer costs have also

experienced significant increases in recent years. In particular, farmers in some areas of the U.S.

report more than 300% increase in fertilizer prices (Myers, 2021). The harvest volume for fruits

and vegetables for the glasshouse farmers in the U.K. have decreased more than 50% due to surging

cost of energy, which is one of the primary inputs used for cultivation in glasshouse farming (Evans,

2022). These observations highlight the need for understanding how the increases in the costs and

uncertainties in the farming environment affect the decisions associated with farm planning.

As reviewed by Glen (1987), Lowe and Preckel (2004), and Ahumada and Villalobos (2009), farm

planning problem has received considerable attention both in the operations management (OM)

and agricultural economics (AE) literatures. Only recently have these literatures started focusing

on stochastic models that capture uncertainties facing farmers. In the AE literature, besides the

empirical studies that identify the agronomic factors affecting decisions and uncertainties associated

with farm planning, a stream of papers use analytical models to establish the effects of different farm

3



inputs on yield (for example, Tembo et al. (2008) propose a model to capture the effect of fertilizer

application on the stochastic yield). In this literature, the few papers that develop analytical models

for the optimization of joint cultivation and farm-input application decisions under uncertainty

either provide numerical solutions (e.g., Babcock et al., 1987) or provide heuristic solutions and

evaluate their performance using numerical experiments (e.g., Livingston et al., 2015). In the OM

literature, the main focus of related papers is to develop tractable analytical models to optimize

a farmer’s decisions that incorporate important characteristics of the farm planning problem in a

stylized manner based on the findings from the AE literature. The majority of papers in this stream

does not consider fertilizer (or any other farm-input) application decision, as their objective is to

examine the interplay between cultivation decision and a variety of operational features, including

crop rotation benefits across growing seasons (Boyabatlı et al., 2019), equilibrium crop price in the

market place (Hu et al., 2019), planting capacity across growing seasons (Zhang and Swaminathan,

2020), rainfall uncertainty (Maatman et al., 2002), yield-dependent crop price (Kazaz, 2004), and

yield-dependent open market trading costs (Kazaz and Webster, 2011). Among the few papers

that consider the farm-input application decision, Anderson and Monjardino (2019) consider the

fertilizer application decision on a single acre and study the fertilizer contract design problem.

Federgruen et al. (2019) consider the irrigation decision on a single acre and study the farmer’s

sales contract choice. Neither of the papers considers the cultivation decision.

The first objective of this paper is to study the implications of farmer’s joint cultivation and

farm-input (fertilizer) application decisions for farm planning while incorporating the important

characteristics of the fresh produce industry. Barring Huh and Lall (2013), there is no work in the

OM literature that studies the joint optimization of these decisions under uncertainty. Huh and Lall

(2013) model the joint cultivation and irrigation decisions in the presence of uncertainties in rainfall

and crop price. They establish the concavity properties of the farmer’s optimization problem and

provide a computational study. Different from that paper, we characterize the specific strategies

that may emerge as part of the optimal decisions. Moreover, motivated by the recent increases in

costs and uncertainties in the farming environment, we examine how changes in cultivation and

fertilizer costs as well as farm yield uncertainty impact these decisions and farmer’s profitability.

These analyses are for useful for generating practical insights for farm management. They are also

useful for understanding the implications of optimal decisions for food security as discussed next.

Farm planning decisions also have significant implications for food security. According to the

USDA, food security is defined as access by all people at all times to sufficient food for an active,
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healthy life. While achieving food security faces many challenges across different parts of the food

supply chains, including reducing the food wasted on the retail end as well as the food lost for

spoilage due to poor and limited infrastructure for storage and cooling facilities during transporta-

tion (see Akkaş and Gaur (2022) for a detailed discussion), this paper focuses specifically on the

challenges associated with increasing the crop production level. As highlighted by Godfray et al.

(2010), the world will need at least 70% more food by 2050 and closing the gap between the maxi-

mum attainable and the actual crop production levels plays a key role in responding to this need.

One of the key reasons for the actual crop production level, or the harvest volume, to be lower

than the maximum attainable level is that for any crop volume available for harvesting at the end

of the growing season the farmer may optimally choose not to harvest all. In particular, as also

highlighted by World Wild Fund (2021), this would happen when the crop’s realized profit margin

is negative due to low crop price or high harvesting cost owing to limited availability of harvesting

resources (including labor and containers for harvested crop). There is no shortage of anecdotal

evidence that documents significant amount of unharvested crop left in the field (denoted as pro-

duction loss in farming) in a variety of agricultural industries including the fresh produce industry.

A recent report estimates that 1.2 billion tonnes of food is lost on farms, either left unharvested or

disposed immediately after harvest, which corresponds to 15.3% of food produced in farms with an

economic value of $370 million per annum (World Wild Fund, 2021). The fresh produce industry

is one of the agricultural industries with the highest production losses in farming as reported by

Gunders and Bloom (2017): For example, Tesco reports production losses of 17% for salad greens

and 15% for berries. According to the USDA, about 2.64% (63,900 acres) of planted vegetable

and fruit fields are left unharvested in 2019 where this number can vary widely by crop and can

be as high as 10 percent for some crops (USDA National Agricultural Statistics Service, 2022).

Another key reason for the harvest volume to be lower than the maximum attainable level is that

the crop volume available for harvesting at the end of the growing season crucially depends on the

farmer’s decisions at the beginning of the growing season. In particular, the farmer may choose

not to achieve maximum possible production level (which requires cultivating the whole farmland

and applying fertilizer at its agronomic recommendation) because it may not be profitable to do

so due to high cultivation and fertilizer costs. Therefore, in closing the gap between the maxi-

mum attainable and the actual crop production levels there is a need to understand how farmer’s

optimal cultivation and fertilizer application decisions as well as the uncertainties in the farming

environment affect the crop production level at the end of the growing season.
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The second research objective of this paper is to examine the implications of farmer’s joint

cultivation and farm-input (fertilizer) application decisions for food security while incorporating

the important characteristics of the fresh produce industry. To this end, we aim to characterize

the crop production level at the profit-maximizing decisions of the farmer. Moreover, motivated

by the recent increases in costs and uncertainties in the farming environment, we investigate how

changes in cultivation and fertilizer costs as well as farm yield uncertainty impact the farmer’s

crop production level at the optimal decisions. These analyses are useful for policymakers for

understanding the consequences of some commonly used policies in practice that have been devised

for increasing the crop production level. Some examples for these policies include distributing

discount vouchers for procurement of seeds (which reduces the cultivation cost) or fertilizer (which

reduces the fertilizer cost) or increasing availability of disease-resistant seeds (which reduces the

farm yield uncertainty). A stream of papers in the OM literature study in a variety of settings how

the crop production level at the farmer’s profit-maximizing decisions is affected by different policies,

including providing crop revenue insurance (Alizamir et al., 2018), reducing the downside risk of

crop price uncertainty through minimum support prices (Chintapalli and Tang, 2021), levying taxes

on chemical farm-inputs to discourage their usage (Akkaya et al., 2020), and providing low-cost

loans to farmers (Kazaz et al., 2016). In all these papers the crop production level is affected by

the cultivation decision but there is no consideration of fertilizer application decision. As such,

the current work differs from the earlier ones as it provides a more general representation of crop

production. The analysis in this paper shows that considering this more general representation

critically impacts the effectiveness of various policies. In particular, we will show that for some

of the policies considered in our analysis ignoring the farmer’s fertilizer decision may lead to the

erroneous conclusion that this policy increases the crop production level.

To achieve the two research objectives we propose a two-stage stochastic model that, in a

stylized manner, captures the trade-offs facing a farmer growing a single commodity crop to sell

in the open market so as to maximize the expected profit. In the first stage (at the beginning

of the growing season), the farmer determines the number of acres to cultivate and the quantity

of fertilizer to apply per acre on the cultivated farmland facing uncertainties in the farm yield,

harvesting cost (labour cost for hiring seasonal workers) and open market price. We assume that

farm yield is stochastically increasing in the fertilizer application rate up to a maximum level which

we denote as agronomic recommendation. In the second stage (at the end of the growing season),

these uncertainties are realized and the farmer decides the crop volume to harvest and sell to the
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open market as well as the amount of harvesting resource to acquire to support this volume.

We characterize the joint optimal cultivation and fertilizer application decisions and identify five

strategies that emerge as a part of the optimal policy: partial farmland cultivation without using any

fertilizer, partial farmland cultivation with applying fertilizer at agronomically recommended rate,

and full farmland cultivation with three distinct fertilizer application rates; agronomic recommen-

dation, partial (less than agronomic recommendation), and none. We provide specific conditions

under which each strategy is optimal based on the cultivation and fertilizer costs.

To examine the implications of farmer’s optimal decisions for food security, we contextualize in

our setting the gap between maximum attainable and actual crop production levels, a food security

measure similar to those commonly used in the literature (see Godfray et al. (2010)), and define

the expected gap measure as the difference between the expected maximum harvest volume and

the expected optimal harvest volume. The expected optimal harvest volume can be strictly less

than the expected maximum harvest volume because the farmer may choose not to cultivate whole

farmland or not to apply fertilizer at its agronomic recommendation in the cultivation stage, or it

may not be profitable to hire seasonal workers in the harvesting stage due to negative crop margin.

We investigate the effects of cultivation and fertilizer costs as well as farm yield variability on the

farmer’s optimal decisions, profitability and the expected gap. We also carry out the same analyses

using a benchmark model where the farmer only optimizes the cultivation decision in the first stage

to highlight how our key results differ from those results based on the knowledge base developed

in the extant OM literature. Whenever analytical results are not attainable, we use numerical

experiments based on realistic instances. To this end, we calibrate our model to represent a typical

fresh tomato farmer in Florida—as tomato is among the most valuable fresh produce, valued at

approximately $1.6 billion in the U.S. in 2019 (USDA, 2020), and Florida is the largest fresh tomato

growing region in the U.S. in 2019 (USDA, 2020). The model calibration is based on the publicly

available data from USDA and the U.S. Bureau of Labor Statistics as complemented by the data

obtained from the extant literature. Our main findings can be summarized as follows:2

1) Common intuition may suggest that an increase in cultivation cost has the following effects:

(i) it incents the farmer to cultivate fewer acres without changing the fertilizer applied per acre

(as this decision is affected by fertilizer cost) and (ii) it decreases the expected optimal harvest

volume (hence, increases the expected gap). We prove that this intuition is correct except for the

2During this summary, for expositional brevity and practical relevance we focus on more realistic scenarios in
which the fertilizer cost is not very high so that the farmer optimally uses some fertilizer; that is, we rule out the
following two strategies: full or partial farmland cultivation without using any fertilizer. These strategies are not
observed as optimal in our data-calibrated numerical studies in the context of fresh tomato farming.
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case when the cultivation and fertilizer costs are in moderate range. In that case, we prove that

an increase in cultivation cost also incents the farmer to apply more fertilizer to counteract against

the reduction in the number of acres cultivated to increase the crop availability at the harvesting

stage. Because the farmer cultivates fewer acres but applies more fertilizer per acre the resulting

impact on the expected optimal harvest volume is indeterminate. We numerically observe that

the increase in fertilizer application rate may outweigh the reduction in cultivation volume and

the expected optimal harvest volume increases (hence, expected gap decreases). In the benchmark

model an increase in cultivation cost always decreases the expected optimal harvest volume.

2) While an increase in fertilizer cost intuitively incents the farmer to decrease the fertilizer

application rate, the effect on the optimal cultivation volume is more nuanced. Common intuition

may suggest that an increase in fertilizer cost incents the farmer to decrease the cultivation volume

as the farm input becomes more expensive. We prove that this intuition is correct except for the

case when the cultivation and fertilizer costs are in moderate range. Outside of this case, because

the farmer cultivates fewer acres and applies less fertilizer per acre it can be proven that the ex-

pected optimal harvest volume decreases (hence, expected gap increases). When the cultivation

and fertilizer costs are in moderate range, the farmer increases the cultivation volume to counteract

against the reduction in crop availability at the harvesting stage due to decreasing fertilizer applica-

tion rate. Because the farmer cultivates more acres but applies less fertilizer per acre the resulting

impact on the expected optimal harvest volume is indeterminate. In our numerical experiments

we observe that the increase in cultivation volume does not outweigh the reduction in fertilizer

application rate and the expected optimal harvest volume also decreases in this case.

3) An increase in farm yield variability affects the farmer’s profitability by increasing the vari-

ability of three factors: harvestable crop volume, harvesting cost, and crop’s open market price.

Our partial analytical characterizations complemented with numerical experiments illustrate that

the overall impact is that higher yield variability is detrimental for profitability. Common intuition

may suggest that an increase in farm yield variability (which makes farming less predictable) incents

the farmer to cultivate fewer acres and apply less fertilizer per acre. We show that this intuition is

correct except for the case when the cultivation and fertilizer costs are in moderate range. In that

case, an increase in farm yield variability incents the farmer to apply more fertilizer to counteract

against the reduction in the number of acres cultivated to increase the crop availability at the

harvesting stage. The effect of farm yield variability on the expected gap is more complex than

the effects of cultivation and fertilizer costs on the same. This is because, besides the two common
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effects—that is, impacting the farmer’s optimal cultivation and fertilizer application decisions—

there is a third effect as changes in farm yield variability also alters the likelihood of a positive crop

margin—that is, the difference between open market price and harvesting cost—in the harvesting

stage for any given farmer’s decisions. We show that a higher yield variability decreases the likeli-

hood of a positive crop margin for any given farmer’s decisions. When the cultivation and fertilizer

costs are not in moderate range, as yield variability increases because the farmer cultivates fewer

acres and applies less fertilizer per acre, the overall impact is such that expected optimal harvest

volume decreases (hence, expected gap increases). When the cultivation and fertilizer costs are in

moderate range, the effect of an increase in yield variability on the expected optimal harvest vol-

ume is indeterminate because the farmer applies more fertilizer per acre. We numerically observe

that the increase in fertilizer application rate may outweigh the other two effects and the expected

optimal harvest volume increases (hence, expected gap decreases). In the benchmark model an

increase in farm yield variability always decreases the expected optimal harvest volume.

The general insight from our analyses is that the effects of costs and uncertainties on the farmer’s

optimal decisions and on the expected optimal harvest volume (hence, the expected gap) can be

counterintuitive and significantly different from those when only cultivation decision is optimized;

specifically when these effects induce the farmer to change the fertilizer application and cultivation

decisions in opposite directions. Based on these results, we put forward practical insights for farm

management by providing rules of thumb for responding to changes in the farming environment and

important policy insights by showcasing the unintended consequences of some commonly adopted

policies in practice that have been devised to increase farmer’s crop production level and income.

The rest of the paper proceeds as follows. §2 describes our model and assumptions. §3 character-

izes the optimal cultivation and fertilizer application decisions. §4 and §5 examine the implications

of optimal decisions for farm management and food security, respectively. In particular, we inves-

tigate how changes in cultivation and fertilizer costs as well as farm yield uncertainty impact the

farmer’s optimal decisions, profitability (§4), and the expected gap (§5). §6 provides an application

in the context of fresh tomato farming. §7 concludes with a discussion of future research directions.

2 Model Description and Assumptions

We use the following mathematical representation throughout the paper. A realization of a random

variable ξ̃ is denoted by ξ. The expectation operator, probability, and indicator function are denoted

by E, Pr(·), and I{·}, respectively. We use (u)+ = max(u, 0). Monotonic relations are used in the

weak sense unless otherwise stated. Subscript c and h denote the parameters and decision variables
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related to cultivation and harvesting, respectively. The optimal decisions and performance measures

evaluated at the optimal solution are denoted by ∗. We use the following weight units: lb (one

pound) and carton (25 pounds). All the proofs are relegated to §B of the online appendix.

We consider a farmer growing a single commodity crop to sell in the open market so as to

maximize the expected profit in a single growing season. We model the farmer’s decisions in a

two-stage stochastic program. In the first stage, the farmer determines the number of acres to

cultivate and quantity of fertilizer to apply per acre on the cultivated farmland facing uncertainties

in the farm yield, harvesting cost, and open market price. In the second stage, these uncertainties

are realized and the farmer decides the crop volume to harvest (and sell to the open market) and

the amount of harvesting resource to acquire to support this volume.

We first discuss how we model uncertainties in farm yield, harvesting cost, and open market

price. To model the farm yield uncertainty, we use ε̃ ∈ [0, ε] (e.g., carton/acre which is a commonly

used unit in fresh tomato farming) to represent the uncertain farm yield per acre in the absence of

fertilizer application where ε represents the largest realization. Let µε and σε denote the mean and

standard deviation of farm yield, respectively. To model the harvesting cost uncertainty, we make

the following two assumptions: First, we assume that the farmer has internal harvesting resource

Kh > 0 (e.g., in carton) and we normalize the unit harvesting cost when the internal resource is

used to zero. Second, we assume that additional resources can be acquired in the harvesting stage

at a unit cost ωh(ε) > 0 (e.g., $/carton) which is increasing in the farm yield realization ε. Because

the farm yield is uncertain at the first stage, ωh(ε̃) (hereafter, denoted as “external unit harvesting

cost”) is also uncertain at this stage. In our model, while Kh can represent the capacity of any

harvesting equipment/machinery (e.g., containers and harvesters), in the context of fresh-produce

industry Kh represents the available labor as most fruits and vegetables are harvested by hand.

Our harvesting cost modeling captures the main features of fresh-produce industry practice in a

parsimonious way. In particular, the farmer prioritizes using the available labor (e.g., farmer’s own

family members and existing contracted labor) for harvesting but because this availability is limited

the farmer can also hire seasonal workers (as often done in practice) when the realized farm yield is

sufficiently high. Our modeling of external unit harvesting cost ωh(ε) increasing in ε is motivated

by the following observations: (i) the cost of hiring seasonal workers increases in the demand for

these workers and (ii) when the farm yield is high for our focal farmer, the farm yield will also

likely to be high for other farmers in close proximity (because these farmers share similar climatic

conditions), increasing the demand for the seasonal workers. While we characterize the farmer’s
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optimal decisions in §3 using a generic ωh(ε̃) representation, to study the implications of optimal

decisions for farm management and food security, we further assume ωh(ε̃) = ω0 +βε̃ where ω0 > 0

denotes the base labor cost and β ≥ 0 captures the strength of the external unit harvesting cost’s

dependence on farm yield in §4-6.

To model the open market price uncertainty, we define market uncertainty m̃ ∈ [m,m] (e.g.,

$/carton)—where m > 0 and m represent the smallest and largest realization, respectively—to

capture the uncertainty in open market price associated with factors that are not related to farm

yield (e.g., macroeconomic conditions and industry regulations). Let µm and σm denote the mean

and standard deviation of market uncertainty, respectively. We also allow for the open market

price to be affected by the farm yield based on the following observations: (i) open market price

decreases in crop’s aggregate supply and (ii) when the farm yield is high for our focal farmer,

the farm yield will also likely to be high for other farmers in close proximity, decreasing the crop’s

aggregate supply. To this end, we define p(m, ε) > 0 as crop’s open market price (hereafter, denoted

as “crop price” for brevity) which is decreasing in the farm yield realization ε and increasing in

the market uncertainty realization m. Because ε̃ and m̃ are uncertain at the first stage, p(m̃, ε̃)

is also uncertain at this stage. While we characterize the farmer’s optimal decisions in §3 using a

generic p(m̃, ε̃) representation, to study the implications of optimal decisions for farm management

and food security in §4-6, we further assume p(m̃, ε̃) = m̃ − α(ε̃ − µε) where α ≥ 0 captures the

strength of crop price’s dependence on farm yield. To avoid uninteresting cases in which the farmer

optimally does not harvest at all, we assume α < m/(ε̄ − µε) so that crop price is always positive

for any m̃ and ε̃ realizations.

In summary, we use ε̃ and m̃ to capture all relevant uncertainties for the farmer; that is,

uncertainty in farm yield, harvesting cost, and crop price. We characterize the farmer’s optimal

decisions in §3 without imposing any distributional assumptions on ε̃ and m̃. In the rest of our

analysis, we assume ε̃ and m̃ have independent distributions and whenever applicable (which will

be specified) we further assume ε̃ and m̃ follow a univariate Normal distribution.

We next discuss how we model the farmer’s decisions. Let Q > 0 (in acres) denote the available

farmland, rc > 0 (in $/acre) denote the cultivation cost per acre (that accounts for plowing and

tilling of farmland as well as procurement and sowing of seeds), and yc > 0 (in $/lb) denote the

unit fertilizer (e.g., nitrogen) cost. In the first (cultivation) stage, the farmer jointly makes the

following two decisions. First, the farmer decides the size of the farmland to cultivate, denoted

by xc ≥ 0 (in acres), within the available farmland Q incurring the cultivation cost rcxc. Second,
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the farmer decides the fertilizer application rate per acre, denoted by sc ≥ 0 (in lb/acre), on the

cultivated farmland xc incurring the fertilizer cost ycscxc. A key feature of fertilizer application is

that it (stochastically) increases the farm yield in the second stage. We model the increase in the

yield as a shift in the corresponding distribution; that is, when the farmer applies sc amount of

fertilizer per acre, the farm yield per acre in the harvesting stage is given by ε̃ + asc. Here, a > 0

(e.g., in carton/lb) measures the extent to which the farm yield responds to fertilizer, so a larger

value of a corresponds to a stronger effect of fertilizer on yield. We assume that the increasing

yield response to fertilizer application is relevant for sc ∈ [0, s̄], where s̄ denotes the agronomically

recommended rate beyond which any more fertilizer application does not improve the farm yield.

Our model of farm yield response to fertilizer is representative of a linear response plateau model

(see, for example, Tembo et al., 2008) as commonly used in the agricultural economics literature

to model crop yield response to farm input.

In the second (harvesting) stage, the farmer determines the harvest volume, denoted by xh ≥ 0

(e.g., in carton), to sell in the open market at unit price p(m, ε). When the harvest volume xh

is larger than the available harvesting capacity Kh, the farmer also acquires (Kh − xh) units of

additional harvesting resource at external unit harvesting cost ωh(ε). To avoid uninteresting cases,

we assume Kh < ε̄Q; that is, internal harvesting resource is not sufficient for harvesting maximum

attainable yield from the whole farmland in the absence of fertilizer application. Otherwise, the

farmer does not acquire additional harvesting resource for any farm yield realization ε in the absence

of fertilizer application and this contradicts with the observation that seasonal workers are often

used for harvesting in the fresh produce industry (see, for example, Calvin and Martin, 2010).

We now formulate the farmer’s decision problem. In the harvesting stage, farm yield ε̃ and

market uncertainty m̃ are realized. Given the decisions from the cultivation stage, namely culti-

vation volume xc and fertilizer application rate sc, these realizations determine the crop volume

available for harvesting xc(ε+ asc), external unit harvesting cost ωh(ε), and the crop price p(m, ε).

Constrained by xc(ε + asc), the farmer chooses the crop volume xh ≥ 0 to harvest and sell to the

open market while acquiring (xh −Kh)+ units of additional harvesting resource to maximize the

profit p(m, ε)xh−ωh(ε)(xh−Kh)+. It is easy to establish that the farmer optimally harvests all the

available crop (i.e., x∗h = xc(ε+asc)) when the crop price is larger than the external unit harvesting

cost (i.e., p(m, ε) ≥ ωh(ε)); otherwise (i.e., p(m, ε) < ωh(ε)), the farmer optimally harvests all the

available crop up to the internal harvesting capacity (i.e., x∗h = min (xc(ε+ asc),Kh)).

In the cultivation stage, given unit cultivation cost rc and unit fertilizer cost yc the farmer
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chooses the cultivation volume xc and fertilizer application rate sc. Let Π∗c(rc, yc) denote the

farmer’s optimal expected profit in this stage, which is given as follows:

Π∗c(rc, yc)
.
= max

xc,sc
E
[
p(m̃, ε̃) min (xc(ε̃+ asc),Kh) + (p(m̃, ε̃)− ωh(ε̃))+ (xc(ε̃+ asc)−Kh)+

]
− ycscxc − rcxc, (1)

s.t. 0 ≤ xc ≤ Q, 0 ≤ sc ≤ s̄.

In (1), the first term in the objective function denotes the expected profit in the harvesting stage. In

particular, in the harvesting stage the farmer has a unit crop margin of p(m, ε) for the harvest vol-

ume min (xc(ε+ asc),Kh) whereas the unit crop margin for the harvest volume (xc(ε+asc)−Kh)+

is given by (p(m, ε)− ωh(ε))+ because the farmer optimally chooses to harvest this volume only if

this margin is positive. The second and third terms in (1) represent the fertilizer and cultivation

cost, respectively. The constraints state that the cultivation volume cannot exceed the available

farmland Q and the fertilizer application rate cannot exceed the agronomic recommendation s̄.

3 Optimal Cultivation and Fertilizer Application Decisions

In this section, we characterize the farmer’s optimal cultivation and fertilizer application decisions,

denoted by (x∗c , s
∗
c). For ease of exposition, we present the characterization when the unit fertilizer

cost yc is large, small, and medium.

Proposition 1 (Large unit fertilizer cost) Let y
(0)
c

.
= aE [p(m̃, ε̃)]. When yc > y

(0)
c , we have

(x∗c , s
∗
c) =


(0, 0) if Θ(0) ≤ rc,

(x̂nfc , 0) if Θ(Q) ≤ rc < Θ(0),

(Q, 0) if rc < Θ(Q),

where x̂nfc ∈ (Kh/ε̄, Q] is the unique solution to Θ(x̂nfc ) = rc with

Θ(xc)
.
=


E [ε̃ p(m̃, ε̃)] if xc ≤ Kh

ε̄ ,

E
[
ε̃
(
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc

})]
if xc >

Kh
ε̄ .

When the fertilizer cost is large, the farmer optimally does not apply any fertilizer (i.e., s∗c = 0). In

this case, the marginal cost of cultivating an additional acre is given by the cultivation cost per acre

rc. When rc is small, the farmer optimally cultivates the whole farmland; when rc is large, the farmer
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optimally does not cultivate at all; otherwise, the farmer optimally cultivates x̂nfc acres. Here, x̂nfc

(where superscript nf represents “no fertilizer”) denotes the cultivation volume for which rc equals

the expected marginal revenue of cultivating an additional acre, as given by Θ(xc). In the harvesting

stage this marginal revenue is characterized by the product of farm yield per acre ε and the effective

crop margin which takes two different forms based on the availability of harvesting resource Kh. In

particular, when Kh is not sufficient for harvesting the yield from additional cultivated acre (i.e.,

Kh < εxc), the crop margin is given by (p(m, ε) − ωh(ε))+ as the farmer optimally harvests only

when the crop price p(m, ε) is larger than the external unit harvesting cost ωh(ε). When Kh is

sufficient for harvesting the yield from additional cultivated acre, the crop margin is given by the

crop price p(m, ε). Using the identity min(p(m, ε), ωh(ε)) = p(m, ε)−(p(m, ε)−ωh(ε))+, the effective

crop margin at the harvesting stage can be written as p(m, ε) −min(p(m, ε), ωh(ε))I
{
ε > Kh

xc

}
as

given in the characterization of Θ(xc) in Proposition 1.

Next we characterize the optimal decisions for a sufficiently small unit fertilizer cost yc.

Proposition 2 (Small unit fertilizer cost) Let y
(2)
c

.
= aE [p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I{ε̃ > Kh/Q− as̄}].

When yc < y
(2)
c , we have

(x∗c , s
∗
c) =


(0, s̄) if Γ(0) ≤ rc + s̄yc,

(x̂fc , s̄) if Γ(Q) ≤ rc + s̄yc < Γ(0),

(Q, s̄) if rc + s̄yc < Γ(Q),

where x̂fc ∈ (Kh/(ε̄+ as̄), Q] is the unique solution to Γ(x̂fc ) = rc + s̄yc with

Γ(xc)
.
=


E [(ε̃+ as̄) p(m̃, ε̃)] if xc ≤ Kh

ε̄+as̄ ,

E
[
(ε̃+ as̄)

(
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc
− as̄

})]
if xc >

Kh
ε̄+as̄ .

When the fertilizer cost is small, the farmer optimally applies fertilizer at agronomic recommenda-

tion (i.e., s∗c = s̄). Therefore, the marginal cost of cultivating an additional acre is given by the sum

of cultivation cost per acre rc and fertilizer application cost s̄yc. The characterization of optimal

cultivation volume x∗c is structurally similar to that of Proposition 1. In particular, when rc + s̄yc

is small, the farmer optimally cultivates the whole farmland; when it is large, the farmer optimally

does not cultivate at all (and the fertilizer application decision is irrelevant); otherwise, the farmer

optimally cultivates x̂fc acres. Here, x̂fc (where superscript f represents “fertilizer”) denotes the
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cultivation volume for which the expected marginal revenue of cultivating an additional acre (while

applying fertilizer at rate s̄ per acre), as given by Γ(xc), equals its marginal cost rc + s̄yc. The

expected marginal revenue term Γ(xc) differs from Θ(xc) in that the former adds the effect of

fertilizer application on the farm yield; that is, the realized farm yield per acre is given by ε+ as̄.

So far we have observed that when the unit fertilizer cost yc is sufficiently small or sufficiently

large, the farmer always optimally chooses the same fertilizer application rate regardless of the

optimal cultivation volume. When yc is in the moderate range, the farmer may also optimally

change the fertilizer application decision, as illustrated in Proposition 3:

Proposition 3 (Moderate unit fertilizer cost) Let Θ(xc) (Γ(xc)) and y
(0)
c (y

(2)
c ) be as defined

in Proposition 1 (Proposition 2) as well as y
(1)
c

.
= aE [p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I{ε̃ > Kh/Q}]

where y
(1)
c ∈ [y

(2)
c , y

(0)
c ].

Case i: When y
(1)
c ≤ yc < y

(0)
c , we have

(x∗c , s
∗
c) =



(0, s̄) if Γ(0) ≤ rc + s̄yc,

(x̂fc , s̄) if rc + s̄yc < Γ(0) and rc ≥ Θ(xc)

(x̂nfc , 0) if Θ(Q) ≤ rc < Θ(xc)

(Q, 0) if rc < Θ(Q),

where x̂fc ∈ (Kh/(ε̄+ as̄), xc] is the unique solution to Γ(x̂fc ) = rc + s̄yc and x̂nfc ∈ (xc, Q] is the

unique solution to Θ(x̂nfc ) = rc. Here, xc > Kh/(ε̄+ as̄) is the unique solution to

aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc
− as̄

}]
= yc;

and xc > Kh/ε̄ is the unique solution to

aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc

}]
= yc.

Case ii: When y
(2)
c ≤ yc < y

(1)
c , we have

(x∗c , s
∗
c) =


(0, s̄) if Γ(0) ≤ rc + s̄yc,

(x̂fc , s̄) if rc + s̄yc < Γ(0) and rc ≥ Θ(xc),

(Q, ŝc) if rc < Θ(xc),
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where x̂fc ∈ (Kh/(ε̄+ as̄), xc] is the unique solution to Γ(x̂fc ) = rc + s̄yc and ŝc ∈ (0, s̄) is the unique

solution to

aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

Q
− aŝc

}]
= yc. (2)

We only delineate the intuition behind the second case; the first case can be explained in a similar

fashion. Let us consider a given unit fertilizer cost yc ∈ [y
(2)
c , y

(1)
c ) and examine the optimal

solution while changing the cultivation cost per acre rc. When rc is sufficiently high, the farmer

optimally does not cultivate any farmland (and the fertilizer application decision is irrelevant). As

rc decreases, the farmer increases the cultivation volume, and paralleling the characterization in

Proposition 2, optimally cultivates x̂fc acres and applies fertilizer at agronomically recommended

rate s̄. As rc further decreases, the farmer further increases the cultivation volume and optimally

cultivates the whole farmland. In this case, different from the characterization in Proposition 2, the

farmer optimally applies fertilizer at a rate ŝc that is lower than s̄ because yc is higher than the unit

fertilizer cost in Proposition 2 and thus, it is not beneficial for the farmer to continue applying s̄

amount of fertilizer per acre when the increase in number of acres cultivated is accounted for. Here,

ŝc is the fertilizer rate per acre (applied to the whole farmland Q) for which the marginal cost yc

equals its expected marginal revenue. In the harvesting stage this marginal revenue is characterized

by the product of an additional unit of fertilizer’s effect on yield per acre, as given by a, and the

effective crop margin which follows a similar structure with the effective crop margin that is used

to characterize Γ(xc) in Proposition 2 where xc and sc are substituted with Q and ŝc, respectively.

Corollary 1 combines the characterizations from Propositions 1, 2, and 3:

Corollary 1 When rc + s̄yc ≥ Γ(0) = E [(ε̃+ as̄)p(m̃, ε̃)] and rc ≥ Θ(0) = E [ε̃p(m̃, ε̃)], we have

x∗c = 0 and the fertilizer application decision is irrelevant. Otherwise, we have x∗c > 0 and the char-

acterization of (x∗c , s
∗
c) is as illustrated in Figure 1 for the case Γ(Q) < Θ(Q) (the characterization

is structurally the same for the case Γ(Q) ≥ Θ(Q)) where

Ξ1
.
=
{

(rc, yc) : yc ≤ ŷc(rc), y(2)
c ≤ yc ≤ y(0)

c

}
∪
{

(rc, yc) : Γ(Q) ≤ rc + s̄yc, 0 ≤ yc < y(2)
c

}
,

Ξ2
.
= {(rc, yc) : Θ(Q) ≤ rc, yc > ŷc(rc)} ,

Ξ3
.
=
{

(rc, yc) : Θ(Q) > rc, yc ≥ y(1)
c

}
,

Ξ4
.
=
{

(rc, yc) : yc > ŷc(rc), y
(2)
c ≤ yc < y(1)

c

}
,

Ξ5
.
=
{

(rc, yc) : Γ(Q) > rc + s̄yc, 0 ≤ yc < y(2)
c

}
.
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Here, ŷc(rc), which can be proven to be concavely increasing in rc, is the unique solution to Θ(xc) =

rc where xc is as given by Proposition 3.

Figure 1: Illustration of (x∗c , s
∗
c) within the (rc, yc) space for the case Γ(Q) < Θ(Q)

 

 

 

Notes. Θ(xc) and Γ(xc) are as defined in Propositions 1 and 2, respectively. y
(0)
c , y

(1)
c , and y

(2)
c are as

defined in Propositions 1, 3, and 2, respectively. It follows that x̂nfc (from Propositions 1 and 3) depends
on rc, but not on yc; x̂

f
c (from Propositions 2 and 3) depends on both rc and yc; and ŝc (from Proposition

3) depends on yc but not on rc.

When the farmer optimally cultivates some acres, Corollary 1 identifies five strategies that emerge as

optimal: partial farmland cultivation without using any fertilizer (Ξ2), partial farmland cultivation

with applying fertilizer at agronomically recommended rate (Ξ1), and full farmland cultivation with

three distinct fertilizer application rates; agronomic recommendation (Ξ5), less than agronomic

recommendation (Ξ4), and none (Ξ3). As we discuss from the next section onward, transitions

among these strategies will play a critical role in understanding how the farmer should adjust

optimal decisions as a response to a change in the business environment (e.g., an increase in

cultivation cost per acre); specifically when this change induces the farmer to switch from one

optimal strategy to another in which both cultivation and fertilizer application decisions are different

(for instance, a switch from Ξ4 to Ξ1 in Figure 1 as the cultivation cost per acre rc increases.)

As highlighted in the Introduction, one of the objectives of this paper is to examine how joint

optimization of the cultivation and fertilizer application decisions affects the key insights associated

with farm management and food security in comparison with those insights that are based on opti-

mization of only cultivation decision (as offered by the extant Operations Management literature).
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To this end, we consider a benchmark model where the farmer optimizes the cultivation decision

without applying any fertilizer.3 In this case, the optimal cultivation decision is given by the char-

acterization in Proposition 1 without imposing the condition yc > y
(0)
c ; that is, the characterization

is relevant for any yc > 0. Throughout the remainder of our analysis, whenever applicable, we make

a comparison with this benchmark model. We also make the following assumptions hereafter:

Assumption 1 We assume

(i) rc + s̄yc < E [p(m̃, ε̃)(ε̃+ as̄)] and rc < E [p(m̃, ε̃)ε̃];

(ii) m̃ and ε̃ have independent distributions;

(iii) p(m̃, ε̃) = m̃− α(ε̃− µε) for α ∈ [0,m/(ε̄− µε)) and ωh(ε̃) = ω0 + βε̃ for ω0 > 0 and β ≥ 0.

Assumption 1(i) implies that, as follows from Corollary 1, the farmer optimally cultivates a positive

amount of farmland (i.e., x∗c > 0). It also implies that the optimal cultivation volume is given by

min(x̂nfc , Q) in the benchmark model. Paralleling our discussion in §2, Assumption 1(ii) introduces

additional structure on the distributions of m̃ and ε̃ whereas Assumption 1(iii) introduces specific

functional forms for the crop price and external unit harvesting cost; these are necessary for the

tractability of our analysis in the next section.

4 Implications of Optimal Decisions for Farm Management

In this section, motivated by the recent increasing costs and uncertainties in the farming envi-

ronment as highlighted in the Introduction, we examine how changes in cultivation and fertilizer

costs as well as farm yield variability impact the farmer’s optimal decisions and profitability. These

analyses are useful for generating important practical insights for farm management (see the end of

this section) and for understanding the implications of farmer’s optimal decisions for food security

(see §5). Our results on the effect of fertilizer cost and how the optimal fertilizer application rate

is impacted by cultivation cost and farm yield variability cannot be obtained using the benchmark

model. For our remaining results, unless we state any differences it should be understood that they

extend those results obtained using the benchmark model to our setting.

We first investigate the effects of cultivation and fertilizer costs. It is easy to establish that an

increase in either of these costs decreases the farmer’s profitability. We next examine how these

costs impact the farmer’s optimal decisions using the illustration given by Figure 1.

3Another benchmark model is the one that optimizes the cultivation decision for a given fertilizer application rate
s > 0. In this case, the optimal cultivation decision can be obtained from the characterization in Proposition 2 by
substituting s̄ with s and removing the condition yc < y

(2)
c . Because this model yields identical insights with the

model without any fertilizer application, for brevity, we only consider the latter throughout the rest of the analysis.
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Proposition 4 (Effect of cultivation cost per acre rc) We have ∂x̂nfc
∂rc

< 0, ∂x̂fc
∂rc

< 0, and

∂ŝc
∂rc

= 0. Moreover, x̂nfc > x̂fc for yc ∈ [y
(1)
c , y

(0)
c ). When rc increases, (i) x∗c decreases and

(ii) s∗c does not change except for the cases when the increase in rc induces a transition from either

Ξ2 or Ξ4 to Ξ1 in Figure 1 (in these cases s∗c increases).

Intuitively, an increase in rc incents the farmer to decrease the optimal cultivation volume x∗c .

However, the effect on the optimal fertilizer application rate s∗c is more nuanced. Common intuition

may suggest that an increase in rc does not affect s∗c because fertilizer cost is the relevant cost for

this decision. Proposition 4 shows that this intuition is correct (for example, ŝc does not change)

unless the increase in rc induces the farmer to switch from one optimal strategy to another in which

both x∗c and s∗c are different. In particular, as illustrated in Figure 1, when an increase in rc induces

the farmer to switch the optimal strategy from either (Q, ŝc) or (x̂nfc , 0) to (x̂fc , s̄), s∗c increases to

counteract against the reduction in crop availability at the harvesting stage due to decreasing x∗c .

Proposition 5 (Effect of unit fertilizer cost yc) We have ∂x̂nfc
∂yc

= 0, ∂x̂fc
∂yc

< 0, and ∂ŝc
∂yc

< 0.

When yc increases, (i) s∗c decreases and (ii) x∗c decreases except for the cases when the increase in

yc induces a transition from Ξ1 to either Ξ2 or Ξ4 in Figure 1 (in these cases x∗c increases).

While an increase in unit fertilizer cost yc intuitively incents the farmer to decrease the optimal

fertilizer application rate s∗c , the effect on the optimal cultivation volume x∗c is more nuanced.

Common intuition may suggest that an increase in yc incents the farmer to decrease x∗c because the

farm input (fertilizer in this case) becomes more expensive. Proposition 5 shows that this intuition

is correct (for example, x̂fc decreases) unless the increase in yc induces the farmer to switch from

one optimal strategy to another in which both x∗c and s∗c are different. In particular, as illustrated

in Figure 1, when an increase in yc induces the farmer to switch the optimal strategy from (x̂fc , s̄)

to either (Q, ŝc) or (x̂nfc , 0), x∗c increases to counteract against the reduction in crop availability at

the harvesting stage due to decreasing s∗c .

We next examine the effects of farm yield variability σε on the farmer’s optimal decisions and

profitability. To this end, as discussed in §2, we further assume that the farm yield has a Normal

distribution. The effects can only be analytically characterized under specific conditions:

Proposition 6 (Effect of farm yield variability σε) Assume ε̃ ∼ N (µε, σ
2
ε ).

(i) When α = 0 and β = 0, we have ∂Π∗c(rc,yc)
∂σε

≤ 0.

(ii) When α = 0 and Kh ≥ (µε + as̄)Q, we have ∂x̂fc
∂σε
≤ 0, ∂x̂nfc

∂σε
≤ 0, and ∂ŝc

∂σε
≤ 0. Figure 2
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characterizes the effect of an increase in σm on x∗c (panel a) and s∗c (panel b): When σε increases,

(i) x∗c decreases and (ii) s∗c decreases except for cases when it induces a transition from Ξ2, Ξ3, or

Ξ4 to Ξ1 in Figure 2 (in these cases s∗c increases).

Figure 2: Network representation of the transition of the optimal cultivation volume x∗c (a) and
fertilization application rate s∗c (b) as σε increases.

 

 

SMU Classification: Restricted 

 

Note. Inside each node is the Ξi region and its corresponding optimal decisions: x∗c (a) and s∗c (b). When
σε increases, (x∗c , s

∗
c) starting from any region Ξi (i ∈ {1, · · · , 5}) can transition to another region as

indicated by the arrows in each panel. Two panels illustrate how an increase in σε affects the optimal
decisions locally (within each Ξ region) and globally (across these Ξ regions). For example, for (Q, ŝc) in
Ξ4 while a small increase in σε does not impact x∗c and decreases s∗c (as depicted by the sign on the
loop-arrow on Ξ4 in panels (a) and (b), respectively), a large increase in σε may induce the farmer to
change the optimal strategy to (x̂fc , s̄) in Ξ1 and thus, decreases x∗c and increases s∗c (as depicted by the
sign on the arrow from Ξ4 to Ξ1 in panels (a) and (b), respectively).

When α = 0, the uncertain crop price is given by m̃ (see Assumption 1(iii)) and it is not affected by

the farm yield uncertainty. In this case, an increase in farm yield variability σε decreases profitability

because while low yield realizations are detrimental (owing to low crop availability for harvesting),

high yield realizations are not as beneficial: the farmer is exposed to external unit harvesting cost

ω0 + βε. Proposition 6 proves this result for the special case of β = 0 but we find in our numerical

studies that this result continues to hold for the β > 0 case. Based on the same argument (about

how profitability is affected), common intuition may suggest that an increase in σε incents the

farmer to cultivate fewer acres and apply less fertilizer per acre. Proposition 6 demonstrates that

this intuition is correct for the effect on optimal cultivation volume x∗c . However, the intuition is
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correct for the effect on optimal fertilizer application rate s∗c (for example, ŝc decreases) unless the

increase in σε induces the farmer to switch from one optimal strategy to another in which both x∗c

and s∗c are different. In particular, when an increase in σε induces the farmer to switch the optimal

strategy from (Q, 0), (Q, ŝc), or (x̂nfc , 0) to (x̂fc , s̄), s∗c increases to counteract against the reduction

in crop availability at the harvesting stage due to decreasing x∗c . Proposition 6 proves the results

associated with optimal decisions for the case with sufficiently high harvesting capacity Kh (i.e.,

Kh ≥ (µε + as̄)Q). As we discuss in the next section, this Kh range corresponds to a realistic

representation of farming environment in practice.

When α > 0, characterizing the effect of farm yield variability is not analytically tractable. This

is because in comparison with the α = 0 case there is an additional impact that works in the opposite

direction. To illustrate this, let us focus on the effect of σε on farmer’s profitability. Different from

the α = 0 case, an increase in σε also increases the variability of crop price m̃−α(ε̃−µε) which, in

turn, increases the farmer’s profitability. This is because while the farmer benefits from high crop

price realizations, low crop price realizations are not as detrimental: the farmer optimally chooses

not to acquire additional resource to increase the harvest volume beyond the available capacity

when the crop price is less than the external unit harvesting cost. Nevertheless, we find in our

data-calibrated numerical studies, where the estimated parameters satisfy α > 0 and β > 0, the

farmer’s profitability always decreases in σε. Similarly, we find in our numerical studies that the

results associated with optimal decisions for the α = 0 case, as presented in Proposition 6, continues

to hold for the α > 0 case. We refer the reader to §6.2 for the details of these analyses.

Our results in this section have important practical insights for farm management. In discussing

these insights, for expositional brevity and practical relevance we focus on more realistic scenarios

in which the fertilizer cost is not very high so that the farmer optimally uses some fertilizer; that is,

the optimal strategies are those given in regions Ξ1, Ξ4, and Ξ5 in Figure 1. These are the optimal

strategies that we observe in our data-calibrated numerical studies in the context of fresh tomato

farming. We summarize our insights below:

(1) Based on the knowledge base developed in the extant OM literature (that focuses only on

cultivation optimization), the farmer’s best response to increasing cultivation cost is to reduce cul-

tivation volume. This response is also commonly observed in practice. For example, as highlighted

by Evans (2022) glasshouse farmers in the U.K. reduce their cultivation volume of cucumbers and

sweet peppers as a response to increasing cost of energy which is one of the primary inputs used

for cultivation in glasshouse farming. Our results suggest that the farmer should also apply more
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fertilizer as a response to increasing cultivation cost; specifically when the cultivation and fertilizer

costs are moderate (where we observe a transition from region Ξ4 to Ξ1 in Figure 1).

(2) In practice there is no shortage of anecdotal evidence that documents farmers reducing

their fertilizer application rate as a response to increasing fertilizer cost. For example, Thomas and

Maltais (2021) reports that escalating fertilizer costs lead some farmers in the U.S. to cut back

on their overall fertilizer use. Our results highlight that reducing the fertilizer application rate

without changing the cultivation volume is the best response to increasing fertilizer cost only when

the cultivation cost per acre rc is low (specifically, lower than the rc level that solves y
(2)
c = ŷc(rc)

in Figure 1). Otherwise, our results demonstrate that the best response to increasing fertilizer

cost is one of the following: (i) cultivate more acres and use less fertilizer and (ii) cultivate fewer

acres without changing the fertilizer application rate. In particular, the former response should

be employed when the cultivation and fertilizer costs are moderate (where we observe a transition

from region Ξ1 to Ξ4 in Figure 1) whereas the latter response should be employed otherwise.

(3) As discussed in the Introduction, there is widespread empirical evidence that showcases

climate-induced shocks increasing the farm yield variability in a variety of agricultural industries

including the fresh produce industry. These climate-induced shocks affect the farmer’s profitability

by increasing the uncertainties in harvestable crop volume, external harvesting cost, and crop price

as the latter two factors also depend on farm yield variability. Our results in the context of fresh

tomato farming illustrate that the overall impact of an increase in yield variability is detrimental

for profitability. In terms of farmer’s best response to increasing yield variability, the knowledge

base developed in the extant OM literature (that focuses only on cultivation optimization) suggests

reducing the cultivation volume. Our results identify that the farmer should also apply less fertilizer

while cultivating fewer acres as a response to increasing yield variability unless the cultivation and

fertilizer costs are moderate (where we observe a transition from region Ξ4 to Ξ1 in Figure 1). In

that case, the farmer should apply more fertilizer while cultivating fewer acres.

The general insight from our results is that in designing an effective response to changes in

the farming environment it is important to have a holistic approach that jointly considers the two

levers of increasing the crop volume at the harvesting stage: cultivating more acres or applying

more fertilizer per acre. As we discuss in the next section, this joint consideration will also play a

key role in understanding the implications of farmer’s optimal decisions for food security.
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5 Implications of Optimal Decisions for Food Security

In this section, we contextualize in our setting the gap between maximum attainable and actual

crop production levels, a food security measure similar to those commonly used in the literature

(see, for example, Godfray et al. (2010)). In particular, we define the expected gap as the differ-

ence between the expected maximum attainable yield (µε+as̄)Q and the expected optimal harvest

volume E[x∗h(m̃, ε̃)] at the farmer’s optimal cultivation and fertilizer application decisions. Parallel-

ing §4, motivated by the recent increasing costs and uncertainties in the farming environment, we

investigate how changes in cultivation and fertilizer costs as well as farm yield variability impact

the expected gap. We say that a change is beneficial for food security when the expected gap

decreases and harmful otherwise. As we discuss at the end of this section, our analyses are useful

for understanding the consequences of some commonly adopted policies in practice that have been

devised to increase farmer’s crop production level and income. Throughout our analysis, whenever

applicable, we will again highlight how considering the fertilizer application decision affects the

insights offered based on the benchmark model.

Let J∗(rc, yc) = (µε + as̄)Q − E[x∗h(m̃, ε̃)] denote the expected gap for a given cultivation cost

per acre rc and unit fertilizer cost yc. Here, the expected optimal harvest volume is given by

E[x∗h(m̃, ε̃)] = E [x∗c(ε̃+ as∗c)I{p(m̃, ε̃) ≥ ωh(ε̃)}+ min (x∗c(ε̃+ as∗c),Kh) I{p(m̃, ε̃) < ωh(ε̃)}] , (3)

where in the harvesting stage the farmer optimally harvests all the available crop x∗c(ε+ as∗c) when

the crop price is larger than the external unit harvesting cost (i.e., p(m, ε) ≥ ωh(ε)); otherwise, the

farmer optimally harvests all the available crop up to the internal harvesting capacity Kh. The

expected optimal harvest volume in (3) can be strictly less than the expected maximum attainable

yield (µε + as̄)Q because the farmer may choose not to cultivate whole farmland (i.e., x∗c 6= Q) or

not to apply fertilizer at its agronomic recommendation (i.e., s∗c 6= s̄) in the cultivation stage, or it

may not be profitable to acquire additional resource in the harvesting stage (i.e., p(m, ε) < ωh(ε))

when the available crop is larger than the internal harvesting capacity Kh.

In this section, to obtain sharper insights we make the following additional assumption:

Assumption 2 Kh ≥ (µε + as̄)Q.

This assumption states that the farmer has sufficient internal capacity to harvest the expected

maximum attainable yield. Using Assumption 2, it is easy to establish that in the absence of

uncertainty; that is, when the farm yield and market uncertainty realizations always equal their
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respective means, the farmer always optimally cultivates the whole farmland (i.e., x∗c = Q) and

applies fertilizer at agronomically recommended rate (i.e., s∗c = s̄) for any rc and yc in the cultivation

stage and the farmer does not need to acquire additional resource to harvest the available crop in

harvesting stage. Therefore, J∗(rc, yc) = 0 in the absence of uncertainty (which is a realistic

representation of farming environment in practice). In other words, when Assumption 2 holds,

farm yield and market uncertainties are the key drivers of a positive expected gap.

We first examine how changes in cultivation cost per acre rc and unit fertilizer cost yc impact

the expected gap J∗(rc, yc). As follows from (3), a change in each cost affects the expected gap

only by altering the optimal decisions (x∗c , s
∗
c) in the cultivation stage.

Proposition 7 (Effect of cultivation cost per acre rc) When rc increases, J∗(rc, yc) increases

except for the cases when it induces a transition from either Ξ2 or Ξ4 to Ξ1 in Figure 1.

Common intuition may suggest that an increase in rc (which makes farming more expensive)

decreases the expected optimal harvest volume, and thus, increases the expected gap. Proposition

7 proves that this intuition is correct (that is, an increase in rc is harmful for food security) unless

it induces the farmer to switch from one optimal strategy to another in which both x∗c and s∗c

are different. In particular, when rc increases, as follows from Proposition 4, the farmer optimally

cultivates fewer acres and does not alter optimal fertilizer application rate except for the cases when

the increase in rc induces the farmer to switch the optimal strategy from either (Q, ŝc) or (x̂nfc , 0)

to (x̂fc , s̄) in Figure 1. Outside of these cases, because x∗c decreases and s∗c does not change, the

expected optimal harvest volume in (3) decreases, and thus, the expected gap increases as shown in

Proposition 7. When these cases happen, the farmer optimally increases s∗c to counteract against

the reduction in crop availability at the harvesting stage due to decreasing x∗c . Because x∗c decreases

and s∗c increases the resulting impact on the expected optimal harvest volume is indeterminate. We

find in our data-calibrated numerical studies that the increase in fertilizer application rate may

outweigh the decrease in cultivation volume and the expected optimal harvest volume increases

(see §6.3 for details). In other words, an increase in rc can be beneficial for food security. This

behavior cannot be observed in the benchmark model where it can be proven that an increase in

rc always increases the expected gap and thus, it is always harmful for food security.

We next examine the effect of unit fertilizer cost yc on the expected gap:

Proposition 8 (Effect of unit fertilizer cost yc) When yc increases, J∗(rc, yc) increases ex-

cept for the cases when it induces a transition from Ξ1 to either Ξ2 or Ξ4 in Figure 1.
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Proposition 8 proves that an increase in yc is harmful for food security unless it induces the farmer

to switch from one optimal strategy to another in which both x∗c and s∗c are different. In particular,

when yc increases, as follows from Proposition 5, the farmer optimally applies less fertilizer per

acre and cultivates fewer acres except for the cases when the increase in yc induces the farmer to

switch the optimal strategy from (x̂fc , s̄) to either (Q, ŝc) or (x̂nfc , 0) in Figure 1. Outside of these

cases, because x∗c and s∗c decrease, the expected optimal harvest volume decreases, and thus, the

expected gap increases as shown in Proposition 8. When these cases happen, the farmer optimally

increases x∗c to counteract against the reduction in crop availability at the harvesting stage due to

decreasing s∗c . Because x∗c increases and s∗c decreases the resulting impact on the expected optimal

harvest volume is indeterminate. Nevertheless, we find in our numerical studies that the increase

in cultivation volume does not outweigh the decrease in fertilizer application rate and thus, the

result in Proposition 8 continues to hold in general (see §6.3 for details).

We next examine the effect of farm yield variability σε. As follows from (3), a change in σε

affects the expected gap by altering the expected optimal harvest volume for any given farmer’s

decisions (xc, sc) as well as the farmer’s optimal decisions (x∗c , s
∗
c) in the cultivation stage.

Proposition 9 (Effect of farm yield variability σε) Assume ε̃ ∼ N (µε, σ
2
ε ) and α = 0. When

σε increases, J∗(rc, yc) increases except for the cases when it induces a transition from Ξ2, Ξ3, or

Ξ4 to Ξ1 in Figure 2.

Recall that when α = 0, the uncertain crop price is given by m̃ and it is not affected by the farm

yield uncertainty. In this case, Proposition 9 proves that an increase in farm yield variability σε

decreases the expected gap–that is, it is harmful for food security—unless it induces the farmer to

switch from one optimal strategy to another in which both x∗c and s∗c are different. As follows from

(3), how an increase in σε affects the expected optimal harvest volume for a given farmer’s decisions

(xc, sc) crucially depends on how it impacts the (stochastic) ordering between the crop price m̃ and

the external unit harvesting cost ω0 + βε̃. This is because the farmer optimally harvests all the

available crop xc(ε+ asc) only when the crop price is larger than this cost in the harvesting stage.

It can be proven that an increase in σε increases the likelihood that the external unit harvesting

cost will be larger than crop price in the harvesting stage which, in turn, decreases the expected

optimal harvest volume for a given (xc, sc). Proposition 6 has already established that an increase

in σε incents the farmer to cultivate fewer acres and apply less fertilizer per acre except for the cases

when it induces the farmer to switch the optimal strategy from (Q, 0), (Q, ŝc), or (x̂nfc , 0) to (x̂fc , s̄)

in Figure 2. Therefore, outside of these cases because x∗c and s∗c decrease, these changes further
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decrease the expected optimal harvest volume in (3), and thus, increase the expected gap as shown

in Proposition 9. When these cases happen, because x∗c decreases and s∗c increases the resulting

impact on the expected gap is indeterminate. This behavior is different from the benchmark model

where it can be proven that an increase in σε always increases the expected gap.

When α > 0, the uncertain crop price m̃− α(ε̃− µε) is affected by the farm yield variability σε

and characterizing the effect of σε on the expected gap is not analytically tractable. Nevertheless,

we find in our data-calibrated numerical studies, where the estimated α has a positive value, the

results associated with the α = 0 case, as presented in Proposition 9, continues to hold for the

α > 0 case as well. We also find that when an increase in σε induces the farmer to switch from

one optimal strategy to another in which both x∗c and s∗c are different (specifically, from (Q, ŝc) to

(x̂fc , s̄)), because s∗c decreases the expected gap may also decrease; that is, an increase in σε can be

beneficial for food security. We refer the reader to §6.3 for the details of these analyses.

Our results in this section are useful for policymakers to understand the consequences of some

commonly adopted policies in practice that have been devised to increase the farmer’s crop pro-

duction level and income. An example is distributing discount vouchers for procurement of seeds

(which reduces the cultivation cost per acre) or fertilizer (which reduces the unit fertilizer cost);

we refer the reader to Giné et al. (2022) for an application in the context of Tanzania’s farming

environment. Another example is increasing the availability of disease-resistant seeds that reduces

the farm yield variability as highlighted by Kazaz et al. (2016); we refer the reader to Arndt et al.

(2016) for an application in the context of Malawi’s farming environment. The general insights from

our analysis are that while a policy that reduces the cultivation or fertilizer cost or yield variability

always increases the farmer’s income (as measured by the optimal expected profit), its impact on

the farmer’s crop production level (as measured by the expected optimal harvest volume) is more

nuanced. Consider a policy that reduces the cultivation cost or yield variability. Based on the

knowledge base developed in the extant OM literature (that focuses only on cultivation optimiza-

tion), this policy always increases the crop production level. However, our results demonstrate that

this policy is proven to increase the crop production level only when it does not induce the farmer

to switch from one optimal strategy to another in which the optimal cultivation volume is higher

and the optimal fertilizer application rate is lower. In other cases (where our results in the previous

section identify specific conditions under which they appear), this policy may backfire because the

reduction in optimal fertilizer usage may decrease the farmer’s crop production level as observed

in the context of fresh tomato farming. Similar insights are also relevant for a policy that reduces
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the fertilizer cost except for one difference: we do not observe the reduction in optimal fertilizer

usage decreasing the farmer’s crop production level in the context of fresh tomato farming. In sum-

mary, it is important for the policymakers to consider the farmer’s joint cultivation and farm-input

application decisions as otherwise the devised policies may have unintended consequences.

6 Numerical Analysis: Application to Fresh Tomato Farming

In this section, we discuss an application of our model in the context of (fresh) tomato farming

which is among the most valuable fresh produce, valued at approximately $1.6 billion in the U.S.

in 2019 (USDA, 2020). We calibrate our model parameters to represent a tomato farmer in Florida

which is the largest fresh tomato growing region in the U.S. in 2019 (USDA, 2020). We provide a

brief description of the data and calibration used for our numerical experiments (§6.1) and relegate

its detailed discussion to §A of the online appendix. Using these experiments, we complement our

analytical analyses in the previous two sections that examine the implications of optimal decisions

for farm management and food security, respectively. To this end, we explore how changes in

cultivation and fertilizer costs as well as farm yield variability impact the farmer’s optimal decisions

and profitability (§6.2) as well as the expected gap (§6.3). Throughout this section, we report our

results in a selective fashion to complement the analytical results proven in §4 and §5 under specific

conditions by numerically investigating the effects without imposing these conditions.

6.1 Data, Model Calibration, and Computation for Numerical Experiments

We obtain the historical fresh tomato selling price and farm yield in Florida from USDA (USDA,

2010, 2018) and obtain the historical harvesting labor wage from Bureau of Labor Statistics (United

States Department of Labor, 2021). We denote any calibrated parameter z by ź and display these

parameters in Table 1. To represent the baseline scenario, besides using these calibrated parameter

values we set Kh = (µ́ε + á´̄s)Q́ for the internal harvesting capacity and normalize the farmland

to a single acre (i.e., Q́ = 1). For this baseline scenario, we obtain the optimal expected profit as

6,770.83 ($/acre) which is in the range of profits that could be obtained by substituting the selling

price in Florida in 2014 from USDA (2018) to VanSickle and McAvoy (2015).

Numerical computation. In examining the implications of optimal decisions for farm manage-

ment (§6.2) and food security (§6.3), we extend our numerical instances around the baseline scenario

by varying several key parameters around their calibrated values. In particular, we consider the

four key parameters, cultivation cost per acre rc, unit fertilizer cost yc, market variability σm,

and farm yield variability σε, to change by −45% to 45% from their calibrated values with a 15%
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Table 1: Calibrated parameters for fresh tomato farming in Florida

µ́ε Mean of farm yield (carton/acre) 787.89

σ́ε Standard deviation of farm yield (carton/acre) 117.45

µ́m Normalized mean of crop price ($/carton) 11.54

σ́m Standard deviation of market uncertainty ($/carton) 2.80

ά Dependence of price on farm yield ($/(carton/acre)) 0.01

β́ Dependence of external harvesting (labor) cost on farm yield ($/(carton/acre)) 0.0067

ώ0 Base external harvesting (labor) cost ($) 2.28

ŕc Cultivation cost per acre ($/acre) 4379.59
´̄s Maximum fertilizer application rate (agronomic recommendation) (lb/acre) 823.74

ýc Unit fertilizer cost ($/lb) 3.46

á Yield response to fertilizer application (carton/lb) 0.57

Note. We assume that market uncertainty m̃ and farm yield uncertainty ε̃ follow a univariate Normal
distribution. The weight units are the following: lb (one pound) and carton (25 pounds).

increment. We also consider Kh to be 0%, 15%, and 30% away from its baseline values.4 In total,

we evaluate 7× 7× 7× 7× 3 =7,203 numerical instances. In illustrating how a measure of interest

(i.e., optimal cultivation volume, optimal fertilizer application rate, optimal expected profit, and

the expected gap) at a given numerical instance (e.g., baseline scenario) changes with respect to

rc, yc, or σε, we plot our figures using a finer increment than 15% (specifically, 0.1% increment)

within the range of [−45%,45%] of the calibrated value.

In all the instances considered, the optimal strategies that emerge are those when the fertilizer

cost is either low or moderate; that is, the farmer either cultivates the whole farmland Q while

applying fertilizer at agronomically recommended rate s̄ or partial rate ŝc, or cultivates x̂fc acres

while applying fertilizer at s̄ (i.e., Ξ5, or Ξ4, or Ξ1, respectively, in Figure 1). We note here that

we observe a transition from one optimal strategy to another in which both cultivation volume

and fertilizer application rate are different, specifically when there is a transition between regions

Ξ4 and Ξ1 where the optimal decisions are (Q, ŝc) and (x̂fc , s̄), respectively. As discussed in the

previous two sections, this transition will have critical implications for our results.

6.2 Implications of optimal decisions for farm management

Propositions 4 and 5 fully characterize the effects of cultivation cost per acre rc and unit fertilizer

cost yc on the farmer’s optimal decisions, respectively. Therefore, we focus on the effects of farm

yield variability σε on the farmer’s optimal decisions and profitability. Proposition 6 proves under

the special case of α = 0 and β = 0 that the optimal expected profit decreases in σε. In our

4Throughout our numerical experiments, we only consider Kh values that are no smaller than (µε + as̄)Q to be
consistent with Assumption 2 in §5.
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numerical experiments, we have ά > 0 and β́ > 0 as shown in Table 1. As discussed above,

we consider 1,029 numerical instances (generated by changing rc, yc, σm, and Kh around the

baseline scenario) and examine in each instance how σε affects the farmer’s profitability. In all

these instances we consistently observe that, paralleling our result in Proposition 6, the optimal

expected profit decreases in σε; see Figure 3(a) for an illustration. We also consistently observe

that when σε increases, (i) the optimal cultivation volume x∗c decreases and (ii) optimal fertilizer

application rate s∗c decreases except for the cases when it induces a transition from Ξ4 to Ξ1 (in

these cases s∗c increases). These results are the same as those proven in Proposition 6 for the special

case of α = 0. Figure 3(b) provides an illustration for the optimal fertilizer application rate s∗c . In

this example as σε increases, s∗c first decreases—where ŝc decreases as proven in Proposition 6 for

α = 0—and then increases to s̄ as the optimal strategy changes from (Q, ŝc) (Ξ4) to (x̂fc , s̄) (Ξ1). In

the latter case, s∗c is increased from ŝc to s̄ to counteract against the reduction in crop availability

at the harvesting stage due to a decrease in x∗c from Q to x̂fc .

Figure 3: Effects of Farm Yield Variability σε on the Optimal Expected Profit Π∗c (Panel a) and
the Optimal Fertilizer Application Rate s∗c (Panel b)

(a)
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Notes. In each panel, σε ∈ [−45%, 45%] changes from the baseline value σ́ε = 117.45 with 0.1% increments.
In panel b, rc = 1.3ŕc, yc = 1.3ýc, and the rest of the parameters in both panels are at their calibrated
(baseline) levels.

6.3 Implications of optimal decisions for food security

Propositions 7 and 8 prove that when either cultivation cost per acre rc or unit fertilizer cost yc

increases, the expected gap J∗(rc, yc) also increases except for cases when it induces the farmer

to switch from one optimal strategy to another in which both optimal cultivation volume and
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fertilizer application rate are different (in these cases the effects on J∗(rc, yc) are indeterminate).

In our numerical experiments such a transition only exists between regions Ξ4 and Ξ1. As unit

fertilizer cost yc increases, in all numerical experiments that includes a transition from Ξ1 to Ξ4 we

observe that expected gap continues to increase. As cultivation cost per acre rc increases, in some

of the numerical experiments that includes a transition from Ξ4 to Ξ1 we observe that the expected

gap decreases; see Figure 6(a) for an example. In this example as rc increases, the expected gap

is non-decreasing except when the farmer’s optimal strategy switches from (Q, ŝc) (Ξ4) to (x̂fc , s̄)

(Ξ1). In that case, a higher rc increases the expected gap because the increase in the fertilizer

application rate (from ŝc to s̄) outweighs the decrease in the cultivation volume (from Q to x̂fc )

which, in turn, increases the optimal expected harvest volume in (3).

Figure 4: Effects of Cultivation Cost Per Acre rc (Panel a) and Farm Yield Variability σε (Panel
b) on the Expected Gap J∗(rc, yc)

(a)
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Notes. In panel a, rc ∈ [25%, 30%] away from the baseline value ŕc = 4379.59 with 0.1% increments,
yc = 1.3ýc, and σε = 1.15σ́ε. In panel b, σε ∈ [−5%, 5%] away from the baseline value σ́ε = 117.45 with
0.1% increments, rc = 1.3ŕc, and yc = 1.3ýc. In both panels, the rest of the parameters are at their
calibrated (baseline) levels.

We next examine the effect of farm yield variability σε. Proposition 9 proves under the α = 0

assumption that when σε increases, the expected gap J∗(rc, yc) also increases except for cases

when it induces the farmer to switch from one optimal strategy to another in which both optimal

cultivation volume and fertilizer application rate are different (in these cases the effect on J∗(rc, yc)

is indeterminate). In our numerical experiments, we verify that this result continues to hold when

α > 0. We also find that when an increase in σε induces the farmer to switch from one optimal

strategy to another in which both x∗c and s∗c are different, the expected gap may also decrease; see
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Figure 6(b) for an example. In this example as σε increases, the expected gap is non-increasing

except when the farmer’s optimal strategy switches from (Q, ŝc) (Ξ4) to (x̂fc , s̄) (Ξ1). In that case,

a higher σε increases the expected gap because the increase in the fertilizer application rate (from

ŝc to s̄) outweighs the decrease in the cultivation volume (from Q to x̂fc ) which, in turn, increases

the optimal expected harvest volume in (3).

7 Conclusions

Motivated by the fresh produce industry, this paper studies a farmer’s joint cultivation and fertilizer

(a representative farm input) application decisions in the presence of uncertainties in crop’s open

market price, harvesting cost (labor cost for hiring seasonal workers) and farm yield where yield is

stochastically increasing in the fertilizer application rate. Motivated by the recent changes in the

farming environment as summarized in the Introduction, we provide insights on how the farmer’s

optimal decisions and profitability as well as the resulting expected optimal harvest volume (a

measure of food security) are affected by increasing cultivation and fertilizer costs as well as farm

yield uncertainty. We show that these effects can be significantly different from those when only

cultivation decision is optimized (as is the case in the extant OM literature); specifically when these

effects induce the farmer to change the fertilizer application and cultivation decisions in opposite

directions. Based on our results, we put forward practical insights for farm management. We also

provide policy insights by shedding light on unintended consequences of some commonly adopted

policies in practice that have been devised to increase farmer’s crop production level and income.

We conduct additional analyses to examine other research questions relevant to our setting; the

details of these analyses are relegated to §C of the online appendix. First, in §C.1, we examine

how an increase in market variability σm (which increases the crop price variability) impact the

farmer’s optimal decisions and profitability as well as the expected gap. This analysis is motivated

by the observation that crop price variability is one of the key reasons that drives the farmers to

leave their crop unharvested on their farmland (World Wild Fund, 2021), and thus, it is important

for the farmers in practice to understand how to respond to changes in crop price variability. We

find that the effects of an increase in σm on the farmer’s optimal decisions and profitability are

structurally the same as the effects of a decrease in yield variability σε on these two measures (as

given by Proposition 6). Similarly, we also find that the effect of an increase in σm on the expected

gap is structurally the same as the effect of a decrease in yield variability on the same measure

(as given by Proposition 9) when the expected crop price is sufficiently low. In our data-calibrated

baseline scenario this condition is not satisfied and an increase in σm increases the expected gap
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in the context of fresh tomato farming. As an increase in σm increases the farmer’s profitability,

but also increases the expected gap, this implies that a policymaker has to carefully balance the

two potential policy objectives. Second, in §C.2, we examine whether a policy that reduces the

labour cost for hiring seasonal workers always increases the crop production level. To this end, we

investigate how changes in base labor cost ω0 impact the crop production level (as measured by

the expected optimal harvest volume). We find that while a reduction in ω0 always increases the

crop production level in the benchmark model, it increases the crop production level in our setting

except for the cases when the reduction in ω0 induces the farmer to switch the optimal strategy

from (x̂fc , s̄) to (x̂nfc , 0), (Q, 0), or (Q, ŝc). Outside of these cases, a reduction in ω0 induces the

farmer to cultivate more acres and apply more fertilizer per acre, increasing the crop production

level. When these cases happen, a reduction in ω0 induces the farmer to apply less fertilizer per

acre while cultivating more acres. We find in our data-calibrated numerical studies that in these

cases a reduction in ω0 may decrease the crop production level. Finally, in §C.3, we extend our

model to consider contract farming, a commonly observed practice in agricultural industries (Huh

and Lall, 2013), where the farmer sells the harvested crop to a buyer at a fixed unit price r up to

a maximum volume D and sells the remaining crop to the open market. We show under realistic

assumptions for contract parameters (r,D) that all of our results continue to hold in this setting.

Our work has several limitations due to our specific modeling assumptions and further research

is needed to validate the relevance of our insights when those assumptions are relaxed. First, we

assume that the farmer’s cultivation, fertilizer application, and subsequent harvesting decisions

have no effect on the crop’s open market price. This is a reasonable assumption for commodity

crops sold in open markets (including fresh produce) as considered in this paper where production

volume of an individual farmer is insignificant in comparison to the aggregate production volume

traded in the open market.5 However, for a non-commodity crop or a commodity crop sold in

the local market where the crop price is not benchmarked to the open market price, the farmer’s

decisions may affect the crop price by altering its availability in the market. Examining our research

questions in this setting requires a quantity-dependent crop price modeling. While we expect that

our results that showcase differences from the knowledge base developed in the OM literature (that

focuses only on cultivation decision) would continue to be relevant in this setting, future research

is still needed to verify this conjecture. Second, we model the farmer’s objective as expected profit

maximization which assumes that the farmer does not have an aversion to profit variability. While

5An equivalent interpretation of our setting is a farmer growing a commodity crop to sell through a bilateral
contract where the contract price is benchmarked on the crop’s open market price.
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this is a reasonable assumption for a non-smallholder farmer in a developed country (e.g., U.S.)

as considered in our model calibration, it may not be reasonable for a smallholder farmer in a

developing country (e.g., India) whose minimum income needed for subsistence heavily depends on

farm profit. A smallholder farmer may have an aversion to farm profit variability, specifically to the

scenarios in which the realized profit is lower than the subsistence income. One potential approach

to factor in the aversion to low profit scenarios is to consider contract farming as discussed above.

As we demonstrate in §C.3 of the online appendix, it can be shown that contract farming creates

value for the farmer by substituting the profit from open market sale at low profit realizations with

profit from contract sale; that is, engaging in contract farming enables the farmer to reduce the

exposure to low profit scenarios. We have already discussed above that our main results continue

to hold in the presence of contract farming. Another potential approach is to consider a risk-averse

utility function for the farmer. Examining the robustness of our insights in this setting should

prove to be an interesting avenue for future research.

Our work can be extended to examine other interesting research questions in the context of food

security challenges in farming. Based on our analysis in §5 and §6 we provide insights on how a

specific subsidy policy—for example, distributing a voucher for seed procurement or distributing a

voucher for fertilizer procurement—affects the farmer’s crop production level and income. It would

be interesting to make comparisons across these subsidy policies for helping policymakers in choos-

ing the right subsidy to implement. To this end, our results underline one important characteristic

in the context of fresh tomato farming: distributing a voucher for fertilizer procurement (which

decreases the unit fertilizer cost) always increases the crop production level whereas distributing

a voucher for seed procurement (which decreases the cultivation cost per acre) may not. Using

our model, future research can be conducted to make further comparisons across subsidy policies

based on how each policy affects the farmer’s crop production level and income to (i) determine

conditions under which one policy outperforms the others and (ii) examine how consideration of

fertilizer application decision affects these conditions. Moreover, it would be interesting to investi-

gate how a government that maximizes food security (as measured by crop production level) should

choose which subsidy policy to implement in a farming ecosystem. This analysis would require an

equilibrium model that captures the interaction between the government and a population of farm-

ers (that represent the farming ecosystem) and it is beyond the scope of this paper. Our paper’s

insights will be useful in understanding this interaction because there is a need to capture how each

subsidy policy affects an individual farmer’s optimal decisions in that setting.
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Online Appendix for Integrated Optimization of Cultivation and
Fertilizer Application: Implications for Farm Management and

Food Security

Appendix A Data and Calibration

Data. We obtain the historical fresh tomato annual yield (in carton/acre) and annual selling

price (in $/carton) in Florida for 1975-1997 from USDA Economic Resource Service (USDA, 2010)

and for 1998-2013 from USDA National Agricultural Statistics Service QuickStats (USDA, 2018).

Figure 5 plots the farm yield in panel a and consumer price index (CPI)-adjusted crop price in panel

b, respectively. We obtain the fresh tomato harvesting labor wage (in $/week) as the historical

labor wage for the vegetable and melon farming industry (where fresh tomato is categorized under)

from Bureau of Labor Statistics (United States Department of Labor, 2021). In particular, we

use the data under the industry classification NAICS with code 111219 for 1990-2013 and the data

under the industry classification SIC with code 016 for 1975-1989. As the wage data under these two

classifications differ slightly for the overlapping yeas 1990-2000, we first compute
∑11

i=1
hi
h′i
/11 = 0.98,

where hi (h′i), i ∈ {1, · · · , 11}, represents harvesting wage under NAICS (SIC) classification for year

1990 to 2000. Then, we multiply the harvesting wage under SIC in each year from 1975-1989 by

0.98 to obtain those under NAICS for each year in 1975-1989. We next convert these harvesting

labor wage data from $/week to $/carton: We divide the harvesting labor wage each year in 1975-

2013 by (436$/week)/ 2.05$/carton, where 436 is the average weekly labor wage for the farming

industry with NAICS code 111219 in Florida in 2014 and 2.05 is the harvesting labor cost from

VanSickle and McAvoy (2015)—both numbers are obtained for 2014, the year of sample cost used

to calibrate other parameters. We finally adjust both the crop price and harvesting wage using the

U.S. CPI with the base year 2014.

Model and its calibration. Recall that p̃(m, ε) = m̃ − α(ε̃ − µε) and we assume that m̃ and ε̃

are independently normally distributed with mean µm and µε and standard deviation σµ and σε,

respectively. We can show that p̃ is normally distributed with µp = µm and standard deviation

σp =
√
σ2
m + α2σ2

ε . We can also show that p̃ and ε̃ follow a bivariate distribution with the covariance

cov(p̃, ε̃) = −ασ2
ε and correlation coefficient ρ = −ασε

σp
. We use Henze-Zirkler test to verify whether

the price and yield data follow a bivariate normal distribution and find that one cannot reject

the null hypothesis that p̃ and ε̃ are bivariate normal random variables, where the p value of the

Henze-Zirkler test is 0.38. Thus, in order to calibrate µm, µε, α, σµ and σε, we first use the price

data series to obtain µp = 14.16 and σp = 3.37, use the yield data series to obtain µε = 1260.62

and σε = 187.92, and then obtain the correlation coefficient between price and yield as ρ = −0.58.

We next obtain the other parameters as follows: µm = µp = 14.16, ά = −ρσp/σε=̇0.01, and

σ́m =
√
σ2
p − α2σ2

ε =̇2.80. (Note that µm will be further adjusted below.)

Recall also ωh(ε̃) = ω0 + βε̃ and ωh follows a normal distribution with mean µω and standard

deviation σω, we can easily show that µω = ω0 + βµε and σ2
ω = β2σ2

ε . To calibrate ω0 and β,

we first use the wage data series to obtain µω = 1.63 and σω = 0.17 and use yield data to obtain
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Figure 5: Florida Fresh Tomato Farm Yield (Panel a) and CPI-adjusted Crop Price (Panel b)
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µε = 1288.67 and σε = 163.74. Note that the values for µε and σε differ slightly from those obtained

previously as we use wage and yield data from 1978 to 2013 due to the fact that the wage data for

1975 to 1977 are abnormally high. Then we can obtain β = σω
σε

=̇0.001 and ω0 = µω − βµε=̇0.34.

Then, we multiply these two values by 1.4 to account for the 40% labor cost overhead (Miyao et al.,

2017) to obtain β = 0.0014 and ω0 = 0.34× 1.4 = 0.476.

As our model implicitly assumes that when yield is low, we use contracted labor and implicitly

normalize their harvesting wage to be zero, we thus subtract the mean of the harvesting wage from

the mean of the crop price to obtain the mean of crop price as µm = 14.16− 1.63 = 12.53.

Calibration of other parameters. We calibrate other parameters using a sample cost for fresh

tomato growers in Southwest Florida (VanSickle and McAvoy, 2015). We calculate the cultivation

cost as all cultivation-related costs minus the cost of yield-enhancing resources, including fertilizer,

fumigant, herbicide, and insecticide. We calibrate ŕc as the total cultivation cost (7, 231.84 $/acre)

minus the cost of yield-enhancing resources (2,852.25 $/acre), i.e., ŕc = 7, 231.84 − 2, 852.25 =

4, 379.59 ($/acre). We set ´̄s = 823.74 (lb/acre) as the sum of the weight of all yield-enhancing

resources; we then compute ýc as the total cost of all these yield-related resources divided by ´̄s to

obtain 2, 852.25/823.74=̇3.46 ($/lb). We also obtain harvesting cost excluding harvesting labor cost

from VanSickle and McAvoy (2015) to be $0.99/ carton. And since our model explicitly normalizes

the unit harvesting cost to be zero, we thus subtract this unit harvesting cost from the mean of the

harvesting price and obtain the final mean of the crop price to be µ́m = 12.53− 0.99 = 11.54.

Remove the effect of yield-enhancing resources on the calibration. As farm yield data are

related to those applied with yield-enhancing cultivation resources (such as fertilizer), we remove

this effect from the calibration to obtain the calibration without these resources. We experiment

with different values for the percentage increase from the set {60%, 70%, 80%, 90%}, which are
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among the most frequent values in Hochmuth and Hanlon (2020). Therefore, we obtain the new

calibration of the yield-related parameters as the values of these parameters (i.e., µε = 1260.62

and σε = 187.92) divided by the value from the set {1.6, 1.7, 1.8, 1.9}. For instance, given a

percentage increase of 60%, we obtain the mean farm yield with the yield-enhancing effect removed

through dividing µε by 1.6 to obtain µ́ε = 1260.62/1.6=̇787.89. Therefore, we compute á as the

value such that applying the maximum rate of yield-enhancing resources (i.e., ´̄s) results in 60%

increase in the mean yield, i.e., á´̄s = 787.89 × 0.6, so we obtain á = 787.89 × 0.6/823.74=̇0.57

(carton/lb). To maintain the same magnitude of harvesting labor wage after the yield-enhancing

effect is removed, we multiply the wage parameters β and ω0 by 1.6 , that is, β́ = 0.0014×1.6=̇0.0024

and ώ0 = 0.476 × 1.6=̇0.76. This way of removing the effect in the calibration is equivalent to

removing this effect from the yield data before calibration.

Note that the harvesting labor wage parameters obtained previously are for the cases when

labor wage can be low or high. As there is no shortage of evidence that farmers leave the fields

unharvested when labor wage is high (USDA Economic Research Service, 2020), we focus on such

scenarios in the numerical experiments in §6. To obtain the parameters related to the harvesting

wage in such scenarios, we experimented with different multipliers of such parameters obtained

previously, so that the probability of observing that the crop price is less than the harvesting wage

is not too low. In particular, we multiple β and ω0 by three, that is, β́ = 0.0024 × 3=̇0.0067 and

ώ0 = 0.76×3=̇2.28. In this case, the probability that the crop price is less than the harvesting labor

wage is 12.3%. We also experimented even larger values of the multipliers and find the qualitative

insights are similar.

Appendix B Proofs of Main Results

Throughout the Appendix, we denote stage-1 objective function for a given cultivation volume xc

and fertilizer application rate sc as πc(xc, sc) where, as follows from (1),

πc(xc, sc)
.
= E

[
p(m̃, ε̃) min (xc(ε̃+ asc),Kh) + (p(m̃, ε̃)− ωh(ε̃))+ (xc(ε̃+ asc)−Kh)+

]
− ycscxc − rcxc,

Using the identity min(p(m, ε), ωh(ε)) = p(m, ε) − (p(m, ε) − ωh(ε))+ we can rewrite πc(xc, sc) as

E [p(m̃, ε̃)xc(ε̃+ asc)−min(p(m̃, ε̃), ωh(ε̃))(xc(ε̃+ asc)−Kh)+] − ycscxc − rcxc. We will use this

expression throughout this appendix.

We prove Propositions 1-3 using the same two-step approach: we first optimize the fertilizer

application rate sc for a given cultivation volume xc > 0 (in Lemma 1), and then obtain the optimal

x∗c .

Lemma 1 The optimal fertilizer application rate for a given xc > 0 is

s∗c(xc) =



0, if yc ≥ aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc

}]
,

ŝc(xc), if aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc
− as̄

}]
≤ yc and

yc < aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc

}]
,

s̄, if yc < aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc
− as̄

}]
,
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where ŝc(xc) > (Kh/xc − ε̄)+/a is the unique solution to

yc = aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc
− aŝc(xc)

}]
. (A-1)

When xc = 0, any fertilizer application rate within [0, s̄] is optimal.

Proof of Lemma 1 πc(xc, sc) is concave in sc for a given xc > 0, as we have

∂πc(xc, sc)

∂sc
=xcaE

[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc
− asc

}]
− ycxc,

which decreases in sc ∈ [0, s̄]. We consider the following three cases:

(i) if ∂πc(xc,sc)
∂sc

|sc=0 ≤ 0, i.e., yc ≥ aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc

}]
, s∗c(xc) = 0;

(ii) if ∂πc(xc,sc)∂sc
|sc=0 > 0 and ∂πc(xc,sc)

∂sc
|sc=s̄ ≤ 0, i.e., aE

[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc
− as̄

}]
≤

yc < aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc

}]
, s∗c(xc) = ŝc(xc), where ŝc(xc) is the

unique solution to the first order condition (A-1).

(iii) if ∂πc(xc,sc)
∂sc

|sc=s̄ > 0, i.e., yc < aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc
− as̄

}]
, s∗c(xc) = s̄.

Combining the above three cases gives s∗c(xc) as shown in the lemma.

Proof of Propositions 1-3 Using Lemma 1, we solve for the optimal xc. Noting the bounds of

xc (i.e., xc ∈ [0, Q]) as well as the conditions in Lemma 1, we consider three cases depending on

the value of yc:

Large yc: yc ≥ aE [p(m̃, ε̃)];

Small yc: yc < aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

Q − as̄
}]

;

Moderate yc: (i) aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

Q

}]
≤ yc < aE [p(m̃, ε̃)], and

(ii) aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

Q − as̄
}]
≤ yc < aE

[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

Q

}]
.

The above three cases correspond to Propositions 1-3, respectively.

Proof of Proposition 1.

When yc ≥ aE [p(m̃, ε̃)], we obtain from Lemma 1 that s∗c(xc) = 0 for all xc ∈ (0, Q]. Substituting

s∗c(xc) = 0 into the objective function πc(xc, sc), we obtain

πc(xc, 0) = E
[
p(m̃, ε̃)xcε̃−min(p(m̃, ε̃), ωh(ε̃))(xcε̃−Kh)+

]
− rcxc.

For xc ≤ Kh/ε̄, πc(xc, 0) = E[p(m̃, ε̃)ε̃]xc − rcxc, which is a linear function of xc. For xc > Kh/ε̄,

we take the derivative of πc(xc, 0) with respect to xc and obtain

dπc(xc, 0)

dxc
= E

[
ε̃

(
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc

})]
− rc,

which decreases in xc. Thus πc(xc, 0) is linear in xc for xc ≤ Kh/ε̄ and is concave in xc for xc > Kh/ε̄.

Then using the definition of Θ(xc) in Proposition 1, we obtain the optimal solution as shown in

Proposition 1.

Proof of Proposition 2.

When yc < aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

Q − as̄
}]

, we obtain from Lemma 1 that

s∗c(xc) = s̄ for all xc ∈ (0, Q]. The proof follows the same approach as that of Proposition 1

and is omitted here.
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Proof of Proposition 3.

We only prove case (i) aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

Q

}]
≤ yc < aE [p(m̃, ε̃)], and omit

that for case (ii), which can be done analogously. In case (i), we obtain from Lemma 1 that s∗c(xc)

may take one of the three forms depending on the value of xc. Noting that both

aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc
− as̄

}]
and aE

[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc

}]
decrease in xc, we can rewrite the conditions in Lemma 1 with respect to the value of xc (instead

of yc). Let xc be the unique solution to

aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc
− as̄

}]
= yc,

and x̄c be the unique solution to

aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc

}]
= yc.

From these definitions we obtain Kh/xc − as̄ = Kh/x̄c, and thus xc < x̄c. Substituting s∗c(xc) into

πc(xc, sc), we obtain πc(xc, s
∗
c(xc)) as follows:

E [p(m̃, ε̃)xc(ε̃+ as̄)−min(p(m̃, ε̃), ωh(ε̃))(xc(ε̃+ as̄)−Kh)+]− ycs̄xc − rcxc,
if 0 < xc ≤ xc,

E [p(m̃, ε̃)xc(ε̃+ aŝc(xc))−min(p(m̃, ε̃), ωh(ε̃))(xc(ε̃+ aŝc(xc))−Kh)+]− ycŝc(xc)xc − rcxc,
if xc < xc ≤ x̄c,

E [p(m̃, ε̃)xcε̃−min(p(m̃, ε̃), ωh(ε̃))(xcε̃−Kh)+]− rcxc,
if x̄c < xc ≤ Q.

The proofs of Propositions 1 and 2 have shown the properties of the above piecewise function

when 0 < xc ≤ xc and x̄c < xc ≤ Q. Now taking the derivative of the second expression (for

xc < xc ≤ x̄c) with respect to xc, we have

dπc(xc, ŝc(xc))

dxc

=E
[
p(m̃, ε̃)(ε̃+ aŝc(xc))−min(p(m̃, ε̃), ωh(ε̃))(ε̃+ aŝc(xc))I

{
ε̃ >

Kh

xc
− aŝc(xc)

}]
+ aE

[
p(m̃, ε̃)xc −min(p(m̃, ε̃), ωh(ε̃))xcI

{
ε̃ >

Kh

xc
− aŝc(xc)

}]
∂ŝc(xc)

∂xc

− ycxc
∂ŝc(xc)

∂xc
− ycŝc(xc)− rc

=E
[
p(m̃, ε̃)ε̃−min(p(m̃, ε̃), ωh(ε̃))ε̃I

{
ε̃ >

Kh

xc
− aŝc(xc)

}]
− rc

+

(
xc
∂ŝc(xc)

∂xc
+ ŝc(xc)

)(
aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc
− aŝc(xc)

}]
− yc

)
=E

[
ε̃

(
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc
− aŝc(xc)

})]
− rc,

where the last equality follows from the optimality condition for ŝc(xc) as given by equation (A-1).

A5



Therefore, the derivative of πc(xc, s
∗
c(xc)) with respect to xc is as follows:

dπc(xc, s
∗
c(xc))

dxc

=


E
[
(ε̃+ as̄)

(
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc
− as̄

})]
− ycs̄− rc if 0 < xc ≤ xc,

E
[
ε̃
(
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc
− aŝc(xc)

})]
− rc if xc < xc ≤ x̄c,

E
[
ε̃
(
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc

})]
− rc, if x̄c < xc ≤ Q.

=


Γ(xc)− ycs̄− rc, if 0 < xc ≤ xc,

Θ

(
Kh

Kh
xc
−aŝc(xc)

)
− rc if xc < xc ≤ x̄c,

Θ(xc)− rc, if x̄c < xc ≤ Q.
Recall that the left hand side of equation (A-1) is independent of xc and the right hand side of the

equation is the expectation of a function of m̃ and ε̃ over the intervals m ∈ [m, m̄] and ε ∈ (Kh/xc−
aŝc(xc), ε̄]. Thus, Kh/xc−aŝc(xc) must be a constant. This shows that Θ(Kh/(Kh/xc−aŝc(xc)))−rc
does not depend on xc, implying that the objective function is linear in xc for xc ∈ [xc, x̄c]. Following

the same approach as in the proof of Proposition 1, we can show that πc(xc, s
∗
c(xc)) is linear

in xc ∈ [0,Kh/(ε̄ + as̄)], strictly concave in xc ∈ [Kh/(ε̄ + as̄), xc], linear in xc ∈ [xc, x̄c] and

strictly concave in xc ∈ [x̄c, Q], and is also globally concave. Note that Γ(xc) − ycs̄ = Θ(x̄c), so

Γ(xc) ≤ rc + s̄yc is equivalent to rc ≥ Θ(xc). Then we obtain the optimal solution as shown in

Proposition 3. Since xc < x̄c, it follows that x̂fc < x̂nfc .

Proof of Corollary 1 We only prove that ŷc(rc) is increasing and concave in rc as the other

results are straightforward. Recall that ŷc(rc) solves the equation rc = Θ(x̄c), or more explicitly,

rc = E
[
ε̃

(
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

x̄c

})]
, (A-2)

where x̄c is defined in Proposition 3 with yc replaced by ŷc. That is, x̄c satisfies the following

equation

aE
[
p(m̃, ε̃)−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

x̄c

}]
= ŷc. (A-3)

Differentiating both sides of equation (A-2) with respect to rc yields

1 =−
K2
h

x̄3
c

∂x̄c
∂rc

gε

(
Kh

x̄c

)
E
[
min

(
p

(
m̃,

Kh

x̄c

)
, ωh

(
Kh

x̄c

))]
, (A-4)

from which we obtain ∂x̄c
∂rc

< 0. Now differentiating both sides of equation (A-3) with respect to rc

yields

dŷc
drc

=− Kh

x̄2
c

∂x̄c
∂rc

gε

(
Kh

x̄c

)
aE
[
min

(
p

(
m̃,

Kh

x̄c

)
, ωh

(
Kh

x̄c

))]
=a

x̄c
Kh

> 0,

where we have used equation (A-4) to derive the second equality. The concavity of ŷc follows

because d2ŷc
dr2c

= a
Kh

∂x̄c
∂rc

< 0.

Proof of Proposition 4 From the definition of x̂nfc , we know Θ(x̂nfc ) = rc. Differentiating both

sides of this equation with respect to rc gives ∂Θ(x̂nfc )

∂x̂nfc

∂x̂nfc
∂rc

= 1. Since Θ(xc) decreases in xc from
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its definition in Proposition 1, we know that ∂x̂nfc
∂rc

< 0. The same argument can be used to show

∂x̂fc
∂rc

< 0. Using the definition of ŝc in equation (2), we know that ŝc does not depend on rc which

implies that ∂ŝc
∂rc

= 0. The relationship x̂nfc > x̂fc has been shown in the proof of Proposition 3.

As rc increases to a larger extent, the optimal solution may take a different form, which cor-

responds to region transitions in Figure 1. Note that the boundaries do not move as rc changes.

There are four possible transitions after an increase in rc: (a) Ξ5 → Ξ1: x∗c decreases from Q to x̂fc ,

and s∗c remains at s̄. (b) Ξ3 → Ξ2: x∗c decreases from Q to x̂nfc , and s∗c remains at 0. (c) Ξ4 → Ξ1:

x∗c decreases from Q to x̂fc , and s∗c increases from ŝc to s̄. (d) Ξ2 → Ξ1: x∗c decreases from x̂nfc to

x̂fc , and s∗c increases from 0 to s̄. Therefore, x∗c decreases whenever an increase in rc results in a

shift across regions, while s∗c does not change except for the cases when the increase in rc induces

a transition from either Ξ2 or Ξ4 to Ξ1. This together with the first statement established earlier

shows that when rc increases, (i) x∗c decreases and (ii) s∗c does not change except for the cases when

it induces a transition from either Ξ2 or Ξ4 to Ξ1 in Figure 1 (in these cases s∗c increases).

Proof of Proposition 5 The proof is similar to that of Proposition 4. The first statement follows

directly from the definitions of x̂nfc , x̂fc , and ŝc in Propositions 1-3, respectively.

As yc increases to a larger extent, the optimal solution may take a different form, which cor-

responds to region transitions in Figure 1. Note that the boundaries do not move as yc changes.

There are five possible transitions after an increase in yc: (a) Ξ5 → Ξ1: x∗c decreases from Q to x̂fc ,

and s∗c remains at s̄. (b) Ξ5 → Ξ4: x∗c remains at Q, and s∗c decreases from s̄ to ŝc. (c) Ξ4 → Ξ3:

x∗c remains at Q, and s∗c decreases from ŝc to 0. (d) Ξ1 → Ξ4: x∗c increases from x̂fc to Q, and s∗c
decreases from s̄ to ŝc. (e) Ξ1 → Ξ2: x∗c increases from x̂fc to x̂nfc , and s∗c decreases from s̄ to 0.

Therefore, s∗c always decreases whenever an increase in yc results in a shift across regions, and x∗c
decreases in yc except for the cases where an increase in yc results in an increase in x∗c from x̂fc in

Ξ1 to either Q in Ξ4 or x̂fc in Ξ2. This together with the first statement established earlier shows

that when yc increases, (i) s∗c decreases and (ii) x∗c decreases except for the cases when the increase

in yc induces a transition from Ξ1 to either Ξ2 or Ξ4 in Figure 1 (in these cases x∗c increases).

We now present Lemma 2 which will be used in the proof of Proposition 6.

Lemma 2 Assume ε̃ ∼ N (µε, σ
2
ε ). When α = 0 and Kh ≥ (µε + as̄)Q, we obtain that for a given

rc, ŷc(rc) increases in σε.

Proof of Lemma 2 Let ul = (Kh/xc−µε)/σε and uh = ((m−ω0)/β−µε)/σε. With ε̃ ∼ N (µε, σ
2
ε ),

ŷc is the unique solution to

ŷc =

∫ ∞
0

[
am− a

∫ uh

ul

(ω0 + β(µε + zσε))φ(z)dz − a
∫ ∞
uh

mφ(z)dz

]
gm(m)dm, (A-5)

where xc is the unique solution to

rc =

∫ ∞
0

[
mµε − a

∫ uh

ul

(ω0 + β(µε + zσε))(µε + zσε)φ(z)dz − a
∫ ∞
uh

m(µε + zσε)φ(z)dz

]
gm(m)dm.

(A-6)
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Differentiating both sides of equation (A-5) with respect to σε yields

∂ŷc
∂σε

=

∫ ∞
0

[
−a
∫ uh

ul

βzφ(z)dz − a(ω0 + β(µε + uhσε))φ(uh)
∂uh
∂σε

+a(ω0 + β(µε + ulσε))φ(ul)
∂ul
∂σε

+ amφ(uh)
∂uh
∂σε

]
gm(m)dm

=

∫ ∞
0

[
−a
∫ uh

ul

βzφ(z)dz + a(ω0 + β(µε + ulσε))φ(ul)
∂ul
∂σε

]
gm(m)dm.

Differentiating both sides of equation (A-6) with respect to σσ yields

0 =

∫ ∞
0

[
−
∫ uh

ul

[βz(µε + zσε) + z(ω0 + β(µε + zσε))]φ(z)dz − (ω0 + β(µε + uhσε)(µε + uhσε)φ(uh)
∂uh
∂σε

+(ω0 + β(µε + ulσε)(µε + ulσε)φ(ul)
∂ul
∂σε

+m(µε + uhσε)φ(uh)
∂uh
∂σε

]
gm(m)dm

=

∫ ∞
0

[
−
∫ uh

ul

(βz(µε + zσε) + z(ω0 + β(µε + zσε)))φ(z)dz

+(ω0 + β(µε + ulσε)(µε + ulσε)φ(ul)
∂ul
∂σε

]
gm(m)dm (A-7)

Substituting equation (A-7) into the expression of ∂ŷc
∂σσ

and simplifying gives

∂ŷc
∂σε

=

∫ ∞
0

[
a

µε + ulσε

∫ uh

ul

[βzσε(z − ul) + z(ω0 + β(µε + zσε))]φ(z)dz

]
gm(m)dm > 0.

Therefore ŷc increases in σε.

Proof of Proposition 6 (i) For α = 0 and β = 0, the farmer’s profit for a given xc and sc can

be written as follows:

πc(xc, sc) =xcE
[
m̃(ε̃+ asc)−min (m̃, ω0)

(
ε̃+ asc −

Kh

xc

)
I
{
ε̃ >

Kh

xc
− asc

}]
− rcxc − ycscxc

=xcµm(µε + asc)− xcE [min (m̃, ω0)]

∫ ∞
ul

(
µε + zσε + asc −

Kh

xc

)
φ(z)dz − rcxc − ycscxc,

where ul = Kh/xc−(µε+asc)
σε

. Taking the first derivative of πc(xc, sc) with respect to σε yields

∂πc(xc, sc)

∂σε
= −xcE [min (m̃, ω0)]

∫ ∞
ul

zφ(z)dz = −xcE [min (m̃, ω0)]φ(ul),

where we have used the result that φ′(z) = −zφ(z) for the standard normal distribution. Therefore,
∂πc(xc,sc)

∂σε
≤ 0, and from the envelope theorem we obtain ∂Π∗c(rc,yc)

∂σε
≤ 0.

(ii) For α = 0, equation (A-1) which characterizes the optimal fertilizer application rate ŝc

reduces to

yc = aµm − aE
[
min(m̃, ω0 + βε̃)I

{
ε̃ >

Kh

Q
− aŝc

}]
.

Define Ω(sc|m)
.
= E

[
min(m,ω0 + βε̃)I

{
ε̃ > Kh

Q − asc
}]

for a given m. We now examine how Ω

changes with σε. There are two cases depending on the value of m.

When m is small, Ω(sc|m) = E
[
mI
{
ε̃ > Kh

Q − asc
}]

= m
(

1− Φ
(
Kh/Q−asc−µε

σε

))
. Taking the

derivative with respect to σε yields

∂Ω(sc|m)

∂σε
= −mφ

(
Kh/Q− asc − µε

σε

)(
−Kh/Q− asc − µε

σ2
ε

)
≥ 0,

where the inequality follows from the assumption Kh ≥ (µε + as̄)Q.
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When m is large, we have

Ω(sc|m) =

∫ (m−ω0)/β

Kh/Q−asc
mgε(ε)dε+

∫ ∞
(m−ω0)/β

(ω0 + βε)gε(ε)dε

=(ω0 + βµε) (Φ(uh)− Φ(ul)) + βσε(φ(ul)− φ(uh)) +m(1− Φ(uh)),

where ul = (Kh/Q− asc − µε)/σε and uh = ((m− ω0)/β − µε)/σε. Taking the first derivative with

respect to σε yields

∂Ω(sc|m)

∂σε
=(ω0 + βµε)

(
φ(ul)

ul
σε
− φ(uh)

uh
σε

)
+ β(φ(ul)− φ(uh))

+ βσε

(
ulφ(ul)

ul
σε
− uhφ(uh)

uh
σε

)
+mφ(uh)

uh
σε

=
ω0 + βµε

σε
ulφ(ul) + β(φ(ul)− φ(uh)) + βµ2

l φ(ul).

Since Kh > (µε + as̄)Q, we obtain uh > ul > 0 and thus φ(ul) − φ(uh) > 0. This shows that
∂Ω(sc|m)
∂σε

≥ 0.

The above two cases combined, we have shown that ∂Ω(sc|m)
∂σε

≥ 0 regardless of the realization

of m̃, and so ∂E[Ω(sc|m̃)]
∂σε

≥ 0. Moreover, from the implicit function theorem, sgn
(
∂ŝc
∂σε

)
is opposite

to sgn
(
∂E[Ω(sc|m̃)]

∂σε

)
as E[Ω(sc|m̃)] increases in sc. Thus, we obtain ∂ŝc

∂σε
≤ 0.

We now examine how x̂nf changes with σε. For α = 0 we obtain

Θ(xc) = E
[
m̃ε̃−min(m̃, ω0 + βε̃)ε̃I

{
ε̃ >

Kh

xc

}]
.

Define Θ(σε|m)
.
= E

[
mε̃−min(m,ω0 + βε̃)ε̃I

{
ε̃ > Kh

xc

}]
for a given m. There are two cases de-

pending on the value of m.

When m is small, we have Θ(σε|m) = E
[
mε̃I

{
ε̃ < Kh

xc

}]
= mµεΦ(ul) −mσεφ(ul) where ul =

(Kh/xc − µε)/σε. Taking the derivative of Θ(σε|m) with respect to σε yields

∂Θ(σε|m)

∂σε
=mµεφ(ul)

∂ul
∂σε
−mφ(ul)−mσεφ′(ul)

∂ul
∂σε

=mµεφ(ul)

(
−ul
σε

)
−mφ(ul) +mσεulφ(ul)

(
−ul
σε

)
=−mφ(ul)

(
1 +

ul
σε

Kh

xc

)
.

Since Kh > (µε + as̄)Q, we obtain Kh/xc > µε and thus ul > 0. Therefore, we have ∂Θ(σε|m)
∂σε

≤ 0.

When m is large, we have

Θ(σε|m) =E
[
mε̃−min(m,ω0 + βε̃)ε̃I

{
ε̃ >

Kh

xc

}]
=

∫ ul

−∞
m(µε + zσε)φ(z)dz +

∫ uh

ul

(m− (ω0 + βµε)− βσεz)(µε + zσε)φ(z)dz

=mµεΦ(ul)−mσεφ(ul) + (m− (ω0 + βµε))µε(Φ(uh)− Φ(ul))

+ σε(m− (ω0 + βµε)− βµε)(φ(ul)− φ(uh))− βσ2
ε (Φ(uh)− Φ(ul) + ulφ(ul)− uhφ(uh)),

where ul = (Kh/xc − µε)/σε and uh = ((m − ω0)/β − µε)/σε. Taking the derivative of Θ(σε|m)
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with respect to σε and after some simplifications we obtain

∂Θ(σε|m)

∂σε
=− µε

σε
(ω0 + βµε)ulφ(ul)− (ω0 + βµε)φ(ul)(1 + u2

l )− βµεu2
l φ(ul)− βσεu3

l φ(ul)

− βµε(φ(ul)− φ(uh))− βσεuhφ(uh)− 2βσε(Φ(uh)− uhφ(uh)− (Φ(ul)− ulφ(ul))).

Since Kh > (µε + as̄)Q, we obtain Kh/xc > µε and thus uh > ul > 0 and φ(ul) − φ(uh) > 0.

In addition, we can show that Φ(uh) − uhφ(uh) > Φ(ul) − ulφ(ul). To see this, define f(x)
.
=

Φ(x)−xφ(x) for x > 0. Taking the derivative with respect to x yields f ′(x) = φ(x)−xφ′(x)−φ(x) =

x2φ(x) > 0, and thus f(uh) > f(ul). This proves that ∂Θ(σε|m)
∂σε

≤ 0 .

The above two cases combined, we have shown that ∂Θ(σε|m)
∂σε

≤ 0 regardless of the realiza-

tion of m̃ and so ∂Θ(xc)
∂σε

≤ 0. Moreover, from the implicit function theorem, sgn
(
∂x̂nfc
∂σε

)
=

sgn

(
∂Θ(xc)
∂σε

∣∣∣
xc=x̂

nf
c

)
as Θ(xc) decreases in xc. Thus we obtain ∂x̂nfc

∂σε
≤ 0. The same approach

can be applied to show that ∂x̂fc
∂σε
≤ 0.

Finally, we show the possible transitions across regions after an increase in σε. This requires us

to first show how the boundaries in Figure 1 change with an increase in σε. It is straightforward

that Γ(0) and Θ(0) are independent of σε. Γ(Q) and Θ(Q) increase in σε, since we have shown

earlier that ∂Θ(xc)
∂σε

≤ 0 and ∂Γ(xc)
∂σε

≤ 0 for any given xc > 0. In addition, Lemma 2 shows how ŷc(rc)

changes with σε. Also, y
(0)
c = aµm is independent of σε, and following the same method as in the

proof of ∂ŝc
∂σε
≤ 0, it can be readily shown that ∂y

(1)
c

∂σε
≤ 0 and ∂y

(2)
c

∂σε
≤ 0. With these intermediary

results, we can check the changes in the optimal solution due to a change in σε. We only present

the corresponding changes in x∗c due to the region shifts caused by a decrease in σε, as the changes

in s∗c can be established in a similar fashion. We obtain: (i) Ξ1 → Ξ2: x∗c increases from x̂fc to x̂nfc .

(ii) Ξ1 → Ξ3 and Ξ1 → Ξ4: x∗c increases from x̂fc to Q. (iii) Ξ1 → Ξ5 (Ξ2 → Ξ3): x∗c increases from

x̂fc to Q (from x̂nfc to Q). (iv) Ξ4 → Ξ5 and Ξ3 → Ξ4: x∗c remains at Q.

Proof of Propositions 7 and 8 J∗(rc, yc) depends on rc and yc only through their impact on

the optimal decisions, and thus for τ ∈ {rc, yc} we have

∂J∗(rc, yc)

∂τ
=
∂x∗c
∂τ

∂J∗(rc, yc)

∂x∗c
+
∂s∗c
∂τ

∂J∗(rc, yc)

∂s∗c
. (A-8)

Proof of Proposition 7: When (rc, yc) ∈ Ξi for i = 3, 4, 5, x∗c and s∗c do not change with rc, and

thus ∂J∗(rc,yc)
∂rc

= 0. When (rc, yc) ∈ Ξ1, x∗c = x̂fc and s∗c = s̄. We know from Proposition 4 that

∂x̂fc
∂rc

< 0. This together with the result ∂J∗(rc,yc)
∂x∗c

≤ 0 (by the definition of J∗(rc, yc)) shows that
∂J∗(rc,yc)

∂rc
≥ 0. Similarly, we can show that when (rc, yc) ∈ Ξ2, ∂J∗(rc,yc)

∂rc
≥ 0.

As rc increases to a larger extent, the optimal solution may take a different form, which cor-

responds to region transitions in Figure 1. Note that the boundaries do not move as rc changes.

As shown in Proposition 4, when rc increases, (i) x∗c decreases and (ii) s∗c does not change except

for the cases when it induces a transition from either Ξ2 or Ξ4 to Ξ1 in Figure 1 (in these cases

s∗c increases). Moreover, ∂J∗(rc,yc)
∂x∗c

≤ 0. Then using (A-8) we conclude that when rc increases,

J∗(rc, yc) increases except for the cases when it induces a transition from either Ξ2 or Ξ4 to Ξ1 in

Figure 1.

Proof of Proposition 8: When (rc, yc) ∈ Ξi for i = 3, 5, x∗c and s∗c do not change with yc and thus
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∂J∗(rc,yc)
∂yc

= 0. When (rc, yc) ∈ Ξ1, x∗c = x̂fc and s∗c = s̄. We know from Proposition 5 that ∂x̂fc
∂yc

< 0.

This together with the result ∂J∗(rc,yc)
∂x∗c

≤ 0 (by the definition of J∗(rc, yc)) shows that ∂J∗(rc,yc)
∂yc

≥ 0.

Similarly, we can show that when (rc, yc) ∈ Ξ2, ∂J∗(rc,yc)
∂yc

≥ 0. When (rc, yc) ∈ Ξ4, x∗c = Q and

s∗c = ŝc. From Proposition 5, we know ∂ŝc
∂yc

< 0. This together with ∂J∗(rc,yc)
∂s∗c

≤ 0 (by the definition

of J∗(rc, yc)) shows that ∂J∗(rc,yc)
∂yc

≥ 0.

As yc increases to a larger extent, the optimal solution may take different forms, which cor-

responds to region transitions in Figure 1. Note that the boundaries do not move as yc changes.

From Proposition 5, when yc increases, (i) s∗c decreases and (ii) x∗c decreases except for the cases

when the increase in yc induces a transition from Ξ1 to either Ξ2 or Ξ4 in Figure 1 (in these cases

x∗c increases). Moreover, ∂J
∗(rc,yc)
∂x∗c

≤ 0 and ∂J∗(rc,yc)
∂s∗c

≤ 0. Then using (A-8) we conclude that when

yc increases J∗(rc, yc) increases except for cases when it induces a transition from Ξ1 to either Ξ2

or Ξ4 in Figure 1.

Lemma 3 For a given xc and sc, define

J(xc, sc)
.
=(µε + as̄)Q− E [xc(ε̃+ asc)I{p(m̃, ε̃) > ωh(ε̃)}

+ min (xc(ε̃+ asc),Kh) I{p(m̃, ε̃) ≤ ωh(ε̃)}] .

(i) Assume m̃ ∼ N (µm, σ
2
m) and E[p(m̃,Kh/Q− as̄) ≤ ωh(Kh/Q− as̄). Then ∂J(xc,sc)

∂σm
≤ 0.

(ii) Assume ε̃ ∼ N (µε, σ
2
ε ) and α = 0. Then ∂J(xc,sc)

∂σε
≥ 0.

Proof of Lemma 3 (i) J(xc, sc) depends on σm only through the second term which we denote

as Ω. We rewrite Ω as follows:

Ω =− E
[
xc(ε̃+ asc)− (xc(ε̃+ asc)−Kh)+I{p(m̃, ε̃) ≤ ωh(ε̃)}

]
=− xc(µε + asc) +

∫ ε̄

Kh/xc−asc
(xc(ε̃+ asc)−Kh)E[I{p(m̃, ε) ≤ ωh(ε)}]gε(ε)dε

=− xc(µε + asc) +

∫ ε̄

Kh/xc−asc
(xc(ε̃+ asc)−Kh)Φ

(
k(ε)− µm

σm

)
gε(ε)dε,

where k(ε) = ωh(ε) + α(ε− µε).
Taking the derivative of Ω with respect to σm yields

∂Ω

∂σm
=

∫ ε̄

Kh/xc−asc
(xc(ε̃+ asc)−Kh)φ

(
k(ε)− µm

σm

)(
−k(ε)− µm

σ2
m

)
gε(ε)dε ≤ 0,

where the inequality follows from the assumption µm ≤ ω0 − αµε + (α+ β)(Kh/Q− as̄) as well as

Kh/xc − asc ≥ Kh/Q− as̄ for xc ∈ [0, Q] and sc ∈ [0, s̄].

(ii) For α = 0, we define T (σ|m)
.
= E [xc(ε̃+ asc)I{m > ωh(ε̃)}+ min (xc(ε̃+ asc),Kh) I{m ≤ ωh(ε̃)}]

for a given xc, sc and realization of m̃. We rewrite T (σ|m) as follows:

T (σ|m) =E
[
xc(ε̃+ asc)− (xc(ε̃+ asc)−Kh)+I{m ≤ ω0 + βε̃}

]
.

Let ul = (Kh/xc − asc − µε)/σε and uh = ((m − ω0)/β − µε)/σε. We have two cases to consider

depending on the value of m.
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When m is small, T (σ|m) reduces to

T (σ|m) =

∫ ul

−∞
xc(µε + asc + zσε)φ(z)dz +

∫ ∞
ul

Khφ(z)dz

=xc(µε + asc)Φ(ul)− σεxcφ(ul) +Kh(1− Φ(ul)).

Taking the derivative of T (σ|m) with respect to σε yields

∂T (σ|m)

∂σε
=− xc(µε + asc)φ(ul)

ul
σε
− xcφ(ul) + σεxcφ

′(ul)
ul
σε

+Khφ(ul)
ul
σε

=− xcφ(ul) ≤ 0.

When m is large, T (σ|m) can be rewritten as

T (σ|m) =

∫ uh

−∞
xc(µε + asc + zσε)φ(z)dz +

∫ ∞
uh

Khφ(z)dz

=xc(µε + asc)Φ(uh)− σεxcφ(u2) +Kh(1− Φ(uh)).

Taking the derivative of T (σ|m) with respect to σε yields

∂T (σ|m)

∂σε
=− xc(µε + asc)φ(uh)

uh
σε
− xcφ(uh) + σεxcφ

′(uh)
uh
σε

+Khφ(uh)
uh
σε

=− xcφ(uh)− xcuhφ(uh)(uh − ul) ≤ 0,

where the inequality follows from the assumption Kh > (µε + as̄)Q, and uh > ul > 0.

The above two cases combined, we have shown that ∂T (σ|m)
∂σε

≤ 0 regardless of the value of m.

Thus, J(xc, sc) = (µε + as̄)Q− E[T (σ|m̃)] increases in σε.

Proof of Proposition 9 We obtain

∂J∗(rc, yc)

∂σε
=
∂J(xc, sc)

∂σε

∣∣∣∣
(x∗c ,s

∗
c)︸ ︷︷ ︸

direct effect

+
∂x∗c
∂σε

∂J(x∗c , s
∗
c)

∂x∗c
+
∂s∗c
∂σε

∂J(x∗c , s
∗
c)

∂s∗c︸ ︷︷ ︸
indirect effect

. (A-9)

When (rc, yc) ∈ Ξi for i = 3, 5, x∗c and s∗c do not change with σε. Thus, only the direct effect of

equation (A-9) exists. Thus from Lemma 3 we obtain ∂J∗(rc,yc)
∂σε

≥ 0. When (rc, yc) ∈ Ξ1, x∗c = x̂fc ,

which decreases in σε from Proposition 6, and s∗c = s̄ which is independent of σε. We also know

that J(xc, sc) decreases in xc. Thus, both the direct and indirect effects in equation (A-9) are

positive; that is, ∂J∗(rc,yc)
∂σε

≥ 0 when (rc, yc) ∈ Ξ1. Similarly, we can show that ∂J∗(rc,yc)
∂σε

≤ 0 when

(rc, yc) ∈ Ξ2 and (rc, yc) ∈ Ξ4.

As σε changes to a larger extent, the optimal solution may take a different form corresponding

to the region shift in Figure 1. From Proposition 6 (ii), we know that x∗c always increases, while

s∗c increases except when the decrease in σε induces a transition from Ξ1 to either Ξ2, Ξ3 or Ξ4 in

Figure 2. It can be readily checked that both the direct and indirect effects are positive except

when there is a transition from Ξ1 to either Ξ2, Ξ3 or Ξ4. This completes the proof as required.

Appendix C Additional Analysis

In this section, we provide the detailed analyses of the extensions mentioned in the Conclusion

section of our paper. The proofs for our technical statements in this section are omitted for brevity

and they are available upon request.
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C.1 Analysis for the Effects of Market Variability

In this section, we investigate the effects of market uncertainty on the implications of optimal

decisions for farm management and food security. Recall that we define market uncertainty m̃

to capture the uncertainty in open market price associated with factors that are not related to

farm yield (e.g., macroeconomic conditions and regulations). As highlighted by USDA Economic

Research Service (2020), it is well-documented that open market prices for fresh produce have

significant variability and this variability is one of the key reasons driving the farmers to leave their

crop unharvested on their farmland as the crop price may not be sufficiently large to economically

justify harvesting. Therefore, it is important for the farmers in practice to understand how changes

in crop price variability affect their farm operations and crop production. To this end, we investigate

how changes in market variability σm affect the farmer’s optimal decisions and profitability as well

as the expected gap. Paralleling our analysis in the main paper, we will rely on Assumption 1

throughout this analysis. In characterizing the effects of market variability σm, as discussed in §2,

we further assume that the market uncertainty m̃ has a Normal distribution.

We first examine the effects of σm on the farmer’s optimal decisions and profitability.

Proposition 10 (Effect of market variability σm) Assume m̃ ∼ N (µm, σ
2
m). We have ∂Π∗c(rc,yc)

∂σm
≥

0, ∂x̂fc
∂σm
≥ 0, ∂x̂nfc

∂σm
≥ 0, and ∂ŝc

∂σm
≥ 0. Moreover, the effect of a decrease in σm on x∗c and s∗c is iden-

tical to the characterizations given in panel a and panel b of Figure 2, respectively.

An increase in market variability σm increases the variability of crop price m̃−α(ε̃− µε) which, in

turn, increases the farmer’s profitability. This is because while the farmer benefits from high crop

price realizations, low crop price realizations are not as detrimental: the farmer optimally chooses

not to acquire additional resource to increase the harvest volume beyond the available capacity

when the crop price is less than the external unit harvesting cost. Based on the same argument,

common intuition may suggest that an increase in σm incents the farmer to cultivate more acres

and apply more fertilizer per acre. Proposition 10 demonstrates that this intuition is correct for

the effect on optimal cultivation volume x∗c . However, the intuition is correct for the effect on

optimal fertilizer application rate s∗c (for example, ŝc increases) unless the increase in σm induces

the farmer to switch from one optimal strategy to another in which both x∗c and s∗c are different.

In particular, as illustrated in Figure 2, when an increase in σm induces the farmer to switch the

optimal strategy from (x̂fc , s̄) to (Q, 0), (Q, ŝc), or (x̂nfc , 0), s∗c decreases because of the increase in

x∗c . Because the characterization of the effects of a decrease in σm on the farmer’s optimal decisions

and profitability is identical to the characterization of the effects of an increase in yield variability

σε on those, we have the opposite managerial insights for farm management associated with yield

variability as discussed at the end of §4 of the main paper.

We next examine how changes in market variability σm impact the expected gap J∗(rc, yc). To

this end, paralleling our analysis in §5 of the main paper we rely on Assumption 2; that is, we

assume Kh ≥ (µε + as̄)Q. We complement our analytical analysis with data-calibrated numerical

experiments as discussed in §6 of the main paper. Recall that we allow for market variability σm

to change by −45% to 45% from their calibrated values with a 15% increment. In illustrating

how a measure of interest (i.e., optimal cultivation volume, optimal fertilizer application rate,
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optimal expected profit, and the expected gap) at a given numerical instance (e.g., baseline scenario)

changes with respect to σm, we plot our figures using a finer increment than 15% (specifically, 0.1%

increment) within the range of [−45%,45%] of the calibrated value.

As follows from (3), a change in σm affects the expected gap by altering the expected optimal

harvest volume for any given farmer’s decisions (xc, sc) as well as the farmer’s optimal decisions

(x∗c , s
∗
c) in the cultivation stage. For expositional brevity, we consider the effect of a decrease in σm:

Proposition 11 (Effect of market variability σm) Assume m̃ ∼ N (µm, σ
2
m) and µm ≤ ω0 −

αµε + (α + β)(Kh/Q − as̄). When σm decreases, J∗(rc, yc) increases except for the cases when it

induces a transition from Ξ2, Ξ3, or Ξ4 to Ξ1 in Figure 2.

Recall that an increase in market variability σm increases the variability of crop price p(m̃, ε̃) =

m̃ − α(ε̃ − µε). Proposition 11 proves under a specific condition that an increase in crop price

variability is beneficial for food security unless it induces the farmer to switch from one optimal

strategy to another in which both x∗c and s∗c are different. As follows from (3), how an increase

in crop price variability affects the expected optimal harvest volume for a given farmer’s decisions

(xc, sc) crucially depends on how it impacts the (stochastic) ordering between the crop price and the

external unit harvesting cost ωh(ε̃) = ω0 +βε̃. This is because the farmer optimally harvests all the

available crop xc(ε+ asc) only when the crop price is larger than this cost in the harvesting stage.

When the condition in Proposition 11 holds (equivalently, E[p(m̃,Kh/Q− as̄)] ≤ ωh(Kh/Q− as̄)),
using Assumption 2 it can be proven that an increase in crop price variability increases the likelihood

that crop price will be larger than the external unit harvest cost which, in turn, increases the

expected optimal harvest volume for a given (xc, sc). We have already established in Proposition

10 that an increase in σm incents the farmer to cultivate more acres and apply more fertilizer per

acre except for the cases when it induces the farmer to switch the optimal strategy from (x̂fc , s̄) to

(Q, 0), (Q, ŝc), or (x̂nfc , 0) in Figure 2. Therefore, outside of these cases because x∗c and s∗c increase,

these changes further increase the expected optimal harvest volume in (3), and thus, decrease the

expected gap as shown in Proposition 11. When these cases happen, the farmer optimally decreases

s∗c because of the increase in x∗c . Because x∗c increases and s∗c decreases the resulting impact on

the expected optimal harvest volume is indeterminate. In our numerical studies that satisfy the

condition in Proposition 11, we do not observe a transition in which x∗c increases and s∗c decreases;

see Figure 6(b) for an example. In this example, Kh is sufficiently large so that the condition in

Proposition 11 is satisfied when the rest of the parameters are at their calibrated values. In this

instance, as σm increases the farmer’s optimal decisions (Q, s̄) do not change and the expected gap

increases. Based on our analytical and numerical analyses, we conclude that when the condition

in Proposition 11 is satisfied, an increase in market variability σm (which increases the crop price

variability) is beneficial for food security. This behavior is consistent with the benchmark model

where it can be proven under the same condition that an increase in σm decreases the expected

gap.

We note here that the condition E[p(m̃,Kh/Q − as̄)] ≤ ωh(Kh/Q − as̄) is not satisfied in our

data-calibrated baseline scenario in §6.6When this condition is not satisfied, the effect of an increase

6This condition states that when the farmer chooses (Q, s̄) in the cultivation stage, in the harvesting stage for
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Figure 6: Effect of Market Variability σm on the Expected Gap J∗(rc, yc)

(a)
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Notes. In panel a (b), Kh = (µ́ε + á´̄s)Q́ (Kh = 1.3(µ́ε + á´̄s)Q́). In both panels, σm ∈ [−45%, 45%]
away from the baseline value σ́m = 2.8 with 0.1% increments and the rest of the parameters are at
their calibrated (baseline) levels.

in σm on the expected gap is indeterminate because it may decrease the expected optimal harvest

volume for a given (xc, sc) in (3). In our data-calibrated baseline scenario, we observe that an

increase in σm decreases the expected optimal harvest volume for a given (xc, sc) which in turn,

increases the expected gap; see Figure 6(a) for the illustration. In the baseline scenario, as σm

increases the farmer’s optimal decisions (Q, s̄) do not change and the expected gap decrease. In

that case an increase in market variability σm (which increases the crop price variability) is harmful

for food security.

C.2 Analysis for the Effects of Harvesting Cost

In this section, we investigate how changes in harvesting cost affect the expected gap. This analysis

is important for understanding the consequences of a policy that reduces the labour cost for hiring

seasonal workers on the crop production level. To this end, we consider the external harvesting

cost function in Assumption 1(ii); that is, ωh(ε) = ω0 + βε where ω0 > 0 and β ≥ 0 and examine

how changes in the base labor cost ω0 affects the expected gap. Because the expected gap depends

on the farmer’s optimal decisions, we first examine how these decisions are impacted by ω0:

Proposition 12 (Effect of harvesting cost ω0 on optimal decisions) We have ∂x̂nfc
∂ω0

< 0, ∂x̂
f
c

∂ω0
<

0, and ∂ŝc
∂ω0

< 0. Moreover, when ω0 increases, (i) x∗c decreases and (ii) s∗c decreases except for the

cases when it induces a transition from Ξ2, Ξ3 or Ξ4 to Ξ1 in Figure 1 (in these cases s∗c increases).

sufficiently high farm yield realizations that the farmer considers acquiring additional harvesting resource, market
uncertainty realization m should be larger than its mean µm for the crop price m − α(ε − µε) to be larger than
the external unit harvesting cost ω0 + βε. In other words, the expected crop price is not sufficient for economically
justifying acquiring of additional harvesting resource.

A15



Intuitively, an increase in harvesting cost ω0 incents the farmer to decrease the optimal cultivation

volume x∗c . However, the effect on the optimal fertilizer application rate s∗c is more nuanced.

Common intuition may suggest that an increase in ω0 (which makes farming more expensive) also

incents the farmer to decrease s∗c . Proposition 12 shows that this intuition is correct (for example,

ŝc decreases) unless the increase in ω0 induces the farmer to switch from one optimal strategy

to another in which both x∗c and s∗c are different. In particular, when an increase in ω0 induces

the farmer to switch the optimal strategy from (x̂nfc , 0) (in Ξ2) (Q, 0) (in Ξ3), or (Q, ŝc) (in Ξ4)

to (x̂fc , s̄) (in Ξ1), s∗c is increased to counteract against the reduction in crop availability at the

harvesting stage due to decreasing x∗c .

We next examine how changes in the harvesting cost ω0 impact the expected gap J∗(rc, yc).

As follows from (3), a change in ω0 affects the expected gap only by altering the optimal decisions

(x∗c , s
∗
c) in the cultivation stage.

Proposition 13 (Effects of harvesting cost ω0 on expected gap) When ω0 increases, J∗(rc, yc)

increases except for the cases where it induces a transition from Ξ2, Ξ3 or Ξ4 to Ξ1 in Figure 1.

Common intuition may suggest that an increase in ω0 (which makes farming more expensive)

decreases the expected optimal harvest volume, and thus, increases the expected gap. Proposition

13 proves that this intuition is correct; that is, an increase in ω0 is harmful for food security unless

it induces the farmer to switch from one optimal strategy to another in which both x∗c and s∗c are

different. In particular, when ω0 increases, as follows from Proposition 12, the farmer optimally

cultivates fewer acres and applies less fertilizer except for the cases when the increase in ω0 induces

the farmer to switch the optimal strategy from (x̂nfc , 0) (in Ξ2), (Q, 0) (in Ξ3), or (Q, ŝc) (in Ξ4) to

(x̂fc , s̄) (in Ξ1). Outside of these cases, because x∗c and s∗c decrease, the expected optimal harvest

volume in (3) decreases, and thus, the expected gap increases as shown in Proposition 13. When

these cases happen, the farmer optimally increases s∗c to counteract against the reduction in crop

availability at the harvesting stage due to decreasing x∗c . Because x∗c decreases and s∗c increases

the resulting impact on the expected optimal harvest volume is indeterminate. We find in our

data-calibrated numerical studies that the increase in fertilizer application rate may outweigh the

decrease in cultivation volume and the expected optimal harvest volume increases (see Figure 7 for

an illustration). In other words, an increase in ω0 can be beneficial for food security. This behavior

cannot be observed in the benchmark model where it can be proven that an increase in ω0 always

increases the expected gap and thus, it is always harmful for food security.

C.3 Analysis for Contract Farming

In this section, we study an extension of our model in which the farmer, besides selling the crop

to the open market, also engages in contract farming with a buyer. In particular, we assume an

exogenously given contract with unit price r and maximum delivery volume D. In the harvesting

stage the farmer first sells to the buyer up to the maximum delivery volume D and the remaining

harvested crop (if any) is sold to the open market. We replicate the entire analysis of our paper

in this extended model. As we discuss below we show that our analytical results are structurally

the same in this extended model. Moreover, we verify that our main numerical results continue to
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Figure 7: Effect of the External Harvesting Cost ω0 on the Expected Gap J∗(rc, yc)
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Notes. ω0 ∈ [20%, 30%] changes from the baseline value ώ0 = 2.28 with 0.1% increments.
yc = 1.3ýc, rc = 1.3ŕc, and all the rest of the parameters are at their calibrated (baseline) levels.
In this example as ω0 increases, the expected gap is non-decreasing except when the farmer’s
optimal strategy switches from (Q, ŝc) (in Ξ4) to (x̂fc , s̄) (in Ξ1).

hold in this extended model. In summary, our main insights of the paper continue to hold in the

presence of contract farming.

C.3.1 Model Discussion

Throughout this section, we focus on the case with D ≤ Kh so that the farmer has sufficient

internal resources to harvest the quantity to satisfy the maximum volume D. While we do not

impose any assumptions on the contract price r at this point, arguably the most realistic case is

to assume r = µm; that is, the contract price is given by the expected open market price. This is

because at the time of contracting (which is not modeled in our paper and which happens before

the harvesting stage) the buyer knows that the crop can be sourced from the open market in the

harvesting stage which has an expected price µm; therefore, a buyer would not be interested in

paying more than µm. Similarly, at the time of contracting the farmer also knows that the crop

can be sold to the open market at the harvesting stage which has an expected price µm; therefore,

the farmer would not be interested in accepting less than µm. We keep contract price as r for our

structural analysis and we assume r = µm for our numerical experiments in this section.

We now formulate the farmer’s decision problem. In the harvesting stage, farm yield ε̃ and

market uncertainty m̃ are realized. Given the decisions in the cultivation stage, namely cultivation

volume xc and fertilizer application rate sc, the farmer’s optimization problem in the harvesting

stage is formulated as follows:

Πh(xc, sc, ε,m)
.
= max

xh≥0
rmin(D,xh) + p(m, ε)(xh −D)+ − ωh(ε)(xh −Kh)+ (A-10)

s.t. xh ≤ xc(ε+ asc).
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The farmer maximizes the profit by choosing an optimal crop volume to harvest, subject to the

crop availability constraint as captured by the realized yield xc(ε + asc). Here the first term of

the objective function is the farmer’s revenue from contract which is given by the product of unit

crop revenue r and the delivered volume; that is, the minimum of the harvesting volume xh and

the maximum contract delivery volume D. The second term is the revenue from open market sales

which is given by the product of crop price p(m, ε) and the remaining harvest volume after the

contract is satisfied (xh − D)+. The third term is the cost for additional harvesting resources.

Using the assumption D ≤ Kh, it can be shown that the optimal harvesting volume for a given

(ε,m) is the same as in our main model:

x∗h(ε,m) =

xc(ε+ asc) if p(m, ε) ≥ ωh(ε),

min (xc(ε+ asc),Kh) if p(m, ε) < ωh(ε).
(A-11)

In the cultivation stage, given unit cultivation cost rc and unit fertilizer cost yc the farmer

chooses the cultivation volume xc and fertilizer application rate sc. Let Π∗c(rc, yc) denote the

farmer’s optimal expected profit in this stage, which is given as follows:

Π∗c(rc, yc)
.
= max

xc,sc
E
[
rmin(D,xc(ε̃+ asc)) + p(m̃, ε̃)(xc(ε̃+ asc)−D)+ (A-12)

−min(p(m̃, ε̃), ωh(ε̃))(xc(ε̃+ asc)−Kh)+
]
− ycscxc − rcxc,

s.t. 0 ≤ xc ≤ Q, 0 ≤ sc ≤ s̄.
In (A-12), the first term in the objective function is the expected profit in the harvesting stage.

In particular, the first two terms within the expectation represent the farmer’s revenue if all the

available crops are harvested. However, additional harvesting resources are needed beyond the

internal resources, i.e., for the harvesting amount (xc(ε + asc) − Kh)+, and their cost is given

in the third term within the expectation. The second and third terms in the objective function

represent the fertilizer and cultivation cost, respectively. The constraints state that the cultivation

volume cannot exceed the available farmland Q and the fertilizer application rate cannot exceed

the agronomic recommendation s̄. To make a comparison with the expected stage-1 profit in the

main model as given by the objective function in (1), using the identity min(p(m, ε), ωh(ε)) =

p(m, ε)− (p(m, ε)− ωh(ε))+, we can rewrite the expected stage-1 profit in the main model as

E
[
p(m̃, ε̃)xc(ε̃+ asc)−min(p(m̃, ε̃), ωh(ε̃))(xc(ε̃+ asc)−Kh)+

]
− ycscxc − rcxc.

We observe that the only difference in (A-12) from (1) is the farmer’s expected revenue (i.e., the first

two terms within the expectation) and the two expressions become identical when we set D = 0.

Before solving the farmer’s decision problem, it is useful to examine under what conditions the

farmer benefits from contract farming. We can check the derivative of the objective function in

(A-12) with respect to D and show that when

E
[
(r − p(m̃, ε̃))I

{
ε̃ >

D

Q
− as̄

}]
≥ 0, (A-13)

engaging in contract farming will be beneficial to the farmer. Specifically, the above condition

ensures that the marginal value of contracting is nonnegative for any given farmers decisions (xc, sc)

at the cultivation stage (the condition is obtained using xc = Q and sc = s̄). We note that when

the open market price p is independent of farm yield, because E[p(m̃)] = µm the condition in (A-13)
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reduces to r ≥ µm; that is, the contract price must be greater than the expected open market price

for the farmer to strictly benefit from contracting. In other words, in the realistic case of r = µm

contract farming does not have value for the farmer. However, in our focal case where the open

market price decreases in the farm yield (i.e., p(m, ε) decreases in ε), the farmer may benefit from

contract farming even when r = µm. This is because when the maximum delivery volume is D, an

additional unit of contract (maximum delivery volume) substitutes the open market sales revenue

p(m, ε) with the contract revenue r when the maximum harvest volume Q(ε + as̄) is larger than

D; that is, when the yield realization is sufficiently high (i.e., ε > D/Q− as̄). At these high yield

realizations, the open market price p(m, ε) is low because p(m, ε) decreases in ε. In other words,

contract farming creates value for the farmer by substituting the open market sales revenue at low

revenue realizations with the fixed unit revenue r.

To further illustrate the value of engaging in contract farming, let us focus on the case p(m̃, ε̃) =

m̃−α(ε̃−µε) where α > 0 as assumed in the main paper. In this case when r = µm, (A-13) reduces

to

E
[
α(ε̃− µε)I

{
ε̃ >

D

Q
− as̄

}]
≥ 0. (A-14)

It is easy to see that (A-14) is strictly positive when D
Q−as̄ > 0 where the minimum yield realization

is assumed to be zero.

C.3.2 Optimal cultivation and fertilizer application decisions

We now characterize the farmer’s optimal cultivation and fertilizer application decisions, denoted

by (x∗c , s
∗
c). For tractability we make the following assumptions hereafter for our contracting model.

Assumption 3 We assume (i) r − E
[
p
(
m̃, DQ − as̄

)]
≥ 0; and (ii) D = Kh.

These conditions are needed to ensure that the objective function of the farmer’s decision problem

is well-behaved. Part (i) of this assumption states that the contract price must be no lower than

the expected open market price even when the yield realization is low in which case the farmer

can still meet the contract demand by cultivating the whole farmland and applying fertilizer at the

agronomically recommended rate. When the open market price is independent of farm yield, this

condition is equivalent to (A-13) since both reduce to r ≥ µm. However, in our focal case where the

open market price decreases in the farm yield, this condition is stronger and it implies the condition

in (A-13), thereby ensuring that engaging in contract farming is beneficial to the farmer. Part (ii)

of the assumption is only needed for the case with moderate yc values when we prove Proposition

16. This is a reasonable assumption considering that with part (i) and D ≤ Kh, it is profitable for

the farmer to increase the maximum delivery volume D to Kh.

For ease of exposition, we present the characterization in three cases based on the range of unit

fertilizer cost yc starting with the large yc case.
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Proposition 14 (Large unit fertilizer cost) When yc > y
(0)
c

.
= ar, we have

(x∗c , s
∗
c) =


(0, 0) if Θ(0) ≤ rc,

(x̂nfc , 0) if Θ(Q) ≤ rc < Θ(0),

(Q, 0) if rc < Θ(Q),

where x̂nfc ∈ (D/ε̄,Q] is the unique solution to Θ(x̂nfc ) = rc with

Θ(xc)
.
=

E [rε̃] if xc ≤ D
ε̄ ,

E
[
ε̃
(
rI
{
ε̃ < D

xc

}
+ p(m̃, ε̃)I

{
ε̃ > D

xc

}
−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc

})]
if xc >

D
ε̄ .

When the unit fertilizer cost is large, the farmer optimally does not apply any fertilizer. In this case,

the marginal cultivation cost is given by rc, the value of which determines the optimal cultivation

volume. When rc is small, the farmer optimally cultivates the whole farmland; when rc is large, the

farmer optimally does not cultivate at all; otherwise, the farmer optimally cultivates x̂nfc acres. As

can be seen, the optimal solution is structurally the same as that for our main model in Proposition

1. Nevertheless, there are some differences in the detailed expressions of the cutoff value y
(0)
c and

Θ(xc). In particular, for a given yield realization ε we observe from Θ(xc) that the marginal revenue

for cultivating an additional acre equals εr for small cultivation volumes (i.e., xc ≤ D/ε̄), but equals

εp(m, ε) for large cultivation volumes (i.e., xc > D/ε̄). In contrast, the marginal revenue always

equals εp(m, ε) in our main model without forward contracting. This is due to the fact the farmer

has two selling channels: first through contract and then through the open market.

Next we characterize the optimal decisions for a sufficiently small unit fertilizer cost yc.

Proposition 15 (Small unit fertilizer cost)

Let y
(2)
c

.
= aE

[
rI
{
ε̃ < D

Q − as̄
}

+ p(m̃, ε̃)I
{
ε̃ > D

Q − as̄
}
−min(p(m̃, ε̃), ωh(ε̃))I{ε̃ > Kh/Q− as̄}

]
.

When yc < y
(2)
c , we have

(x∗c , s
∗
c) =


(0, s̄) if Γ(0) ≤ rc + s̄yc,

(x̂fc , s̄) if Γ(Q) ≤ rc + s̄yc < Γ(0),

(Q, s̄) if rc + s̄yc < Γ(Q),

where x̂fc ∈ (Kh/(ε̄+ as̄), Q] is the unique solution to Γ(x̂fc ) = rc + s̄yc with

Γ(xc)
.
=


E [r(ε̃+ as̄)] if xc ≤ Kh

ε̄+as̄ ,

E
[
(ε̃+ as̄)

(
rI
{
ε̃ < D

xc
− as̄

}
+ p(m̃, ε̃)I

{
ε̃ > D

xc
− as̄

}
−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

xc
− as̄

})]
if xc >

Kh
ε̄+as̄ .

When the fertilizer cost is small, the farmer optimally applies fertilizer at agronomic recommenda-

tion (i.e., s∗c = s̄). Therefore, the marginal cost of cultivating an additional acre is given by the sum

of cultivation cost per acre rc and fertilizer application cost s̄yc. The characterization of optimal

cultivation volume x∗c is structurally similar to that of Proposition 14. In particular, when rc + s̄yc

is small, the farmer optimally cultivates the whole farmland; when it is large, the farmer optimally

does not cultivate at all (and the fertilizer application decision is irrelevant); otherwise, the farmer

optimally cultivates x̂fc acres.
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A comparison between Proposition 2 and Proposition 15 shows that the optimal solution for

the extended model has the same structure as that for our main model. Similar to the case with

a sufficiently large unit fertilizer cost, because of the contract sales channel, the farmer’s marginal

revenue of cultivating an additional acre for a given yield realization ε is different for a different

value of xc. Specifically, it is equal to (ε+ as̄)r for small cultivation volumes (i.e., ε < D/xc − as̄)
but is equal to (ε+ as̄)p(m, ε) for large cultivation volumes (i.e., ε > D/xc − as̄).

So far we have observed that when the unit fertilizer cost yc is sufficiently small or sufficiently

large, the farmer always optimally chooses the same fertilizer application rate regardless of the

optimal cultivation volume. When yc is in the moderate range, the farmer may also optimally

change the fertilizer application decision, as illustrated in Proposition 16:

Proposition 16 (Moderate unit fertilizer cost ) Let Θ(xc) (Γ(xc)) and y
(0)
c (y

(2)
c ) be as de-

fined in Proposition 14 (Proposition 15) and

y
(1)
c

.
= aE

[
rI
{
ε̃ < D

Q

}
+ p(m̃, ε̃)I

{
ε̃ > D

Q

}
−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ > Kh

Q

}]
where y

(1)
c ∈ [y

(2)
c , y

(0)
c ].

Case i: When y
(1)
c ≤ yc < y

(0)
c , we have

(x∗c , s
∗
c) =



(0, s̄) if Γ(0) ≤ rc + s̄yc,

(x̂fc , s̄) if rc + s̄yc < Γ(0) and rc ≥ Θ(xc),

(x̂nfc , 0) if Θ(Q) ≤ rc < Θ(xc),

(Q, 0) if rc < Θ(Q),

where x̂fc ∈ (D/(ε̄+ as̄), xc] is the unique solution to Γ(x̂fc ) = rc + s̄yc and x̂nfc ∈ (x̄c, Q] is the

unique solution to Θ(x̂nfc ) = rc. Here xc > D/(ε̄+ as̄) is the unique solution to

aE
[
rI
{
ε̃ <

D

xc
− as̄

}
+ p(m̃, ε̃)I

{
ε̃ >

D

xc
− as̄

}
−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

xc
− as̄

}]
= yc,

and x̄c > D/ε̄ is the unique solution to

aE
[
rI
{
ε̃ <

D

x̄c

}
+ p(m̃, ε̃)I

{
ε̃ >

D

x̄c

}
−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

x̄c

}]
= yc.

Case ii: When y
(2)
c ≤ yc < y

(1)
c , we have

(x∗c , s
∗
c) =


(0, s̄) if Γ(0) ≤ rc + s̄yc,

(x̂fc , s̄) if rc + s̄yc < Γ(0) and rc ≥ Θ(xc),

(Q, ŝc) if rc < Θ(xc),

where x̂fc ∈ (Kh/(ε̄+ as̄), Q] is the unique solution to Γ(x̂fc ) = rc + s̄yc and ŝc ∈ (0, s̄) is the unique

solution to

yc = aE
[
rI
{
ε̃ <

D

Q
− aŝc

}
+ p(m̃, ε̃)I

{
ε̃ >

D

Q
− aŝc

}
−min(p(m̃, ε̃), ωh(ε̃))I

{
ε̃ >

Kh

Q
− aŝc

}]
.

Recall that the above proposition requires both conditions in Assumption 3, and in particular

D = Kh. We only delineate the intuition behind the second case; the first case can be explained in a

similar fashion. Let us consider a given unit fertilizer cost yc ∈ [y
(2)
c , y

(1)
c ) and examine the optimal

solution while changing the cultivation cost per acre rc. When rc is sufficiently high, the farmer

optimally does not cultivate any farmland (and the fertilizer application decision is irrelevant). As
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rc decreases, the farmer increases the cultivation volume, and paralleling the characterization in

Proposition 15, optimally cultivates x̂fc acres and applies fertilizer at agronomically recommended

rate s̄. As rc further decreases, the farmer further increases the cultivation volume and optimally

cultivates the whole farmland. In this case, different from the characterization in Proposition 15,

the farmer optimally applies fertilizer at a rate ŝc that is lower than s̄ because yc is higher than the

unit fertilizer cost in Proposition 15 and thus, it is not beneficial for the farmer to continue applying

s̄ amount of fertilizer per acre when the increase in number of acres cultivated is accounted for.

Here, ŝc is the fertilizer rate per acre (applied to the whole farmland Q) for which the marginal

cost yc equals its expected marginal revenue. In the harvesting stage this marginal revenue is

characterized by the product of an additional unit of fertilizer’s effect on yield per acre, as given

by a, and the effective crop margin which follows a similar structure with the effective crop margin

that is used to characterize Γ(xc) in Proposition 15, where xc and sc are substituted with Q and

ŝc, respectively.

Similar to the cases with a sufficiently large or small unit fertilizer cost yc, a comparison between

Proposition 3 and Proposition 16 reveals that the optimal solution has the same structure as that

for the main model, although the detailed expressions may be different. This is again due to the

fact that in the extended model the farmer first sells the crop through contract and then sells the

remaining crops (if any) to the open market.

Based on the characterization results for the three cases of yc we can summarize the optimal

decisions in the same way as Corollary 1.

Corollary 2 When rc + s̄yc ≥ Γ(0) = E [(ε̃+ as̄)r] and rc ≥ Θ(0) = E [ε̃r], we have x∗c = 0 and

the fertilizer application decision is irrelevant. Otherwise, we have x∗c > 0 and the characteriza-

tion of (x∗c , s
∗
c) can be illustrated using the same figure, Figure 1, for the case Γ(Q) < Θ(Q) (the

characterization is structurally the same for the case Γ(Q) ≥ Θ(Q)) where

Ξ1
.
=
{

(rc, yc) : yc ≤ ŷc(rc), y(2)
c ≤ yc ≤ y(0)

c

}
∪
{

(rc, yc) : Γ(Q) ≤ rc + s̄yc, 0 ≤ yc < y(2)
c

}
,

Ξ2
.
= {(rc, yc) : Θ(Q) ≤ rc, yc > ŷc(rc)} ,

Ξ3
.
=
{

(rc, yc) : Θ(Q) > rc, yc ≥ y(1)
c

}
,

Ξ4
.
=
{

(rc, yc) : yc > ŷc(rc), y
(2)
c ≤ yc < y(1)

c

}
,

Ξ5
.
=
{

(rc, yc) : Γ(Q) > rc + s̄yc, 0 ≤ yc < y(2)
c

}
.

Here, ŷc(rc), which can be proven to be concavely increasing in rc, is the unique solution to Θ(xc) =

rc where xc is as given by Proposition 16.

When the farmer optimally cultivates some acres, Corollary 2 identifies the same five strategies

with the main model that emerge as optimal: partial farmland cultivation without using any

fertilizer (Ξ2), partial farmland cultivation with applying fertilizer at agronomically recommended

rate (Ξ1), and full farmland cultivation with three distinct fertilizer application rates; agronomic

recommendation (Ξ5), less than agronomic recommendation (Ξ4), and none (Ξ3).

Similar to the main model, we make the following assumptions hereafter:
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Assumption 4 We assume

(i) rc + s̄yc < E [r(ε̃+ as̄)] and rc < E [rε̃];

(ii) m̃ and ε̃ have independent distributions;

(iii) p(m̃, ε̃) = m̃− α(ε̃− µε) for α ∈ [0,m/(ε̄− µε)) and ωh(ε̃) = ω0 + βε̃ for ω0 > 0 and β ≥ 0.

Assumption (i) 4 implies that, as follows from Corollary 2, the farmer optimally cultivates a pos-

itive amount of farmland (i.e., x∗c > 0). Assumption 1(ii) introduces additional structure on the

distributions of m̃ and ε̃ whereas Assumption 1(iii) introduces specific functional forms for the crop

price and external unit harvesting cost; these are necessary for the tractability of our sensitivity

analysis in the subsequent sections. When r = µm, using part (ii) and (iii) of Assumption 4, it can

be shown that Assumption 3 reduces to Kh ≥ Q(µε + as̄), which is the same as Assumption 2 in

the main paper.

C.3.3 Analysis of optimal decisions for farm management

We now examine how changes in cultivation and fertilizer costs as well as farm yield variability

impact the farmer’s optimal decisions and profitability. This analysis follows the same approach as

in our main model. After repeating the proofs of Propositions 4, 5, and 6 for our extended contract

farming model, we can replicate all the sensitivity analysis results about the effects of costs and

uncertainties on the optimal decisions and profitability. That is, the results in these propositions

continue to be relevant in our extended model. For brevity we omit the details here but it is

worthwhile pointing out the similarities and distinctions in the analyses. First, it is straightforward

to establish the effects of cultivation and fertilizer costs on the optimal decisions since Θ(xc) and

Γ(xc) continue to decrease in xc, which underpins the proofs of Propositions 4 and 5. To show the

effects of yield variability on the optimal decisions, we examine how a change in σε affects Θ(xc),

Γ(xc), and the boundaries of Figure 1. Again, these effects remain the same as those for the main

model. Take the effect of σε on Θ(xc) for example. With α = 0 as assumed in Proposition 6, we

rewrite Θ(xc) as follows:

Θ(xc) =E
[
ε̃

(
r − (r − m̃)I

{
ε̃ >

Kh

xc

}
−min(m̃, ωh(ε̃))I

{
ε̃ >

Kh

xc

})]
=rµε − E

[
ε̃

(
(r − µm)I

{
ε̃ >

Kh

xc

}
+ min(m̃, ωh(ε̃))I

{
ε̃ >

Kh

xc

})]
.

Further, Assumption 3 reduces to r ≥ µm when α = 0. It can be shown that E
[
ε̃
(

(r − µm)I
{
ε̃ > Kh

xc

})]
increases in yield variability σε based on the condition Kh ≥ Q(µε + as̄) again assumed in Proposi-

tion 6. Therefore, the effect of σε on the term E
[
ε̃
(

(r − µm)I
{
ε̃ > Kh

xc

})]
is consistent with that

on the term E
[
ε̃
(

min(m̃, ωh(ε̃))I
{
ε̃ > Kh

xc

})]
. This explains why the effects of σε on the optimal

decisions in the extended model remain the same as those for the main model. Overall, we find

that our analytical sensitivity results about the effects of cost and uncertainty on optimal decisions

are robust and they continue to be relevant for our model with contract farming.

We also replicate our main paper’s numerical experiments in this extended model by assuming

r = µm and D = Kh; otherwise, the numerical setup (including the calibrated values and numerical

instances considered) remains the same. We verify that our numerical results for the effect of yield
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variability continue to hold in this extended model. In particular, paralleling the main paper, in

all our numerical instances (where we use the same calibrated ά > 0 and β́ > 0) as yield variability

σε increases we consistently observe that (i) the optimal expected profit decreases and (ii) optimal

cultivation volume x∗c decreases whereas the optimal fertilizer application rate s∗c decreases except

for the cases when it induces a transition from Ξ4 to Ξ1 (in these cases s∗c increases). We refer the

reader to Figure 8(a) for illustration of (i) and Figure 8(b) for illustration of (ii) for the behavior

of s∗c . These illustrations parallel those in Figure 3 of the main paper.

Figure 8: Effects of Farm Yield Variability σε on the Optimal Expected Profit Π∗c (Panel a) and
the Optimal Fertilizer Application Rate s∗c (Panel b) with Contract Farming

(a)
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Notes. In each panel, σε ∈ [−45%, 45%] changes from the baseline value σ́ε = 117.45 with 0.1% increments.
In panel b, rc = 1.3ŕc, yc = 1.3ýc. In both panels, the rest of the parameters are at their calibrated
(baseline) levels.

C.3.4 Analysis of optimal decisions for food security

We now examine the implications of the farmer’s optimal decisions for food security in this exten-

sion. In addition to Assumption 3 and Assumption 4, this analysis also uses Assumption 2 as is the

case for our main model. We use the same measure of food security as the expected gap for a given

unit cultivation cost rc and unit fertilizer cost yc; that is, J∗(rc, yc) = (µε + as̄)Q − E[x∗h(m̃, ε̃)],

where x∗h is given by (A-11) with (xc, sc) replaced by the optimal decisions (x∗c , s
∗
c) as summarized

in Corollary 2. It is noted that J∗(rc, yc) in the extended model is the same as that for the main

model except for the fact that the optimal decisions take a different form but remain structurally

the same (see Propositions 14-16 and Corollary 2). Recall that we have already shown in the pre-

vious section that the effects of unit cultivation cost rc, unit fertilizer cost yc, and yield variability

σε on the optimal decisions are structurally the same with the main model. As a result, we can

replicate all the analytical results about the effects of unit cultivation cost rc, unit fertilizer cost

yc, and yield variability σε on the expected gap J∗(rc, yc). That is, the results in Propositions 7, 8,
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and 9 continue to be relevant in our extended model.

Figure 9: Effects of Cultivation Cost Per Acre rc (Panel a) and Farm Yield Variability σε (Panel
b) on the Expected Gap J∗(rc, yc) with Contract Farming

(a)
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Notes. In panel a, rc ∈ [25%, 45%] away from the baseline value ŕc = 4379.59 with 0.1% increments,
yc = 1.3ýc, and σε = 1.15σ́ε. In panel b, σε ∈ [−5%, 5%] away from the baseline value σ́ε = 117.45 with
0.1% increments, rc = 1.3ŕc, and yc = 1.3ýc. In both panels, the rest of the parameters are at their
calibrated (baseline) levels.

We also replicate our main paper’s numerical experiments in this extended model by assuming

r = µm and D = Kh. We make the same observations with the main model. In particular, as

unit fertilizer cost yc increases, in all numerical experiments that include a transition from Ξ1 to

Ξ4 we observe that expected gap continues to increase. As cultivation cost per acre rc increases,

in some of the numerical experiments that include a transition from Ξ4 to Ξ1 we observe that the

expected gap decreases; see Figure 9(a) for an example. We next examine the effect of farm yield

variability σε. In this extended model, similar to Proposition 9 of the main paper, we prove under

the α = 0 assumption that when σε increases, the expected gap J∗(rc, yc) also increases except for

cases when it induces the farmer to switch from one optimal strategy to another in which both

optimal cultivation volume and fertilizer application rate are different (in these cases the effect on

J∗(rc, yc) is indeterminate). In our numerical experiments, we verify that this result continues to

hold without the α = 0 assumption. We also find that when an increase in σε induces the farmer

to switch from one optimal strategy to another in which both x∗c and s∗c are different, the expected

gap may also decrease; see Figure 9(b) for an example. The illustrations in Figure 9 parallel those

in Figure 6 of the main paper.

C.4 Implications of Optimal Decisions for Food Waste

In this section, we consider the implications of farmer’s optimal decisions on an alternative food

security measure: food waste, which is the amount of crops left unharvested due to a high harvesting

labor cost or a low open market price. The objective of this section is two fold: (i) to contextualize
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in our setting the food waste measure and (ii) to determine whether there is a discrepancy between

this measure and the expected gap (as used in the main paper) in terms of how changes in costs and

uncertainties in the farming environment affect each measure. Throughout our analysis, paralleling

§5 of the main paper, we use Assumption 2 (i.e., Kh ≥ Q(µε + as̄)).

In our model, food waste can be defined as the difference between the expected amount of crops

available for harvesting given the farmer’s optimal decisions and the expected optimal harvesting

amount; that is, for a given unit cultivation cost rc and unit fertilizer cost yc, food waste is given

by W ∗(rc, yc) = (µε + as∗c)x
∗
c − E[x∗h(m̃, ε̃)]. Substituting E[x∗h(m̃, ε̃)] (as given in (3)) into this

definition, we rewrite the food waste measure as follows:

W ∗(rc, yc) = E
[
(x∗c(ε̃+ as∗c)−Kh)+I{p(m̃, ε̃) ≤ ωh(ε̃)}

]
. (A-15)

Unlike the expected gap defined in (3), food waste increases as the optimal cultivation volume or

the optimal fertilizer application rate increases.

We first examine how changes in cultivation cost per acre rc and unit fertilizer cost yc impact

the food waste measure W ∗(rc, yc). As can be seen from (A-15), a change in each cost affects the

food waste only by altering the optimal decisions (x∗c , s
∗
c) in the cultivation stage.

Proposition 17 (Effect of cultivation cost per acre on food waste) When rc increases, W ∗(rc, yc)

decreases except for the cases when it induces a transition from either Ξ2 or Ξ4 to Ξ1 in Figure 1.

Proposition 17 shows that an increase in rc reduces food waste unless it induces the farmer to

switch from one optimal strategy to another in which both x∗c and s∗c are different. In particular, as

rc increases, as follows from Proposition 4, the farmer optimally cultivates fewer acres and does not

alter optimal fertilizer application rate except for the cases when it induces the farmer to switch

the optimal strategy from either (Q, ŝc) or (x̂nfc , 0) to (x̂fc , s̄) in Figure 1. Outside of these cases,

x∗c decreases and s∗c does not change. Since the food waste increases in both x∗c and s∗c , the food

waste decreases. The effect of cultivation cost on food waste is opposite to that on the expected

gap as shown in Proposition 7. This is because the maximum expected harvesting volume in the

definition of J∗(rc, yc); that is, (µε+as̄), does not change in rc, while the expected amount of crops

available for harvesting given the optimal decisions in the definition of W ∗(rc, yc), (µε + as∗c)x
∗
c ,

may decrease in rc.

A similar result is relevant for the effect of unit fertilizer cost yc on the food waste:

Proposition 18 (Effect of unit fertilizer cost on food waste) As yc increases, W ∗(rc, yc) de-

creases except for the cases when it induces a transition from Ξ1 to either Ξ2 or Ξ4 in Figure 1.

Proposition 18 proves that an increase in yc reduces food waste unless it induces the farmer to

switch from one optimal strategy to another in which both x∗c and s∗c are different. In particular,

when yc increases, as follows from Proposition 5, the farmer optimally applies less fertilizer per acre

and cultivates fewer acres except for the cases when the increase in yc induces the farmer to switch

the optimal strategy from (x̂fc , s̄) to either (Q, ŝc) or (x̂nfc , 0) in Figure 1. Outside of these cases,

x∗c and s∗c decrease, and thus food waste decreases as shown in Proposition 18. Again, the effect

of fertilizer cost on food waste is opposite to that on the expected gap as shown in Proposition
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8, because food waste increases in both the optimal cultivation volume and the optimal fertilizer

application.

We next examine how changes in farm yield variability σε impact the food waste. As follows

from (A-15), a change in σε affects the expected gap by altering the expected food waste for any

given farmer’s decisions (xc, sc) as well as the farmer’s optimal decisions (x∗c , s
∗
c) in the cultivation

stage.

Proposition 19 (Effect of yield variability on food waste) Assume ε̃ ∼ N (µε, σ
2
ε ) and α =

0. When (rc, yc) ∈ Ξi for i ∈ {3, 5}, we have ∂W ∗(rc,yc)
∂σε

≥ 0.

For any given decisions (xc, sc) food waste can be proven to increase in yield variability σε. This

is the direct effect of yield variability on food waste. When (rc, yc) ∈ Ξi for i ∈ {3, 5}, the optimal

decisions are constant, and the indirect effect of yield variability on the food waste through its

effect on the optimal decisions is null. Therefore, the aggregate effect is positive, which explains

the result that the food waste increases in yield variability in these two regions. Again, this result

is consistent with that for the expected gap as shown in Proposition 9. However, when the optimal

decisions fall in other regions or there is a transition between regions, as follows from Proposition 6,

when σε increases, x∗c decreases and s∗c decreases except for cases when it induces a transition from

either Ξ2 or Ξ4 to Ξ1 (in these cases s∗c increases). This together with the result that food waste

increases in x∗c and s∗c implies that the indirect effect of yield variability on the food waste through

its effect on the optimal decisions is negative, thereby contradicting the positive direct effect. As a

result, it remains unclear which effect dominates.

Overall, our analyses in this section reveal that the effects of cultivation and fertilizer costs on

the expected gap and food waste are opposite, while the effects of farm yield variability on these two

measures are the same. These results have some implications for food security and waste. While

decreasing cultivation or fertilizer cost (e.g., through government subsidies) helps to increase the

expected crop production and reduce the expected gap, it may lead to an increase in food waste.

This unintended consequence is undesirable since the unharvested crop could have been harvested

to further reduce the expected gap. Another implication is that decreasing yield variability (e.g.,

through provision of pest-resistant seed) may benefit the society as it helps to reduce both the

expected gap and the food waste.

References

United States Department of Labor. 2021. Bureau of Labor Statistics quarterly census of em-
ployment and wages, NAICS-Based Data Files (1975 - most recent). https://www.bls.gov/cew/
downloadable-data-files.htm, last accessed in June, 2021.

USDA. 2010. U.S. Tomato statistics historical data. https://www.ers.usda.gov/data-products/
vegetables-and-pulses-data/vegetables-and-pulses-historical-data/, last accessed in June,
2021.

USDA. 2018. Quick Stats, National agriculture statistics service. https://quickstats.nass.usda.gov/,
last accessed in May, 2018.

A27

https://www.bls.gov/cew/downloadable-data-files.htm
https://www.bls.gov/cew/downloadable-data-files.htm
https://www.ers.usda.gov/data-products/vegetables-and-pulses-data/vegetables-and-pulses-historical-data/
https://www.ers.usda.gov/data-products/vegetables-and-pulses-data/vegetables-and-pulses-historical-data/
https://quickstats.nass.usda.gov/

	Integrated optimization of farmland cultivation and fertilizer application: Implications for farm management and food security
	Citation

	tmp.1685589409.pdf.1r67w

