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Abstract 

The Singapore Savings Bonds (SSB) is a unique investment program offered by the Singapore 
government whereby retail investors can earn risk-free tax-free step-up interest closely matched 
to Treasury bond rates for up to 10 years and can redeem on any business day prior to maturity 
without any early redemption penalty. This study analyses the unique design of the SSB and 
provides a valuation of the Bermudan option for early redemption that is embedded in the SSB. 
The Black-Derman-Toy model is used to build the interest rate tree, and an iterative method is 
employed to avoid arbitrary specification of the pre-determined short rate volatility function. This 
bespoke Bermudan option can have changing strike prices over time. It also has a novel 
characteristic whereby the value of exercise to a buyer need not equal to the cost of being exercised 
to a seller. Better understanding of embedded options within government savings bonds leads to 
innovative designs that may encourage effective citizens’ savings.    

 

Keywords: Bespoke Bermudan option, Singapore Savings Bonds, Iterative Black-Derman-Toy 
model, Spot rate model 

JEL Classification:  G13, G21, G28 

 

 

1 Introduction 

Singapore Savings Bonds (or SSB) are investment instruments for household or retail investors 
in Singapore whereby the investor buys the bonds for up to a maximum of S$200,000 per person 
and receives coupon interests on a semi-annual basis. Each     
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K. G. Lim

SSB bond with a par value of S$500 has a maturity of 10 years. The SSB is not
transferable in the market. The pre-determined coupon interest rates of the SSB are
stepped up each year. An investor will receive higher interest rates by holding onto the
bond over a longer period. The step-up feature is unique and is created to incentivize
investors who had bought the bond to continue holding the bond for the full term of
10 years. However, another key feature of the SSB is often overlooked. The investor
also has the option to redeem or sell the bond back to the government represented by
the Monetary Authority of Singapore (MAS) at any time before the end of 10 years,
without any penalty, and will still be able to collect the accrued interest up to the
point of redemption. This feature is unlike bank term deposits whereby the investor or
depositor typically stands to forfeit all accrued interests if the bond or loan is redeemed
before maturity. The SSB program, besides being described in Singapore Monetary
Authority of Singapore (MAS) publicwebsites (see for example https://www.mas.gov.
sg/bonds-and-bills), is also discussed in the report of Singapore Accountant-General’s
Department (2016).

Our study analyses the unique design of the SSB and provides a valuation of the
option for early redemption that is attached to the SSB. The early redemption option
is a Bermudan option for exercise on any business day (effectively end of day) within
10 years after the start of investing in a SSB. The redemption pay-out of par value plus
any accrued interest up to exercise date would occur at the end of themonth. Assuming
the investor has an original investment horizon of 10 years, the investor could choose
to redeem an existing SSB investment and then re-invest in a Singapore Government
Security (SGS) bond or Treasury bond with a maturity equal to the remaining period
of the original 10 years when market interest rate levels have gone up. Otherwise the
investor could re-invest in a newly issued SSBbond. If the investor keeps to the original
10-year horizon, he/she could re-invest in the new SSB for the remaining period of the
original 10 years. SGS bonds are traded in the Singapore Exchange (SGX) or they can
be bought OTC at local banks. However, for retail investors, the market for purchase
or sale of SGS bonds is illiquid and there is sometimes a wide bid-ask spread. We
shall defer the latter matter of market friction till a later discussion.

Generic Bermudan option had been discussed and modelled in Iwaki et al. (1995)
and Schweizer (2002). Evaluation of upper bound on the price is discussed in Joshi
(2007). However, unlike most existing research on Bermudan options, our study is in
the context of a savings bond with step-up interests, and the embedded SSBBermudan
option can also have changing strike prices over time. It is also a unique bespoke option
whereby the value of exercise to a buyer need not equal to the cost of being exercised
to a seller. We provide a valuation of this embedded Bermudan option that arises due
to possible early redemption of the SSB.

Since the launch of the SSB program in October 2015, the amount of investments
in SSB has increased byMarch 2019 to a total of S$3.7 billion with 100,000 individual
investors. Unlike several other countries that had issued savings bonds partly to fund
government programs, the SSBprogram states clearly that the investors’monieswould
not be used to fund government expenses, but would be re-invested. The purpose of the
program is to provide government-guaranteed AAA-rated long-term savings returns
for retail investors mostly based in Singapore. The savings bonds with maximum 10-
yearmaturity are issuedonce eachmonth, and canbe redeemed anybusiness daywithin
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any month with no commission cost on purchase or redemption, and interests received
are tax-free. The SSB interest rates are pegged to the yields of Singapore Government
Securities (SGS) that consist ofTreasury billswith less than a yearmaturity, benchmark
1-year, 2-year, 5-year, and 10-year Singapore Government bonds as well as yields of
other n-year maturity SGS bonds transacted by the central bank and large banks. The
latter non-benchmark yields are generally not observed in the market.

The first key design principle of the SSB step-up interests is that the cumulative
risk-free return of S$1 invested in the SSB, if the SSB is held till maturity, should be
equal to the cumulative risk-free return at maturity of S$1 invested in a 10-year SGS
government bond. The second key design principle of the SSB, as a consequence of
the step-up feature, is that in whichever nth year, for n<10, that the investor redeems
the SSB, the cumulative risk-free return on S$1 invested in the SSB up to nth year
would be equivalent to or a little smaller than the cumulative return on S$1 invested
in a SGS bond with maturity of n years. The equivalence is due to the ability to buy
risk-free forward contracts to lock in the return at corresponding maturities.

In the remaining part of this introductory section, we show how the SSB step-up
coupons are determined and how the embedded option provides value to the investor.

1.1 SSB step-up interests

The key design principles of the step-up interest rate fixing each month center on
the yields of n-year maturity SGS bonds for n � 1, 2, 3, …, 10. We assume that a
continuous yield curve exists up to 10 years with the yield-to-maturity (YTM) of a
n-year government coupon bond as yn. As government bonds pay fixed regular coupon
interests, the YTM is related to the fixed per annum coupon rates cn:

(1)

1 � cn/2
(
1 + yn/2

)1 +
cn/2

(
1 + yn/2

)2 +
cn/2

(
1 + yn/2

)3

+
cn/2

(
1 + yn/2

)4 + · · · + cn/2
(
1 + yn/2

)2n−1 +
(1 + cn/2)

(
1 + yn/2

)2n

for n � 1, 2, 3, …, 10. This is a statement about a default-free government bond
purchased at price S$100 and returning interest S$cn/2 interest every 6-month with
redemption of principal1 S$100 and final interest payment at the end of n-years.
In Eq. (1), the solution is yn � cn. In practice, unobserved YTMs at intermediate
maturities are often approximated by a monotonic curve linking two adjacent YTMs
with a shorter and a longer maturity. In this study we approximate non-benchmark
yields by linear interpolation.

Another set of key rates, si, relating to the yield curve or set of YTMs is given by:

1 � yn
(1 + s1)

+
yn

(1 + s2)2
+

yn
(1 + s3)3

+ · · · + yn
(1 + sn−1)

n−1 +

(
1 + yn

)

(1 + sn)n
(2)

1 We use a generic par of S$100. For SSB, par of S$500 means that where we report coupon interest rate
c%, the interest on a generic par is (c/100)×S$100, but the actual interest on SSB is (c/100)×S$500. For
algebraic equations, we use par of 1 (representing 100) for parsimony.
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for n � 1, 2, 3, …, 10, whereby for simplicity, coupons are annual. Spot rate, si, is
a per annum rate that is specific for a maturity i and generally not similar for other
maturities. Given the YTMs y1, y2, …, y10, the spot rates s1, s2, …, s10 can be derived
fromEq. (2). The solution process is sometimes called bootstrapping. For convenience
of notation, we define 1

(1+sn)n
≡ Dn which is also called the n-year interest discount

factor. Then D1 � 1/(1 + y1), and the remaining Dn, where n � 2,3, …, 10, can be
solved iteratively:

Dn � 1 − yn(D1 + D2 + D3 + · · · + Dn−1)

1 + yn
(3)

Unlike theYTMover n yearswhich is some averaging of the spot rates over different
maturities from 1 year up to n year, and is not an available borrowing or lending rate,
an investor can borrow or lend at the spot rate sn over a period of n years for any n
� 1,2,3, …, 10. In lending over (0, n], the investor buys a n-year zero coupon bond2

at price 1 and receives after n years the principal payback of (1 + sn)n. Or it can be
lending at 1/(1 + sn)n and receiving 1 at year n. In Eq. (2), for the n-year bond, the
investor lends yn/(1 + s1) for 1 year, yn/(1 + s2)2 for 2 years, and so on, as well as
(1 + yn)/(1 + sn)n for n years. Then the investor receives a corresponding amount yn
for each year until n − 1, and finally (1 + yn) at year n. With no-arbitrage, this total
amount of lending must equal to 1 on the LHS of Eq. (2), which is the price of an
n-year bond with the same payments.

With borrowing institutions creating borrowing rates of 1, 2, 3, and so on up to n
years, and investors willing to lend at those rates sn, a general coupon bond can be
priced presently at time t � 0 as

1 � C1

(1 + s1)
+

C2

(1 + s2)2
+

C3

(1 + s3)3
+ · · · + Cn−1

(1 + sn−1)n−1 +
(1 + Cn)

(1 + sn)n
(4)

where C1, C2,…, Cn−1, Cn are different coupon interest rates at year 1, 2, … , n.
Equation (4) implies that the various coupon rates have to be set to ensure the present
value in Eq. (4) equals 1. This is a generalization of the fixed coupon bond shown in
Eq. (2).

Equation (4) is the basic setup for determining the various step-up interest rates in
the SSB program. Solving for Cn, n � 1, 2, 3, …, 10 iteratively:

Cn � 1 − (D1C1 + D2C2 + D3C3 + · · · + Dn−1Cn−1)

Dn
− 1 (5)

where Dn’s are first found by Eq. (3) using the yield curves prevailing in the SGS
market. The basic setup needs to be adjusted when the prevailing yield curve is convex

2 Zero coupon bonds do not pay interim interest rates. The payments are accumulated and paid all at once
at maturity. These types of bonds are typically sold at a deep discount and redeemed at a par of 1. They
became highly popular for tax and other reasons when treasury bonds are stripped and the coupons are sold
separately. The zero coupon bonds also augment the depth of the fixed income market and help to extend
the maturity spectrum. These types of bonds are also available in the credit sector where corporate bonds
with lower than AAA ratings are also stripped.
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or when yields in adjoining maturities are too flat as the coupons Cn may not be
monotonically increasing.

In order to derive smooth monotonically increasing coupon rates over time in the
SSB, en for year n � 1, 2, …, 10, is defined as

en � 1 − 1

(1 + sn)n
−

(
α1

(1 + s1)
+

α1 + α2

(1 + s2)2
+ · · · + α1 + α2 + · · · + αn

(1 + sn)n

)
(6)

and
10∑

n = 1
e2n is minimized3 using controls {α1, α2, α3, … α10} subject to constraints α1

� C1, α1 + α2 � C2, α1 + α2 + α3 � C3, …, α1 + α2 + α3 +···+α10 � C10, all αn’s≥0,
and e10 � 0.

The en’s above would be zeros if indeed C1 ≤C2 ≤C3 ≤ ···≤C10. Then Eqs. (4)
and (5) would as well produce the SSB coupons. But where solutions in (4) and (5) do
not produce monotonically increasing Cn’s, then the optimization by αn’s≥0 would
lead to the shorter maturity coupons being adjusted lower than that in Eq. (5) while
the later maturity coupons are adjusted higher. This implies that in Eq. (4), the value
may be a little lower than 1 on the LHS for n<10.

1.2 Early redemption as an embedded option

Suppose at 0< t<10 years, the investor chooses to withdraw the cash in SSB and invest
in a new SGS bond for the remaining period of 10− t years.Without loss of generality,
suppose the investor had invested S$100 at the start. This redemption decision would
occur if at time t, the present value of the remaining stream of interests during 10 − t
plus the final par payoff of S$100 is lesser than redemption value of S$100 at time t.
This event could happen if the SGS treasury term structure or yield curve has risen in
level or has become steeper since the start. The higher yields applied to the remaining
step-up interests fixed at the start imply a reduced bond value below par of S$100.
In other words, the retail investor could sell back the SSB to receive par S$100 and
accrued interest at no penalty and re-invest a smaller amount, keeping the rest as profit,
to generate the same set of step-up interests as if holding onto the original SSB.

Weprovide an example of how redemption or exercise occurred in the embedded put
option. Suppose an investor purchased aSSB inOctober 2016. The 10-year coupons for
that issue were respectively 0.84, 0.89, 1.28, 1.75, 2.00, 2.04, 2.13, 2.23, 2.38, 2.62%
on annualized basis. After holding this SSB for 1½ years, in April 2018, the SGS yield
curve increased in level and slope. The next coupon payments were due to be received
in ½, 1, 1½, 2, …, 8½ years. At 8½ year, the par value redemption were also due to
be received. The April 2018 benchmark yields were 1.5, 1.74, 1.95, 2.18, and 2.60%
respectively for 3-month, 1-year, 2-year, 5-year, and 10-year maturities. We compute
the yields for maturities ½, 1, 1½, 2, …, 8½ years, including market-unobserved
intermediate yields, using interpolations.We also compute the corresponding discount
factors and spot rates via Eq. (3). Using the spot rates, the investor could replicate

3 See https://www.mas.gov.sg/-/media/MAS/SGS/SGS-Announcements-pdf/SSB-PDF/FAQ/20190201-
SSB-Technical-specifications_SRS.pdf for the Monetary Authority’s documentation.
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the remaining 8½ years SSB coupon payments and the par redemption at 8½ year
by buying a portfolio of ½, 1, 1½, 2, …, 8½ years SGS bonds. This portfolio cost
S$96.50 per S$100 par of SSB bond. S$96.50 is the present value of the remaining
SSB cash-flows using the spot rates to discount. This portfolio is in effect a synthetic
SSB with remaining 8½ years. By buying this synthetic SSB for S$96.50 and at the
same time exercising to redeem theOctober 2016 SSB for S$100, the investor received
a profit of S$3.50 from exercise of this embedded put option.

The potential gain as explained above constitutes the potential payoff to the embed-
ded option. The underlying stochastic price is the SSB bond price with remaining
maturity 10 − t. The retail investor is de facto given a valuable put to sell the SSB
back to the government at t at the price of S$100. This S$100 is also the strike price
of the embedded put option.

The SSB bond price S$B(t) is random at t with remaining 10 − t years of step-up
interests. The exercisable price of the embedded put is max (100 − B(t), 0). The value
of the SSB to the retail investor at any time point t is the maximum of S$100 or S$B(t).
This value is conditional upon exercise and is not affected per se by the fact that SSB
is not transferable.

In Sect. 2 we discuss the approach and methods used in pricing the embedded
Bermudan option. To price option based on underlying SSB bond prices, we need to
specify the underlying interest rate processes. Section 3 shows the numerical method
to compute the no-arbitrage prices of the Bermudan option. Section 4 considers other
market factors that could affect the price of this bespoke Bermudan option, including
transaction costs, liquidity, and inaccessibility to the SGS market by retail investors.
Section 5 contains the conclusions.

2 Pricingmodel for embedded option

To value this Bermudan option, we construct an interest rate process that drives the
stochastic bond price. There are several approaches inmodelling interest rate processes
including the use of short rates and use of lognormal forward LIBOR rates. As the
problem in our study is pricing an embedded option on an underlying bond price
process, it is inappropriate to use SIBOR (equivalent of S$-LIBOR) rates that are more
suitable to price SIBOR-based derivatives. There are no commonly available market
instruments on SIBOR-based derivatives. Besides, SIBOR is used as amortgage-fixing
rate in Singapore which causes systematic housing risk factors to affect that rate. It is
also inconvenient to use forward rates as underlying as this leads to different forward
measures for differentmaturitieswhich is difficult to dealwithwhenwehaveAmerican
exercise feature in our embedded option. It leads to drifts that are state-dependent and
are difficult to compute numerically in a robust way. See Xiao (2011) for the latter
issue.

We use short rate processes that are popular in the industry for pricing bond
derivatives. Specifically we employ an iterative Black–Derman–Toy (BDT) model.
See Black et al. (1990) and also the related Black–Karasinski model in Black and
Karasinski (1991), both with non-negative interest rate processes. The BDT model
satisfies the no-arbitrage condition, allows exogenous specification of non-constant
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non-anticipative volatility of short rates, provides for fitting to the current term struc-
ture of zero prices as in Ho and Lee (1986), always have positive interest rates in the
dynamic process, and can be easily computed via stable numerical methods such as
in a recombining binomial tree even though there is no exact analytical solution to
options on this process.

For theBDTmodel, let the short rate process r(t) or the interest rate over an infinites-
imal interval, follow the stochastic differential equation

d ln(r(t)) �
[
θ(t) +

σ̇ (t)

σ(t)
ln(r(t))

]
dt + σ(t)dWQ(t) (7)

where WQ(t) is a Wiener process under equivalent martingale measure (EMM) Q that
at the start of the process at time zero is a normal random variable with mean 0 and
variance t. θ(t) is the deterministic-time mean reversion level to which ln(r(t)) will
drift toward when σ̇ (t) < 0. The instantaneous volatility σ(t) at future time t can
be specified exogenously. We assume that the pre-determined or anticipated forward-
looking volatility function σ(t) holds for any SSB 10-year bonds issued at different
months in our sample period fromOctober 2015 till December 2018. For longmaturity
bonds, it is typical to expect mean reversion of short rates in Eq. (7) whereby ∂σ(t)

∂t < 0.
Another way of representing the BDT short rate process instead of Eq. (7) is its

integral form

r(t) � U(t)exp
(
σ(t)WQ(t)

)

where U(t) and σ(t) are deterministic functions of time t. Under the EMMQ,where r(t)
is defined over the filtered probability space4

(
Ω, F, (Ft )t , Q

)
, no arbitrage occurs as

EQ
t

[
exp

(
− 10∫

t
r(s)ds

)]
� B(t).

WQ(t) is a standard Ft -measurable Wiener process on this space.
The numerical computation of the BDT model interest rate process driving the

stochastic bond price under measure Q involves construction of a lattice or binomial
short rate tree. The constructions are described in Jamshidian (1991), Boyle et al.
(2001), and Brigo and Mercurio (2001). By constructing a binomial short rate tree,
we can test for exercise of the embedded put option at each interest rate node at each
time t from t � 0 to t � 10 years. At each node, the maximum of either the exercise
value or the value of the option at that point in time is assigned to the node. Working
backward from the maturity end of the tree, we can arrive at the embedded put value
at time zero or the start of any SSB issue.

In the lattice tree shown in Fig. 1 below, following usual constructions, the proba-
bilities of short rate increase and short rate decrease are fixed at ½. In the BDT short

4 The physical measure π is related to the Q-measure via the Girsanov theorem. Specifically, dWπ
t � dWQ

t
− λ(r,t) dt where λ(r,t)≡ [½ σ(r,t)2Prr + μ(r,t)Pr + Bt)/P − r(t)] dt/[σ(r,t)Pr/P] and P is a zero coupon bond
price at t.
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Fig. 1 BDT lattice tree at the ith interval

rate process of r(t) � U(t)exp
(
σ(t)WQ(t)

)
, a numerical discrete time representation

is

r(i,j) � U(i)exp
(
σ(i)2j

√
�

)
(8)

where i is an index referring to the ith interval such that i�� t years. ThusU(i)U(t) and
σ(i)σ(t). And j is the node level or height at ith interval. The normally distributed WQ

(t) is approximated by a binomial distribution resulting in short rates of ri ×e2jσ(i)
√

�

at interval i for j � 0,1,2,3, …, i. The lowest node in the ith (for i � 1, 2, 3, …, 10/�)
time interval where length of each interval is� year, has a short rate of ri while the next
higher node at the same interval has a short rate of ri ×e2σ(i)

√
�. And the next higher

node has a short rate of ri ×e4σ(i)
√

� and so on, where σ(i) is the anticipated volatility
of short rate at interval i. We employ 2400 intervals, approximating a business day
each, so the time interval � is 10/2400 year. Note that ri is lowest node on the BDT
binomial tree representing the short rate at time i�with time-to-maturity 10− i�. ri is
different from the stochastic process r(t) that can take this value with EMMprobability
of 0.5i at the ith interval.

Given the σ(i) function, ri for each interval (or similarly, at t � i�) is determined
and used to calibrate the lattice tree so that any zero price P(t) in the market, at time
zero for zero-coupon bond at any maturity t, is correctly priced. In turn, σ(i) and ri can
determine U(i). Since ri will be different for a different σ(i) given the zero prices at t
� 0, iterating on different functions of σ(i) should provide a ri that is consistent with
the distributional characteristic of the short rate r(t) process defined over �.

The mean of r(t) at t, short rate over � at t, as viewed at time zero can be found as
the forward rate at time zero. Denote the forward rate from t to t +� at time zero be F0t ,
i.e. F0t � EQ(P(t)/P(t + �)) − 1. The lowest short rate at t on the BDT lattice tree is ri
for i� � t. Under the short rate process, therefore the cumulative normal distribution
of ri − F0t has a value σ(i)

√
�Zi where Zi itself is the standard normal variable value

with cumulative distribution �(Zi) � 0.5i. �(Zi) is the left-tail probability of Zi.
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For this study, all SSB coupon interest data and SGS 1-year, 2-year, 5-year, 10-year
bond yield data are used over monthly periods from October 2015 to December 2018.
Thus we have 39 monthly sample points with each sample point consisting of the set
of yields and bond prices for that month within the span of October 2015 to December
2018 inclusive.

Our data show rmi −Fmt ≈ σ(i)
√

�Zi . We assume stationarity on the term structure
and also a constant σ function for every sample point m � 1, 2, 3, …, 39, so we can
estimate σ(i) using

1

39

39∑

m�1

[(
rmi − Fmt

)]
/[

√
�Zi]. (9)

This approximate characterization is used by first iterating on a constant σ � 0.0005
for all i and then using the estimated function σ(i) in (9) iteratively until the estimated
function σ(i) becomes stable or similar to within 1.0×10−6 or o(�2) for any t. This
approach avoids a totally exogenous volatility function input borne out of guess-work.
The alternative of guess-work cannot be avoided as there are no other interest rate
derivatives in this case such as caps, floors, or swaptions whereby volatility parameter
or other additional parameters can be inferred. In this case, the characterization of
approximately normal distribution of ri and the additional assumption of stationarity
of r(t) process underlying new SSB issues each month, provide some information with
which to find an approximate σ(i) for each i. The approach providesmore confidence in
using an iterated volatility function. Thus the iteratedBDTcan be an improvement over
the typical BDT with totally exogenous volatility function input when the underlying
data are suitably close to normal.

All interest rates and SSB data used in this study are obtained from the publicly
available MAS website https://www.mas.gov.sg/bonds-and-bills. A term structure of
zero coupon bond prices from 1-day till maturity to 10 years till maturity, separated by
each business trading day, is constructed using interpolation of the published govern-
ment bond yield rates. Linear interpolation is used as nonlinear splines tried indicated
trivial difference and may introduce bias especially during really flat term structures.

Table 1 shows the averages of SGS yields for 3-month, 1-year, 2-year, 5-year, and
10-year bills and bonds for different periods of 3-month up to 6-months from October
2015 till December 2018. It also shows the averages of step-up interests for 1-year,
2-year, up to 10-years for the different periods from October 2015 to December 2018.

It is noted from Table 1 that between the period July 2016 and December 2016,
the yield curves were on average at the lowest levels compared with the entire sample
period of October 2015 to December 2018. The step-up interests for SSB issued
between July 2016 and December 2016 were also the lowest (excepting 4th and 5th
year interests) versus the period July–December 2017. Hence ex-post when the yield
curves and interest rates picked up in 2017 and 2018, there would be higher numbers
of redemptions of SSB issued between July 2016 and December 2016. This is indeed
the context of the example shown in Sect. 1.

The zero coupon prices, together with iterated volatility function, are used to cal-
ibrate the EMM probabilities and the short rates at each branching out of time-level
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Fig. 2 Estimated volatility
function σ(τ) used as input

nodes on the BDT short rate tree. There is in theory an unlimited number of solutions
for the calibration. We had employed EMM probabilities of ½ for both the interest
level-up and interest level-down branches, to arrive at a unique solution of an EMM
term structure for pricing the embedded option. At any time-level node (i, j), where i�
� t on the lattice tree, a contingent bond price, yielding subsequent interests according
to the SSB schedule, can be found,which is denotedB(t) in the last section. This is used
to determine if exercise would occur. The maximum of next period expected option
value and the possible non-zero exercise value is discounted by the risk-free short rate
to arrive at an earlier period node value, and this process of backward propagation
continues till the option value is found at t � 0.

We collect the step-up interest schedules month-by-month over 39 months from
the start of the SSB program in October 2015 to December 2018. The approximated
volatility function is shown in Fig. 2. The function used in our embedded option
price estimation for each of 39 months from October 2015 to December 2018 is σ

(t) � 0.00015 exp (− 0.0072 t/2400 + 0.0000022 [t/2400]2), denoting 1-trade day
volatilities for forward t number of years. This can be re-stated as σ(τ) � 0.00015 exp
(− 0.0072 [T − τ]/2400 + 0.0000022 [(T − τ)/2400]2) when τ is expressed in terms
of number of years remaining. This function is depicted in Fig. 2.

Figure 2 shows that volatility over a day in the short rate decreases rapidly in the
first year and then reduces slowly afterward. The average volatility per period in the
10-year horizon is 0.00033.

3 Empirical results

To compute theBermudan optionwhich allows exercise at the end of each business day
within the 10 year maturity horizon, we discretize the stochastic bond price process
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Fig. 3 Pricing algorithm of embedded put in 10-year SSB. SSB coupon at period i is C(i), par value of bond
is 100, SSB bond price at ith interval and jth node is B(i, j) where time at i is i�, � � 10/2400 year, and
max(j|i) � i. The top number on the node indicates bond price and the bottom number indicates Bermudan
put price D(i, j) at node (i, j). E(i, j) is the no-arbitrage discounted expected value of the next period put
option at (i, j)

into 2400 periods within 10 years on the lattice tree. This maps approximately to the
number of business days within the maturity horizon, excluding days without SGX
price quotes. Thus it is seen that the Bermudan put option is not exactly an American
put option which would have allowed continuous trading and exercise, and which
would form an upper option value bound in our case. It is noted that carrying a bond
entitles the owner to accrued interest on a continuous basis.

The input volatility function is estimated basedondiscussion in the previous section.
Figure 3 shows the pricing algorithm of the embedded put in a 10-Year SSB.

At node before the 10-year expiry of the SSB, the investor holds the bond valued
at $B(2399, j) at node (2399, j). This is obtained by discounting 100 + �×C(2400)
by (1 + r2399 ×exp (2j σ(2399)

√
�)). At node (2399, j), the European put option

value is E(2399, j) � [0.5×D(2400, j) + 0.5×D(2400, j + 1)]/(1 + r2399 ×exp (2j
σ(2399)

√
�)). The Bermudan put option value is then D(2399, j) � Max (100 −

B(2399, j), E(2399, j)).
The empirical results of the embedded put option value are shown below in Table 2.

There are 3 cases involving zero transaction cost, 0.5 and 1.0% transaction costs when
re-investing in SGS bonds after the SSB bond is redeemed at par of S$100. For
example, 0.5% means that when paying for the SGS bond with price S$B(t), payment
is S$1.005 B(t). This implies that the exercise condition becomes harder, max (100 −
1.005 B(t), 0), and thus produces a less valuable embedded put option. Table 2 clearly
shows monotonically decreasing value of the Bermudan option as transaction costs
increase.

Table 2 shows that based on the market data between October 2015 and December
2018,when forward rates significantly exceeds SSBcoupon interestsmost of the future
periods, then the probability of exercise is higher (as forward rate increase indicates the
short rates on average will increase, resulting in higher bond discounting, and hence
cheaper bond with remaining maturity). Hence the values of the embedded put options
are positive and significant. In more than 2/3 of the number of months, however, the
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embedded put option has zero or nearly zero values. The highest embedded put values
are about 1.0–1.5% of the par value of the SSB bonds. This percentage is even smaller
if there is transaction cost of ½ or 1% should the investor re-invest.

In the 12 months fromApril 2016 toMarch 2017, the average embedded Bermudan
option values per monthly issue of SSB is S$0.45 per S$100 par. This is also the period
when the yields were low but increasing afterward. Hence it corroborates the idea
that the resulting higher forward rates would on average be larger than the step-up
interests, leading to higher option value and higher ex-ante EMM probability of early
redemption. This average option value is much larger than the S$0.04 per S$100 par
on monthly issues in the 12 months from December 2017 to November 2018.

Of the variousmonthly tranches of SSB issued sinceOctober 2015, the trancheswith
relatively highest redemptions are reflected as those with the lowest % amount out-
standing as of December 2018. See data in https://www.mas.gov.sg/bonds-and-bills/
SGS-Bond-Statistics. Two periods stood out as having issued tranches with the lowest
% outstanding as of December 2018. They are issues from May 2016 to March 2017
with 57–72% outstanding, and issues from June 2017 to March 2018 with 56–69%
outstanding. The first period has some corroborating evidence with respect to the
higher ex-ante probability of redemption indicated by higher option values. However,
it should be noted that ex-post realization need not always be in line with ex-ante
expectations.

The higher embedded option values for certain issues may be explained via several
observations about the ensuing SGS yield curves, forward rate curves, and associated
step-up coupon schedules on those issue months. Figure 4a–d provide typical charac-
terizations of the yield curve, forward curve and step-up schedule in situations with
high embedded option values (Fig. 4a, b) and in situations of low or zero embedded
option values (Fig. 4c, d).

Figure 4a on the left corresponds to an embedded option of S$1.42, the highest
in all the sample periods. The initial drop in yield in year 1 followed by steep yield
increase of about 10% to year 10 maturity implied a very rapidly rising forward rate
curve as well. The catch-up in the step-up interest occurred in the 2–6 year, but then
lagged behind. Since the forward rate is the EMM-measure mean of the short rates,
the high forward rate implied higher probabilities of having SGS bond prices dropping
below the put exercise of S$100, and hence there is higher embedded value with higher
exercise probabilities.

Figure 4b on the right on December 2016 has an embedded put option of only
S$0.06 if exercisable into market investing. However, it is the only case (see Table 5)
where even without market investing, there is a likelihood of switching into a new
SSB since the coupon increase rate even at the beginning is faster than the increase
rate toward the second half of the 10-year holding. The fast increase is due to the large
forward rate premiums over yields in the first 5 years.

Figure 4c (left) and d (right) correspond to zero embedded option value or ex-ante
zero probability of redemption. In these cases the yield curves’ increases were more
gentle at only about 5% over 10 years, unlike the case in Fig. 4a. The slower yield
increase with maturity implied both forward rates and also the step-up rates grow into
the future horizon more in sync and at a gentler pace. This situation implied future
short rates were not likely to take extremely high values resulting in lower SGS bond
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Fig. 4 a, b SGS yield curve, forward rate curve, and step-up interest schedule with high embedded option
values. c, d SGS yield curve, forward rate curve, and step-up Interest schedule with low embedded option
values

prices. Instead, the SGS bond prices would remain about close to and slightly above
par, so that no redemption occurred.

To provide a robustness check on the use of the BDTmodel, we also use an alterna-
tive option pricing based on the Generalized Ho–Lee model that has similar advantage
to the BDT model, but has a slightly different future volatility specification. The orig-
inal Ho and Lee (1986) model specifies the short rate process as dr � γ(t) dt + σ

dW(t) where short-rate volatility σ is a constant. Ho and Lee (2004, 2007) extended
the original model to a generalized model with changing yield volatilities over time.
In Fig. 5, the binomial tree of this model shows that yield volatility at i � 1 is ½v1, at
i � 2 is ½(v1 + v2)/2, and at i � 3 is ½(v1 + v2 + v3)/3, and so on. Unlike the short
rate volatility structure in BDT, the volatility structure here imposes yield volatility
correlation over time.

The generalized Ho–Lee model similarly allows parameters within the model to be
calibrated so that bond prices at the point of pricing fit with the initial term structure
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Fig. 5 Generalized Ho–Lee lattice tree at the ith interval

observed in the market. In this model, deterministic volatilities of the future yields
can vary across time. The model also allows stable and fast price computations under
recombining lattice trees. Applying the same lattice procedure gives rise to SSB bond
price at (i, j) that is priced by B(i, j) � [0.5×B(i + 1, j + 1) + 0.5×B(i + 1, j)]/exp
(ri + jvi). At node (i, j), the European put option value is E(i, j) � [0.5×D(i, j + 1)
+ 0.5×D(i, j)]/exp (ri + jvi). The Bermudan put option value is then D(i, j) � Max
(100 − B(i, j), E(i, j)). By assuming for m � 1, 2, 3, …, 39, the yields yn for n in the
various periods, are stationary across m, we estimate the sample standard deviation
of the various yields and use them to estimate v1, v2, v3, …, v2399. The ri’s are then
calibrated to ensure the zero coupon prices are fitted with the observed values. The
empirical pricing results of the embedded Bermudan put options are shown in Table 3.

Comparing Table 3 with Table 2, we see that the magnitude of the Bermudan put
option prices are similar at about S$2 or less. In some cases the prices are close to zero.
In April 2016 as in Table 2, the option price spiked up to over a dollar. Similarly in
June 2016 to September 2016, the option prices were relatively high. The generalized
Ho–Lee option prices however evidenced the volatility correlation effect as the prices
clustered together. This may be an effect due to the model itself with a stronger
volatility specification as pointed out in Chan et al. (1992). In general, we have shown
robustness in the option price magnitudes.

4 Market frictions

Why is the SSB program valuable and helpful to retail investors within the country?
In existing commercial bank term deposits, there would usually be a penalty or cost
for early redemption of deposits, such as forfeiting of accumulated interests. This
is the price to pay if investors want to exercise early redemption to recover the par
value or the original deposit amount. It is also the cost the bank would recover to face
the uncertainty of term structure risk such as having to find new source of financing
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money for its loans to other businesses, when the deposits are redeemed at a time
of higher interest rates. The SSB program provides retail investors with the option
of early redemption, but takes away the cost of the term structure uncertainty which
is absorbed by the government. This cost is also the value of the embedded option
of early exercise, which is where investors do not have to pay any penalty for early
redemption.

Some of the arbitrage reasons we utilize in the earlier section may not be feasible
to the retail investors when there are market frictions such as liquidity and transaction
costs. Retail or individual investors may buy or sell the SGS bonds on the Singapore
Exchange (SGX). However, reported bid-ask price quotes on the SGX (see http://
www.sgx.com/wps/portal/ sgxweb/home/marketinfo/fixed_income/sgs) show a large
spread or illiquidity. The bid-ask spread for regularly traded bonds could be 1.40 for
a 102 bid and 103.4 ask price e.g. on a 2012 issue with over 10 years to go. Many
shorter maturity bonds do not appear to have ready quotes. Hence using a 0.5 and
1.0% transaction cost as shown in the last section is relevant in the consideration of
market friction effect on the Bermudan option pricing.

When retail investors buying SSB have no access to the SGS market in terms of
being able to buy and sell SGS bonds readily, then the option value computed in
the last section will not be realized. In such circumstance, the investor can only roll
over or re-invest in a newly issued SSB bond if the original SSB is to be redeemed.
The investor will only exercise or redeem provided the present value of the stream of
interests to come in the remaining time till the 10 year maturity is less than the present
value of the stream of interests in a new SSB bond for the same remaining time till the
10 year maturity. The former is a changing strike price or condition and is what the
investor will pay in terms of foregoing the remaining interests. The latter comprising
interests from a new SSB is the underlying stochastic variable. We can see that the
step-up feature in the SSB program makes it less likely for the exercise condition to
happen. This is because the beginning months of the new SSB bond will have lower
interest rates due to the step-up feature, so there is less probability the investor will
exercise by giving up existing SSB interest streams that being older have been on the
higher steps.

To price the embedded put option under this context of changing strike price, we
use interest rate model in Eq. (7) but specialize it to a constant short rate volatility
over each interval. For comparison with the case of changing volatility we price the
embedded put option under various scenarios of increasing volatility, viz. σ � 0.00005,
σ � 0.00010, and a higher σ � 0.00020. The results are shown in Table 4 below.

It is seen that the prices resemble the case in Table 2 with no transaction cost.
The difference is typically in the 3rd decimal place except February 2018 when the
difference is 0.01. For constant volatility, when it is doubled as in the case σ � 0.00010,
the option price difference is also very small with difference in the 4th and occasionally
3rd decimal places, as seen below. Thus our results within the iterated BDT model
appears to be robust. When volatility is quadrupled to σ � 0.00020, almost all cases
differ marginally only in the 3rd decimal places. Not all cases show small increase
in option price; the price in September 2016 and February–March 2018 show slight
decreases.
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Table 4 SSB Bermudan put option S$ cost (using 2400 daily intervals) per S$100 par value of the SSB bond
under constant volatility of short rates σ and zero transaction cost

Short
rate
volatil-
ity
σ

Oct
2015

Nov
2015

Dec
2015

Jan
2016

Feb
2016

Mar
2016

Apr
2016

May
2016

Jun
2016

Jul
2016

0.00005 0.713 0.807 0.000 0.115 0.351 0.768 1.418 0.585 0.007 1.007

0.00010 0.714 0.807 0.000 0.115 0.351 0.768 1.419 0.585 0.007 1.008

0.00020 0.716 0.809 0.000 0.116 0.352 0.770 1.420 0.586 0.008 1.010

Short
rate
volatil-
ity
σ

Aug
2016

Sep
2016

Oct
2016

Nov
2016

Dec
2016

Jan
2017

Feb
2017

Mar
2017

Apr
2017

May
2017

0.00005 0.725 0.317 0.000 0.000 0.059 0.000 0.655 0.619 0.000 0.000

0.00010 0.727 0.318 0.000 0.000 0.060 0.000 0.655 0.619 0.000 0.000

0.00020 0.728 0.310 0.000 0.000 0.060 0.000 0.656 0.620 0.000 0.000

Short
rate
volatil-
ity
σ

Jun
2017

Jul
2017

Aug
2017

Sep
2017

Oct
2017

Nov
2017

Dec
2017

Jan
2018

Feb
2018

Mar
2018

0.00005 0.187 0.000 0.000 0.163 0.000 0.000 0.000 0.000 0.154 0.117

0.00010 0.188 0.000 0.000 0.164 0.000 0.000 0.000 0.000 0.155 0.117

0.00020 0.190 0.000 0.000 0.166 0.000 0.000 0.000 0.000 0.100 0.000

Short
rate
volatil-
ity
σ

Apr
2018

May
2018

Jun
2018

Jul 2018 Aug
2018

Sep
2018

Oct
2018

Nov
2018

Dec
2018

0.00005 0.000 0.000 0.000 0.154 0.117 0.065 0.000 0.000 0.804

0.00010 0.000 0.000 0.000 0.155 0.117 0.065 0.000 0.000 0.805

0.00020 0.000 0.000 0.000 0.156 0.118 0.066 0.000 0.000 0.806

From Eq. (7), for constant σ

d ln(r(t)) � θ(t)dt + σdW(t) (10)

then r(t) � r0exp

(
t∫
0
θ(u)du + σW(t)

)
where W(t) is distributed as N(0, t), and t in

years is between 0 and T � 10. r(t) is the instantaneous short rate at t. r0 is the value of
r(t) at t � 0. In our lattice tree context r(t) is the (annualized) short rate over interval
� at t. Now at any time-level node (i, j) where t* � i on the lattice tree, the short rate
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at the node is r(i, j) and the difference r(i, j) − r(0,1) � δij, where r(0,1) is also the
beginning short rate on the lattice, r0. Suppose r(t) process starting at any future node
at t* has the same representation as the current except for the mean shift over period
(0, t*] by δij. This is equivalent to one interval � shift of δij/(240× t*). Then at t*, the
interval � forward rate t-period into the future is Fij(t*) � F0(t) + δij/(240× t*). This
is a characterization of the evolution of the short rate stochastic process itself over
time.

At t � 0, suppose the SSB step-up interests were C1, C2, …, C10 for each of the
10 years into the future. These couponswere fixedwith respect to the short rate process
rt for t ∈(0,10) (determined by the SGS yields and the volatility function). Another
characterization of the coupon interest is with respect to interval forward rates Ft ≡F0
(t) � E0[r(t)] where subscript 0 denotes expectation under EMM taken at start of
original SSB investment, and F0(t) is forward rate over � at t>0 effective (t, t + �].

From Eq. (4), we can replace the spot rates with forward rates:

1 � C1

(1 + F1)
+

C2

(1 + F1)(1 + F2)
+

C3

(1 + F1)(1 + F2)(1 + F3)
+ · · · + (1 + Cn)∏n

k�1(1 + Fk)
(11)

where an intuitive solution for Eq. (11) is Fk � Ck. We would see that if at t*, each
Fij(t*) � Et*[r(t)] increases to F0(t) + δij/(240× t*) per interval � at t*, then each
Ck/240 per interval increases to Ck/240 + δ/(240× t*).

At t*, the retail investor with a beginning investment horizon of 10 years would
only have a remaining horizon of 10 − t* years or 240 (10 − t*) number of periods or
business days. For easy explanation of what is going on, suppose t* is a whole number.
At t*, continuing with the original SSB, the investor would receive Ct*+1, Ct*+2, …,
Ct*+10. However, a new SSB issued at t* would provide step-up interests of C1 + δij/t*,
C2 + δij/t*, …, C10 + δij/t*. If the investor switches to the new SSB, he/she would hold
up to 10-t* years in order to maintain the original 10-year investment horizon.

Thus the retail investor would choose the new SSB and give up the original
SSB provided the following condition holds such that the investor is better off,

switching into a new SSB for the remainder of the original 10-year horizon:
10−t∗∑

k�1
(
Ck +

δij
t ∗

)
>

10∑

k�t∗+1
Ck, assuming the investor has no other risk-free investment oppor-

tunity outside the SSB program. For the investor, the early exercise of SSB is now

a bespoke Bermudan call option with option strike price as
10∑

k�t∗+1
Ck that decreases

with time t*. The underlying is
10−t∗∑

k�1

(
Ck +

δij
t ∗

)
with stochastic δ taking values δij.

The investor receives the profit via exercise of the original SSB and then switches into

the new SSB. This profit or value of exercise at t* of

(
10− t∗∑

k�1

(
Ck +

δij
t ∗

) 10∑

k�t∗+1
Ck

)
to

the investor is less than the cost of being exercised to the government or SSB seller.
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The cost to the latter at t* is the same 100 − B(t*), as the government redeems at 100
but receives only redeemed SSB with a market value of only B(t*).

In standard option theory, a buyer’s gain is equal to the seller’s loss. However, in
the SSB context, the retail investor or buyer may not enjoy the full value of the benefit
of early redemption equal to the cost to the government which is the seller. The lesser
or limited benefit to the investor is due to the limited access to the competitive prices
in the SGSmarket which is usually available to institutions such as commercial banks.
Thus the retail investor may not be able to construct the synthetic SSB. However, the
banks can attract deposit by retail investors who redeem their SSBwith a residual term
deposit rate that is between the higher SGS market rate and the lower step-up rates of
the new SSB. In this case, the difference between the limited embedded option value
to retail investor and the cost of the option to the government can be earned by the
commercial banks. This could lead to a cash leakage from SSB to bank deposits. Even
without residual term deposits, the government in managing the gap, if by actually
selling the excess term 10-t* bonds to the market, would in market equilibrium incur
an additional cost relative to the case in which the retail investor does not exercise.
The cost of the embedded option to the government when retail investors face market
frictions is shown in Table 5. Note that this cost materializes only when the retail
investor exercises early redemption. We include also the higher volatility case of σ �
0.00020 for robustness check on top of the standard case of σ � 0.00005.

Table 5 shows that there was only one case in December 2016 whereby the embed-
ded call has non-zero value. This value, however, is very small and trivial as it is only
0.06% of the par of S$100. In all other issues, where the retail investor has no other
market alternatives except to redeem and re-invest in a new SSB bond starting with
initially low step-up interests, there is no incentive to redeem as the new low step-ups
are mostly not as good as continuing with higher step-ups well into the horizon.

The cost of uncertain term structure to the government managing the SSB program
is shown to be small, and is reduced to practically zero when the program has the
step-up interest rate structure. The step-up feature in this regard is shown to be very
effective in demotivating or de-incentivizing retail investors to redeem early when the
investor has no free access to the SGS market and cannot replicate his or her own SGS
bond. This of course would not be the case if retail investors are given opportunities by
banks or hedge funds to re-invest redeemed SSB values with the same AAA-risk and
with close to market rates of a horizon close to or exactly the same as the remaining
10-year horizon at the point of redemption.

5 Conclusions

The Singapore SSB investment program targets retail investors with limited or no
access to borrowing and lending in the SGS market meant for institutional and larger
investors. The same retail investors if requiring risk-free AAA-rated returns therefore
have alternative access only to bank fixed deposit investing that provides low returns
and that imposes a penalty of nullifying interest payments should there be an early
redemption or withdrawal. The SSB program not only yields the equivalent of an
institutional investor’s return on a SGS 10-year bond provided the retail investor holds
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Table 5 SSB Bermudan put option S$ cost to government (using 2400 daily intervals) per S$100 par value
of the SSB bond

Short
rate
volatil-
ity
σ

Oct
2015

Nov
2015

Dec
2015

Jan
2016

Feb
2016

Mar
2016

Apr
2016

May
2016

Jun
2016

Jul
2016

0.00005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.00020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Short
rate
volatil-
ity
σ

Aug
2016

Sep
2016

Oct
2016

Nov
2016

Dec
2016

Jan
2017

Feb
2017

Mar
2017

Apr
2017

May
2017

0.00005 0.000 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.000

0.00020 0.000 0.000 0.000 0.000 0.060 0.000 0.000 0.000 0.000 0.000

Short
rate
volatil-
ity
σ

Jun
2017

Jul
2017

Aug
2017

Sep
2017

Oct
2017

Nov
2017

Dec
2017

Jan
2018

Feb
2018

Mar
2018

0.00005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.00020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Short
rate
volatil-
ity
σ

Apr
2018

May
2018

Jun
2018

Jul 2018 Aug
2018

Sep
2018

Oct
2018

Nov
2018

Dec
2018

0.00005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.00020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

over that horizon, but also affords a commission-free and tax-free return risk-free
return. Moreover, should an early redemption or withdrawal occur, the investor does
not suffer any loss of paid and accrued interests, and would obtain resulting interest
nearly, if not, similar to holding aSGSbondwithmaturity up to the point of redemption.
And evenmore so, the investor could redeem at par, and re-invest the par amount in any
new market offerings which may include innovative hedge fund and bank products.
The opportunity to redeem early, not due to behavioural or personal circumstantial
reasons, leads to a redemption profit for the investor. This profit is basically the ability
to redeem at par S$100 and then re-invest with a smaller amount to produce identical
pay-outs for the remainder of the investor’s original 10-year horizon. The present value
of this possible profit is the value of an embedded put option in the SSB.

Our empirical results basedon themarket data betweenOctober 2015 andDecember
2018 show that only in months when forward rates significantly exceeds SSB coupon
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interests most of the future periods that the probability of exercise is higher, resulting
in higher bond discounting, and hence cheaper bond with the remaining maturity. The
values of the embedded put optionswould be correspondingly larger and significant. In
most other months, however, the embedded put option has zero or nearly zero values.
The highest embedded put values are about 1.0 to 1.5% of the par value of the SSB
bonds. This percentage is even smaller if there is transaction cost of ½ or 1% should
the investor re-invest. In the situation where there is market friction due to very high
transaction costs or illiquid SGS market to prevent re-investing, where the investor
can only roll over or re-invest in a newly issued SSB bond, then since the beginning
months of the new SSB bond have lower interest rates due to the step-up feature, there
is even less probability the investor will roll over. Thus the embedded option value,
when only re-investing in SSB is possible, is negligible.

When SSB investors cannot access the SGS market to create synthetic SSB, they
can only redeem the initial SSB and then invest in a new one if they wish. This case is
interesting for two reasons. Firstly, the embedded option is now a call, and the strike
price of the embedded call changes over each time period. This is because the strike
value is no longer fixed but a function based on what next step-up interests would be
given up. Only when the sum of future step-up interests based on remaining 10-year
horizon and based on a new SSB exceeds the current bond’s sum of remaining step-up
interests would there then be a profit motive for the investor to redeem and re-invest
in the new SSB. Secondly, the value of this embedded option to the investor is very
small; but if exercised, this value to the investor need not equal to the cost of being
exercised to the seller. In this context, the seller or government’s loss may be larger as
it has to manage change in different maturity pools of SGS bonds.

One very significant observation is that the step-up feature uniquely built into the
SSB scheme proves very effective in almost nullifying the embedded option value,
and hence also greatly reduce the probability of retail investors redeeming SSB bonds
early. To diminish any trace of option values and de facto enhance investor adherence
to the original investment, the current step-up formula could also consider additional
constraints on slower ramp-up of the initial part of the step-up curve but add an
incentive with a front-end higher coupon to attract investors from the draw of currently
higher one-year bank time deposits, while keeping the 10-year yield commensurate
with SGS yield of the same maturity. The added constraints could lower intermediate
yields a little, increase cost of early redemption to an investor, and hence reduce the
embedded option value. As awhole, the SSB is seen to offermoremarket opportunities
to residents with restricted access to institutional market borrowing and lending rates.
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