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Abstract 

In this paper, we present a novel method for efficient 

3D model comparison. The method is designed to 

match highly deformed models through capturing two 

types of information. First, we propose a feature point 

extraction algorithm, which is based on “Level Set 

Diagram”, to reliably capture the topological points of 

a general 3D model. These topological points 

represent the skeletal structure of the model. Second, 

we also capture both spatial and curvature 

information, which describes the global surface of a 

3D model. This is different from traditional topological 

3D matching methods that use only low-dimension 

local features. Our method can accurately distinguish 

different types of 3D models even if they have similar 

topology. By applying the bipartite graph matching 

technique, our method can achieve a high precision of 

0.54 even at a recall rate of 1.0 as demonstrated in our 

experimental results.  

1.  Introduction 

Due to the popularity of 3D graphics and the high cost 

of geometry model creation, there is an increasing 

demand for model sharing. This motivates research on 

geometry model matching and retrieval and the 

development of 3D search engines [3]. Existing 3D 

model matching methods can be categorized into three 

major domains: geometry-based, frequency-based and 

topology-based. Among these three approaches, only 

topology-based matching methods can handle highly 

deformable models, i.e., models representing the same 

object but in different postures. However, topology-

based methods [5,16] generally suffer from high 

computation cost. Our method, which combines both 

topology and geometry features for matching, is 

designed to handle highly deformable models like [5], 

but in a novel and more efficient way. Given a 3D 

model, our feature point extraction method first 

analyzes the model to obtain two sets of topological 

points. Instead of using a reeb graph [5] or an explicit 

skeleton [16], our method uses topological points to 

represent the skeletal information. Since these features 

points only depend on model topology and are 

independent of model tessellation, the number of 

feature points is thus limited. Apart from the feature 

point sets, we also capture spatial information and the 

surface curvature distribution with respect to each 

feature point as geometry data. Our experimental 

results show that the proposed method produces a very 

good matching result. 

The main contributions of this paper can be 

summarized as follows: 

Our method analyzes the skeletal structure of a 3D 

model by topological points. This is relatively new 

among existing methods that analyze models based 

on reeb graph [5] and explicit skeleton [16]. 

Apart from skeleton matching, we also use geometry 

information to distinguish global surface curvature of 

models with similar skeleton. This area has not been 

studied in previous topology methods. 

To capture topological points reliably, we propose a 

feature point extraction method, which is based on 

the “Level Set Diagram” [10]. Although the new 

method is used to extract feature points here, it can 

be extended to drive skeleton extraction [10] and 

model compression [15] of general 3D models. 

The rest of the paper is organized as follows. 

Section 2 gives a brief review on previous work. 

Section 3 presents our method in details. Section 4 

discusses our similarity measure. Section 5 presents 

and evaluates some of the experimental results. Finally, 

section 6 briefly concludes our work. 

2.  Related Work 

Recently, many methods have been proposed for 

matching 3D models. They can be roughly categorized 

into three approaches: geometry-based, frequency-

based and topology-based. 

Geometry-based methods make use of the 

geometric properties for model comparison. The 

geometric properties can be further grouped into three 

types: physical properties, surface sampling and 

statistical analysis. Physical properties includes: 

surface area, volume-area ratio and eigenvalues [20]. 

In [7], the non-overlapping volumes (MIV and MSV) 

are proposed to build a hierarchical search tree for 

indexing. Methods that consider surface properties as 

matching features include: surface normal vectors [6], 

cord angles [14], spin images [1] and harmonic shape 

images [21]. Methods that use statistical features 

include: D2 (point to point length distribution) [13], 

linear combination of lengths, curvature and volume 
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distribution [17]. Although all these methods are 

generally very efficient, they cannot be used for exact 

matching of similar models and are mainly used for 

model categorization. 

Frequency-based methods convert spatial data into 

sinusoids of frequencies and amplitudes [9,18]. 

Though they allows multi-resolution analysis of 3D 

models, the requirement for pose-normalization 

accounts for their major limitation because pose-

normalization methods (e.g., PCA) may not be stable if 

there exists more than one major axis in the model. To 

address this problem, spherical harmonic [3] is 

proposed to extract features from a set of concentric 

spheres, and results are shown to be promising among 

rigid models. 

Unlike geometry-based nor frequency-based 

methods, topology-based methods can be used to 

match deformable models. These methods consider the 

model skeletons for matching. In [16], an explicit 

skeleton matching method is presented. The skeleton is 

extracted by applying a 3D thinning process on a 

voxelized model. The requirement of voxelization, 

however, means that the method is subject to 

quantization error and high computational and memory 

costs. In addition, this method may easily mismatch 

models which represent different objects but have 

similar skeletons, because it only considers skeletal 

information for matching.  

In [5], geodesic distance is used to construct a 

multi-resolution reeb graph for matching deformable 

models. It does not require the voxelization of object. 

However, it may still be easy to mismatch different 

models with similar skeletons because it only considers 

area and length in node matching. To tackle this 

problem, [19] proposes a hybrid approach to combine 

topology and geometry information for matching. In 

order to handle slight topological change, it shoots rays 

from the center of mass of the model to the surface to 

form a surface penetration map. However, this method 

cannot handle highly deformable models because the 

center of mass of a deformable model may change 

significantly and even move outside of the model. 

Our shape comparison method, which is also based 

on a hybrid approach, analyzes 3D models in both 

topology and geometry domains. However, unlike [19], 

our method emphases on topology analysis and hence, 

it can handle highly deformable models. 

3.  Feature Extraction 

In this section, we describe in detail our method for 

features extraction. It involves two main steps. Section 

3.1 discusses how we extract topological points from a 

3D model, while section 3.2 discusses how we extract 

additional geometric information for describing each 

of the topological points for matching. 

3.1  Topological Point Extraction 

In [10], Lazarus et al. presented a “Level Set Diagram” 

(LSD) algorithm to construct a skeleton of a 3D model. 

The algorithm actually simulates the marching of a 

waterfront. The word “waterfront” is used from the 

graphical explanation in [4]. A critical point arise 

when the topology of a waterfront changes. There are 

three types of critical points: minima, maxima and 

saddles. If a waterfront opens or closes, maxima are 

registered. On the other hand, if waterfronts meet 

leading to a split or merge, saddles are registered. All 

waterfronts grow from a single minimum. By 

analyzing these critical points, the skeleton can be built. 

We would refer readers to [10,15] for details where 

[15] is the modified version of [10] to handle genus 

topology. 

Though LSD runs reliably on smooth manifolds, it 

performs poorly in identifying critical points on 

general 3D models, which may have arbitrary 

curvature and probably noise. The waterfronts 

maintained by LSD can easily be corrupted, leading to 

incorrect identification of these points. Here, we 

propose a novel approach to tackle this deficiency. 

From our observation, we find that many of these 

incorrect points are wrongly identified during the 

registration of saddles. To avoid this problem, we 

propose to count the number of unvisited vertices 

adjacent to a waterfront. This can be carried out by 

running a depth-first search on the waterfront before 

registering a saddle. We consider three cases below: 

LSD Our Approach 

Doted line:   Waterfronts Red Dot:  Maxima 

Blue Circle:  Saddles Grey Area: Unvisited Region

Figure 1. Selection of saddles in our method. 

A Good saddle: Waterfronts can be uniquely 

identified and more than one unvisited vertex (the 

grey region in case A of figure 1) is found adjacent 

to each waterfront. Since this is considered as a 

normal case in [10], we register the point as a 

normal saddle. 

C B

A
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A Bad saddle with good maximum: No unvisited 

vertices (the grey region in case B of figure 1) are 

found adjacent to waterfronts. As such, there is no 

significant protrusion. We register the point as a 

maximum and disallow all vertices on the 

waterfronts to become saddles or maxima. 

A Bad saddle: Two or more waterfronts are 

identified but only one waterfront has at least one 

adjacent unvisited vertex. This is a degenerate case 

(case C of figure 1). Our feature extraction method 

does not register the point as a saddle. 

It should be noted that our depth-first search 

procedure is completely different from the original 

contour split procedure proposed in [10]. The contour 

split procedure is applied on the dual graph of the 

model to analyze its skeleton. Our depth-first search 

procedure, however, is directly applied on the 

waterfronts, not the dual graph, and is used to filter 

noise and solve the problem of incorrect topological 

point identification. 

LSD Our Approach 

Red Cube: Maxima Blue Sphere: Saddles 

Green Circles: Invalid critical points 

Green Squares: Redundant points 

Black Circle: Missing of critical points due to noise 

Figure 2. Comparison of LSD and our method. 

Figure 2 compares the results of the LSD method 

with our method. We can see that our method can 

extract more reliable topological points and is more 

noise resistant for general 3D models. The deficiency 

of the LSD method (left diagram of figure 2) is due to 

the corruption of waterfronts during mesh transversal. 

Our method (right diagram of figure 2), on the other 

hand, extracts critical points more accurately and 

reliably without such a deficiency. 

Though our method can reduce most redundant and 

incorrect points, it sometimes misses very small 

features. In the black circle (right diagram of figure 2), 

our method fails to find any points on one of the two 

ears. The failure is caused by our noise filtering step 

that two feature points are considered as noise if they 

are only one vertex away. However, missing of feature 

points only occurs infrequently, and the error 

percentage is far lower than that of the LSD method as 

will be shown in table 3. By using bipartite matching 

(detail in section 4.2), the matching error becomes 

insignificant.  

Although the LSD method considers three types of 

critical points, namely, maxima, minima and saddles, 

to simplify our feature matching process (which will 

be shown in section 4), we have grouped maxima and 

minima into the same set and called them Local 

Maximum Points. Hence, for the rest of the paper, we 

only consider two types of topological points: local 

maximum points and saddle points.

3.2 Geometric Information Extraction 

While considering topological points as the skeletal 

representation (topology information), we use the sum 

of geodesic distance and the curvature distribution as 

geometry information. 

3.2.1  Sum of Geodesic Distance 

The Sum of Geodesic Distance was firstly introduced 

in [5]. Let g(p,q) be the geodesic distance between 

points Sqp, , where S is the surface of the model. 

The Sum of Geodesic Distance, G, is defined as: 

Sp
SpvgvG ),()(

To describe the spatial location of a topological point 

relative to the surface center in a scale-invariant 

manner, we use the normalized geodesic sum, Gnorm, as 

a distance measure. 

)()(

)()(
)(

qGMinqGMax

qGMinvG
vG

SqSq

Sq

norm

where Sv  and 10 normG .

  It should be noted that, in [5], the Sum of Geodesic 

Distance is used as an index for the sampling interval. 

However, in our method, it is used as a feature to 

describe the spatial location of a topological point 

directly. The normalization formula used is also 

different. To do this, we find the minimum and the 

maximum values of G. In [5], these values are 

approximated by calculating the geodesic sum on a 

large set of vertex regions. Since most deformable 

models are high quality meshes, it is common to have 

vertices count above 10000. The calculation of 

geodesic sum becomes a very slow process in practice. 

Thus, it would be advantages if we can limit the 

number of geodesic sum calculation. We notice that 

the vertices associated with the maximum and the 

minimum values of G, in most cases, locate on or near 

a path between two furthest points. The path has 

already been found during the preparation stage of 

LSD [10]. By applying binary search constrained by 
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gradient descent detection, we can easily find an 

approximation of )(qGMax Sq and )(qGMin Sq .

Among all the models in our database, we find that 

such an approximation only derivates from the actual 

value by no more than 3.76% and the number of 

geodesic sum computations is less than 20. 

3.2.2  Curvature Distribution 

To describe the global surface curvature change with 

respect to a topological point t, we use a feature vector 

V(t) of dimension n to store the curvature information. 

In order to handle topological change, the curvature 

information is partitioned according to the geodesic 

distance as shown in figure 3.  

Figure 3. Vertices of two surface meshes are 

partitioned into black and white bands Pi(t),

according to their geodesic distances from the 

topological point t at the dog’s tail (the green dot). 

We define c(t) to be the maximum geodesic distance 

obtained with respect to t:

),()( qtgMaxtc Sq

and let P be a partition of the model surface S with 

respect to t such that StPtPtP n )(...)()( 21 :

)}(
)(

),()1(
)(

|{)( i
n

tc
qtgi

n

tc
SqtPi

where i=1,…,n. Sqt,  are vertices on the surface and 

n is the number of partitions. 

To approximate the curvature of the model surface, 

we apply the “Gauss Bonnet” (angle deficit) method 

[12]. Since the Gaussian curvature KG(q) at vertex q is 

only a discrete local approximation, it may be affected 

by noise or become very large at corners. We 

normalize the curvature to the range of [0,1] by the 

following function: 

|))(|1(

1
1)(

qK
qK

G

GNormalized

We can then define our feature vector V(t) with 

respect to t as the sum of Normalized Gaussian 

curvature in individual partition Pi(t).

)(
)()(

tPq Gi
i

qKtV Normalized

where i=1,…n. t is a topological point such that St .

In our prototype system, we set n (the dimension of 

V(t)) to 20 for all the models in our database. 

4.  Similarity Measure 

In this section, we detail the steps for computing the 

similarity of two objects. This involves two measures. 

Section 4.1 presents how we compute the similarity of 

two topological points, while section 4.2 presents how 

we compute the similarity of two models, which is 

based on the point set similarity measure. 

4.1  Similarity Measure for Topological points 

To determine the similarity value of two topological 

points t1 and t2, we use the following formula to 

combine the normalized geodesic sums 
normG  and the 

curvature features V with ratio Wt:

|)()(|),( 2121 tGtGWttDist normnormttp

))(),(()1( 21,2 tVtVLW normt

]1,0[),,(1),( 2121 tptptp SimttDistttSim

4.2  Similarity Measure for Models 

Since we now have a set of topological points and a 

similarity value for each point, matching two models 

can be formulated as a bipartite graph matching 

problem. 

Let ),( EVG  be a bipartite graph such that there is 

a partition BAV and every edge in E has one end-

point in A and the other in B. Let EM be a matching

such that no vertices are incident to more than one 

edge in M. We also define the cardinality |M| to be the 

number of edges in M and let REc :  be a cost 

function on the edge of G. The cost (weight) of a 

matching is the sum of the cost of its edges, i.e., 

Me
ecMc )()(

The “Maximum Weight Maximum Cardinality 

Bipartite Matching” (MWMCB Matching) problem is 

thus to find the matching on graph G such that |M| and 

c(M) are maximized [11], where c(M) is the MWMCB 

weight. 

To allow maximum number of matched topological 

points and maximum similarity weight between two 

models, we construct a bipartite graph ),( EBAG ,

where A and B are the two topological point sets for 

comparison and Simtp is the edge weight c. By 

applying a standard MWMCB matching algorithm on 

G, we can measure the similarity of two point sets. Let 

n1 and n2 be the numbers of vertices in A and B,

respectively. The number of matched edges should 

then be equal to n1, where 21 nn . Hence, the 

maximum bound of the MWMCB weight, c(M), is 

shown as follows: 

1121
,

)),(()(
21

nnttSimMaxMc tp
BtAt
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The point set similarity is then normalized as follows:  

2

setpoint

)(
),(

n

Mc
BASim

To increase the matching accuracy, we only allow 

bipartite matching among the same type of topological 

points in the two models. That is, we calculate the 

similarity for the set of local maximum points, (Amax,

Bmax), and for the set of saddle points, (Asaddle, Bsaddle),

separately. We then combine them together with ratio 

Ws as the similarity measure for two models: 

),(),( saddlesaddlesetpointmodel BASimWBASim S

),()1( maxmaxsetpoint BASimWS

5.  Experimental Results 

We have implemented the proposed method in a 

prototype system to test its performance. To 

demonstrate its ability to handle deformable models, 

we have chosen 10 base models from a popular 

industrial modeling tool named “Poser”. For each of 

these 10 base models, we generate 3 more different 

poses as deformed models. Incorporating some models 

downloaded from the Internet, we have created a 

database of 70 different models. For each of these 

models, we generate an addition of 7 models by 

rotating them along the xy axis, yz axis, non-uniform 

scaling along the xy axis, yz axis, and reducing their 

vertex counts by 25%, 50% and 75%. To create the 

reference database, we manually categorize the 560 

models into 25 groups. Some of the sample models are 

shown in figure 5. 

5.1  Performance Evaluation 

Figure 4 shows the Precision-Recall graph. We use 

each of the 560 models as a query to the database 

(Wt=0.5 and Ws=0.5) and average the matching results. 

From the plot, we can see that our method can achieve 

a high precision value of 0.54 even at high recall value 

of 1.0. The features captured are found to be invariant 

to rotation, non-uniform scaling, multi-resolution and 

pose deformation. As a comparison, we have also 

plotted in figure 4 the precision and recall of a 

geometry-based method, D2 [13] and a frequency-

based method, Fourier [18]. They are two of the best 

methods that we have tested in our earlier work [9]. 

The results indicate that our method performs much 

better than [13,18], which cannot handle deformable 

models. We can see that the precision of the geometry-

based and the frequency-based methods drops 

dramatically when the recall is above 0.1. 

Since our method depends only on model topology 

but not on model tessellation, the number of 

topological points captured is relatively small 

(minimum 2, mean 18, maximum 60 topological points 

for our model database), and the number of geodesic 

sum computations is thus limited. On the contrary, the 

voxelization process in [16] involves high 

computational and memory costs, while [5] uses 

interval sampling which requires a large number of 

geodesic sum computations. 

Figure 4.  Plot of Precision and Recall. 

5.2 Matching Accuracy 

5.2.1  Matching of Models with Similar Skeletons 

Table 1 shows the similarity ratings of our method on 

models with similar skeletons. We can see that our 

method can distinguish models with very similar 

skeletons. This can be explained by the use of 

additional spatial and curvature features. For the case 

of cats and dogs, though the numbers of topological 

points captured are the same, i.e., they have similar 

skeletons, they have relatively different similarity 

rating. The difference is mainly contributed by the 

spatial information and surface curvature distribution 

features. Our observation here is that dogs have longer 

limbs than cats. The spatial locations of topological 

points for dogs located at limbs are thus further away 

from the surface center than those of the cats. In 

addition, since dogs have a larger body than cats, the 

curvature distributions are also different. 

5.2.2  Matching of Models with Dissimilar Skeletons 

Table 2 shows the similarity ratings of our method on 

models with dissimilar skeletons. We can see that the 

similarity values differ significantly. For the case of 

dogs and humans, the similarity rating is much smaller 

than the case of cats and dogs. This can be accounted 

for by two factors, the topological and geometric 

effects. From our observation, there are many fingers 
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and toes in human models while there are none in dogs. 

Hence, the skeletal (topological) features are different. 

For geometric effects, we observe that humans have 

very long arms and legs, but have relatively shorter 

body than those of the dogs. Such differences not only 

affect the spatial location (geodesic sum) of the 

topological points, but also the curvature distribution 

features. All these dissimilarities are reflected in the 

larger difference in the similarity table. 

Table 1. Similarity of models with similar skeletons. 

Mean Similarity Cats Dogs Horses Dolphins

Cats 0.91 0.85 0.81 0.78 

Dogs 0.85 0.95 0.83 0.81 

Horses 0.82 0.83 0.92 0.71 

Dolphins 0.78 0.81 0.71 0.93

Table 2. Similarity of models with dissimilar skeletons. 

Mean Similarity Frogs Humans Dogs 

Frogs 0.95 0.62 0.42 

Humans 0.63 0.88 0.31 

Dogs 0.42 0.31 0.95

(Note that in tables 1 and 2, all the models within each 

group are a series of deformable models.) 

5.3 LSD and Our Feature Extraction Algorithm 

To study the reliability of our feature point extraction 

algorithm for extracting topological points, we pick 

some models from our model database for comparison. 

In table 3, alternating columns compare the topological 

points captured by the LSD method and our feature 

point extraction algorithm. We can see that the LSD 

method captures a large number of redundant and 

incorrect topological points. Since these invalid points 

spread across a large region, it may be difficult to 

solve the problem through clustering (e.g., the first 

horse on the 3rd row). On the other hand, our method 

captures topological points precisely and most of them 

agree with human inspection. Most saddle points are 

located at the articulate joints while the local maximum 

points are located at the tips of a protrusion. For the 

example of noisy sphere (i.e., the right epcot on the 3th

row), our method is able to correctly return the local 

maximum points at the two tips, which match the 

topology of a sphere. Overall, our method works better 

than LSD in capturing topological points on general 

3D models. 

5.4  Complexity

Apart from having a high matching accuracy, our 

method also has a relatively low computational cost. In 

our topological point extraction algorithm, we 

modified the LSD method by introducing a depth-first 

search in the pre-registration of saddle points. The 

LSD algorithm [10] (without contour split) requires 

)( ennO log , where n is the total number of vertices 

and e is the number of edges. To apply depth-first 

search for checking valid saddles or maxima, it 

requires ))(( evS nnO , where nv and ne are the 

numbers of vertices and edges, respectively, explored 

during the depth-first search. S  is the total number of 

saddle points found. Hence, the overall complexity is 

))(( evS nnennO log .

Compared with [5], although our method also needs 

to compute the expensive geodesic sum, we only apply 

it on topologically important feature points. The total 

complexity of computing the geodesic sum for the 

whole model is )))((( ennO logsaddlemax ,

where max  and saddle  are the numbers of local 

maximum points and saddle points, respectively.  is 

the number of binary search iterations (usually, less 

than 20) required to find )(qGMin Sq . It should be 

noted that saddlemax  is much smaller than the 

total number of base vertices required by [5]. For 

example, we consider the most complicated human 

model where 60saddlemax  and 20 , making 

a total of 80. Whereas in [5], about 150 base vertices 

and their geodesic sums are computed. These geodesic 

sums are then interpolated to become those of the other 

model vertices. Hence, the interpolated values 

associated with the other model vertices are only an 

approximation from those of the base vertices. Our 

method, on the other hand, computes the geodesic sum 

directly on all topological points and is thus believed 

to be more accurate. Unfortunately, we do not have 

their program to verify this. 

To compare two models, we apply the MCWMB

matching algorithm. This algorithm has a complexity 

of ))(( NNMNO log , where N=|A| |B|, M=|A| |B|, 

and |A|, |B| are the numbers of vertices in the two 

topological point sets A and B, as discussed in section 

4.2. For [5], the complexity of comparing two models 

is O(NR(MR+NR)), where NR, MR are the R-nodes 

counts of the two models. Although the complexity of 

our method is higher than [5] here, it should be noted 

that the number of matching points (i.e., the number of 

topological points) is less than that of [5]. In our 

method, feature points are dependent on model 

topology only, not on tessellation, and thus the number 

of matching points is limited. For comparison, our 

method has on average 18 topological points for each 

model of our database, while the method in [5] has 

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE 



7

about 300 r-nodes for each model. To give some 

statistics on matching time, we have maximum, 

minimum and average matching times of 110ms,

<0.5ms and 0.71ms, respectively, on a PIII-500MHz 

machine. By reducing the number of geodesic sum 

computations (which consume 90% of the cost of the 

feature extraction process) and the number of nodes in 

the matching process, our method can support faster 

content-base retrieval and allow users to submit their 

query model on the web environment.

We would like to point out that when a 3D model 

contains more and more topological and/or geometric 

details, the reeb graph based matching methods 

performs less accurate [2]. The multi-resolution 

version of reeb graph [5], which follows topological 

alignment of a model, is not a skeleton. It stores no 

explicit topological information and not even the shape 

of the model. For geometric information, area and 

length are the only features used. These features are 

relatively local, and have no specific information to 

describe the model surface. To better tackle such 

limitation, we derive our topological points from LSD. 

LSD not only represents the actual skeleton, but also 

gives intrinsic topological properties, like genus 

number from its structure. Further, by grouping feature 

points into local maximum points (protrusion tips) and 

saddle points (branches or handles (genus)), our 

method can better represent the model. To distinguish 

similar models of different shapes or poses, features 

that can describe the overall surface must be used. In 

our method, the additional curvature feature vectors 

are especially reserved for such purpose. By capturing 

additional topological and geometric features from 

both domains, we believe that our method can out-

perform [5]. 

6.  Conclusion 

This paper proposes a novel 3D model matching 

method through analyzing the models in both 

topological and geometric domains. Unlike existing 

topology methods [5,16], we use topological points to 

represent the skeletal information. As demonstrated in 

our experimental results, the new method has a very 

high accuracy in matching highly deformable models, 

invariant to rotation, non-uniform scaling and multi-

resolution. The precision rate reaches as high as 0.54 

even at a recall rate of 1.0. 
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Table 3.  Comparison between LSD and our feature point extraction algorithm. 

LSD
Topological 

points* 
Our Approach 

Topological

points* 
LSD

Topological 

points* 
Our Approach 

Topological 

points*

Total: 16 

C: 76 

I: 16 

M: 0 

R: 44 

Total: 16

C: 16 

I: 0 

M: 0 

R: 0 

Total: 16

C: 30 

I: 3 

M: 0 

R: 11 

Total: 16

C: 16 

I: 0 

M: 0 

R: 0 

Total: 16 

C: 46 

I: 7 

M: 0 

R: 23 

Total: 16

C: 16 

I: 0 

M: 0 

R: 0 

Total: 15

C: 58 

I: 9 

M: 0 

R: 34 

Total: 15

C: 14 

I: 0 

M: 1 

R: 0 

Total: 16 

C: 84 

I: 6 

M: 0 

R: 62 

Total: 16

C: 14 

I: 0 

M: 2 

R: 0 

Total: 2 

C: 6 

I: 0 

M: 0 

R: 4 

Total: 2 

C: 2 

I: 0 

M: 0 

R: 0 

Blue Sphere: Saddle points  Red Cube:  Local Maximum 

Captured (C):  Number of topological points captured by algorithm 

Incorrect (I):  Number of incorrect points far away from topological location (e.g., articulate joints, tips of protrusion) 

Missing (M):  Number of topological points that algorithm fail to capture 

Redundant (R):  Redundant points locate near topological location captured by the algorithm 

(*)   Topological Points include both local maximum and saddle points 
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Figure 5.  Some example model groups and similarity values. 
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